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Abstract

Methods for Jointly Calling Somatic Copy Number Alterations in
Single Cell Whole Genome Sequencing for Inferring Tumor Phylogenies

by

Sandra Camille Hui

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Tumors develop after the accumulation of passenger and deleterious driver mutations, in-
cluding single nucleotide mutations and large scale copy number alterations (CNAs). With
the advent of next generation sequencing, large consortia, such as The Cancer Genome Atlas
and the International Cancer Genome Consortium, have sequenced thousands of tumor and
healthy blood (matched normal) samples from cancer patients. These bulk sequencing stud-
ies have yielded an unprecedented amount of information on the molecular level, including
showing recurrent molecular signatures across tissue types, as well as patient specific aber-
rations [1]. While this information can be utilized in clinical settings, the averaging effect of
bulk sequencing can obscure rare mutations, which, if not taken into account in treatment,
can lead to future relapses. Furthermore, because we cannot ethically obtain longitudinal
samples from treatment naive solid tumors to observe how tumors grow and change over
time, reconstructing tumor evolutionary phylogenies from samples taken at a single time
point is an active area of research.

By treating a collection of tumor cells as individuals in a population, single cell sequencing
(SCS) can reveal finer levels of detail of rare events in a tumor population, and allows
application of well studied population genetics methods for studying evolution. However,
SCS techniques are very noisy due to low amounts of starting DNA. This can manifest as low
and uneven coverage across the genome and allelic dropout, making point mutation calling
particularly difficult [2]. Although cell dissociation and isolation remain challenges, we aim
to computationally address problems and biases specifically introduced from whole genome
amplification (WGA), a necessary step because of the small amount of starting material in
each cell. Despite these challenges, the number of reads falling in each window along the
genome (read depth) can be used to study copy number events.

Here, we present three methods to estimate copy number profiles and cell similarity. In
Chapter 2, we present a novel method, SCONCE [3], that accounts for single cell whole
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genome sequencing noise and calls copy number events in single cells. SCONCE is based
on a Hidden Markov Model that incorporates a Markov process continuous through time,
to model the evolutionary history of a tumor, as well as a discrete process along the length
of the genome, to estimate copy number alterations from changes in read depth. We show
SCONCE outperforms competing methods across a wide range of simulated and published
real datasets [4, 5].

In Chapter 3, we present SCONCE2 [6], an expansion on SCONCE to jointly call copy num-
ber events across multiple cells and estimate cell similarity. SCONCE2 uses pairs of cells to
model evolutionary relationships and estimate joint copy number profiles. By summarizing
these joint copy number profiles across multiple cell pairs, SCONCE2 more accurately detects
breakpoints and copy number events. Furthermore, SCONCE2 creates a novel cell similarity
metric based on pairwise tree branch lengths, which can be used to estimate tumor phylo-
genies using neighbor-joining. Using a combination of public data [4, 5] and simulations,
compared to other methods, we show SCONCE2 more accurately calls copy number pro-
files, detects breakpoints, and estimates pairwise cell similarity, leading to tumor phylogeny
estimates with less error.

Finally, in Chapter 4, we present SCONCEmut, a further expansion on SCONCE and
SCONCE2, by utilizing genotype likelihoods. Although calling point mutations in single
cell sequencing remains difficult due to noisy and low read depth, estimating the number
and types of shared and independent mutations between cells can be incorporated into branch
length estimates. Using a range of simulated and real data, we explore a model to jointly
estimate mutation counts, using genotype likelihoods, copy number profiles, and tree branch
lengths.

In this dissertation, we show SCONCE, SCONCE2, and SCONCEmut can be used to ac-
curately call copy number events and study evolutionary relationships in single cell whole
genome tumor sequencing data. When applied to additional datasets, investigators can
gain further insight into and understanding of tumor evolution, potentially leading to more
effective cancer detection and treatment protocols.
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Chapter 1

Introduction

1.1 Overview of cancer genetics

Cancer develops from an accumulation of deleterious mutations, including single point mu-
tations (base substitutions), small insertions and deletions (indels), changes to molecular
markers controlling gene expression (epigenetic modifications), reordering of genomic ele-
ments (translocations and genomic rearrangements), and large scale amplifications and dele-
tions of whole chromosomal regions (copy number alterations). These mutations disrupt cell
functions controlling cell proliferation, death, and movement, leading to the unchecked cell
growth characteristic of cancer, in two ways: by accelerating and promoting cell division
(akin to stepping on the gas pedal), and by removing or disabling mechanisms to control
and stop cell growth (similar to stepping on the brakes) [7, 8].

In the first scenario, on the DNA level, proto-oncogenes (genes that help cells grow, and
are essential for organism growth and development) are mutated into oncogenes, leading to
a variety of growth promoting mechanisms. For example, point mutations might make a
growth promoting protein more active or long lasting, copy number amplifications might
increase the number of copies of oncogenes from two (healthy diploid), or point mutations
might lead to increased expression of growth gene products [9–11].

In the second scenario, tumor suppressor genes (genes that slow cell division and growth)
are disabled. For example, indels might cause DNA repair proteins to be nonfunctional (lead-
ing to a faster accumulation of mutations), copy number deletions might remove chromosomal
segments containing one or more copies of tumor suppressor genes, or point mutations might
disable a gene necessary for cell adhesion (potentially leading to metastases) [12, 13].

Both proto-oncogenes and tumor suppressor genes play key roles in normal cell growth
and organism development. However, healthy cells can evolve into cancerous cells over time
as they accumulate and pass down these deleterious driver (causal) mutations to daugh-
ter cells through cell division. Eventually, enough unchecked somatic mutations (activating
oncogenes and deactivating tumor suppressor genes) are gained to lead to cancerous uncon-
trolled cell growth. These acquired mutations and their shared history can be leveraged to
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better understand the genetics of cancer development [7, 14–16].

1.2 Overview of tumor sequencing

To study cancer genomics, tumors are often sequenced in bulk with a matched healthy
sample from the same person, enabling identification of germline (person specific) variants
and somatic (cancer specific) mutations. Deleterious germline mutations, which are passed
from parent to child, can predispose an individual to a higher risk of developing cancer. In
contrast, somatic mutations are acquired throughout a person’s lifetime, such as through UV
damage, carcinogen exposure, or spontaneous mutations associated with DNA metabolism.
In this dissertation, we focus on identifying somatic mutations by examining two aspects
of tumor sequencing data: the quantity of reads covering a specific region of the genome
(ie, how many reads fall into a genomic window), which can be used to estimate copy
number/amount of DNA; and the base content of reads at a given genomic position (ie,
which letter, of {A,C,G, T}, is this site most likely to be), which can be used to call point
mutations.

Despite the rapid advances in sequencing technology [17], however, genomic sequencing is
not bias or error free. For example, the ratio of G/C bases to A/T bases can bias sequencing
results (termed GC bias) [18]. Additionally, some genomic regions are harder to access
(such as tightly bundled centromeres) or map (such as highly repetitive regions), thereby
reducing sequencing efficiency in these regions (termed mappability bias) [19]. Both GC
and mappability biases can directly negatively effect copy number estimates if not properly
controlled for. Furthermore, the sequencing process itself can introduce base substitution
errors, where the wrong letter is read out [18]. Fortunately, these sequencing errors can be
probabilistically accounted for if there is high enough read depth (ie, how many times this
base has been independently read), but remain a challenge in areas with low read depth
(that is, there aren’t enough reads to rule out a sequencing error) [18].

Nonetheless, many tools have been developed to address and model these errors. Bulk
sequencing can yield vital information about a tumor’s key characteristics and prognosis,
and large tumor studies have successfully generated a wealth of data [1, 20–23]. However,
the sample preparation process for bulk sequencing requires mixing all cells in a sample
together, thereby averaging out rare events and losing cell specific information.

In contrast, single cell sequencing lets one examine cells as a collection of individuals in
a population, allowing for adaption and application of well established population genetics
principles and tools, identification of rare and cell specific events, and examination of inter-
cellular relationships. For example, in a tumor with high intratumor heterogeneity (that is,
one tumor with multiple distinct sub populations), some cells may contain rare mutations
that will help them evade a particular drug therapy, which, if left unaddressed, could lead
to a later relapse or metastasis. However, if these rare mutations are detected via single cell
sequencing, treatments can be tailored and combined to target a higher diversity of cells,
thereby improving patient outcomes. Additionally, single cell sequencing can be used with
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liquid biopsies for noninvasive early cancer detection and treatment monitoring, where indi-
vidual circulating tumor cells can be extracted from a routine blood draw to identify cancer
cells and longitudinally analyze disease progression and treatment response. Furthermore,
using population genetics methods, investigators can gain a deeper understanding of the
evolutionary processes underlying cancer development, such as estimating changes in mu-
tation and growth rates, comparing tumor evolution models, identifying driver mutations,
tracing cancer lineages and trajectories, and inferring evolutionary trees (phylogenies). Fi-
nally, using variations on single cell DNA sequencing, such as single cell RNA sequencing
(that is, quantifying gene expression), researchers can examine cell specific transcriptional
patterns, and changes therein, to highlight functional differences, which can further deepen
understanding of cancer evolution and guide personalized therapies [24–30].

However, single cell sequencing comes with a its own set of challenges. In particular,
due to the small amount of starting material in one cell (compared to a whole tumor) and
necessary whole genome amplification steps, sequencing coverage tends to be sparse and
uneven across the genome, with low overall read depth. The limited information about
each genomic position makes calling point mutations extraordinarily difficult. Additionally,
low read depth can lead to things like allelic drop out, where some alleles or gene copies are
unobserved because they were not successfully amplified, leading to incorrect point mutation
calls. In contrast, by zooming out and counting the number of reads in a large region, we
can gather sufficient information to estimate copy number alterations.

1.3 Overview of SCONCE, SCONCE2, and

SCONCEmut

In order to address the challenges presented by low read depth, we first focus on estimating
large scale copy number events across the genome in single cells. In Chapter 2, we present
our method SCONCE, which uses a principled evolutionary model to call copy number
alterations in these data. SCONCE uses matched single cell sequencing of diploid cells as a
null model to correct for sequencing biases, namely GC and mappability biases. We applied
SCONCE to simulated and previously published real data [4, 5], and show it calls copy
number profiles and detects breakpoints with higher accuracy than competing methods.

However, SCONCE does not utilize any shared evolutionary history between cells. In
Chapter 3, we expand the SCONCE framework into a new method called SCONCE2,
which jointly estimates copy number profiles and evolutionary distances across multiple
cells. SCONCE2 estimates pairwise copy number profiles, and produces consensus profiles
by summarizing across all cells. In this process, SCONCE2 infers evolutionary relationships
between each pair of cells by estimating the amount of shared evolutionary time (branch
length) until divergence, as well as the length of time each cell evolved independently. We
applied SCONCE2 to a range of simulated and real data [4, 5], and show using information
from multiple cells improves upon the copy number call and breakpoint detection accuracy
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values from SCONCE. We also apply a well established population genetics method for phy-
logeny estimation, called neighbor-joining [31, 32], using the estimated evolutionary pairwise
branch length relationships to infer more accurate phylogenies than competing methods.

Finally, although definitively calling mutations in low coverage sequencing data is ex-
tremely difficult, information can still be gained from estimating the most likely base(s) at
a given position (termed the genotype likelihood). In Chapter 4, we further expand upon
the SCONCE and SCONCE2 frameworks, by incorporating point mutation data into our
estimates of branch lengths. Intuitively, if mutations occur at a constant rate, as the branch
length increases, the expected number of mutations on that branch should also increase (that
is, there is more time for mutations to occur). We combine this information about mutation
counts (and therefore expected branch lengths) with the inferred copy number profiles to
jointly estimate branch lengths. Using a wide array of simulated and real data, we explore
a model for including estimates of point mutation counts for branch length and phylogeny
estimates.

In this dissertation, we present three methods to study somatic copy number alterations
in single cell whole genome tumor sequencing. By accurately calling copy number profiles
with SCONCE (see Chapter 2, estimating intercellular pairwise evolutionary relationships
with SCONCE2 (see Chapter 3), and utilizing point mutations with SCONCEmut (see
Chapter 4), investigators can gain deeper insight into cancer evolutionary dynamics, which
can potentially lead to more advanced and personalized cancer treatments.
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Chapter 2

SCONCE: A method for profiling
Copy Number Alterations in Cancer
Evolution using Single Cell Whole
Genome Sequencing

This chapter was previously published in Bioinformatics (2022), and is included as published
here. The authors on this paper are:

Sandra Hui1, Rasmus Nielsen1,2,3

1. Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
2. Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
3. Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
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2.1 Abstract

Motivation: Copy number alterations are a significant driver in cancer growth and develop-
ment, but remain poorly characterized on the single cell level. Although genome evolution
in cancer cells is Markovian through evolutionary time, copy number alterations are not
Markovian along the genome. However, existing methods call copy number profiles with
Hidden Markov Models or change point detection algorithms based on changes in observed
read depth, corrected by genome content, and do not account for the stochastic evolutionary
process.
Results: We present a theoretical framework to use tumor evolutionary history to accurately
call copy number alterations in a principled manner. In order to model the tumor evolu-
tionary process and account for technical noise from low coverage single cell whole genome
sequencing data, we developed SCONCE, a method based on a Hidden Markov Model to
analyze read depth data from tumor cells using matched normal cells as negative controls.
Using a combination of public data sets and simulations, we show SCONCE accurately de-
codes copy number profiles, and provides a useful tool for understanding tumor evolution.

2.2 Introduction

In cancerous cells, somatic driver and passenger single nucleotide polymorphisms (SNPs)
and copy number alterations (CNAs) accumulate over time. CNAs are extremely common
across cancer types [21, 33].

Many large scale cancer studies are done with bulk samples, and many methods and
evaluation techniques [34, 35] have been developed to identify copy number alterations in
bulk sequencing, especially for low coverage data [36] and tumor heterogeneity deconvolution
[37]. However, bulk sequencing averages mutations across many cells and loses the granu-
larity and detail single cell sequencing (SCS) can provide. Single cell sequencing facilitates
analyses treating each cell as an individual in a population. However, the SCS process is
technically challenging and produces noisy low coverage data, due to challenges such as cell
dissociation, small amounts of starting DNA, and non uniform whole genome amplification
[38]. Although the rapidly increasing availability of single cell RNA sequencing (scRNA-seq)
of tumors can yield insights into tumor subpopulations [39] and relevant biological pathways
and processes [40, 41], using scRNA-seq for calling CNAs is limited to areas of the genome
that are expressed at the time of sequencing and does not directly measure genomic copy
number. However, single cell whole genome DNA sequencing data promises to circumvent
these problems, despite the inherent noisiness of the data.

The main components of CNA calling are detecting breakpoints between contiguous
regions of the genome with the same copy number and determining the absolute copy number
of each region. Previous approaches to calling CNAs using single cells have been based on
Hidden Markov Models (HMMs) and change point detection [42]. For example, HMMcopy
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use a Hidden Markov Model to segment tumor genomes, normalized by matched normal cells.
Although HMMcopy was originally designed for array comparative genomic hybridization
data [43, 44], it has been widely used for single cell sequencing data [42, 44].

Another method, CopyNumber [45], was also designed for microarray use. Although
CopyNumber detects breakpoints, it does not output absolute copy number calls. One
strength of CopyNumber, however, is that it can be run in individual and multi sample
modes, where breakpoints are forced to be shared across all samples [45].

A third program, DNAcopy [46, 47], was designed for microarray use, and uses circular
binary segmentation to identify breakpoints, but does not output absolute copy number calls
[46, 47]. Although DNAcopy was not originally designed for single cell sequencing data, it
has been applied to such data sets [4, 48].

A fourth program, AneuFinder [49, 50], which was designed for calling CNAs in whole
genome SCS data, uses an HMM [49] or breakpoint detection analysis [50]. To determine
absolute copy number, regions are scaled to have integer copy numbers, or so the mean copy
number matches a known ploidy (determined by a DNA quantification technique, such as
flow cytometry [51]).

Finally, SCICoNE [52] was designed for CNA calling in whole genome SCS data. It uses
a likelihood based model to first detect breakpoints shared across cells, and then builds a
CNA based tree to determine absolute copy number values [52, 53].

All of these methods require dividing the reference genome into adjacent bins and using
bin or cell specific GC and mappability corrections to adjust read counts and mask out ”bad”
bins that exhibit extremely high or low coverage due to centromeres, telomeres, or highly
repetitive regions. None use stochastic models of tumor evolution to do both breakpoint
detection and copy number calling. An objective of this paper is to develop models for CNA
calling based on explicit models of tumor evolution. The rationale is that the use of such
explicit models of evolution might improve inferences similarly to what has been observed
in models of molecular evolution used in phylogenetics [54–56].

Because tumor cells evolve forward in time from an ancestral diploid state through muta-
tions that only depend on the current state of the cell, copy number alterations are inherently
governed by a (possibly time-inhomogenous) temporal Markov process. However, the read
distribution observed along the length of the genome (the spatial process) is not Markovian.
To realize this, consider a mutation within a segment of DNA with copy number 4 that
reduces the copy number from 4 to 3. When moving from the left to the right along the
length of the genome, the copy number would then go from 4 → 3 → 4. There are two
transitions (breakpoints) caused by the same single CNA. In many other situations, the rate
of mutation from 3 → 4 (as in the second breakpoint) might be low, however, because the
chromosome previously was in state 4, the rate of transition back from 3 to 4 is in fact high
in our example. The process along the length of the genome is not Markovian because copy
number alterations may have finite length and each mutation may induce two breakpoints.

Even though the spatial process is not Markovian, the HMM framework is computation-
ally convenient. An aim of this paper is, therefore, to develop Markovian approximations of
the spatial process that can be used for inference. We present SCONCE (Single Cell cOpy
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Numbers in CancEr), a method based on modeling the temporal Markovian evolutionary
process and deriving a best approximating spatial HMM from this process. SCONCE also
uses diploid data as a null to model the technical noise in single cell sequencing data and
can robustly learn model parameters and detect copy number alterations. We show on simu-
lated data that the method more accurately estimates the copy number states of a cell than
previous state-of-the-art methods, and we analyze real data to show that the observations
from simulated data are mirrored by similar differences among methods in analyses of real
data.

2.3 Theory and Methods

Simulations

In order to robustly evaluate SCONCE, we use two simulation models, one based on treating
the genome as a continuous line and modeling copy number alterations as duplications or
deletions of line segments (Line Segment Model), and one based on dividing the genome
into discrete bins (Binned Model). Of note, the assumptions of these simulation model are
more realistic and differ intentionally from the models implemented in SCONCE described
in Hidden Markov Model. We simulate data and estimate parameters and copy number calls
under different models, to avoid biasing method comparisons towards our method.

Line segment model

In the Line Segment Model, we assume a genome, G, to have a fixed maximal length, L, and
be comprised of c orthologous chromosomes. Each chromosome consists of an ordered list
of line segments, which have positions that can be mapped back into [0, L]. Amplifications
create an extra copy of a chromosome or part of a chromosome. Note there is no maximum
copy number imposed by this model, and copy number may go to infinity. A deletion in a
chromosome erases part, or the entirety, of one or more line segments in a single chromosome.
Once deleted, a segment cannot be regained. A worked example is given in Suppl. 2.8.

Rates of amplification and deletion in the Line Segment model: It is assumed
that amplifications and deletions initiate at a constant rates φ and δ, respectively, per unit
chromosome and per time unit, with lengths drawn from truncated exponential distributions
with respective rates τa and τd, such that the rate at which a particular point in the region
is affected by an amplification or deletion is φ

τa
and δ

τd
, respectively.

We assume that amplifications and deletions run from left to right (but by construc-
tion the same distribution is obtained if considering the process from right to left), and the
truncation occurs when an amplification or deletion extends beyond the end of the chromo-
some. To remove edge effects, we additionally assume new events can initiate at the left
start of each chromosome with the same rates, φ

τa
and δ

τd
. The total genomic rate at which

amplifications and deletions occur at any point in time is then c
(

φ
τa

+ δ
τd

)
+ | G | (φ+ δ).
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Induced marginal process: The process, as defined here, is a Markov process with
state space on the infinite set of all possible genomes. It also induces a marginal continuous
time Markov process at each position in the genome, Wt ∈ Z, with transition rates qij = i φ

τa

if j = i+ 1, qij = i δ
τd

if j = i− 1 and j ≥ 0, and qij = 0 otherwise, for copy number states i
and j. We notice that this is a linear birth-death process with birth rate φ

τa
and death rate

δ
τd
.

Binned process

We also consider an alternative and simpler process, termed the binned process, where we
assume that the genome can be divided into n bins. The state space in each bin is S =
{0, 1, 2, ..., k}, where k is the maximum copy number.

Amplifications and deletion lengths in the Binned process We assume that the
length of amplifications and deletions follows a truncated geometric distribution with param-
eter p. That is, given that a certain amplification/deletion occurs in bin i, the probability
that it extends to the adjacent bin i + 1 is 1 − p. If the copy number in bin i changes by
amount s, the copy numbers in bins affected by the same event change from u to u′ = s+ u
if 0 ≤ s+ u ≤ k, u′ = 0 if s+ u < 0, or u′ = k if s+ u > k.

Marginal process of initiation: We model the marginal process of initiation of new
CNAs in each bin as a continuous time Markov chain with rate matrix Q = {qij}. The total
rate of CNA initiation within any of the n bins, at time t, is then Rt =

∑n
i=1

∑
j ̸=Yi(t)

qYi(t)j,

where Yi(t) is the state in bin i at time t. Notice, that because of the assumption of
geometrically distributed lengths of amplifications and deletions, the marginal process in
each bin does not follow Q. Only the initiation process of new amplifications and deletions
follows Q.

To ensure an approximately constant rate along the length of the chromosome, amplifi-
cations and deletions may also initiate immediately to the left of the first bin. Such events
occur at a rate of Rt

np
, and the relative probability of change to state j from state Y0(t) is

given by qY0(t)j.

Read Depth Simulation

Both the line segment and binned models simulate observed read depth for a given number
of genomic windows directly from the simulated genome, G. Read depths are drawn from a
user specified negative binomial distribution.

Simulation Data sets

We simulated 5 data sets under the line segment model and 7 data sets under the binned
model, in order to generate a variety of types and quantity of copy number events. Each
data set had 100 tumor cells and 100 diploid cells, where read counts from diploid cells were
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averaged together to form the background model. Full simulation parameter values are given
in Suppl. Simulation dataset parameter values.

Hidden Markov Model

In order to detect breakpoints and call absolute copy numbers, we define a Hidden Markov
Model along the length of the genome informed by a tumor cell’s evolutionary history. We
define the state space, S, of the HMM as the integer tumor copy number in a given genomic
bin, from 0 up to a user specified k (suggested k = 10), and the alphabet as the integer
observed tumor read depth in that bin.

Emission probabilities

We model emission probabilities for tumor read counts for each bin with a negative binomial
distribution (interpreted here as an overdispersed Poisson). We incorporate the mean diploid
read count for each bin into the emission probabilities, in order to normalize for technical
noise and sequencing bias. Note that having a matched diploid sample is necessary to account
for sequencing errors. We assume the tumor read depth in window i for tumor cell A to be
represented by random variable XiA, such that

E(XiA) = λiA =
(
ρiA × µi

2

)
× sA + ε (1)

XiA ∼ NegBinom
(
λiA, σ

2
iA = aλ2

iA + bλiA + c
)

(2)

where ρiA is the state in window i for cell A, µi is the mean diploid read depth in window i, ε is
a constant sequencing error term, sA is a cell specific library size scaling factor (see Library
Size Scaling Factors), and {a, b, c} are constants learned from diploid data (see Learning
constants {a, b, c}). We use a quadratic relationship between the mean and variance of read
depth in Equation 1, as this approximation best fit real diploid data [4] (see Suppl. Second
degree polynomial). Therefore, the emission probability for an observed read depth, xiA, is
given by Equation 2.

Joint evolutionary process of two bins forward in time

In Simulations, we described two principled models of CNA evolution. However, neither of
these models have the property that they are Markovian along the length of the genome.
To construct an approximating process that is Markovian, we will first construct a process
jointly affecting two bins. From this description of the joint evolution of two bins, we will
then derive the approximating Markov process used as the transition probabilities in the
HMM.

Consider two adjacent bins in the genome on one lineage, (U, V ) ∈ {(0, 0), (0, 1), . . . ,
(k, k)}, where U is the copy number in bin i, and V is the copy number in bin i + 1. The
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copy numbers in these bins change through continuous time evolutionary history according
to rate parameters {α, β, γ}:

α = rate of ± 1 CNA (3a)

β = rate of any CNA (3b)

γ = rate of CNAs affecting both U and V (3c)

These rates are encoded in a transition rate matrix Q = {q(U,V ),(U ′,V ′)}, U, V, U ′, V ′ ∈ S,
which gives the instantaneous rate of observing a change from (U, V ) to (U ′, V ′):

q(U,V ),(U ′,V ′) =

γ(α + β) if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n = 1

γβ if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n > 1

α + β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n = 1

β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n > 1

r(U,V ) if (U ′, V ′) = (U, V )

0 otherwise

(4)

We set r(U,V ) = −
∑

(u′,v′ )̸=(U,V ) q(U,V ),(u′,v′) such that all rows sum to 0. As only one event can
occur in an infinitesimally small time interval, cases where adjacent bins are simultaneously
affected by different events, such as (U ′, V ′) = (U + n, V − n), n > 0, have instantaneous
rate 0. However, notice that any time interval ¿ 0, can contain different changes in adjacent
bins.

From this rate matrix Q, the time dependent transition probabilities P are calculated via
the matrix exponential as

P(U,V ),(U ′,V ′)(t) = eQt (5)

as the solution to the Kolmogorov equations. This gives the probability of observing a
transition from (U, V ) to (U ′, V ′) in evolutionary time t.

Approximating Markovian process along the genome

We convert the forward-in-time process for two bins into an approximating Markov model
along the length of the genome with transition probability matrix Mt = {mi,i′,t}, i, i′ ∈ S, i.e.
we identify the one-step transition probability of moving from state i to i′ along the genome
in a binned process, after a given evolutionary time t. Under the assumption that the cell
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has an ancestral diploid state at time t = 0, we set (U, V ) = (2, 2) and (U ′, V ′) = (i, i′).
To ensure all rows in matrix Mt sum to 1, we normalize over all states W in S, such that
the one-step transition probabilities of the discrete approximating Markov process along the
length of the genome are given by

mi,i′,t =
P(2,2),(i,i′)(t)∑

W∈S P(2,2),(i,W )(t)
(6)

Given an evolutionary time t, Equation 6 defines the transition matrix for the HMM
(described in Hidden Markov Model) along the length of the genome. That is, the HMM
transition matrix is fully parameterized by {α, β, γ, t}.

The advantage of using a model that approximates a non-Markovian process using an
evolutionary time-informed HMM over more generic HMMs is that information about the
ancestral diploid state is included in the model specification, allowing, as we will show in
the result section, more accurate inference of copy number state. While the model is only
an approximation, as it ignores the non-Markovian nature of any realistic model of CNA
changes along the genome, we will evaluate it on simulations from the aforementioned more
realistic non-Markovian simulation models.

Model Training

The model training has four steps, followed by the copy number profile decoding, shown in
Figure 1. We first estimate the emission probability constants in Equation 2, {a, b, c}, from
the diploid data. Second, for each tumor cell, A, we quickly estimate an unconstrained transi-
tion matrix, initial probability vector, and library size scaling factor, sA, using a modification
of the Baum-Welch algorithm. Third, the model rate and time parameters, {αA, βA, γA, tA},
are fit to the estimated transition matrix using least squares. Fourth, the initial estimates for
{sA, αA, βA, γA, tA} are refined using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-
mization algorithm to maximize the forward likelihood of the observed tumor read depths,
and copy number profiles are produced from the Viterbi decoding.

Negative Binomial Mean and Variance Calculations

The variance and mean of the negative binomial distribution on read depth are related using
a second degree polynomial, defined in Equation 2. A second degree polynomial was chosen
to maximize the adjusted R-squared value on real diploid data [4], without over-specifying
the model (see Suppl. Second degree polynomial).

To determine the constants {a, b, c} for a given set of observed diploid data, we calculate
the per window expected mean number of reads and variance as specified in Equation 2.
Next, we maximize the likelihood of the observed diploid data using the Nelder-Mead method
for optimization to find the optimal values of {a, b, c}. These constants are then used for
tumor emission probability calculations (see Suppl. Learning constants {a, b, c} for technical
optimization details).
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Library Size Scaling Factors

Because each sequenced cell will have a different total number of reads, the expected number
of reads for each cell needs to be scaled accordingly. Notably, we calculate these cell specific li-
brary size scaling factors in a way that accounts for changes in the distribution of reads across
the genome caused by CNAs. From Equation 1, let TA = total # reads in tumor cell A
(across n windows), such that

E(TA) =
n∑

i=1

[(
ρiA × µi

2

)
× sA + ε

]
(7)

ŝA =
TA − nε∑n

i=1

(
ρiA × µi

2

) (8)

We define ρiA as copy number in the ith window from cell A’s Viterbi decoding path,
updated after each iteration of the Baum-Welch algorithm, such that the library size scal-
ing factor estimate continually incorporates changes in estimated copy number across the
genome. Initial estimates of sA are based on the ratio of tumor and average diploid library
sizes, and updated according to Equation 8 in subsequent iterations of the Baum-Welch
algorithm.

Because sA estimation can get stuck in local minima, we use several initial estimates
of sA,initial,h;h ∈ {1, 2, 3}. The first is set to sA,initial,1 = cell A library size

average diploid library size
. Subsequent

starting points are set to sA,initial,2 = 2 × sA,final,1, sA,initial,3 = 4 × sA,final,1. Skipped and
rarely visited intermediate copy number states (for example, overwhelmingly observing even
copy number states genome wide, with odd states observed at 0 or near 0 frequencies)
are hallmarks of a local minima for sA. Estimates of sA,final that display this pattern are
excluded, and the sA,final estimate with the highest likelihood is used (see Suppl. Library
Size Scaling Factor Selection for further details on filtering sA,final values).

Modified Baum-Welch

We use the standard Baum-Welch algoritm to estimate the transition matrix and initial
probability vector, resulting in unconstrained estimates of the transition matrix and initial
probability vector. However, we do not use Baum-Welch to directly estimate an emission
probability matrix, as emission probabilities are governed by Equation 1, which is only
affected by sA estimates (calculated by Equation 8; see Library Size Scaling Factors).

Next, we fit our model parameters, {αA, βA, γA, tA} to the estimated transition matrix
using least squares to minimize the sum of squared errors between the Baum-Welch estimated
transition matrix and the transition matrix determined by the model parameters.

BFGS Parameter Estimation and Inferring CNAs

Given estimates from previous steps, the parameters {sA, αA, βA, γA, tA} are refined for each
tumor cell A, by maximizing the log likelihood (calculated using the Forward Algorithm) us-
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ing the BFGS optimization algorithm, an unconstrained quasi-Newton optimization method
that approximates the second derivative of the log likelihood by iteratively calculating the
gradient [57] (see Suppl. BFGS Technical Details for technical details on BFGS implemen-
tation).

Finally, the most likely copy number sequence for each cell is reported using the Viterbi
decoding algorithm.

We note that some of the heuristics described in the previous sections could be avoided
using a full likelihood estimation using BFGS without the intermediate step of an uncon-
strained Baum-Welch optimization. However, we find that such optimization is slower, as
the Baum-Welch optimization is substantially faster than the BFGS optimization. Addition-
ally, using model parameters fitted to the Baum-Welch results using least squares, without
BFGS refinement, results in inaccurate CNA calling, thereby showing the importance of well
estimated model parameters (see Suppl. Importance of Model Parameter Accuracy). Finally,
using multiple starting points, as described above, was found to be necessary to avoid the
optimization getting stuck in local, but not global, optima.

Real Data Preprocessing

We applied SCONCE to two published data sets aligned to hg19 (which was discretized
into nonoverlapping 250kb uniform bins using bedtools [58]). The first consists of 34 diploid
cells (as determined by cell sorting), and 4 tumor subpopulations (24, 24, 4, and 8 cells,
respectively) from one triple negative breast cancer patient [4], a cancer type with prevalent
CNAs [59]. The second consists of 10k cells across 5 sections of one triple negative ductal
carcinoma sample [5]. Section A was treated as the diploid sample, as determined by [60].
Standard data preprocessing and quality control steps were used to prepare the raw data (see
Suppl. Real Data Preprocessing Steps for details). For both real and simulated data sets,
we used the averaged diploid cells to calculate the negative binomial distribution constants,
{a, b, c}, and as the matched normal sample to determine the somatic copy number for each
tumor cell.

Other methods

In order to evaluate the accuracy of the inference procedure, we compared SCONCE to
HMMcopy [43, 44], CopyNumber [45], DNAcopy [46, 47], AneuFinder [49, 50], and SCICoNE
[52]. We limited our comparison to methods that have previously been used on the [4] dataset
[48], and that, similarly to SCONCE, do not require bam files or SNPs. See 2.8 for full details
for running each method.
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2.4 Results

GC content and mappability

Because GC content and sequence mappability can bias read distributions, many methods
explicitly incorporate corrections for GC content and sequence mappability. However, any
technical noise that would affect the tumor sequencing would also affect the diploid sequenc-
ing obtained using the same technology, so in SCONCE, these corrections are already directly
accounted for in our emission probabilities via the diploid mean.

To verify this, we examined prediction accuracy of expected tumor read counts per win-
dow with different amounts of information. For window i, let µi be the mean diploid read
count, ζi be the GC content, and ηi be the mappability from the Duke Uniqueness of 35bp
Windows from ENCODE/OpenChrom (UCSC accession wgEncodeEH000325) [61, 62]. For
each tumor cell, A, from the previously published data in [4], we predicted the ith window
tumor read depth, xiA, using various linear regressions on {µi, ζi, ηi}, then calculated the sum
of squared errors (SSE) between predicted and actual tumor read depths. Boxplots of the
SSE per cell are shown in Figure 2 and empirical cumulative distribution function (ECDF)
plots are shown in Suppl. Figure S4 for A: xiA ∼ µi, B: xiA ∼ µi + ζi, C: xiA ∼ µi + ηi,
D: xiA ∼ µi + ζi + ηi, E: xiA ∼ ζi, F: xiA ∼ ηi, G: xiA ∼ ζi + ηi, .

The sum of squared errors remains consistently low across models that incorporate the
diploid mean (models A, B, C, and D), and have overlapping ECDF plots, while the SSE
increases for models that depend solely on GC content and mappability (models E, F, and
G). Because adding the GC content and mappability did not perform significantly differently
from the diploid mean alone (two sample KS-test on the cumulative distribution of SSE,
D = 0.033333, p-value = 1), we conclude that using the diploid mean is sufficient, and do
not add GC or mappability corrections. This conclusion is robust to changes in window size
and binning method (ie. uniformly sized bins vs variably sized bins with equal numbers of
uniquely mappable bases).

Absolute Copy Number Accuracy

To compare the accuracy of each copy number calling method, we compared the absolute
copy number accuracy, scaled copy number accuracy, and breakpoint accuracy across eleven
simulated data sets. For brevity, representative simulation data sets are shown in Figure 3,
and accuracy results across all simulation sets are shown in Suppl. Figures S5, S6, and
S7. Recall that these data sets were simulated under a more realistic non-Markovian model
(described in Simulations) that differs from any of the models compared here, including
SCONCE. There is, therefore, no reason to presume that the results are particularly biased
towards favoring SCONCE because of a match between estimation and simulation model
assumptions.

To measure absolute copy number accuracy, we calculated the sum of squared errors
(SSE) between true copy number and estimated copy number for each cell and method across
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all windows. Because CopyNumber and DNAcopy do not output absolute copy number calls,
their results were optimally scaled and shifted to minimize SSE. Additionally, DNAcopy
does not output any calls in regions of 0 reads, so these regions were excluded from all
SSE calculations for DNAcopy. Overall, SCONCE has similar or lower error rates than
AneuFinder, and consistently significantly lower error rate than CopyNumber, DNAcopy,
HMMcopy, and SCICoNE (Figure 3).

For example, in Simulation Set H (consisting of many very short and spiky events per cell
under the binned model, described in Suppl. Table S2H and Suppl. Figure S1H; Figure 3A),
the median SSE for SCONCE is 579.00, 67.00, and 66.50, for k = 5, 10, 15, respectively. Of
note, because SCONCE cannot call copy numbers above the user specified k, its error rate
is significantly higher when the true simulated copy number is greater than k (for example,
in the k = 5 case). The median SSE values for k = 10, 15, however, are lower than the
median SSE of 197.00 for AneuFinder. Meanwhile, the median SSE values for HMMcopy
and SCICoNE were 2530.50 and 2226.00, respectively, while the scaled median SSE values for
CopyNumber (in individual and multisample modes, respectively) were 2510.12 and 2475.81,
and scaled median SSE of 1530.52 for DNAcopy.

In Simulation Set G (made of many overlapping CNAS with maximum k = 8 under the
binned model, described in Suppl. Table S2G and Suppl. Figure S1G; Figure 3B), SCONCE
with k = 10, 15 outperforms all other methods, with median SSE values of 136.00 and
148.00, respectively. As expected, SCONCE with k = 5 has a higher median SSE of 9056.50
as its inference is limited by the maximum k value. Meanwhile, AneuFinder, HMMcopy, and
SCICoNE have median SSE values of 222.50, 30378.50, and 27999.00, respectively. DNAcopy
and CopyNumber (in individual and multisample modes) have scaled median SSE values of
5265.23, 6841.98, and 6741.10.

In Simulation Set C (consisting of mainly deletions under the line segment model, de-
scribed in Suppl. Table S1C; Figure 3C), AneuFinder and HMMcopy have scaling problems,
while SCONCE does not. The median SSE values for SCONCE are 10.96, 11.09, and 11.11
for k = 5, 10, 15, but the median SSE values for AneuFinder and HMMcopy are 6545.67
and 39974.92. Both AneuFinder and HMMcopy tend to incorrectly double copy number
estimates. The scaled median SSE values for DNAcopy and CopyNumber (in individual and
multisample modes) were 947.50, 200.56, and 194.97. Of note, SCICoNE could not detect
any breakpoints in this data set and so could not completely run to produce any copy number
profiles.

Scaled Copy Number Accuracy

To check if the differences in median SSE between methods were due to scaling issues, we
applied the previously described scaling and shifting procedure to minimize the SSE between
true simulated copy number and estimated copy number for all methods. The median SSE
values for CopyNumber and DNAcopy did not change here, as their outputs were already
scaled and shifted. With this optimal rescaling, SCONCE consistently outperforms or is on
par with other methods.
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Although the median SSE for SCONCE with k = 5 in Simulation Set H (Suppl. Ta-
ble S2H and Suppl. Figure S1H) decreases from 579.00 to 549.98, rescaling does not address
the underlying upper limit on copy number as determined by k (Figure 3D). Similarly, un-
der Simulation Set G (Suppl. Table S2G and Suppl. Figure S1G), rescaling SCONCE with
k = 5 causes the median SSE to drop from 9056.40 to 5883.34, but it doesn’t address same
the root problem (Figure 3E). The median SSEs for the other methods for Simulation Set
H and G (Figure 3D,E) also decrease, but not significantly.

In contrast, the median SSE values for AneuFinder and HMMcopy for Simulation Set C
(Suppl. Table S1C) drops significantly from 6545.67 to 8.18, and from 39974.92 to 3377.62,
respectively, while the median SSE for SCONCE changed only slightly, to 10.88, 11.06, and
11.09 for k = 5, 10, 15. This shows AneuFinder’s high median SSE values for Simulation Set
C were due to incorrect scaling, rather than incorrect breakpoint detection and segmentation.
However, although HMMcopy’s median SSE value dropped by an order of magnitude by from
rescaling, the remaining high median SSE value implies other issues remain, such as poor
breakpoint detection.

Breakpoint Detection Accuracy

In order to evaluate program accuracy without the confounding factors of absolute or scaled
copy number estimates, we compared the breakpoint detection accuracy between each pro-
gram, by measuring the total distance between true and inferred breakpoints, penalized by
the number of inferred breakpoints relative to the number of true breakpoints. Specifically,
for each true breakpoint, we calculated the distance to the nearest inferred breakpoint in
either direction, and summed this distance across the genome. Because inferring many false
positive breakpoints would artificially decrease this breakpoint distance, we defined ω as

ω =
#inferred breakpoints

#true breakpoints
(9)

such that lowest total breakpoint distance and ω values closest to 1 indicate highest break-
point detection accuracy.

Across simulation sets, SCONCE consistently has ω values closest to 1 and total break-
point distances that are lower or on par with other methods. For example, in Simulation
Set H (Suppl. Table S2H and Suppl. Figure S1H; Figure 3G), ω values for SCONCE for
k = 5, 10, 15 all cluster near 1, with median ω values of 0.9302, 0.9321, and 0.9321, re-
spectively. Median ω values for AneuFinder, DNAcopy, CopyNumber (in individual and
multisample modes), HMMcopy, and SCICoNE, are 0.7330, 0.7828, 0.5067, 0.5045, 0.3408,
and 0.5451, respectively. Additionally, SCONCE has the lowest median total breakpoint
distance across k = 5, 10, 15 values (1028.0, 1013.5, and 1020.0), while median total break-
point distances for other programs (in the same order as above) are 3119.5, 3253.5, 9255.5,
9501.0, 13941.0, and 20087.0. Of note, although SCONCE with k = 5 had a higher median
SSE value than AneuFinder for this data set because many true copy numbers were above
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5 (Figure 3A), SCONCE still outperformed AneuFinder in terms of breakpoint detection
accuracy.

Furthermore, in Simulation Set G (Suppl. Table S2G and Suppl. Figure S1G; Figure 3H),
SCONCE has median ω values closest to 1 for k = 10, 15 (0.9499 and 0.9441) and lowest
median total breakpoint distances (185.0 and 209.5). However, for k = 5, SCONCE is
unable to detect additional copy number changes for regions with copy number greater
than 5, leading to median ω = 0.8908 and median distance of 1468. AneuFinder, DNAcopy,
CopyNumber (in individual and multisample modes), HMMcopy, and SCICoNE had median
ω values of 0.9, 0.9889, 0.8983, 0.9278, 0.6034, and 0.9444, respectively, and median total
breakpoint distances of 287, 568, 1904.5, 1608, 3834, and 7439.

Additionally, in Simulation Set C (Suppl. Table S1C; Figure 3I), SCONCE (for k =
5, 10, 15), AneuFinder, and DNAcopy have similar median ω values of 0.49, 0.49, 0.4911,
0.4828, and 0.431. CopyNumber (in individual and multisample modes) has higher median
ω values of 0.649 and 0.6638, while HMMcopy has a median ω value of 0.1798. Despite
CopyNumber’s better ω values, it has much worse median total breakpoint distances (2629
and 2533) than SCONCE (253, 253, and 251.5 for k = 5, 10, 15) and AneuFinder (301).
DNAcopy has a similar median total breakpoint distance of 3299, while HMMcopy is an
order of magnitude worse, at 23925. Due to the absence of copy number calls, SCICoNE is
excluded from this panel. Of note, the similar results between SCONCE and AneuFinder
are consistent with AneuFinder performing poorly (Figure 3C) in this setting mostly due to
scaling problems. In contrast, these results suggest a combination of scaling and breakpoint
errors lead to HMMcopy’s poor performance.

Full plots and tables of median ω and median breakpoint distances across all simulation
data sets are given in Suppl. Breakpoint Distance and ω Plots and Tables.

Genome wide decodings

By plotting the genome wide copy number profile for a representative cell from each sim-
ulation set, we can learn more about the specific differences between methods that lead to
differing error rates. For brevity, only genome decodings for SCONCE (with k = 10) and
AneuFinder are shown in the main text, as AneuFinder consistently performed the best out
of other methods (see Suppl. Figure S8 for decodings with other programs and other values
of k for SCONCE across all datasets).

SCONCE is more sensitive to small CNAs. For example, for cell 54 in Simulation Set
G (described in Suppl. Table S2G and Suppl. Figure S1G; Figure 4A), SCONCE correctly
identifies small CNAs that AneuFinder and other methods miss, on chromosomes 10 (right
arrow), 11, 12, and 15, ranging in size from 6-13 windows (comparisons to other methods
are shown in Suppl. Figure S8G). In one cell from Simulation Set H (described in Suppl.
Table S2H and Suppl. Figure S1H; Suppl. Figure S8H), SCONCE has a total breakpoint
distance at least one order of magnitude smaller than all other methods and ω value closest
to 1. In particular, CopyNumber and SCICoNE only call about half as many breakpoints as
necessary, while HMMcopy only calls about a third, resulting in high breakpoint distances



CHAPTER 2. SCONCE: SINGLE CELL COPY NUMBER PROFILES 19

for all three methods. DNAcopy and AneuFinder have similar total breakpoint distances
and predict about three quarters of the necessary breakpoints, but still struggle to call small
events.

A similar effect plays out in the real data. For example, by examining cell SRR053675
from the [4] dataset in Suppl. Figure S9B, small CNAs (between 5 and 22 250kb windows in
length, on chromosomes 9, 10, 12, 13, and 18) are consistently missed by other methods, while
SCONCE calls these. Additionally, for the cell with barcode AAACCTGGTTCTTTGT-1
from the [5] data set, shwon in Suppl. Figure S9C, SCONCE detects copy number events
on chromosomes 6, 10, 13, 17, 21, and 22 that are not detected by other methods, with sizes
ranging from 5 to 20 windows.

SCONCE also calls CNA breakpoints closer to the true breakpoints. In cell 54 from Sim-
ulation Set G (Figure 4A), SCONCE detects breakpoints more accurately than AneuFinder
(arrows on chromosomes 2, 7, 8, and 10 (left)), with differences ranging from 3 to 35 windows
in size. In cell 95 from Simulation Set J (consisting of many overlapping CNAs, with k = 8
and uniform initialization matrix under the binned model, described in Suppl. Table S2J
and Suppl. Figure S1J; Suppl. Figure S8J), although AneuFinder, DNAcopy, and Copy-
Number all have ω values close to 1, they all have higher total breakpoint distance values
than SCONCE (with k = 10, 15), resulting from erroneously shifting the boundaries of each
CNA. HMMcopy is unable to predict enough copy number events, while SCICoNE predicts
too many. In both cases, CNAs are predicted in incorrect positions.

As noted before, the value of k must be set high enough to allow a wide enough copy
number range in SCONCE. For example, in cell 54 from Simulation Set G (Suppl. Fig-
ure S8G), this limitation can be seen in chromosomes 1, 2, 4, 10, and 17-20, where the true
copy number reaches a maximum of 8, but SCONCE’s copy number estimates are limited
to k = 5. However, once k is set large enough, SCONCE accurately predicts the true copy
number state.

Additionally, in simulations with mostly deletions (Simulation Set C, under the line
segment model, described in Suppl. Table S1C), AneuFinder and HMMcopy consistently and
incorrectly double the estimated copy number, leading to high SSE values, while SCONCE
does not (Figure 3C, Suppl. Figure S8C). Specifically, AneuFinder and HMMcopy mainly
call copy numbers of {0, 2, 4}, instead of {0, 1, 2}. As in Scaled Copy Number Accuracy,
AneuFinder’s scaled SSE values dropped, thereby verifying the existence of a scaling problem.
In contrast, HMMcopy’s remaining large scaled SSE values are caused by not predicting
enough CNAs, resulting in high total breakpoint distances and low ω values.

Furthermore, SCONCE considerably outperforms methods like AneuFinder, DNAcopy,
HMMcopy, and SCICoNE in regions of 0 tumor read coverage. By using the diploid null
model, we are able to separate between true deletions and areas that have missing data
due to sequencing noise, and make the most parsimonious calls rather than assuming copy
number 0. For example, AneuFinder consistently predicts copy number 0 for centromeres
and telomeres, highlighted with arrows in Figure 4B in the centromeres of chromosomes 1,
9, and 16, and in the telomeres of chromosomes 13, 14, 15, 21, and 22. In all panels of
Suppl. Figure S9, DNAcopy completely skips telomeres with no tumor coverage, HMMcopy
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occasionally predicts copy number 0 for entire chromosomes when one telomere is missing,
and SCICoNE inconsistently predicts copy number 0 for centromeres and telomeres. We
note that this problem observed in the real data was not contributing to the performance of
these methods in the simulated data, as no regions with missing diploid data were simulated.

2.5 Discussion

CNAs are an important driver in cancer evolution, and accurately detecting them on a
single cell level can deepen our understanding of tumorigenesis. In this paper, we derive
several models of copy number alterations for inference and simulation. We show that
using HMMs derived from models of the evolutionary process that generate CNAs, more
accurate inferences of CNA could be obtained. The method for inference based on these
models, SCONCE, is available as an open source computer package at https://github.

com/NielsenBerkeleyLab/sconce.
One limitation of SCONCE is that it requires data from diploid cells sequenced on the

same platform as the tumor cells. While this increases accuracy by accounting for platform
specific biases and single cell sequencing errors, it also potentially increases sequencing costs
to sequence diploid cells, which may not be directly of interest to investigators. However,
diploid single cells are often produced incidentally as a by-product of the tumor sequencing
strategy. This is, for example, true for the two real data sets analyzed here In such cases
there is no extra cost involved in the use of diploid cells for calibration.

Another limitation of SCONCE is that no allele specific or phasing information is used.
Incorporating allele frequency and genotype likelihoods of heterozygous sites can increase
confidence and clarity in copy number calls, and is the subject of future work.

One of the key strengths of SCONCE over competing methods is its principled Markovian
approximation to the copy number process along the length of the genome. This allows for
future interpretations and applications of model parameters to understand tumor evolution.
Specifically, SCONCE learns transition rate parameters {α, β, γ}, time t, and library size
scaling factors, and we note that these evolutionary parameters could potentially be used
directly for estimating phylogenies.

Compared to other methods, SCONCE has increased sensitivity in calling very small
CNAs, particularly those smaller than 5500kb. Additionally, in cells with substantial copy
number losses, SCONCE can accurately create copy number profiles without erroneous copy
number doublings. This is due to SCONCE’s method of estimating library sizes using the
Viterbi decoding to account for how changes in the copy number profile necessarily impact
the library scaling factor.

Furthermore, because SCONCE uses the averaged diploid data as a null model, in regions
with zero tumor read coverage, it can differentiate between genomic loss and sequencing noise,
which other methods can not do. In particular, in regions with diploid coverage but no tumor
reads, SCONCE calls copy number 0, and in regions without coverage in either the diploid
cells or the tumor cell, SCONCE makes the most parsimonious call. This increases CNA

https://github.com/NielsenBerkeleyLab/sconce
https://github.com/NielsenBerkeleyLab/sconce
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calling accuracy of hard to sequence regions, such as telomeres, centromeres, and repetitive
regions.

In conclusion, we present an accurate and principled evolutionary model for calling copy
number alterations in single cell whole genome sequencing of tumors, with implications for
broader applications.
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2.6 Figures

Figure 1: Overview of the SCONCE model training procedure. Tumor and diploid se-
quencing files must be preprocessed into bed files of read depth per genomic window.
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Figure 2: Sum of squared errors (SSE) is shown for each linear regression of observed tu-
mor read depth in window i and cell A (xiA) on mean diploid read depth (µi), GC content
(ζi), and mappability (ηi). SSE is calculated from the differences between the predicted
read count and observed read count for each tumor cell in [4] (uniformly sized 250kb bins).
No statistically significant difference in error is observed by adding GC or mappability
information to the diploid null model.
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Figure 3: Various accuracy results are shown for three simulation parameter sets, H (con-
sisting of very short and spiky CNAs under the binned model; Suppl. Table S2H and Suppl.
Figure S1H), G (many overlapping CNAs with maximum k = 8 under the binned model;
Suppl. Table S2G and Suppl. Figure S1G), and C (mainly large deletions under the line seg-
ment model; Suppl. Table S1C), in the first, second, and third columns, respectively. In the
first row, the sum of squared errors (SSE) between simulated ploidy and estimated ploidy is
shown across parameter sets. Each dot represents the error for one cell and the median SSE
is shown with a gray line and printed at the top of each column. In the second row, the SSE
is optimally scaled and shifted for the same data sets for each method to remove errors due
to scaling. In the third row, ω (defined in Equation 9) and total breakpoint distance is shown
for each method. Each dot represents one cell, colored by method. SCONCE consistently
has lower SSE values, ω values closer to 1, and lower total breakpoint distance compared to
other methods.
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Figure 4: Genome wide copy number decodings are shown for representative cells from
simulations and real data. Cell 54 from simulation Set G (many overlapping CNAs with
k = 8 under the binned simulation model, described in Suppl. Table S2G and Suppl. Fig-
ure S1G) is shown in panel A, and cell SRR054570 from [4] is shown in panel B. Genomic
window is plotted along the x-axis, per window read depth is shown along the left y-axis,
and copy number is plotted along the right y-axis. Black vertical lines denote chromosome
boundaries, gray dots represent observed tumor read depth in each window, the red dotted
line denotes the true copy number from simulation (where applicable), the light blue line
shows the mean diploid read count, the light blue band shows ±1 standard deviation in
the diploid read count, and the colored lines denote the copy number decoding from each
method. Black arrows highlight regions with differences in CNA calls between SCONCE
and AneuFinder. Genome decodings from other methods and additional data sets are
shown in Suppl. Additional Genome Traces.
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2.7 Appendix

Funding

This work was supported by the National Institutes of Health [R01GM138634-01 to R.N.].

Code Availability

SCONCE is implemented in C++11 and is freely available from https://github.com/

NielsenBerkeleyLab/sconce. See Suppl. Code Availability for full details.

https://github.com/NielsenBerkeleyLab/sconce
https://github.com/NielsenBerkeleyLab/sconce
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2.8 Supplementary Material

Simulations

We provide two simulation models, one based on line segments and one based on bins. The
line segment model treats the genome as a line segment to simulate the evolutionary process
behind CNAs without assuming any bins, while the binned model divides the genome into
discrete bins.

Line Segment Simulation Worked Example

Here we provide a worked example of deletions and amplifications under the line segment
model.

Definitions: We define a genome to have a fixed maximal length, L, comprised of a list
of chromosomes. A chromosome is an ordered list of line segments,

C =
(
(b1, e1), (b2, e2), ..., (bg, eg)

)
, g ∈ N

where bi and ei are, respectively, the beginning and end positions of the ith chromosomal
segments, bi < ei, ei < bi+1, b1 ≥ 0, eg ≤ L. Each genome is a set of such chromosomes
G = {C1, C2, ..., Cc}, c ∈ Z. The reference genome in a diploid healthy cell is given by
Gh =

{(
(0, L)

)
,
(
(0, L)

)}
. The length of a chromosome is | C |=

∑g
i=1(ei − bi), and the

length of a genome is | G |=
∑c

i=1 | Ci |.
Deletions: A deletion removes part of, or the entire segment, for one or more line

segments in a single chromosome. For example, a deletion in a chromosome of a healthy
diploid cell between positions d ≥ 0 and f ≤ L would results in a new genome G′ ={(

(0, d), (f, L)
)
,
(
(0, L)

)}
. If the same chromosome next is hit by a deletion between position

i and j with 0 ≥ i ≤ d and f ≥ j ≤ L, the new genome would be G′′ =
{(

(0, i), (j, L)
)
,(

(0, L)
)}

. If this chromosome is hit by a deletion with start and end positions 0 and l < d,
the new genome will then be G′′′ =

{(
(l, d), (f, L)

)
,
(
(0, L)

)}
and so forth.

Amplifications: An amplification creates an extra copy of part of a chromosome or an
entire chromosome. Note there is no maximum ploidy imposed by this model. For example,
an amplification starting and ending at positions m ≥ 0 and o ≤ L for in a healthy cell, Gh

would result in a genome of composition G∗ =
{(

(0, L)
)
,
(
(0, L)

) (
(m, o)

)}
. An amplification

in the same positions in the first chromosome of genome G′ from the previous section would
result in G∗∗ =

{(
(0, d), (f, L)

)
,
(
(0, L)

)
,
(
(m, d), (f, o)

)}
, if m < d and o > f .

Simulation dataset parameter values

For simulations under both the line segment and binned models, all rate parameters were set
relative to a genome length of 100. To convert this into the genome was binned into 12,397
bins to match the number of uniform 250kb bins in hg19, the negative binomial parameter
r was set to 50, the total number of expected reads, ξ, was set to 4,000,000, and cells
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were simulated with even coverage in expectation before accounting for CNAs. Simulation
parameter values and dataset descriptions for the line segment and binned models are shown
in Table S1 and Table S2, respectively. The rate matrices, Q, for initializing the amplification
and deletion processes for the binned model are shown in Supplement Figure S1.

Negative Binomial Mean and Variance Relationship

Second degree polynomial

In order to explore the relationship between λiA and σ2
iA, we calculated the adjusted R-

squared values for three different linear regressions on the mean and variance of the read
depth for each window across the diploid cells from [4]:

σ2
iA = bλiA + c (S1a)

σ2
iA = aλ2

iA + bλiA + c (S1b)

σ2
iA = dλ3

iA + aλ2
iA + bλiA + c (S1c)

The regression models in Equation S1 are shown with the mean and variance of per window
read depths in Supplemental Figure S2. In panel A, all windows are included in the regres-
sions. In order to ensure windows with extremely low or extremely high mean or variance
values were not biasing our analysis, we excluded outlier windows, defined as having a mean
or variance value below the 1st quantile or above the 99th quantile, shown in panel B. The
adjusted R2 values are shown in Supplemental Table S3. Going from a linear model, S1a,
to a second degree polynomial, S1b increased the adjusted R2 values in both scenarios, but
adding a third degree term, S1c did not substantially change the adjusted R2 value in either
scenario. To avoid overspecifying this model, we used the second degree polynomial.

Learning constants {a, b, c}

To determine the constants {a, b, c}, let diA be the read depth in window i for diploid cell
A, such that

D =
∑
i

∑
A

diA (S2)

wi =

∑
A diA
D

(S3)

cA =

∑
i diA
D

(S4)

E(diA) = wi × cA ×D (S5)

E(σ2
iA) = aE(diA)2 + bE(diA) + c (S6)

where D gives the total number of diploid reads, wi gives the proportion of total reads in
window i, cA gives the proportion of total reads in diploid cell A, and E(diA) and E(σ2

iA)
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give the expected mean and variance of the diploid read counts under this second degree
polynomial model, respectively.

By parameterizing a Negative Binomial distribution with mean, E(diA), and variance,
E(σ2

iA), we can calculate the likelihood of the observed diploid data, for a given set of
constants {a, b, c}. We maximize the likelihood using Nelder-Mead method for optimization
to find the optimal values of {a, b, c} for the diploid data, and these values are then carried
over to the tumor emission probability calculations. See Diploid Cell Processing Calculations
and Code for the code.

Library Size Scaling Factor Selection

Because the initial estimate of the library size scaling factor, sA,initial, would be erroneously
estimated from the Viterbi decoding from an untrained HMM, we instead run Baum Welch
from three starting estimates of sA,initial.

Additionally, binning the genome into discrete, non-overlapping bins leads to some copy
number alterations being split across bin boundaries, as the CNA breakpoints may not
align with the bin boundaries. This leads to bins with fractional copy number when CNAs
are averaged over the entire bin. Because the HMM is restricted to integer copy numbers,
in some cases, the HMM incorrectly attempts to fit these fractional bins to integer copy
numbers by doubling all copy numbers and halving the library size scaling factor, since this
has a slightly higher forward likelihood than rounding the fractional bins under the true
library size scaling factor. For example, given a true copy number sequence of 1 → 1.6 → 2,
the decoding 2 → 3 → 4, ŝA = 0.5 has a slightly higher forward likelihood than the decoding
1 → 2 → 2, ŝA = 1. This leads to transient bins, where the Viterbi decoding strictly increases
or decreases through one state for exactly one bin (ie. observing copy numbers 2 → 3 → 4
across only 3 bins). In datasets with many deletions, this can also lead to steady state
distributions where intermediate states are skipped (for example, observing the incorrect
steady state distribution π = [0.15, 0, 0.8, 0, 0.05] instead of π = [0.15, 0.8, 0.05, 0, 0]).

To detect and avoid this library size scaling factor misspecification, we use the presence
of these transient bins and skipped intermediate states to disqualify library size scaling
estimates. Specifically, we first run Baum Welch three times, with different initial values of
ŝA,initial. For the first run, we set sA,initial,1 = total # reads in cell A

average # reads in diploid cells
. For the second and

third runs, we set ŝA,initial to ŝA,final,1 multiplied by 2 and 4, respectively.
Next, we pick the Baum Welch run and ŝA,final estimate that has the highest forward

likelihood, unless it has at least five instances of transient states across the genome or has
skipped intermediate states. If so, it will be discarded in favor of the run with the next best
forward likelihood, if the second best run has no skipped intermediates states, and has less
than five instances of transient states or is less than 100 loglikelihood units worse than the
best run. This selection procedure corrects for any incorrect estimates of sA that would lead
to ploides of {0, 2, 4} instead of {0, 1, 2}, for example.
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BFGS Technical Details

We use the gsl multimin fdfminimizer vector bfgs2 function from the GNU Scientific
Library (GSL) [63] for BFGS optimization of the loglikelihood from the forward algorithm.
Specifically, the likelihood of the observed tumor data is calculated using the forward algo-
rithm and summed across all chromosomes for a given cell, and the HMM is reset to the
initial probability vector, defined as the steady state distribution of the Markov chain, at the
beginning of each chromosome to maintain chromosomal independence. Here, the central
difference approximation is used to calculate the gradient.

To account for instability in small numbers due to machine encoding, the loglikelihood in
each position in the sequence is scaled by the maximum of the loglikelihoods in that position,
and the final loglikelihood is re-scaled appropriately.

Additionally, BFGS performs an unconstrained optimization, but to have sensible results,
we require {sA, αA, βA, γA, tA > 0}. As such, we log transform and scale {sA, αA, βA, γA, tA}
to constrain the optimization results.

Importance of Model Parameter Accuracy

In order to evaluate the importance of accurately estimating model parameters, we compared
the SSE between true and estimated copy number under three different conditions during the
model parameter optimization. Specifically, we used the Viterbi decoding to estimate copy
numbers at the initial optimization estimate (set arbitrarily to {sA = total # reads in cell A

average # reads in diploid cells
,

α = 0.1, β = 0.01, γ = 500, tA = 0.01}), after the Baum Welch and least squares parameter
estimation, and after the BFGS parameter estimate refinement (that is, the entire SCONCE
pipeline). For Simulation Set A (consisting of many overlapping CNAs, under the line seg-
ment), k = 10, the median SSE between true and estimated copy numbers dropped from
7383.45 under the initial parameter estimates, to 66.54 after the Baum Welch and least
squares steps, and finally to 44.04 after BFGS parameter refinement (Supplemental Fig-
ure S3), showing that these model parameters must be well estimated for accurate copy
number calls.

Real Data Preprocessing Steps

To prepare the data from [4], reads were trimmed using cutadapt [64] and trimmomatic [65],
and low complexity reads were removed using prinseq [66]. Cleaned reads were aligned to
hg19 using bowtie2 [67], reads with a q score less than 20 were removed using samtools [68],
and duplicates were removed using picard [69].

To prepare the data from [5], a preprocessed bam file for each section was downloaded.
These bam files were filtered for reads with q scores greater than or equal to 20 using samtools
[68] and split into cell specific bam files using pysam [70].

Finally, bedtools was used to create 250kb uniform windows of hg19, and to calculate
cell specific observed read depth per window [58].
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Other methods

Scripts to run AneuFinder, HMMCopy, CopyNumber, DNACopy, and SCICoNE are pro-
vided on GitHub. Of note, because our simulation model does not incorporate GC or map-
pability biases into simulated read depths, we did not use GC and mappability corrections
on simulated data to avoid overcorrecting, where applicable. For methods that used matched
normal samples, we used the averaged diploid read counts. The tool bedtools intersect

was used to convert large segments to 250kb windows where applicable. Briefly, each method
was run as follows.

To run AneuFinder [49, 50] on real data, we ran the Aneufinder function with 250,000
binsize, all chromosomes, GC correction, and hg19 assembly. To run AneuFinder on simu-
lated data, we skipped the GC and mappability corrections by running the findCNVs function
with default parameters (method="edivisive", R=10, sig.lvl=0.1). Copy number calls
were extracted from the copy.number element from the resulting edivisivemodel segments.

With real data, we ran HMMcopy [43, 44] by first doing read correction (correct-
Readcount, default parameters) on both the tumor data and averaged diploid cells, and
skipped this step in simulations. We then calculated the log ratio of the normalized tumor
and averaged diploid read depths, and the HMMsegment function (default parameters) was
used to segment each cell. Copy number estimates were extracted from the resulting state

element −1.
To run CopyNumber [45], the log ratio of the normalized tumor and averaged diploid read

depths from HMMcopy preprocessing were used as input. Then, missing data were imputed,
using the constant method, and the winsorize function was used to remove outliers. To
run in single sample mode, the pcf function was used with parameters return.est=T,

normalize=T, digits=6, and the exponentiated estimates element was extracted for the
copy number estimates. To run in multi sample mode, the multipcf function was run with
parameters return.est=T, digits=6, and copy numbers were similarly extracted from the
exponentiated estimates result.

Similarly, to run DNAcopy [46, 47], the log ratio values of the tumor and diploid data
from HMMcopy preprocessing were used as input, and regions with no tumor coverage
were removed from these data, as these regions caused DNAcopy to output nonsensical
chromosome coordinates. The functions CNA, smooth.CNA, and segment, all with default
parameters, were used to segment the genome. Because CopyNumber and DNAcopy do
not output absolute copy number calls, we scaled and shifted CopyNumber and DNAcopy
results to minimize the sum of squared errors from the true ploidy in simulated datasets to
create copy number estimates for comparison purposes. Regions of no tumor coverage were
excluded for DNAcopy in these calculations.

To run SCICoNE [52], the subprogram breakpoint detection was run on all tumor
data with default parameters, appropriate numbers of cells and bins, and a breakpoints
file indicating chromosome boundaries. Next, the script segment counts.py was used to
segment the genome, followed by the subprogram inference to infer copy number profiles.
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GC content and mappability

In order to evaluate the information gain by adding GC content and genome mappability,
we compared the empirical cumulative distribution functions across several different linear
regression models. As shown in Supplemental Figure S4, no significant difference is seen
between models based on the diploid mean alone and models utilizing the diploid mean and
mappability.

SSE Error Plots

Unscaled SSE Plots

As in Figures 3A,B,C, for each method, the sum of squared errors between simulated ploidy
and inferred ploidy is shown for each parameter set, described in Tables S1 and S2, in
Supplemental Figure S5 Of note, in Simulation Set B (whole genome duplication before
any CNAs, under the line segment model), SCONCE performs best for k = 15, as the
duplication results in higher copy number states. Although SCONCE misidentifies some
cases here, SCONCE with k = 15 still has a lower median SSE than other methods.

Optimally Scaled SSE Plots

As in Figure S5D,E,F, the sum of squared errors between simulated ploidy and estimated
ploidy is shown across different parameter sets for each method in Supplemental Figure S6.
Here, to eliminate scaling errors, all copy number calls are first scaled and shifted to minimize
the sum of squared errors between simulated ploidy and estimated ploidy. Although the
overall SSE values decrease with optimal scaling, SCONCE continues to have median SSE
values that are lower or on par with other methods.

Breakpoint Distance and ω Plots and Tables

Breakpoint Distance and ω Plots

Similar to Figure 3G, H, and I, total breakpoint distance and ω values (defined in Equation 9)
are plotted for all eleven simulation sets across all methods in Supplemental Figure S7.

Breakpoint Distance and ω Tables

For each simulation set, tables are given for median total breakpoint distances (Supplemental
Table S4) and median ω = #inferred breakpoints

#true breakpoints
values (Supplemental Table S5.
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Additional Genome Traces

Simulations

Additional genome wide copy number decodings are shown in Supplemental Figure S8 for
representative cells across all different simulation conditions, for all evaluated methods. Each
panel letter corresponds to the simulation set described in Simulation dataset parameter
values. Of note, Simulation Sets H, G, and C appeared in panels {A,D,G}, {B,E,H}, and
{C,F,I} in Figure 3, respectively.

Real data

Additional genome wide copy number decodings are shown in Supplemental Figure S9 across
methods for representative cells SRR054570 (shown in panel A) and SRR053675 (shown in
panel B) from [4].

Furthermore, a genome wide genome decoding for a representative cell, (section C, bar-
code AAACCTGGTTCTTTGT-1), from [5], is shown in Supplemental Figure S9C.

Code Availability

Diploid Cell Processing Calculations and Code

To create the average diploid read count file, the per window read counts were averaged
across all diploid cells. An R script (avgDiploid.R) is provided to do this.

The variance for the negative binomial distribution on tumor read counts is determined
by a second degree polynomial of the mean (see Negative Binomial Mean and Variance
Relationship. The calculations to find optimal values of {a, b, c} should be rerun for each
dataset, using the provided fitMeanVarRlnshp.R script. {a, b, c} values from one dataset
[4] are supplied as defaults.

SCONCE Prerequisites and Dependencies

SCONCE is implemented in C++11, and requires the Boost C++ Libraries and the GNU
Scientific Library (GSL) [63]. SCONCE has been extensively tested on Ubuntu 18.04.6, and
is available on GitHub: https://github.com/NielsenBerkeleyLab/sconce.

The simulation program for both the line segment and binned models is also available
on GitHub. Additional R scripts are provided for intermediate calculations (see Diploid Cell
Processing Calculations and Code) and to plot results.

SCONCE runtime and memory requirements

Because k determines the transition matrix dimensions, SCONCE’s runtime and memory
requirements scale quadratically with k. For example, for Simulation Set A, the median

https://github.com/NielsenBerkeleyLab/sconce
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runtimes for k = 5, 10, 15 were 259.30, 2426.05, and 8141.56 seconds (Supplemental Fig-
ure S10A). The median maximum memory used was 0.018578, 0.030252, and 0.051274 giga-
bytes for k = 5, 10, 15 (Supplemental Figure S10B). Of note, all simulations were done with
the full human genome (hg19). Analyses were run on a server running Ubuntu 18.04.6 with
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz processors and 500 GB RAM.
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Supplementary Figures


0.0 0.0 0.0 0.0 0.0 0.0
0.2 −1 0.2 0.2 0.2 0.2
0.2 0.2 −1 0.2 0.2 0.2
0.2 0.2 0.2 −1 0.2 0.2
0.2 0.2 0.2 0.2 −1 0.2
0.2 0.2 0.2 0.2 0.2 −1


(a) Simulation set E

0.0 0.0 0.0 0.0 0.0 0.0
0.01 −1 0.39 0.1 0.3 0.2
0.1 0.2 −1 0.4 0.2 0.1
0.1 0.2 0.25 −1 0.2 0.25
0.2 0.1 0.2 0.3 −1 0.2
0.1 0.3 0.2 0.2 0.2 −1


(b) Simulation set F

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.21 −1 0.39 0.1 0.1 0.05 0.05 0.05 0.05
0.1 0.3 −1 0.3 0.1 0.1 0.05 0.025 0.025
0.05 0.1 0.3 −1 0.25 0.2 0.05 0.025 0.025
0.1 0.1 0.1 0.2 −1 0.2 0.1 0.1 0.1
0.05 0.1 0.15 0.2 0.3 −1 0.1 0.05 0.05
0.05 0.1 0.1 0.1 0.1 0.25 −1 0.2 0.1
0.03 0.17 0.1 0.1 0.2 0.1 0.2 −1 0.1
0.0 0.07 0.13 0.1 0.2 0.1 0.2 0.2 −1


(c) Simulation set G
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.21 −1 0.39 0.1 0.1 0.05 0.05 0.05 0.05
0.1 0.3 −1 0.3 0.1 0.1 0.05 0.025 0.025
0.05 0.1 0.3 −1 0.25 0.2 0.05 0.025 0.025
0.1 0.1 0.1 0.2 −1 0.2 0.1 0.1 0.1
0.05 0.1 0.15 0.2 0.3 −1 0.1 0.05 0.05
0.05 0.1 0.1 0.1 0.1 0.25 −1 0.2 0.1
0.03 0.17 0.1 0.1 0.2 0.1 0.2 −1 0.1
0.0 0.07 0.13 0.1 0.2 0.1 0.2 0.2 −1


(d) Simulation set H
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0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 −1


(e) Simulation set I
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(f) Simulation set J
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0.09 0.09 −1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 −1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 −1 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09 −1 0.09 0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09 0.09 −1 0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09 0.09 0.09 −1 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 −1 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 −1 0.09 0.09
0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 −1 0.09
0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 −1


(g) Simulation set K

Figure S1: Amplification and deletion initialization rate matrices for the binned model sim-
ulations are shown here for each parameter set.
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Figure S2: The mean and variance of the read depth for each window in the diploid cells
from [4] are shown with three linear regression models. In panel A, all windows are in-
cluded, and in B, any windows with a mean or variance below the 1st quantile or above
the 99th quantile were excluded. Predicted variance values for each mean value are shown
for each regression model.
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(diploid mean with mappability), and D (diploid mean with GC and mappability) all
lie on top of each other, and the ECDF lines from models E (GC only) and G (GC with
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Figure S6: For each CNA program and parameter set, the scaled SSE values between
simulated and estimated copy numbers is shown. Of note, all estimated copy numbers
have been scaled and shifted to minimize the SSE between simulated and estimated copy
numbers, in order to eliminate scaling issues in the estimated CNAs.
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Figure S7: Total breakpoint distance and ω values are plotted for each program and pa-
rameter set. Lower total breakpoint distance and ω values closest to 1 represent highest
accuracy in detecting breakpoints. Each dot represents one cell in each parameter set,
colored by program. Subpanel labels correspond to simulation set names (see Supple-
ment 2.8). With k = 10, 15, SCONCE consistently outperforms other methods.
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(a) Fig. S8A: Genome wide decoding for cell 14 in Simulation Set A (many overlapping CNAs,
under the line segment model).
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(b) Fig. S8B: Genome wide decoding for cell 48 in Simulation Set B (whole genome duplication
before any CNAs, under the line segment model).



CHAPTER 2. SCONCE: SINGLE CELL COPY NUMBER PROFILES 46

C

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 5) (SSD = 8.90, breakpoint dist = 249, � = 0.49)

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 10) (SSD = 8.90, breakpoint dist = 249, � = 0.49)

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 15) (SSD = 8.90, breakpoint dist = 249, � = 0.49)

0
1000
2000
3000

0
1
2
3
4
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

AneuFinder (SSD = 7450.41, breakpoint dist = 248, � = 0.52)

0
1000
2000

-1
0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C
N

DNAcopy (SSD = 959.28, breakpoint dist = 2605, � = 0.46)

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

CopyNumber (indv) (SSD = 253.12, breakpoint dist = 2475, � = 0.65)

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

CopyNumber (multi) (SSD = 247.68, breakpoint dist = 2483, � = 0.73)

0
1000
2000
3000

0
1
2
3
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

HMMcopy (SSD = 40674.17, breakpoint dist = 22436, � = 0.21)

0
500

1000
1500
2000

0
1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCICoNE (SSD = NA, breakpoint dist = NA, � = NA)

(c) Fig. S8C: Genome wide decoding for cell 5 in Simulation Set C (many large deletions, under
the line segment model).
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(d) Fig. S8D: Genome wide decoding for cell 38 in Simulation Set D (many large insertions,
under the line segment model).
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(e) Fig. S8E: Genome wide decoding for cell 51 in Simulation Set E (very short spiky CNAs,
with k = 5 and uniform initialization matrix, under the binned model).
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(f) Fig. S8F: Genome wide decoding for cell 3 in Simulation Set F (many overlapping CNAs,
with k = 5 and nonuniform initialization matrix, under the binned model).
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(g) Fig. S8G: Genome wide decoding for cell 1 in Simulation Set G (many overlapping CNAs,
with k = 8 and nonuniform initialization matrix, under the binned model).
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(h) Fig. S8H: Genome wide decoding for cell 29 in Simulation Set H (very short spiky CNAs,
with k = 8 and nonuniform initialization matrix, under the binned model).
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(i) Fig. S8I: Genome wide decoding for cell 20 in Simulation Set I (very short spiky CNAs, with
k = 8 and uniform initialization matrix, under the binned model).
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(j) Fig. S8J: Genome wide decoding for cell 95 in Simulation Set J (many overlapping CNAs,
with k = 8 and uniform initialization matrix, under the binned model).



CHAPTER 2. SCONCE: SINGLE CELL COPY NUMBER PROFILES 54

K

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 5) (SSD = 32077.00, breakpoint dist = 1281, � = 0.91)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 10) (SSD = 276.00, breakpoint dist = 206, � = 0.93)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCONCE (k = 15) (SSD = 157.00, breakpoint dist = 206, � = 0.94)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

AneuFinder (SSD = 523.00, breakpoint dist = 976, � = 0.86)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C
N

DNAcopy (SSD = 18655.44, breakpoint dist = 1215, � = 0.87)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

CopyNumber (indv) (SSD = 10869.56, breakpoint dist = 4068, � = 0.76)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

CopyNumber (multi) (SSD = 10947.61, breakpoint dist = 4067, � = 0.78)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

HMMcopy (SSD = 21189.00, breakpoint dist = 3216, � = 0.63)

0
500

1000
1500
2000

0
5
10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 X Y

d
e
p
th C

N

SCICoNE (SSD = 28398.00, breakpoint dist = 13159, � = 0.70)

(k) Fig. S8K: Genome wide decoding for cell 29 in Simulation Set K (very short spiky CNAs,
with k = 11 and uniform initialization matrix, under the binned model).
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Figure S8: Genome wide decodings are shown for representative cells across simulation sets,
where subpanel letters match simulation sets described in Supplement 2.8. As in Figure 4,
genomic window is plotted along the x-axis, per window read depth is shown along the
left y-axis, and copy number is plotted along the right y-axis. Black vertical lines denote
chromosome boundaries, gray dots represent observed tumor read depth in each window,
the red dotted line denotes the true copy number from simulation, the light blue line shows
the mean diploid read count, the light blue band shows ±1 standard deviation in the diploid
read count, and the colored lines denote the copy number decoding from each method.
Across simulation conditions, SCONCE with k = 10, 15 consistently decodes the correct
copy number state. That is, the value of k must be set high enough to allow the HMM to
properly decode the true copy number state. Additionally, SCONCE repeatedly correctly
identifies regions with no read coverage, unlike DNAcopy (which does not output anything for
regions with no coverage), CopyNumber, and HMMcopy. Furthermore, in panel C, SCICoNE
doesn’t run andscaling problems are evident for AneuFinder and HMMcopy, while SCONCE
correctly calls CNAs.
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(a) Fig. S9A: Genome wide decoding for cell SRR054570 from [4].
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(b) Fig. S9B: Genome wide decoding for cell SRR053675 from [4].
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(c) Fig. S9C: Genome wide decoding is shown for the cell with barcode
AAACCTGGTTCTTTGT-1 from section C, from [5].



CHAPTER 2. SCONCE: SINGLE CELL COPY NUMBER PROFILES 59

Figure S9: As in Figure 4 and Supplemental Figure S8, genomic window is plotted along
the x-axis, read depth along the left y-axis, and copy number (CN) along the right y-axis,
with black vertical lines denoting chromosome boundaries. For each window, gray dots show
observed tumor read depth, the light blue line shows the mean diploid read count, and the
light blue band shows ±1 standard deviation in the diploid read count. Colored lines denote
the copy number decoding from each method. Note that absolute copy number calls are
absent for DNAcopy and CopyNumber, as these methods do not produce absolute copy
number calls and could not be optimally scaled as done previously in simulations without
ground truth data. SCONCE uses the null diploid model to predict no changes in copy
number in hard to sequence and map regions that have no observed diploid or tumor reads
(chromosomes 1, 9, 13-16, 21, and 22 in panel A; chromosomes 13, 14, 15, 21, and 22 in panel
C), unlike AneuFinder and DNAcopy. Recapitulating the simulation results, SCONCE is
more sensitive to small CNAs than all other methods (chromosomes 9, 10, 12, 13, and 18
in panel B; chromosomes 6, 10, 13, 17, 21, and 22 in panel C). Furthermore, in panel C,
HMMcopy erroneously predicts copy number 0 for chromosomes 13, 17, 18, 21, and 22, and
SCICoNE misses changes in copy number for chromosomes 1, 16, 19, and 20, while SCONCE
does not.
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Figure S10: Runtime and memory requirements for SCONCE for Simulation Set A, for
different values of k. Each dot represents one cell.
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Supplementary Tables

Simu-
lation
set

Short descrip-
tion

Max obs
copy
number

Dele-
tion
rate,
δ
τd

Inser-
tion
rate,
φ
τa

Mean
deletion
length, τd

Mean in-
sertion
length, τa

A many overlapping
CNAs

8 0.001 0.001 10 10

B whole genome
duplication be-
fore any CNAs

13 0.001 0.001 10 10

C many large dele-
tions

3 0.005 0.0001 5 0.05

D many large inser-
tions

5 0.0001 0.0005 10 10

Table S1: Description of simulation sets under the line segment model. Mean deletion and
insertion lengths are relative to a genome length of 100. All simulations were done under
the neutral coalescent, with a tree branch length leading to the root of tree (the ancestral
diploid genome) of 1.0. Although the mean CNA length remains constant across simula-
tion sets, the overall size of CNAs is also affected by the deletion and insertion rates, as
CNAs tend to overlap. Note, the maximum copy number under the line segment model is
not constrained; the maximum observed copy numbers are reported here to demonstrate
the range of simulations.
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Simulation
set

Short descrip-
tion

Max copy num-
ber, k

Tree branch
length, t

Geo-
metric
p

E very short spiky
CNAs

5 1.0 0.1

F many overlapping
CNAs

5 100 0.005

G many overlapping
CNAs

8 100 0.005

H very short spiky
CNAs

8 100 0.1

I very short spiky
CNAs

8 100 0.1

J many overlapping
CNAs

8 100 0.005

K very short spiky
CNAs

11 100 0.05

Table S2: Description of simulation sets under the binned model, relative to a genome
length of 100. All simulations were done under the neutral coalescent, with a tree branch
length leading to the root of tree of 1.0.

Regression Model All windows Without outliers
Eq S1a: σ2

iA = bλiA + c 0.8331236 0.7568441
Eq S1b: σ2

iA = aλ2
iA + bλiA + c 0.8736199 0.7737766

Eq S1c: σ2
iA = dλ3

iA + aλ2
iA + bλiA + c 0.8778322 0.7739496

Table S3: Adjusted R2 values are shown for each regression model across all win-
dows and across the windows excluding outliers. The second degree polynomial, S1b,
σ2
iA = aλ2

iA + bλiA + c has the lowest adjusted R2 value without overspecifying the regres-
sions in both data scenarios.
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SCONCE
(k = 5)

SCONCE
(k = 10)

SCONCE
(k = 15)

Aneu-
Finder

DNA-
copy

A 698 210 124 300.5 402
B 5222.5 1558.5 424 584 1437.5
C 253 253 251.5 301 3299
D 2270.5 2270 2270 2278 538
E 799 817.5 809.5 2712.5 4101
F 105 106 103.5 161 555
G 1468 185 209.5 287 568
H 1028 1013.5 1020 3119.5 3253.5
I 353 344 348 2276 2744.5
J 931 72.5 74 298 800
K 1184.5 109 117 569 1155

CopyNumber
(indv)

CopyNumber
(multi)

HMMcopy SCICoNE

A 1026.5 676 6138.5 283578
B 2796.5 2825 12228.5 13786
C 2629 2533 23925 NA
D 1126 1120 3786 4080
E 9910.5 9776 18423.5 21131
F 1199.5 1028 1972.5 6638
G 1904.5 1608 3834 7439
H 9255.5 9501 13941 20087
I 8902 8948 12142 24117
J 1477.5 1304 3616.5 6428
K 4009.5 4067 3235.5 13162

Table S4: Median total breakpoint distance values for each program across simulation
datasets.
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SCONCE
(k = 5)

SCONCE
(k = 10)

SCONCE
(k = 15)

Aneu-
Finder

DNA-
copy

A 0.5 0.5309 0.5408 0.5 0.602
B 0.537 0.4731 0.506 0.4549 0.5647
C 0.49 0.49 0.4911 0.4828 0.431
D 0.4677 0.4677 0.4677 0.4531 0.8387
E 0.9446 0.941 0.9453 0.7828 0.7215
F 0.967 0.9671 0.9671 0.9408 1.0259
G 0.8908 0.9499 0.9441 0.9 0.9889
H 0.9302 0.9321 0.9321 0.733 0.7828
I 0.9455 0.95 0.95 0.7928 0.8069
J 1.4412 0.9739 0.9739 0.9221 0.9673
K 0.9105 0.9368 0.9368 0.8632 0.9096

CopyNumber
(indv)

CopyNumber
(multi)

HMMcopy SCICoNE

A 0.6429 0.6735 0.3061 0.0306
B 0.5706 0.5588 0.2778 0.8
C 0.6429 0.6638 0.1798 NA
D 1.1452 1.1452 0.4688 1.7903
E 0.4897 0.5057 0.3333 0.5805
F 0.987 1.0263 0.7745 1.1316
G 0.8983 0.9278 0.6034 0.9444
H 0.5067 0.5045 0.3408 0.5451
I 0.5214 0.5397 0.3973 0.4591
J 0.9477 0.9805 0.6396 1.2288
K 0.7688 0.7842 0.6368 0.7

Table S5: Median ω = #inferred breakpoints/#true breakpoints values for each program
across simulation datasets.
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3.1 Abstract

Background: Single cell whole genome tumor sequencing can yield novel insights into the
evolutionary history of somatic copy number alterations. Existing single cell copy number
calling methods do not explicitly model the shared evolutionary process of multiple cells, and
generally analyze cells independently. Additionally, existing methods for estimating tumor
cell phylogenies using copy number profiles are sensitive to profile estimation errors.
Results: We present SCONCE2, a method for jointly calling copy number alterations and
estimating pairwise distances for single cell sequencing data. Using simulations, we show
that SCONCE2 has higher accuracy in copy number calling and phylogeny estimation than
competing methods. We apply SCONCE2 to previously published single cell sequencing
data to illustrate the utility of the method.
Conclusions: SCONCE2 jointly estimates copy number profiles and a distance metric for
inferring tumor phylogenies in single cell whole genome tumor sequencing across multiple
cells, enabling deeper understandings of tumor evolution.

3.2 Background

Cancer evolution is driven by an accumulation of somatic point mutations and large copy
number alterations (CNAs) [21, 33]. For example, CNAs can affect the transcriptional land-
scape via dosage effects [11], and identifying intra tumor heterogeneity and cell specific
changes in gene expression is clinically relevant. In particular, recent studies have shown
quantifying these transcriptional changes, by measuring tumor specific total mRNA expres-
sion, is predictive of disease prognosis and progression across multiple cancer types [71]. In
this manuscript, we focus on estimating the underlying copy number alterations using whole
genome sequencing, in order to directly study the evolutionary process.

Single cell sequencing can offer a detailed picture of the process of CNA and mutation
accumulation that is lost in bulk sequencing, in particular by estimating the phylogenetic re-
lationship among different cell types. A challenge in such efforts is that single cell sequencing
data is typically very noisy due to variable and low sequencing depth [38], making accurate
genotyping, copy number (CN) calling, and phylogeny estimation difficult. However, as we
will show here, by leveraging the shared evolutionary history among cells, jointly calling
CNAs across cells can lead to increased accuracy and give information about the evolution-
ary relationship between cells, thereby leading to improved estimates of tumor phylogenies.
Different cells from the same tumor share some of their somatic evolutionary history, and
information regarding CNAs, and CNA breakpoints, from one cell can, therefore, inform
CNA calling in other cells.

Unfortunately, the commonly used methods for estimating single cell copy number profiles
(CNPs), the collection of copy number states across the genome, do not rigorously use this
shared information. Instead, most methods, including SCONCE [3] and the commonly-used
AneuFinder [49, 50], independently call CNPs. Although SCONCE [3], a copy number
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calling method for single cell tumor data, was previously shown to outperform competing
methods in absolute copy number and breakpoint detection accuracy [3], it does not utilize
any information from shared evolutionary histories between cells. Other methods, such as
CopyNumber [45] and SCIcONE [52], jointly call CNPs by forcing breakpoints to be shared
across all cells. However, we showed in previous work that SCONCE [3] outperforms these
methods as well, despite not analyzing cells jointly. In contrast, WaveDec [72], a method
designed to detect shared and cell specific copy number events in copy number arrays and
applied to a subset of sequencing data from [4], takes an orthogonal approach by transforming
log2-ratio copy number data into the wavelet space. This transformation allows separation of
common/shared and individual CNAs, as shared events are captured by the approximation
coefficients and individual events are described by the detail coefficients.

Despite these limitations in copy number calling, several distance metrics for copy number
profiles have been developed for estimating tumor phylogenies using algorithms such as
neighbor-joining [31, 32]. Commonly used pairwise distance metrics include the Euclidean
distance [4, 73], the MEDICC distance described by [74], and the cnp2cnp distance presented
by [75]. Although the Euclidean distance is easy to calculate, large and/or overlapping CNAs
can artificially inflate this measure, leading to overestimation of dissimilarity. The latter two
methods measure distance between two CNPs by attempting to find the minimum number
of deletion and amplification events needed to transform one CNP into the other, without
allowing regions that are lost to be regained. The MEDICC model is limited to maximum
copy number 4 and events that increase or decrease copy number by one, while the cnp2cnp
metric relaxes both of these constraints. Cordonnier et al. [75] re-implemented the MEDICC
algorithm to allow copy numbers greater than 4, and showed that while both the cnp2cnp
and MEDICC distances outperform the Euclidean distance for the purpose of phylogeny
estimation, cnp2cnp is more accurate on error free data and MEDICC is more accurate on
data with errors.

However, none of these methods use explicit evolutionary models of CNAs to provide joint
estimates of CNPs and evolutionary distance. Here, we present SCONCE2, an expansion
on SCONCE, that further develops SCONCE’s underlying tumor evolutionary model to
jointly model the CNA process in two cells. SCONCE2 takes advantage of the shared
evolutionary history between cells, and produces more accurate single cell CNP estimates
and pairwise estimates of the evolutionary distances between cells, by combining information
across multiple cells. We show that SCONCE2 estimates more accurate CNPs and tumor
phylogenies than competing methods using extensive simulations, and apply it to previously
published data from [4, 5] to illustrate its utility.

3.3 Results

To infer the evolutionary history of tumor cells, SCONCE2 models the evolution of pairs
of cells. We assume a pair of cells, (A,B), have a partially shared evolutionary history
originating from a healthy ancestral diploid cell, D. The shared part of their evolutionary
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history is represented in a tree, T = [t1, t2, t3], by a branch of length t1, running from an non-
tumor diploid cell (D) to an unobserved divergence point, Z. From Z, cells A and B evolve
independently, with branch lengths t2 and t3, respectively (see Figure 1). A core goal is to
estimate this tree and to distinguish between shared evolutionary events and independent
cell specific events.

Because the number of pairs of cells grows quadratically with the number of cells, n,
full joint maximum likelihood estimation of all parameters can become computationally
challenging. We, therefore, first run SCONCE on all cells independently to obtain cell specific
estimates of model parameters. We then take the median of the estimates of evolutionary
parameters {α, β, γ}, corresponding to the rates of different types of copy number events (see
One cell continuous time Markov process), to combine the disjoint SCONCE estimates into
summary estimates across all cells. Then, for each pair of cells, we estimate branch lengths
of tree T = [t1, t2, t3] using maximum likelihood, and use the Viterbi algorithm to calculate
paired decoded copy number profiles. Because each cell appears in n−1 pairs, this produces
n − 1 paired CNP estimates per cell. Finally, for each cell, we take the per window mean
across each cell’s n− 1 paired CNP estimates to calculate consensus CNPs. This pipeline is
described in Detailed SCONCE2 pipeline and illustrated in Figure 2.

By analyzing each cell in the context of multiple pairs, we obtain increased accuracy in
copy number calls and breakpoint detection, as well as usable tree branch length estimates.
We examine the properties of these estimates on both simulated and real data.

Simulations

In order to rigorously test SCONCE2, we applied it to four simulated datasets and two real
datasets, from [4, 5]. We simulated 128 cells on four different tree structures: tree A) is
maximally imbalanced and ultrametric, tree B) is perfectly balanced and ultrametric, tree
C) is maximally imbalanced and not ultrametric, where internal and terminal branches have
uniform length, and tree D) is maximally imbalanced and not ultrametric, where internal
branches have equal length and terminal branch lengths decay logarithmically (tree struc-
tures shown in Supplementary Figure S1, Additional File 1). Simulated cells from each tree
structure were divided into five discrete test subsets of 20 cells each.

Briefly, the simulated genome is modeled as a collection of line segments, where amplifi-
cations and deletions occur according to a Markov process and have lengths sampled from
a truncated exponential distribution. Copy number events occur within the tree structure,
such that ancestral CNAs are propagated to descendent cells. Note, the simulation model is
more biologically realistic and intentionally structured to be substantially different from the
SCONCE2 inference model, in order to avoid biasing accuracy results to favor our method.
We previously described this simulation model in [3], and full simulation details are given in
Simulations.
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Copy Number and Breakpoint Detection Accuracy

Sum of Squared Error on CNPs

To measure copy number accuracy, we calculated the sum of squared errors (SSE) between
the inferred copy number and the true simulated copy number across genomic windows
for each cell. To evaluate each step in the SCONCE2 pipeline, we calculated the SSE
on copy number profiles generated from individual cell estimation (SCONCE), on profiles
from each pair of cells (one pair), and on consensus profiles estimated using three different
summary statistics (mean, median, mode) across multiple pairs of cells. We also com-
pared to AneuFinder [49, 50], a commonly used method for single cell copy number calling,
and the second-most accurate one, after SCONCE, among methods evaluated in previous
work [3]. In all subsequent results, we report summary statistics across all subsets for each
tree/simulation set. Recall full simulation descriptions are given in Simulations.

In tree A (maximally imbalanced ultrametric tree; Figure 3A), using pairs of cells had
lower SSE than individual cells (SCONCE) alone, with respective median SSE values of 26.01
and 37.31. Furthermore, using the mean had the lowest median SSE of 17.83, with median
and mode at 23.68 and 24.04. These SSE values were lower than AneuFinder, which had a
median SSE value of 51.78. Similar results for tree B (perfectly balanced ultrametric tree)
are shown in Figure 3B, with median SSE values of 28.37, 21.25, 14.74, 17.90, 18.09, and
41.80 for individual cells, single pairs, mean, median, mode, and AneuFinder, respectively.
In the same order, the median SSE values for tree C (maximally imbalanced with uniform
internal branch lengths) were 73.19, 46.50, 22.20, 32.69, 33.22, and 109.31, and the median
SSE values for tree D (maximally imbalanced with logarithmically decaying branch lengths)
were 60.13, 40.36, 23.05, 32.00, 33.02, and 76.18 (see Figure 3C, D). Clearly, there is a
substantial improvement in accuracy by using pairs of cells instead of individual cells, and
this improvement in accuracy is larger if multiple pairs are used.

We note that, as an artifact of the genome binning procedure, true fractional copy num-
bers may occur from small CNAs completely contained within window boundaries, or from
CNAs crossing window boundaries (for example, observing windows with true copy numbers
1 → 1.25 → 2). As such, the mean and median have the lowest SSE values because they al-
low fractional copy numbers. However, many downstream tools expect integer copy number
profiles for single cells, so users may wish to round to the nearest integer or use the mode
option.

Breakpoint distance and detection

In order to measure breakpoint detection accuracy, we calculated the genome wide distance
between inferred and true breakpoints, penalized by the number of total inferred breakpoints.
Specifically, for each simulated breakpoint, we calculated the distance to the nearest inferred
breakpoint. Because erroneously inferring breakpoints at every position in the genome would
artificially lower this genome wide distance, we also calculated ω = # inferred breakpoints

# true breakpoints
, such

that lowest breakpoint distances with ω values closest to 1 indicate greatest accuracy.
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In all simulation sets, using the mean consistently had ω values closest to 1, again due to
fractional copy number states, as well as lower total breakpoint distance than other methods.
Across trees, results from AneuFinder, followed by SCONCE, had the highest breakpoint
distances and ω values further from 1. For tree A (ultrametric maximally imbalanced tree;
Figure 4A), SCONCE, single pairs, mean, median, mode, and Aneufinder had median dis-
tance values of 1167, 1006, 394, 1018.5, 1019.5, and 1172, and median ω values of 0.466,
0.490, 0.921, 0.486, 0.486, and 0.462, respectively. Similarly, for tree D (maximally im-
balanced with logarithmically decaying branch lengths, Figure 4D), median distance values
were 153.5, 85, 33, 77, 77.5, and 168.5, and median ω values were 0.504, 0.535, 1.007, 0.535,
0.534, and 0.489, in the same order as above. Full median distance and ω values are given
in Supplementary Tables S2 and S3, Additional File 2. Similarly to the observations for the
CNP estimates, breakpoint detection also improves when using pairs of cells, and improves
when estimates from multiple pairs are combined, particularly if combining using the mean.
As previously noted in Sum of Squared Error on CNPs, binning the genome can result in
fractional copy numbers for some bins. Compared to the median and the mode, the mean
is better able to capture these fractional copy number states, resulting in lower breakpoint
distances and ω values closer to 1.

Optimal number of pairs to use

Because there are
(
n
2

)
pairs for n cells, averaging over more pairs of cells comes at a compu-

tational cost. Furthermore, as we will show, adding too many divergent cells can reduce the
accuracy, as including highly divergent cells in the average may increase the noise.

To determine the optimal number of cells to summarize across, we estimated summarized
(mean) copy number profiles with increasing numbers of cells. As each cell was added, we
calculated the difference in SSE relative to SCONCE (individual cells). Cells were added in
three different orderings: most to least similar (i.e., nearest first, as defined by the Euclidean
distance between the cells’ SCONCE profiles), least to most similar (furthest first), and
randomized order. In tree A, the median pairwise Euclidean distance between SCONCE
profiles was 88.0625 for the nearest/most similar cells, 138.9585 for the tenth most similar
cells, and 205.853 for the least similar cells. Median pairwise Euclidean distances for all
datasets are given in Supplemental Table S4, Additional File 2.

In Figure 5, we summarize the change in SSE across κ cells for each tree. Across all
trees, SSE improves fastest when adding nearest cells first, and slowest for adding furthest
cells first, with the random ordering in between. When adding nearest cells first, the SSE
initially sharply decreases, levels off and reaches the largest decrease after approximately 10
cells, and then increases. Specifically, the mean change in SSE when adding nearest cells
first reached the greatest decrease in SSE from SCONCE of -20.710, -17.491, -56.185, and
-38.570 when κ = 12, 10, 9, 15 cells for trees A, B, C, and D, respectively. In contrast, when
κ = 20 cells, the change in SSE from SCONCE was -19.721, -16.757, -53.461, and -37.920
for trees A, B, C, and D, consistent with the results shown in Figure 3.
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When summarizing over κ < n − 1 cells, for a given cell, some of the other cells will
not be used in that cell’s consensus profiles. As a time saving measure, these excluded cell
combinations are not analyzed. Therefore, we recommend users summarize over κ = 10 cells,
added in order of most to least similar.

For completeness, SSE and breakpoint detection across parameter sets when summarized
over only the nearest 10 cells is shown in Supplementary Figures S2 and S3, Additional File
1, and Supplementary Tables S5 and S6, Additional File 2.

Using multiple cells results in better CNA detection

Plotting true simulated copy number profiles against inferred copy number profiles shows
why performance improves when using multiple cells. For example, in Figure 6, SCONCE er-
roneously combined two breakpoints for cell A, while predicting cell B’s breakpoint too far to
the left (column labelled SCONCE). However, when analyzed as a pair, a shared breakpoint
was inferred (left arrow), and the second breakpoint (right arrow) in cell A was correctly
inferred (one pair column). While the shared breakpoint was closer to the true breakpoint,
it was not until CNPs are summarized across multiple cells that the breakpoint was called in
the correct position. Using the mean results in slightly fuzzier boundaries due to non-integer
copy number calls (middle column), which better reflected the true underlying data, while
the median and mode (right two columns) result in integer jumps at bin boundaries.

Similar results are observed for real data. For example, in Supplementary Figure S4,
Additional File 1, SCONCE missed the left most CNA in cell B (arrow in SCONCE column).
When analyzed as a pair, this CNA was detected, and was shared with cell A (left arrows).
Additionally, a short deletion was called in both cells (right arrows). However, this is a rare
event, as it was averaged out in the mean, median, and mode analyses (arrows in mean,
median, and mode columns). Furthermore, in Supplementary Figure S5, Additional File
1, SCONCE did not call a CNA in cell A, but did call a -3 deletion in cell B (arrows in
SCONCE column). However, when these two cells were jointly analyzed as a pair, there was
enough evidence to call a -1 deletion in both. When summarizing across multiple cells, this
deletion continued to be supported (right arrow). Additionally, there was some evidence
from joint analyses with other cells that an additional small deletion existed in cell B, but
not in cell A (left arrow). However, this small deletion was lost when using the median and
mode, although the deletion first identified in the joint analysis of cells A and B remained.

Model Parameter Estimates

For each pair of cells, SCONCE2 estimates the branch lengths for tree T = [t1, t2, t3] (see
Figure 1). From the simulated trees, the corresponding tree branch lengths and node dis-
tances can be extracted for each cell pair. Recall the simulation and inference models are
intentionally formulated differently to evaluate SCONCE2 in more realistic settings (see Sim-
ulations). Because the scaling of T is different between the simulation and inference models,
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we show the R2 values between true (simulated) and inferred values of T = [t1, t2, t3], as well
as the summed distance t2 + t3 as a distance metric between two cells.

For tree A (ultrametric, maximally imbalanced), SCONCE2 recovered {t1, t2, t3, t2 + t3}
values with R2 values of 0.798, 0.35, 0.286, and 0.551 (Figure 7A), respectively. Additionally,
for tree D (maximally imbalanced with uniform branch lengths), SCONCE2 had R2 values
of 0.661, 0.564, 0.59, and 0.686, for t1, t2, t3, and t2 + t3. (Figure 7D).

We note that the sum t2 + t3 has higher R2 values than those of t2 or t3 individually,
demonstrating some uncertainty in assigning events to particular branches. Furthermore,
because the simulation model generates the number of CNAs from a distribution relating to
a Poisson (however, the distribution is not truly Poisson as the size of the genome changes
through the simulations), the mean and variance of the number of events increases with
branch length in expectation. This increased variance is reflected by the larger range of
branch length estimates as branch lengths increase. Nonetheless, as we will show in the
next section, SCONCE2 recovers the magnitude of cell relationships sufficiently accurately
to allow improved phylogeny estimation.

Phylogeny Estimation

Estimating phylogenies on copy number profiles using neighbor-joining [31, 32] requires a
distance metric between cells. Existing metrics include the Euclidean distance [4], and two
estimates of the minimum number of CNAs needed to transform one CNP into another: the
cnp2cnp metric [75] and the MEDICC distance [74] (here, we use the implementation in the
cnp2cnp program [75]). These methods require prior estimation of the CNP. See Running
other methods for details on running these programs.

Under the SCONCE2 model, by construction, t2 + t3 measures the pairwise distance
between two cells. To compare these different distance metrics, we first calculated distance
matrices using pairwise Euclidean, cnp2cnp, and MEDICC distances on CNPs called by
SCONCE (previously showed to be more accurate than other single cell copy number callers
[3]), as well pairwise t2 + t3 estimates. Next, we applied neighbor-joining to estimate phylo-
genies and computed the Robinson-Foulds (RF) distance [76] between the true trees and the
inferred trees. As shown in Figure 8, across parameter sets, the trees inferred from estimates
of t2 + t3 had lower Robinson-Foulds distances than trees inferred from other distance met-
rics. For example, for tree A (ultrametric, maximally imbalanced), the median RF distances
were 27, 27, 29, and 20 for the Euclidean distance, cnp2cnp distance, MEDICC distance,
and t2 + t3 (Figure 8), respectively (see Supplementary Table S7, Additional File 2, for all
median Robinson-Foulds distances).

Furthermore, we calculated RF distances from phylogenies based on the Euclidean,
cnp2cnp, and MEDICC distances on consensus CNPs and true simulated CNPs (Supple-
mentary Figure S6, Additional File 1). When summarizing over all pairs of cells, using
t2 + t3 consistently had lower median RF distances than other methods on consensus CNPs.
For example, in tree A (ultrametric, maximally imbalanced), the median RF distances for
phylogenies estimated from mean consensus profiles were 27, 26, and 28 for the Euclidean,
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cnp2cnp, and MEDICC distances (Supplementary Figure S6A, Additional File 1). On dis-
tances calculated from the true CNPs, t2 + t3 performed as well or better than the other
metrics, with the exception of the cnp2cnp distance in tree A, where the Euclidean, cnp2cnp,
MEDICC distances and t2 + t3 had respective median RF distances of 27, 19, 20, and 20
(Supplementary Figure S6A, Additional File 1). However, under experimental conditions,
the true CNP would be unknown. In all other simulation sets, the phylogenies estimated
using t2 + t3 had lower median Robinson-Foulds distances than all other methods.

For completeness, we additionally calculated Robinson-Foulds distances on phylogenies
estimated from consensus CNPs from summarizing over the nearest 10 cells. For tree A
(ultrametric, maximally imbalanced), the median RF distances on mean consensus CNPs
over the nearest 10 cells were 27, 27, and 26 for the Euclidean, cnp2cnp, and MEDICC
distances, respectively (Supplementary Figure S7A, Additional File 1). Note that in order
to estimate phylogenies using our t2 + t3 metric, all pairs of cells must be analyzed, and
cannot benefit from the time savings of analyzing a selected subset of pairs of cells (see
Optimal number of pairs to use). This is a weakness of our method, as analyzing all pairs
of cells comes at an increased computational cost.

3.4 Discussion

We present a novel method, SCONCE2, that combines data across single cells in a man-
ner that is grounded in a principled model of stochastic tumor evolution. It jointly calls
copy number alterations in single cell sequencing of cancer cells with higher accuracy than
competing methods on both simulated and real data. Additionally, SCONCE2 calculates an
informative pairwise distance metric that can be used to estimate phylogenies with less error
than other methods.

Similar to SCONCE, one weakness of SCONCE2 is the requirement for matched diploid
cells in order to normalize GC content and mappability biases. These diploid cells must be
sequenced under the same experimental conditions for proper GC content and mappabil-
ity normalization, and may not be directly of interest to investigators, thereby potentially
increasing cost. However, infiltrating diploid cells are often sequenced as a byproduct of
single cell sequencing, and can be identified with orthogonal methods, such as cell sorting.
For example, in the two datasets analyzed here, no additional sequencing was necessary to
purposefully produce matched diploid sequencing data.

Additionally, SCONCE2 does not use SNPs or genotype likelihoods, or do any allelic
phasing, to inform copy number calls or t2 + t3 estimates. Although calling SNPs in low
coverage and noisy single cell data is difficult, incorporating genotype likelihoods can add
information and increase confidence in these procedures. For example, using the allele fre-
quency in variable single nucleotide sites can support concordant or rule out discordant copy
number states. Furthermore, estimating the counts of variable sites on specific branches in
T = [t1, t2, t3] (see Figure 1) can increase confidence in branch length estimates. Adding
genotype likelihoods of single nucleotide variants is the subject of future work.
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Another weakness of SCONCE2 is that it takes longer to run, relative to other methods.
However, if investigators are primarily interested in copy number calling, significant time
can be saved by summarizing over a selective subset of pairs of cells (that is, noninformative
pairs are not analyzed), described in Optimal number of pairs to use. But, if investigators
are interested in estimating phylogenies using our t2 + t3 metric, all pairwise distances must
be estimated to calculate a complete distance matrix (described in Phylogeny Estimation),
thereby negating this time saving measure. Because the distance matrix dimensions and
number of pairwise comparisons grow quadratically with the number of cells analyzed, the
computational complexity and run time cost grows quickly. However, if investigators are
interested in both copy number calling and phylogeny estimation using our t2 + t3 metric,
after all pairwise parameter estimates are calculated (the most computationally intensive
step), investigators have the flexibility to quickly call consensus copy number profiles over an
arbitrary number of pairs. Despite the computational complexity of this model, we propose
the increased accuracy of both copy number calls and phylogeny estimation outweighs the
increased computational run time cost.

3.5 Conclusions

In conclusion, we present a principled method, SCONCE2, for simultaneously and accurately
calling and aggregating copy number profiles across multiple tumor cells, and estimating
pairwise evolutionary distances, using single cell whole genome sequencing. This work shows
jointly analyzing cells in single cell experiments to leverage their shared evolutionary history
increases accuracy in copy number calling and phylogeny estimation, with implications for
deepening our understanding of tumor evolution.

3.6 Methods

Evolutionary process modeling

We first review the Markov processes introduced in [3]. Briefly, we assume an evolutionary
process that is continuous in time but discrete along the length of the genome. However,
notice that this is just an approximation, as the true process along the length of the genome
is not Markovian (see Simulations).

One cell continuous time Markov process

The one cell continuous time process from [3] models the copy numbers of two adjacent
genomic bins, in positions i and i + 1 in the genome, on the same lineage (cell) with copy
number U, V ∈ Sc = {0, 1, . . . , k}, respectively, where k is the maximum allowed copy
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number. We assume that (U, V ) evolve through time with the following rate parameters:

α = rate of ± 1 CNA (1a)

β = rate of any CNA (1b)

γ = relative rate of CNAs affecting both U and V (1c)

which leads to the following instantaneous rate matrix for the joint process for two bins on
one lineage: Q = {q(U,V ),(U ′,V ′)}:

q(U,V ),(U ′,V ′) =



γ(α + β) if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n = 1

γβ if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n > 1

α + β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n = 1

β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n > 1

r(U,V ) if (U ′, V ′) = (U, V )

0 otherwise

(2)

To ensure all rows sum to 0, we set the diagonal elements to the negative row sum,
r(U,V ) = −

∑
(u′,v′ )̸=(U,V ) q(U,V ),(u′,v′). Note that Q defines the instantaneous rate of events

such as (U ′, V ′) = (U + n, V − k), n > 0, k > 0 (i.e., events where (U, V ) are changed by
different CNAs) to be equal to 0. However, (U, V ) can be changed by different CNAs for
any evolutionary time interval t > 0. Additionally, note we use the sum α + β as the rate
for events with ±1 CNA, to allow ±1 copy number events to have a higher rate than larger
magnitude copy number events.

The corresponding probability matrix, P, of time dependent transition probabilities of
adjacent bins changes from (U, V ) to (U ′, V ′) is calculated as the matrix exponential

P(U,V ),(U ′,V ′)(t) = eQt (3)

where t is evolutionary time.

Two cell evolutionary process expansion

We now extend this single lineage process to describe the joint evolutionary process in
two cells. Consider a pair of cells (A,B) and their most recent common ancestor in a tree,
T = [t1, t2, t3], where t1 denotes the branch length of their shared history and t2 and t3 denote
the branch lengths from divergence, at unobserved state Z, to cells A and B, respectively
(see Figure 1).
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Under this tree structure, adjacent bins in cells A and B have a shared evolutionary his-
tory for time t1 from an ancestral diploid state (i.e., D : (2, 2)) to an intermediate unobserved
state, Z : (W,Y ), with associated transition probability P(2,2),(W,Y )(t1). After divergence,
bins in cell A evolve from (W,Y ) to (CNiA, CNi+1,A) in time t2 with transition probability
P(W,Y ),(CNiA,CNi+1,A)(t2), where CNiA, CNi+1,A ∈ Sc denote copy number in windows i and
i+ 1 for cell A. Similarly, bins in B evolve from (W,Y ) to (CNiB, CNi+1,B) in time t3 with
transition probability P(W,Y ),(CNiB ,CNi+1,B)(t3).

Approximating discrete Markov process along the genome

Next, we convert these continuous time process transition probabilities for adjacent bins in
two cells into the transition probabilities for the approximating discrete Markov process for
pairs of cells along the entire length of the genome, further described in Two Cell Hidden
Markov Model Description. We do this by expanding the state space to the product space of
the state space for each cell, Sc. This expansion of the state space to the joint CN state for
two cells is necessary as the correlation structure along the length of the genome prevents the
use of standard tree-based dynamic programming algorithms such as Felsenstein’s pruning
algorithm [54].

The state space, Sd, for this discrete process is composed of pairs (CNiA, CNiB), rep-
resenting the copy numbers for window i in cell pair (A,B), where CNiA, CNiB ∈ Sc =
{0, 1, . . . , k} for a fixed maximal copy number k, such that

Sd = Sc × Sc = {(0, 0), (0, 1), (0, 2), . . . , (k, k)} (4)

We define matrix F(T ) = {f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )} as the transition probability
of moving from state (CNiA, CNiB) in window i to (CNi+1,A, CNi+1,B) in window i+1, given
evolutionary tree T = [t1, t2, t3], for cell pair (A,B). Therefore, the matrix F(T ) is defined
as

f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
∑

W,Y ∈Sc

(
P(2,2),(W,Y )(t1)×

P(W,Y ),(CNiA,CNi+1,A)(t2)×

P(W,Y ),(CNiB ,CNi+1,B)(t3)
) (5)

which can be used to calculate a transition matrix, M(T ), along the length of the genome
for pairs of cells. This is done by dividing the joint probability of the CN state in both cells
(A and B) in both bins (i and i+1), with the marginal probability of CN state in both cells
(A and B) in bin i, i.e., dividing each entry in F(T ) with the corresponding row sum:

M(T ) = {m(CNiA,CNiB),(CNi+1,A,CNi+1,B)}(T ) (6a)

m(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )∑

(c,d)∈Sd f(CNiA,CNiB),(c,d)(T )
(6b)
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We have thereby constructed a process with state space on the copy numbers of pairs of
cells, Sd. The matrixM(T ) gives the probabilities of observing transitions from (CNiA, CNiB)
in window i to (CNi+1,A, CNi+1,B) in window i + 1, along the genome, for cell pair (A,B),
given evolutionary tree T . We also note that the process along the length of the genome is
not Markovian, as breakpoints appear in pairs, inducing an inherently non-Markovian cor-
relation structure (see also [3]). However, to facilitate computation, we will approximate the
process as a Markovian process with transition probabilities given by M(T ). We note that
while this model approximates the evolutionary process and paired nature of breakpoints via
the genome wide transition matrix M(T ), it does not explicitly model pairs of breakpoints
jointly, potentially leading to unpaired breakpoints. This Markov chain will then be used
for inferences in a Hidden Markov Model framework with emission probabilities similar to
those described in [3].

Two Cell Hidden Markov Model Description

Expanding on the framework of [3], we define a Hidden Markov Model (HMM) [77–79] to
infer copy number across the genome for pairs of tumor cells, using binned read depth data.

Recall that cells A and B are associated with the evolutionary tree, T , shown in Figure 1.
The sample space of read data, A, is composed of pairs of observed per window read count
values, (xiA, xiB), xiA, xiB ∈ N0 = {0, 1, 2, . . . }:

A = N0 × N0 = {(0, 0), (0, 1), (0, 2), . . . } (7)

This HMM uses the state space of paired copy numbers, Sd, defined in Equation 4 and
the transition matrix M(T ), defined in Equation 6.

Emission probabilities

Assuming conditional independence between cells, the emission probabilities of the HMM
are:

P(XiA = xiA, XiB = xiB|CNiA, CNiB) = P(XiA = xiA|CNiA)P(XiB = xiB|CNiB) (8)

As these probabilities are calculated similarly for cells A and B, we only describe the deriva-
tion for cell A (note: we previously described this derivation in [3]).

We assume XiA follows a negative binomial distribution, such that

E(XiA) = λiA =
(
CNiA × µi

2

)
× sA + ε (9)

XiA ∼ NegBinom
(
λiA, σ

2
iA = aλ2

iA + bλiA + c
)

(10)
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where

CNiA = the copy number in window i for cell A (11a)

µi = the mean diploid read depth in window i (11b)

ε = constant sequencing error term (11c)

sA = library size scaling factor for cell A (11d)

{a, b, c} = constants learned from diploid data (11e)

Estimation of constants {a, b, c} is described in Initial independent parameter estimation
using SCONCE. In the following, we will describe the full SCONCE2 estimation procedure
in detail.

Detailed SCONCE2 pipeline

Given binned read depths for tumor and matched diploid cells, joint copy number calling in
SCONCE2 takes place in four main steps: 1) independently estimating model parameters
and copy number profiles for each cell using SCONCE, 2) combining independent parameter
estimates across cells, 3) estimating tree branch lengths for each cell pair, and 4) creating
summarized copy number profiles. This process is illustrated in Figure 2.

Initial independent parameter estimation using SCONCE

We first estimate constants {a, b, c}, defined in Equations 10 and 11e, using maximum likeli-
hood on diploid cells only, as previously described in [3]. We note that most single cell tumor
sequencing projects naturally also produce data from non-tumor diploid cells as part of stan-
dard sequencing techniques, and that these cells conveniently can be used for standardization
[4, 42, 60, 80–84].

In order to obtain initial estimates of all model parameters, we analyze all tumor cells
independently through SCONCE, described in detail in [3] and briefly summarized here.
This is done to avoid the computational cost of joint estimation for all model parameters
across all pairs of cells. The SCONCE pipeline first estimates the transition matrix of an
unconstrained CN HMM, with associated library size scaling factor sA, for each cell using
a modified Baum-Welch [85] algorithm. These estimates are then used to obtain initial
starting points for each model parameter for an optimization of the likelihood function using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [57]. This results in parameter
estimates {ŝA, α̂A, β̂A, γ̂A, t̂A}, for cell A. Recall sA is the library size scaling factor, defined
as the coverage for the cell relative to the average diploid library size, {α, β, γ} are the
instantaneous rates for copy number events, and tA is the total branch length from the
ancestral diploid cell to cell A (see the red block in Figure 2.).



CHAPTER 3. SCONCE2: JOINT COPY NUMBER INFERENCE 79

Combining parameter estimates across multiple cells

To analyze shared evolutionary history between n cells, we first combine independent es-
timates across all cells of the transition rate parameters, {α, β, γ}, assumed to be shared
among all cells, using the median to form joint estimates:

α̂ = median(α̂A, α̂B, . . . , α̂n) (12a)

β̂ = median(β̂A, β̂B, . . . , β̂n) (12b)

γ̂ = median(γ̂A, γ̂B, . . . , γ̂n) (12c)

We note that a full joint optimization could possibly lead to better model parameter esti-
mates, especially for highly heterogeneous tumor populations, as the median is not strongly
affected by extreme or highly variable individual estimates. However, we opted not to pursue
the estimation of such estimates because of considerations of computational efficiency. This
is illustrated in the yellow block in Figure 2.

Estimating pairwise tree branch lengths

Next, we estimate parameters of the joint two-cell process for all
(
n
2

)
pairs of cells. The

branch lengths of tree T = [t1, t2, t3], are specific to each pair of cells, and branch length
estimates from SCONCE, t̂, are used to inform the initial optimization starting point for T .
For example, for pair (A,B), the initial branch length estimates, denoted with ∗, are:

t∗1 =
min(t̂A, t̂B)

2
(13a)

t∗2 = t̂A − t∗1 (13b)

t∗3 = t̂B − t∗1 (13c)

For each pair of cells, we use the BFGS algorithm to maximize the forward log likelihood
in order to estimate T . To calculate the forward log likelihood of an observed sequence, the
HMM is reset into the initial probability vector, defined as the steady state distribution, at
the beginning of each chromosome to ensure chromosomal independence.

Because each set of branch lengths, [t1, t2, t3], is specific to each pair of cells, this procedure
is trivially parallelizable (see the green block in Figure 2).

Summarized copy number calling

After pairwise branch lengths are estimated, we use the Viterbi algorithm [86, 87] to estimate
the most likely joint copy number profile for each pair of cells. If cell A appears in n − 1
pairs, this results in n− 1 separate CNP estimates for cell A. In order to calculate a single
consensus copy number profile, CNA,consensus, we use either the mean (default), median, or
mode of the CN in each window among the n− 1 estimates.
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While adding more information to each consensus copy number profile by summarizing
across multiple cells initially increases accuracy, summarizing across too many divergent
cells is not optimal because more accurate estimates about each cell are obtained using
closely related cells than highly divergent cells (Figure 5). Therefore, in order to balance
combining data from multiple cells and maintaining cell specificity, the user can also choose
to summarize across a subset of the κ nearest neighbors for each cell, instead of all n−1 pairs
a particular cell appears in. The nearest neighbors for each cell is defined by the Euclidean
distance between individual copy number profiles from SCONCE. Then, the consensus copy
number profile is calculated only across the κ selected pairs.

Note, because of the genomic binning procedure, true copy number events may be split
across bin boundaries or be completely contained within one bin, resulting in bins with non-
integer average copy number. Using the mean and median summary functions can result in
non-integer copy number calls, which more accurately represent the underlying biology as
genomes are not truly organized in discrete bins. However, many downstream tools for single
cell analyses require integer copy number profiles, so these values may need to be rounded
for downstream analyses.

Simulations

In order to evaluate the accuracy of SCONCE2, we use the Line Segments model from
SCONCE [3], which simulates copy number events on a fixed length reference genome as
additions or deletions to a collection of line segments, and does not impose a maximum copy
number limit. Note that although copy number events change the number and length of
line segments, the reference genome length is constant. Additionally, copy number events
create pairs of breakpoints at either end of the event, which are explicitly maintained in
this simulation model, unlike the approximating discrete Markov process in the SCONCE2
inference model (see Approximating discrete Markov process along the genome), thereby
making the simulation model more biologically realistic.

While we previously used neutral coalescent simulations [3]to define trees, we here instead
adjust the tree structure and the length of the branch leading to the root (ie, time to
first divergence event) to examine a range of highly different tree structures, each including
128 cells. We specify two ultrametric trees with uniform branch lengths of 1/128, where
tree A is fully pectinate/maximally imbalanced and tree B is perfectly balanced, and two
non ultrametric trees, where tree C has uniform internal and terminal branch lengths of
1/128, and tree D has uniform internal branch lengths of 1/128 and logarithmically decaying
terminal branch lengths. These tree structures represent extremes in terms of how balanced
the tree is and in terms of deviations from a molecular clock (ultrametric property). Following
the definitions of [26], tree A models branching evolution, tree B models neutral evolution,
and trees C and D model linear evolution. Under certain conditions, the structure of tree B
can also be adjusted to model punctuated evolution [26] if the branch leading to the root is
lengthened relative to the internal tree branches, such that more mutations fall on the shared
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ancestral/root branch compared to external branches. For illustration, the tree structure for
8 cells is shown for each dataset in Figure S1.

For each tree, the total tree height (longest path from the root to a leaf) was scaled
to 1, and the branch leading to the root was set to length 1. Simulated reference genome
lengths were set to 100, with amplification and deletion rates and expected lengths shown
in Supplementary Table S1, Additional File 2 (note that genomic length units are arbitrary,
where expected copy number event lengths are defined relative to the genome length). As
previously described in [3], the locations of copy number events follow a Markov process,
and the lengths of copy number events follow a truncated exponential distribution.

To simulate read depths across the genome, the human reference genome was divided into
12,397 windows (equalling the number of 250kb non overlapping uniform windows in hg19),
and the number of reads falling into each window was simulated from a negative binomial
distribution with parameter r = 50. This results in files listing genomic window coordinates
and number of reads observed in that window, for every simulated cell (similar to output
from bedtools coverage [58] on real data). The total expected number of reads for each
cell was set to 4,000,000 (322.7 expected reads per window) to approximate the observed
number of reads per 250kb window (mean 316.1, median 351.2) in diploid cells from [4].
Note the actual number of total observed reads in each cell is random.

In order to ensure tree B was a perfectly balanced binary tree and to be consistent
between tree structures, read depths for 128 tumor cells and 100 diploid cells were simulated
for each tree. Read depth across diploid cells was averaged per window for each tree. Tumor
cells from each tree were divided into five non overlapping subsets of 20 cells to create test
sets. Although healthy cells were shared for each analysis run, each test set was otherwise
analyzed independently from other test sets from the same tree.

All parameter files used to generate simulations are available on GitHub, along with
examples of simulated data.

Real data preprocessing

We applied SCONCE2 to two published single cell breast cancer datasets, from [4] and [5],
a cancer type known for their frequent CNAs [59]. Both of these datasets were processed
as previously described [3]. Briefly, for the [4] dataset, we trimmed reads using cutadapt
[64] and trimmomatic [65], removed low complexity reads with prinseq [66], aligned reads
to hg19 using bowtie2 [67], removed reads with q scores less than 20 using samtools [68],
and removed PCR duplicates using picard [69]. For the [5] dataset, we split downloaded
preprocessed bam files into cell specific bam files using pysam [70], and removed reads with
q scores less than 20 using samtools [68]. Finally, we used bedtools coverage to count per
window read depth for each cell [58]. Cells previously and orthogonally identified as diploid
cells in [4] served as the matched normal. For the [5] dataset, cells from subset A were used
as the diploid samples, as previously described [60].

https://github.com/NielsenBerkeleyLab/sconce2/tree/main/simulations/inputFiles
https://github.com/NielsenBerkeleyLab/sconce2#input-files
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Running other methods

For benchmarking, we limit our comparisons to other copy number only methods (that is,
no SNP or phasing information is used): SCONCE [3] and AneuFinder [49, 50] for copy
number accuracy, and the cnp2cnp [75] and MEDICC [74] distances for phylogeny building.

Briefly, we ran AneuFinder with default parameters, with the exception of skipping GC
and mappability corrections to avoid overcorrecting, as we did not include GC or mappa-
bility bias in our simulations. To benchmark SCONCE2’s copy number calling, we first
ran SCONCE [3] with default parameters (k=10). To run AneuFinder [49, 50], we skipped
the GC and mappability corrections steps to avoid over correcting, as our simulation model
does not include GC or mappability biases. We directly ran AneuFinder’s findCNVs func-
tion (default parameters: method="edivisive", R=10, sig.lvl=0.1). We extracted copy
number calls from the resulting the copy.number element, and used bedtools intersect

[58] to split large segments into 250kb windows.
To evaluate SCONCE2’s t2+ t3 distance metric in phylogeny estimation, we compared to

the cnp2cnp distance [75] and the MEDICC distance [74]. To run cnp2cnp, we first converted
and rounded called CNPs into fasta files, then ran cnp2cnp in matrix mode with default
parameters (-m matrix -d any). Because the cnp2cnp metric depends on the input sample
ordering and is not symmetric, we repeated this process on the reversed sample ordering,
and summed the two resulting distance matrices to make a symmetric metric. To calculate
the MEDICC distance, we used the ZZS implementation of the MEDICC algorithm in the
cnp2cnp program to remove the maximum copy number limit of 4 in the original MEDICC
software, and ran it on the same fasta files (-m matrix -d zzs). Full scripts to run other
methods are provided on GitHub (runAneufinder.sh and runCnp2cnp.sh).

Phylogeny estimation and Robinson-Foulds distance calculations

To estimate phylogenies, distance matrices were first read into R [88]. Next, we applied
neighbor-joining [31, 32], implemented in the ape [89] package, to each distance matrix to
estimate phylogenies.

To calculate Robinson-Foulds distances between inferred trees and true trees, we first
used the read.tree function in the ape [89] package to read true trees in Newick format
into R. Next, we used the treedist function from the phangorn [90, 91] package to calcu-
late the Robinson-Foulds distance. Full scripts to estimate phylogenies from distance ma-
trices and calculate Robinson-Foulds distances between phylogenies are available on GitHub
(readTreeBranches.R and plotRFdist.R).

3.7 Appendix

Abbreviations

• BFGS: Broyden–Fletcher–Goldfarb–Shanno algorithm [57]

https://github.com/NielsenBerkeleyLab/sconce2/blob/main/otherMethods/runAneufinder.sh
https://github.com/NielsenBerkeleyLab/sconce2/blob/main/otherMethods/runCnp2cnp.sh
https://github.com/NielsenBerkeleyLab/sconce2/blob/main/scripts/readTreeBranches.R
https://github.com/NielsenBerkeleyLab/sconce2/blob/main/scripts/plotRFdist.R
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• CN: copy number

• CNA: copy number alteration(s)

• CNP: copy number profile

• HMM: hidden Markov model [77–79]

• RF distance: Robinson-Foulds distance [76]

• SNP: single nucleotide polymorphism

• SSE: sum of squared errors
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Figure 1: Pairwise tree structure, showing the tree, T = [t1, t2, t3], between the pair of
cells A and B, where the branch with length t1 represents their shared evolutionary his-
tory from an ancestral diploid cell, D, before diverging at the unobserved state Z. The
branches with lengths t2 and t3 show independent evolution to cells A and B, respectively.
Copy number in adjacent bins along the genome is shown in parentheses.
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Figure 2: Detailed flowchart of the SCONCE2 pipeline. We demonstrate the pipeline with
cell triplet {A,B,C}, without loss of generality. Each tumor cell is initially independently
analyzed through SCONCE, which gives parameter estimates and copy number profiles
for each cell (red box). These parameter estimates are then summarized (yellow box), and
branch lengths for tree T = [t1, t2, t3] are estimated for each pair of cells (green box).
Finally, for each cell, paired copy number profiles are summarized into a consensus copy
number profile (blue box). Each step is fully described in Detailed SCONCE2 pipeline.
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Figure 3: Boxplots of genome wide sum of squared error (SSE) between true simulated
copy number profiles and inferred copy number profiles, across methods. SSE results are
shown for cell specific CNPs from SCONCE (independent cell inference); joint inference
on each pair of cells (one pair); summary functions across all pairs of cells (mean, median,
and mode); and AneuFinder. Different methods are shown across the x-axis, and SSE is
shown on the y-axis. Median SSE for each method is printed at the top of each column.
Each dot represents one cell (note, in ”one pair”, each cell appears multiple times), and
the median SSE is printed at the top of each column. Panel letters correspond to tree la-
bels A (maximally imbalanced ultrametric tree), B (perfectly balanced ultrametric tree), C
(maximally imbalanced non ultrametric tree with uniform branch lengths), and D (maxi-
mally imbalanced non ultrametric tree with logarithmically decaying branch lengths). SSE
results are consistently lower when using data from multiple cells.
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Figure 4: Breakpoint detection accuracy results across methods. Total distance to nearest
breakpoint is shown on the y-axis, and ω = # inferred breakpoints

# true breakpoints
is shown along the x-axis.

Each dot represents one cell, colored by method. Methods with the highest breakpoint
detection accuracy cluster near ω = 1 (vertical red dotted line) and have lowest total
breakpoint distance. Each panel corresponds to a simulation set (A-D). In all simulation
sets, using the mean, median, and mode have lower total breakpoint distance than inde-
pendent cell analyses. Furthermore, using the mean results in ω values closest to 1, as it is
able to infer fractional copy numbers.
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Figure 5: Change in SSE relative to SCONCE, as more cells are added to the consen-
sus (mean) analysis. Number of cells, κ, in the joint analysis is shown along the x-axis,
and change in SSE (relative to SCONCE) is shown on the y-axis. Each line shows the
mean change in SSE across cells, with error bars showing ±1 standard deviation. Colors
show cell ordering, where furthest denotes adding the least similar cells first (i.e., fur-
thest distance as defined by the Euclidean distance on SCONCE profiles) and nearest
denotes adding the most similar cells first. Across all datasets and cell orderings, SSE
quickly drops as more cells are added, with adding the nearest cells (green line) showing
the fastest improvement. However, for this ordering, the decrease in SSE levels off after
approximately 10 cells are added, and then slightly rises as more cells are added, due to
rare copy number events getting averaged out.
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Figure 6: Jointly calling CNAs and summarizing data across multiple cells results in more
accurate boundary detection. Inferred copy number profiles and read depth data are
shown for two cells (A: 111, B: 59) simulated from tree C (maximally imbalanced, uniform
branch lengths). Genomic index shows 110 250kb windows along the x-axis, while the y-
axis shows copy number (left) and read depth (right). Gray dots show per window read
depth, the light blue line and band show the mean and variance of the diploid read depth,
the dotted red line shows the true simulated copy number, and the blue and yellow lines
show the inferred copy number calls for each cell. Arrows denote inferred breakpoints, and
SSE values are listed for each subpanel. Subpanels show results from different copy num-
ber calling methods: SCONCE (independent analysis); one pair (analysis of cells A and B
as a pair); mean, median, and mode (consensus calls from summarizing paired CNPs for
cells A and B across all relevant pairs of cells). Breakpoint detection accuracy increases as
more cells are included in the joint analysis.
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Figure 7: Correlation between true branch lengths and estimated branch lengths across
simulation sets. Each dot represents one pairwise branch length estimate, with true node
distance on the x-axis and estimated branch length on the y-axis. R2 values from a linear
regression on branch length (dark gray lines) is shown for each subpanel. Across all simu-
lation scenarios (panels A-D correspond to trees A-D), SCONCE2 consistently predicts t1
and t2 + t3 with high R2 values.
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Figure 8: Robinson-Foulds (RF) distances between true and inferred phylogenies. Phylo-
genies were estimated using neighbor-joining on t2 + t3 estimates, and on the Euclidean,
cnp2cnp, and MEDICC distances between true CNPs and CNPs inferred from SCONCE.
Methods are shown along the x-axis, while Robinson-Foulds distances are shown on the
y-axis. Across multiple parameter sets (panels A-D correspond to trees A-D), using t2 + t3
estimates resulted in a lower Robinson-Foulds distance from the simulated tree, relative to
all other inferred phylogenies.
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3.9 Supplementary Material

Supplementary Notes

Tree illustrations

We simulated 128 cells from four distinct tree structures, described in Simulations. Small 8
cell trees are shown for illustration purposes in Supplementary Figure S1, Additional File 1.
Tree A is ultrametric and maximally imbalanced, tree B is ultrametric and perfectly balanced,
tree C is not ultrametric and maximally imbalanced with uniform branch lengths, and tree D
is not ultrametric and maximally imbalanced with logarithmically decaying branch lengths.

SSE and breakpoint distance accuracy over the nearest 10 cells

Across parameter sets, the median sum of squared error (SSE) between the true and inferred
copy number profile for each cell is lowest when each cell’s consensus profile is calculated by
summarizing across the nearest 10 cells, rather than over all 20 in each subset, as rare events
aren’t averaged out. The nearest cells are determined by the lowest Eucliden distance on each
cell’s SCONCE profile. Similar to Figure 3, SSE is shown across parameter sets for CNPs
from SCONCE (independent inference); from each pairwise analysis; summarized across
pairs using mean, median, and mode; and from AneuFinder in Supplementary Figure S2,
Additional File 1.

Additionally, similar to Figure 4, we show breakpoint detection accuracy in Supplemen-
tary Figure S3, Additional File 1 when consensus profiles are calculated by summarizing over
each cell’s nearest 10 cells. Median breakpoint distance and ω = # inferred breakpoints

# true breakpoints
values

are given in Supplementary Tables S5 and S6, Additional File 2.

Median Breakpoint Distance and ω Values

To evaluate breakpoint detection accuracy, we summed the distance from each true break-
point to its nearest inferred breakpoint. We define ω = # inferred breakpoints

# true breakpoints
, such that highest

accuracy is indicated by low breakpoint distance and ω close to 1. Median breakpoint
distance and ω values are given across all analyzed cells for each tree in Supplementary Ta-
bles S2 and S3, Additional File 2. Similarly, median breakpoint distance and ω values when
consensus methods only summarize across the 10 nearest cells are given in Supplementary
Tables S5 and S6, Additional File 2.

Robinson-Foulds Distance Values

SCONCE2 estimates branch lengths for tree T = [t1, t2, t3] for every pair of cells. To evaluate
the usefulness of t2 + t3 as a distance metric for phylogeny building, we first calculated
distance matrices using t2+t3. For comparison, we calculated distance matrices using several
different distance metrics (Euclidean distance, cnp2cnp, and MEDICC) at different points in
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the SCONCE2 pipeline (after SCONCE (independent inference); on summarized CNPs from
the mean, median, and mode). As a sanity check, we also calculated distance matrices on
the true simulated CNPs (i.e., removing all noise from the copy number inference process).
Next, we applied neighbor-joining to these distance matrices and calculated the Robinson-
Foulds (RF) distance between each resulting tree and the true simulated tree. For each cell
subset in each tree, RF distances are plotted in Supplementary Figure S6, Additional File
1, and median RF distances are given in Supplementary Table S7, Additional File 2.

Using the Euclidean distance is remarkably stable to variations in CNPs. Both the
cnp2cnp and MEDICC metrics had the highest median RF distances for SCONCE, and the
lowest on the true CNPs, with distances from mean, median, and mode lying between those
two extremes. Across all parameter sets, using t2+ t3 resulted in median RF distances lower
than other methods, with the exceptions of using the true CNPs. However, it stands to
reason that one would not have access to noiseless copy number profiles in experimental
conditions.

Additionally, we calculated the above distance matrices and ran neighbor-joining on
CNPs where consensus profiles were summarized across only the nearest 10 cells. However,
analyzing only the nearest 10 cells means some cell pairs get skipped, and therefore do not
have an t2+ t3 estimate. To address this, we only calculated RF distances on trees estimated
from other metrics.RF distances are plotted in Figure S7, and median RF distances are given
in Supplementary Table S8, Additional File 2.

Detailed SCONCE2 pipeline

The SCONCE2 pipeline, shown in Figure 2, consists of four main steps: 1) Tumor cells are
first independently analyzed through SCONCE to estimate model parameters (for cell A,
{sA, αA, βA, γA, tA}) and cell specific copy number profiles. 2) Shared parameter estimates,
{α, β, γ}, are then summarized across all cells using the median. 3) The branch lengths
in tree T = [t1, t2, t3] are then independently estimated for each pair of cells. Finally, the
Viterbi decoding is used to calculate copy number profiles for each pair of cells, and 4) cell
specific copy number profiles are summarized across pairs. Optionally, only the κ nearest
neighbor cells (defined by the Euclidean distance on the SCONCE copy number profiles) are
summarized for a given cell.
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Figure S1: Tree structure for each simulated data set. Although each tree contained 128
cells, only 8 cells for each tree is shown for brevity.
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Figure S2: Boxplots of SSE across parameter sets and CNP calling method. Here, for sum-
mary methods (mean, median, and mode), each cell’s consensus CNP is calculated over its
nearest 10 cells. Each dot shows one cell, CNP calling method is on the x-axis, and SSE
is on the y-axis, with median SSE values printed at the top of each column. The median
SSE is indicated with a black bar and printed at the top of each column. Across parame-
ter sets, calculating consensus calls results in lower SSE than both competing methods and
summarizing over all pairs of cells (Figure 3).
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Figure S3: Breakpoint detection accuracy across parameter sets and CNP calling methods,
where consensus CNPs are summarized over each cell’s nearest 10 cells. Each dot repre-
sents one cell and each color represents on method, with ω = # inferred breakpoints

# true breakpoints
on the

x-axis and breakpoint distance on the y-axis. Using multiple cells consistently outperforms
individual analyses.
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Figure S4: Improved CNA detection using multiple cells in real data [4]. Copy number
calls and read depths are shown across methods for two cells (cell A: SRR054596, cell
B: SRR054609, from [4]) for genomic windows 6500-6700 (x-axis). Genomic windows are
250kb across hg19 and numbered sequentially. Each dot shows scaled read depth (right
y-axis, relative to diploid read depth) in one window, the light blue line and band show
the mean and variance of the diploid read depth data, and colored lines show inferred copy
number (left y-axis). Arrows denote differences in copy number calls between methods.
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Figure S5: Improved CNA detection using multiple cells in real data [5]. Copy
number calls and read depth are shown for two cells (cell A: cell 1538 with bar-
code TAGCCGGCAAGAACTA-1 from segment D, cell B: cell 1360 with barcode
GCATACAAGTAACCCT-1. from segment B, from [5]) across methods in genomic win-
dows 3900-4120 (x-axis). Windows are numbered sequentially across hg19 and are 250kb.
Each dot shows per window read depth (right y-axis, scaled to the average diploid read
depth), the light blue line and band show the mean and variance of the averaged diploid
read depth data, and colored lines show inferred copy number (left y-axis). Arrows denote
differences in copy number calls between methods.
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Figure S6: Robinson-Foulds (RF) distances for each simulation set (trees A-D) for differ-
ent distance metrics. Distance metrics (Eucliden distance, cnp2cnp distance, MEDICC
distance, t2 + t3) are grouped for each panel, and underlying CNPs sources are colored
along the x-axis. Using t2 + t3 outperforms all other distance metrics on inferred copy
number profiles.
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Figure S7: Robinson-Foulds distances for each simulation set (trees A-D) for different
distance metrics, where consensus CNPs are summarized over each cell’s 10 nearest neigh-
bors. As in Supplementary Figure S6, distance metrics are grouped for each panel, and
underlying CNPs types are colored along the x-axis. Note our t2 + t3 metric is excluded
here; as a time saving measure, any pairs that aren’t part of the nearest 10 of any cell
(e.g., two very distant cells) are not analyzed, leading to missing data in the pairwise
distance matrices.
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Supplementary Tables

Simu-
lation
set/
tree

Short description Dele-
tion
rate,
δ
τd

Inser-
tion
rate,
φ
τa

Mean
deletion
length,
τd

Mean
insertion
length,
τa

A maximally imbalanced, ultra-
metric

0.025 0.025 10 10

B perfectly balanced, ultrametric 0.025 0.025 10 10
C maximally imbalanced, not

ultrametric, all branches have
equal length

0.05 0.065 10.5 8

D maximally imbalanced, not
ultrametric, terminal branch
lengths decay logarithmically

0.05 0.065 10.5 8

Table S1: Description of simulation sets under the line segment model, relative to a
genome length of 100. A range of tree structures were chosen to test both typical and
edge cases.

SCONCE one pair mean median mode AneuFinder
A 1167 1006 394 1018.5 1019.5 1172
B 1009.5 796.5 91.5 959 959 1016.5
C 206 153 84 142 142 263
D 153.5 85 33 77 77.5 168.5

Table S2: Full median breakpoint distance values for all trees and methods.

SCONCE one pair mean median mode AneuFinder
A 0.4663 0.49 0.921 0.4862 0.4856 0.4623
B 0.4762 0.5 0.8643 0.4941 0.4897 0.4744
C 0.5134 0.5507 1.1667 0.5467 0.5436 0.4851
D 0.504 0.5349 1.0072 0.5346 0.5338 0.4885

Table S3: Full ω = # inferred breakpoints
# true breakpoints

values for all trees and methods.
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nearest/most similar 10th nearest furthest/least similar
A 88.0625 138.9585 205.853
B 87.0804 135.2585 208.149
C 26.9814 84.32675 127.957
D 38.76815 72.9452 112.81

Table S4: Median pairwise Euclidean distances between SCONCE profiles for each
dataset. Median distances between the nearest/most similar cells, 10th nearest cells, and
furthest/least similar cell are shown.

SCONCE one pair mean median mode AneuFinder
A 1167 1014 591 1009 1027 1172
B 1009.5 858 121 958.5 959.5 1016.5
C 206 152 90 130.5 135 263
D 153.5 84 38 70 76 168.5

Table S5: Full median breakpoint distance values for all trees and methods, where consen-
sus methods summarize over the nearest 10 cells only.

SCONCE one pair mean median mode AneuFinder
A 0.4663 0.4907 0.8186 0.5155 0.4929 0.4623
B 0.4762 0.5 0.7833 0.5191 0.4941 0.4744
C 0.5134 0.5493 1.02 0.5786 0.5462 0.4851
D 0.504 0.5344 0.9027 0.5639 0.5304 0.4885

Table S6: Full ω = # inferred breakpoints
# true breakpoints

values for all trees and methods, where consensus
methods summarize over the nearest 10 cells only.
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SCONCE mean median mode true t2 + t3
Euclidean distance 27 27 27 27 27 NA
cnp2cnp distance 27 26 25 25 19 NA
MEDICC distance 29 28 28 28 20 NA
t2 + t3 NA NA NA NA NA 20

(a) Tree A

SCONCE mean median mode true t2 + t3
Euclidean distance 21 21 20 20 21 NA
cnp2cnp distance 18 17 16 13 6 NA
MEDICC distance 17 12 9 10 6 NA
t2 + t3 NA NA NA NA NA 6

(b) Tree B

SCONCE mean median mode true t2 + t3
Euclidean distance 19 18 18 18 20 NA
cnp2cnp distance 20 16 19 20 10 NA
MEDICC distance 16 15 15 16 12 NA
t2 + t3 NA NA NA NA NA 8

(c) Tree C

SCONCE mean median mode true t2 + t3
Euclidean distance 22 22 22 22 22 NA
cnp2cnp distance 27 25 24 24 16 NA
MEDICC distance 27 24 23 24 16 NA
t2 + t3 NA NA NA NA NA 16

(d) Tree D

Table S7: Median Robinson-Foulds distances across different distance metrics on different
CNPs for each simulation set.
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SCONCE mean median mode true
Euclidean distance 27 27 27 27 27
cnp2cnp distance 27 27 26 26 19
MEDICC distance 29 26 28 25 20

(a) Tree A

SCONCE mean median mode true
Euclidean distance 21 21 20 20 21
cnp2cnp distance 18 16 17 18 6
MEDICC distance 17 13 12 10 6

(b) Tree B

SCONCE mean median mode true
Euclidean distance 19 18 18 18 20
cnp2cnp distance 20 14 14 17 10
MEDICC distance 16 13 15 16 12

(c) Tree C

SCONCE mean median mode true
Euclidean distance 22 22 22 22 22
cnp2cnp distance 27 24 23 25 16
MEDICC distance 27 23 22 23 16

(d) Tree D

Table S8: Median Robinson-Foulds distances across different distance metrics on different
CNPs for each simulation set, where consensus CNPs are summarized over only the nearest
10 cells. Note that because summarizing over only the nearest 10 cells does not guarantee
all pairs of cells will be jointly analyzed, no t2 + t3 values are given here, as estimating
phylogenies using t2 + t3 requires a complete distance matrix.
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Chapter 4

SCONCEmut: joint copy number
profile and evolutionary distance
inference with point mutations

4.1 Abstract

Using single cell whole genome sequencing, new insights can be gained into the tumor evo-
lutionary process by estimating intercellular evolutionary relationships. These relationships
can be estimated by analyzing shared and cell specific somatic point mutations and large
copy number alterations, and single cell sequencing can help distinguish cell specific events
from shared ones. However, single cell sequencing results in low and uneven read coverage
across the genome, making point mutation calling difficult. Although many methods exist
for single cell copy number calling and phylogeny estimation, most do not consider point
mutation data. Here, we explore an expanded model rooted in previous work on copy num-
ber calling and phylogeny estimation in single cell tumor sequencing, called SCONCEmut.
SCONCEmut infers copy number profiles and cell evolutionary distances, by jointly estimat-
ing counts of point mutations and pairwise branch lengths. We benchmark SCONCEmut on
simulated data, and show its application in a previously published breast cancer dataset.

4.2 Introduction

Cancer arises from an accumulation of somatic copy number alterations (CNAs) and point
mutations. Identifying these somatic mutations and how they affect tumor progression and
evolution are key goals of studying cancer genomics. One common approach to studying
tumor evolution is to estimate tumor phylogenies using these somatic mutation data.

Large pan-cancer studies of whole genome bulk tumor sequencing have yielded massive
amounts of data about thousands of tumors, characterized mutation signatures, and identi-
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fied recurring mutations [22]. Numerous methods have been developed to analyze this type
of bulk data to estimate tumor phylogenies, using a mixture of point mutations and copy
number alterations [102–108]. However, due to the averaging effect of bulk sequencing, rare
mutations, cell specific information, and direct connections between point mutations and
copy number states are lost. For example, a mutation with an allele frequency of 0.25 might
be due to a homozygous mutation in a quarter of the sequenced cells, or due to a mutation
on one allele, in a region with copy number 4, in all cells.

In contrast, because single cell sequencing maintains cell individuality, copy number and
point mutation relationships are retained. Furthermore, well established population genetics
methods for estimating phylogenies, such as neighbor-joining [31, 32], can be applied by
treating single cells as individuals in a population.

However, addressing uncertainty and error in single cell sequencing remains an active
area of research. One of the main challenges of using single cell whole genome sequencing
is the unsolved issue of calling somatic mutations using sparse data. That is, the extremely
low amount of starting DNA and subsequent low and uneven sequencing depth, approxi-
mately 0.1-0.5x mean read depth [109, 110], for each position makes accurate variant calling
difficult. Additionally, the necessary genome amplification steps during library preparation
can introduce their own biases and errors [109, 110]. For example, if an error occurs in an
early PCR cycle during library preparation (such as a point mutation or allelic dropout at
a heterozygous site), this error will be exponentially propagated.

One approach to incorporate uncertainty in point mutation detection is to calculate geno-
type likelihoods [111, 112], rather than attempting to call variants. This allows extraction
of useful information about somatic mutations and their allele frequencies, while account-
ing for low read depth and sequencing error, and does not simply relying on observing a
sufficiently high quantity of high quality reads at each genomic site. However, with limited
read depth, reliably differentiating between true variants and sequencing error remains an
unsolved problem.

Nevertheless, many methods exist to estimate tumor phylogenies from single cell sequenc-
ing, by inferring CNAs alone [6, 74, 75, 81, 113], by inferring point mutations alone [114–119],
or by inferring point mutations with orthogonally determined copy number profiles [84, 120,
121]. However, no peer reviewed methods exist to jointly infer CNAs and point mutations
to estimate phylogenies in single cell sequencing. To our knowledge, only COMPASS [35],
which is designed for amplicon data instead of whole genome sequencing, and BiTSC2 [122],
both preprints, use copy number and point mutations jointly to estimate phylogenies.

Instead of taking called genotypes for input, COMPASS [35] directly analyzes read counts.
However, because COMPASS is designed for amplicon data from the Tapestri platform
with recommended 60-80x coverage [123, 124], it doesn’t need to contend with the same
low coverage issues as single cell whole genome sequencing. Additionally, COMPASS first
estimates phylogeneies with point mutations only, then searches for nodes with differences in
coverage to identify CNAs and refine the tree estimate. Although this allows COMPASS to
detect subclonal CNAs, it also limits CNA detection to sites with point mutation support.

In contrast, BiTSC2 [122] is designed specifically for single cell whole genome sequencing,
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and takes in matrices of total and derived/somatic allele read counts, instead of genotype
calls. BiTSC2 uses a Zero Inflated Poisson distribution to model low read depth, alleleic
dropout, and sequencing error. To detect CNAs, BiTSC2 takes in genomic segments (ie,
regions likely to have the same copy number), pre-called by other methods, to define CNA
boundaries, and uses point mutations to support CNA calls. If these segments are unknown,
BiTSC2 can also label every locus or bin as its own bin, but this results in lower accuracy,
as BiTSC2 cannot infer copy number segments on its own. Furthermore, because BiTSC2

relies on point mutations to detect CNAs, it does not detect CNAs in segments with low
point mutation counts.

Here, we explore a novel method, SCONCEmut, that expands on our previous work [3,
6] by incorporating genotype likelihoods of point mutations into tree branch estimation,
based on a stochastic model of tumor evolution. In this process, SCONCEmut accounts
for sequencing error and models low read depth using a Negative Binomial distribution for
CNAs and a BetaBinomal distribution for point mutations. SCONCEmut first estimates
pairwise point mutation counts, then infers accurate copy number profiles across multiple
cells and estimates tree branch lengths. However, the tree branch length estimates, useful for
phylogeny estimation, from SCONCEmut do not present an improvement on previous work
[6]. Here, we explore SCONCEmut’s performance on simulated and previously published
data [4], consider sources of modeling error and bias, and suggest future directions and
improvements.

4.3 Methods

Modeling the tumor evolutionary process using CNAs

In previous work [3, 6], we introduced a Markov process that approximates the stochastic
tumor evolutionary process by incorporating two processes: one that is continuous through
evolutionary time, and one that is discrete along the length of the genome. We briefly review
this model here, before presenting the novel incorporation of genotype likelihoods.

Continuous Time Evolutionary Model

First, we model how the copy numbers, U and V , in two adjacent genomic bins change over
time using a continuous time process. Specifically, for bins i and i + 1, the copy number
changes from (U, V ) to (U ′, V ′) according to the following rate parameters:

α = rate of ± 1 CNA (1a)

β = rate of any CNA (1b)

γ = relative rate of CNAs affecting both U and V (1c)
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These rates are encoded in instantaneous rate transition matrix Q = {q(U,V ),(U ′,V ′)}:

q(U,V ),(U ′,V ′) =



γ(α + β) if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n = 1

γβ if (U ′, V ′) =

{
(U + n, V + n)

(U − n, V − n)
, n > 1

α + β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n = 1

β if (U ′, V ′) =

{
(U ± n, V )

(U, V ± n)
, n > 1

r(U,V ) if (U ′, V ′) = (U, V )

0 otherwise

(2)

Diagonal elements of Q are set to the row sums, r(U,V ) = −
∑

(u′,v′ )̸=(U,V ) q(U,V ),(u′,v′), such
that each row sums to 0. We define elements of Q as instantaneous rates, such that two
separate events, such as (U ′, V ′) = (U − n, V + k), n > 0, k > 0, can only occur for time
intervals t > 0.

The time dependent transition matrix P(t) = {p(U,V ),(U ′,V ′)(t)}, representing the proba-
bility of the copy number in two bins evolving from (U, V ) to (U ′, V ′) in evolutionary time
t, is calculated using the matrix exponential:

P(U,V ),(U ′,V ′)(t) = eQt (3)

Discrete Process Approximation

Next, we convert this continuous-in-evolutionary-time model to the approximating discrete
process along the length of the genome. We model the copy number of two cells, A and
B, at window i, as CNiA and CNiB, respectively, where CNiA, CNiB ∈ Sc = {0, 1, 2, ..., k}
for a constant maximum copy number k. The state space of this discrete process therefore
consists of pairs of copy numbers:

Sd = Sc × Sc = {(0, 0), (0, 1), (0, 2), . . . , (k, k)} (4)

We then incorporate the tree T = [t1, t2, t3] shown in Figure 1. Specifically, the copy
numbers in bins with indices i and i+1 evolve together from an ancestral diploid cell, D, for
time t1, until divergence at an unknown intermediate state Z : (W,Y ). From Z, cell A evolves
for time t2 to state (CNiA, CNi+1,A), and cell B evolves for time t3 to state (CNiB, CNi+1,B).
Because state Z is unobserved, we sum over all values of W,Y ∈ Sc. The probability of



CHAPTER 4. SCONCEMUT: COPY NUMBERS WITH POINT MUTATIONS 110

observing this evolution is defined in matrix F(T ) = {f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )}:

f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
∑

W,Y ∈Sc

(
P(2,2),(W,Y )(t1)×

P(W,Y ),(CNiA,CNi+1,A)(t2)×

P(W,Y ),(CNiB ,CNi+1,B)(t3)
) (5)

By dividing by the corresponding row sums, matrix F(T ) can be normalized into the
transition matrix M(T ) = {m(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )}:

m(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )∑

(c,d)∈Sd f(CNiA,CNiB),(c,d)(T )
(6)

This matrix, M(T ), describes the probability of observing a transition between state
(CNiA, CNiB) to state (CNi+1,A, CNi+1,B) along the genome, given evolutionary tree T .
Thus, we have derived a Markov process that approximates the evolutionary process through
time and across the length of the genome (previously described in [3, 6]).

Two Cell Hidden Markov Model

We return to the Hidden Markov Model (HMM) [77–79] introduced in [6]. In this HMM, pairs
of read depths and copy number states (Sd, defined in Equation 4) make up the alphabet and
state space, respectively, for any cell pair (A,B). The transition matrix is given by M(T )
(defined in Equation 6).

Assuming conditional independence between cells A and B, the emission probabilities for
this HMM are defined as:

P(XiA = xiA, XiB = xiB|CNiA, CNiB) = P(XiA = xiA|CNiA)P(XiB = xiB|CNiB) (7)

As the emission probability derivation is identical for cells A and B, we derive the emission
probabilities for generic cell j only. We define random variable Xij to model the observed
number of reads falling in window i for cell j. We assume Xij follows a Negative Binomial
distribution:

E(Xij) = λij =
(
CNij ×

µi

2

)
× sj + ε (8)

Xij ∼ NegBinom
(
λij, σ

2
ij = aλ2

ij + bλij + c
)

(9)

where

CNij = the copy number in window i for cell j (10a)

µi = the mean diploid read depth in window i (10b)

ε = constant sequencing error term (10c)

sA = library size scaling factor for cell j (10d)

{a, b, c} = constants learned from diploid data (10e)
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Note, these emission probabilities were previously described in [3, 6], and estimation of
constants {a, b, c} is described in SCONCE and SCONCE2 review. Recall these methods
require matched diploid single cells, in order to use averaged diploid read depth as a null
model for sequencing errors and GC and mappability biases.

Branch Length Estimation Using Somatic Point Mutations

In [3, 6], we estimated branch lengths, shown in Figure 1, by optimizing the forward loglike-
lihood of the observed copy number data, ℓCNA(T ), where T = [t1, t2, t3] is a tree consisting
of one pair of cells. This results in branch length estimates based on paired copy number
profiles. Here, in order to add point mutations, we instead optimize

ℓ(T ) = ℓCNA(T ) + ℓmut(T ) (11)

where ℓmut(T ) is the mutation loglikelihood of tree T (see Estimating branch lengths from
mutation counts), using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [125].
After this optimization, the Viterbi decoding is used to infer pairwise copy number profiles,
which are then summarized into cell specific consensus profiles using the mean, median, or
mode (following [6]). An overview of this pipeline is shown in Supplementary Figure S1,
with further details in Pipeline details.

Model assumptions

In order to define ℓmut(T ), we make a number of simplifying assumptions. We use the
infinite sites model, such that mutations can only arise once and are inherited by daughter
cells, and assume mutations occur according to a constant Poisson process. Additionally, we
assume that given a copy number state for position i, CNi, all somatic allele frequencies are
equally likely with probability 1

CNi
, and that given an alleleic state, cell specific read counts

are conditionally independent. Furthermore, we assume any unobserved sites contain the
ancestral/germline allele. Finally, we assume constant sequencing error rates and biallelic
variable sites. Limitations of these assumptions are considered in the Discussion.

Estimating branch lengths from mutation counts

Using the tree structure defined in Figure 1, we define three types of pairwise somatic
mutations for cell pair (A,B). We define Si = (IiA, IiB) as the mutation status at site i,
where IiA, IiB are indicator functions denoting presence or absence of a somatic mutation in
cells A and B, respectively:

Si ∈ Sm =


(1, 1) somatic mutation occurred on t1, observed in cell A and B

(1, 0) somatic mutation occurred on t2, observed in cell A only

(0, 1) somatic mutation occurred on t3, observed in cell B only

(0, 0) germline SNP

(12)
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We define random variable Xb as the count of mutations on branch b, for b ∈ {1, 2, 3},
such that the expected number of mutations is proportional to the branch length:

E(Xb) = φtb (13)

P(Xb = x;φtb) =
(φtb)

xe−φtb

x!
(14)

where φ is a scaling factor that relates the rate of CNA events and point mutation events
(see Jointly estimating Beta Binomial Parameters).

Using Equation 14, we define the loglikelihood of tree T from point mutations, ℓmut(T ),
as the sum of the loglikelihoods of the mutation counts on each branch:

ℓmut(T ) =
3∑

b=1

log (P(Xb = xb;φtb)) (15)

Estimating mutation counts from observed read data

In order to estimate the mutation count, Xb, on branch b, we first define random variable
Dij = (aij, nij) as an ordered pair representing the collection of read data at genomic position
i for cell j, where aij is the number of reads mapping to the derived/somatic allele, and nij is
the total number of reads mapped to this site. We define random variable Di = (DiA, DiB)
to represent all observed read count data for cells A and B at site i, such that P(Di|Si =
(IiA, IiB)) gives the probability of the observed data, for site i in cells A and B, given the
underlying mutation status, Si.

To calculate the total loglikelihood of mutation counts {X1, X2, X3}AB, we sum the fol-
lowing across all NAB sites observed in cells A and B:

ℓ({X1 = x1, X2 = x2, X3 = x3}AB) =

NAB∑
i=1

log

[
P(Di|Si = (1, 1))

x1

NAB

+

P(Di|Si = (1, 0))
x2

NAB

+

P(Di|Si = (0, 1))
x3

NAB

+

P(Di|Si = (0, 0))
NAB − x1 − x2 − x3

NAB

]
(16)

such that each P(Di|Si = (IiA, IiB)) term is scaled by the proportion of mutations of that
type/on the corresponding branch.

Likelihood of observed read data, given mutation status Si

In order to calculate the likelihood of the observed read data given the underlying mutation
status Si, P(Di|Si = (IiA, IiB)), we assume conditional independence between cells, such that
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the probability of the observed read data Di for site i is

P(Di = (DiA, DiB)|Si = (IiA, IiB)) = P(DiA|IiA)P(DiB|IiB) (17)

where P(DiA|IiA) and P(DiB|IiB) are the probabilities of the observed read data at site i
for cells A and B, respectively. As P(DiA|IiA) and P(DiB|IiB) are equivalent, we derive
P(Dij|Iij) for generic cell j going forward.

The probability of the observed read data at site i, P(Dij|Iij), depends on the allele
frequency, f , of the derived/somatic allele, calculated from the number of somatic alleles
and total number of alleles (ie, the copy number state). The true value of an allele frequency
is f = s

CN
= s

s+g
, where s and g are the number of somatic and germline alleles, respectively,

at any given position. However, this true allele frequency is unknown. To model this, we
define P(Dij|Iij) as

P(Dij|Iij = 1) =
∑

0≤g<CNij

P(Dij|f, ω, g, CNij)P(g|CNij) (18)

P(Dij|Iij = 0) = P(Dij|f, ω, g = CNij, CNij) (19)

where

g = true ancestral/germline allele count (20a)

s = true derived/somatic allele count = CNij − g (20b)

f =
s

g + s
(1− ε) +

g

g + s
ε (20c)

ω = overdispersion parameter (20d)

ε = sequencing error term (20e)

CNij = inferred copy number state at site i for cell j (20f)

P(g|CNij) =
1

CNij

(20g)

This allows us to account for uncertainty in somatic allele frequencies, f , given the inferred
copy number state, by considering all possible values of f .

In order to calculate P(Dij|f, ω, ℓ, CNij), recallDij is defined as the ordered pair (aij, nij),
representing the number of reads mapping to the derived allele, aij, and the total number
of reads, nij, at site i for cell j. Similar to the formulation presented in [126], Dij follows a
BetaBinomial distribution:

Dij ∼ BetaBinomial(nij, α = fω, β = (1− f)ω) (21)

such that

P(Dij = (aij, nij)|f, ω, g, CNij) =

(
nij

aij

)
B(aij + α, nij − aij + β)

B(α, β)
(22a)

=

(
nij

aij

)
B(aij + fω, nij − aij + (1− f)ω)

B(fω, (1− f)ω)
(22b)
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where B(x, y) is the beta function and f is calculated from g and CNij (see Equation 20c).
By design, this formulation results in the expected value of Dij as:

E(Dij) =
nijα

α + β
(23a)

=
nijfω

fω + (1− f)ω
(23b)

= nijf (23c)

that is, the product of the total number of reads and the allele frequency at a given position.
This allows us to marginalize out all possible somatic allele frequencies, f , for an inferred
copy number state, CNij, to calculate the probability of read data Dij.

Note, we assume all allele frequencies have equal probability and weight them accordingly
in Equation 20g, which may erroneously give too much weight to high allele frequencies.
Additionally, due to low read depth, few sites are observed in both cells A and B. Therefore,
if site i is observed in cell A but not in cell B, we assume cell B matches the ancestral allele,
and set P(DiB|IiB) to 1, such that the data from site i may still be utilized for cell A (and
vice versa). This assumption can bias our estimates towards longer t2 and t3 branch lengths
(see the Discussion for further analysis).

Simulations

To rigorously test SCONCEmut, we applied it to 7 simulated datasets and a published
dataset from [4]. Briefly, we expanded the line segment simulation model previously pre-
sented in [3, 6] to add point mutations. Mutations follow an infinite sites model, that is,
any given mutation occurs only once on one copy/allele. Mutations occur along the tree
structure, such that mutations are propagated to all descendent cells. Copy number events
can change the allele frequency of a mutation, but there are no other mechanisms for allele
frequency changes.

For every mutation, the simulation model outputs genomic coordinate, the count of each
allele (ancestral/germline and derived/somatic), and the number of reads aligning to each
allele. For each genomic bin, the simulation model outputs the genomic coordinate range,
the true copy number state, and the number of reads falling into that bin.

We simulated read depth and point mutation data for 4 distinct tree structures, rep-
resenting the extremes of possible tree structures and different cancer evolutionary models
[26]. Specifically, tree A is fully pectinate/maximally imbalanced and ultrametric, tree B
is perfectly balanced and ultrametric, tree C is maximally imbalanced and not ultrametric
(uniform branch lengths), and tree D is maximally imbalanced and not ultrametric (logarith-
mically decaying external branch lengths). Trees E, G, and F have the same structure as tree
A (maximally imbalanced and ultrametric), and vary in overall read depth. We simulated
128 tumor cells and 100 matched diploid cells for each tree, and test sets of 20 cells were
sampled from each tree. Full simulation details are given in Simulations with Mutations,
and simulation parameters are shown in Supplementary Table S1.
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Detecting Point Mutations in Real Data

One of the main challenges of identifying point mutations in single cell sequencing is the
low read depth, making it difficult to separate amplification and sequencing errors from true
variants. In order to identify a set of high confidence somatic point mutations from [4], we
used the diploid cells as a null model to estimate sequencing error.

First, we identified sites likely to be sequencing error in diploid cells, based on loglikeli-
hood ratios for variability and dbSNP membership, following [127]. Then, for both diploid
and tumor cells, we applied a number of filters based on number of cells a mutation ap-
peared in and average mutation coverage. Specifically, we removed any mutations that were
observed in fewer than 5 cells or had fewer than 3.5 reads on average per observation. We
note this filtering approach biases our mutation set towards variants shared between cells
(that is, more likely to be on branch t1).

Next, we used a BetaBinomial distribution to estimate ω, the overdispersion parameter,
on diploid sites likely to be sequencing errors. We then used this estimate, ω̂, to perform
loglikelihood ratio tests for variability in tumor cells (relative to the diploid cells), such that
sites likely to be variable were labeled somatic mutations (see Identifying point mutations
in real data for full details).

4.4 Results

Copy number and breakpoint detection accuracy

In order to evaluate the copy number calling accuracy of SCONCEmut, we calculated the
sum of squared errors (SSE) across the genome between the simulated and inferred copy
numbers for each cell. Across simulated datasets, compared to SCONCE2, adding mutations
did not significantly change the median SSE values. In tree A (maximally imbalanced and
ultrametric), the median SSE for SCONCE2 was 18.96, 21.74, and 21.74, for mean, median,
and mode, respectively, and 18.96, 21.98, and 22.02 for SCONCEmut (Figure 2A). For
tree D (maximally imbalanced and not ultrametric, with logarithmically decaying external
branch lengths), in the same order, SCONCE2 had median SSE values of 60.00, 69.50, and
72.97, while SCONCEmut had median SSE values of 59.04, 68.12, and 69.76 (Figure 2D).
This result is not surprising, as the mutation counts do not directly affect the copy number
profiles. As in [6], using the mean consensus profile results in the biggest decrease in SSE
from SCONCE, compared to using the median or mode.

To evaluate breakpoint detection accuracy, we calculated the total breakpoint distance
by summing the distance to the nearest inferred breakpoint for each simulated breakpoint,
genome wide. Additionally, to penalize erroneously inferring an excess of breakpoints to
bring down total breakpoint distance, we calculated ω = # inferred breakpoints

# true breakpoints
, where ω values

closest to 1 indicate greatest accuracy. Similarly to SSE, compared to SCONCE2, the total
breakpoint distances did not change significantly for SCONCEmut, and the majority of
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differences were due to relatively small changes in ω values. Differences between SCONCE2
and SCONCEmut breakpoint distance and ω values are shown in Figure 3, where lines
connect cell specific results from SCONCE2 (circles) and SCONCemut (triangles). In tree D
(maximally imbalanced and not ultrametric, with logarithmically decaying external branch
lengths), the median breakpoint distances were 102, 194.5, and 196 for mean, median, and
mode for SCONCE2, and 103, 198, and 199.5 for SCONCEmut (Figure 3D). In the same
order, the median ω values for SCONCE2 were 1.0108, 0.5404, and 0.5361, and were 0.973,
0.5458, and 0.5378 for SCONCEmut for tree D. Full median breakpoint distances and ω
values are given in Supplementary Tables S2 and S3.

Recovery of mutation counts

In addition to estimating branch lengths, SCONCEmut also estimates the number of muta-
tions on each branch in T = [t1, t2, t3]. In Figure 4, we show the R2 values between observed
and inferred number of mutations on each branch, for all cell pairs. In tree A (maximally
imbalanced and ultrametric), SCONCEmut estimates the number of mutations on branches
t1, t2, and t3 with R2 values of 0.689, 0.754, and 0.738, respectively (Figure 4A). Similarly, in
tree C (maximally imbalanced and not ultrametric, with uniform branch lengths), R2 values
were 0.769, 0.939, and 0.912 for branches t1, t2, and t3 (Figure 4C).

However, estimations of mutation counts are not consistently correlated with branch
length. In Figure 5, we show the R2 values between number of mutations and branch length,
where the number of mutations is split into three categories: the true number of mutations
simulated for each branch (determined by presence/absence of derived alleles in one or both
cells), the number of observed mutations (determined by presence/absence of reads mapping
to the derived allele in one or both cells), and the number of inferred mutations (estimated
from SCONCEmut). In tree A (maximally imbalanced and ultrametric), although the num-
ber of inferred mutations was positively correlated with the number of observed mutations
(Figure 4A), the number of inferred mutations was negatively correlated with branch length
(Figure 5A, row 3). Because the number of observed mutations is also negatively correlated
with branch length (Figure 5A, row 2) while the true number of mutations was positively
correlated with branch length (Figure 5A, row 1), this suggests the mutation count inference
is limited by low read depth (that is, many mutations are not observed).

This is further supported by comparing the true number of point mutations and number
of observed mutations. In the left most column of Figure 6, we show the R2 values between
the number of observed mutations and the true number of mutations. Tree A (maximally
imbalanced and ultrametric) has R2 values of 0.319, 0.0006, and 0.0011 for branches t1, t2,
and t3 (Figure 6A, left column). In the center column, we compare the number of inferred
mutations to the true number of mutations. In the same order, tree A has R2 values of 0.19,
2.55e-5, and 4.24e-6 (Figure 6A, center column). For ease of comparison, the right column of
Figure 6 shows the correlation between the observed and inferred numbers of mutations from
Figure 4. Across parameter sets, the R2 values between the inferred and observed numbers
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of mutations (Figure 6, right column) was higher than the R2 values with the true number
of mutations (Figure 6, center column).

Tree branch length estimation

Similarly to SCONCE2, SCONCEmut estimates pairwise tree branch lengths, T = [t1, t2, t3],
for all cells. In order to evaluate tree branch length recovery, we show the R2 values be-
tween true branch lengths and inferred branch lengths, for all cell pairs in Figure 7. Using
mutations (ie, SCONCEmut), the R2 values for t1, t2, t3, and t2 + t3 in tree C (maximally
imbalanced and not ultrametric, with uniform branch lengths) were 0.776, 0.656, 0.597, and
0.178 (Figure 7C). In contrast, the R2 values for the same branches and tree were 0.785,
0.812, 0.841, and 0.854 from SCONCE2. In tree G (maximally imbalanced, ultrametric),
which had higher read depth, the R2 values from SCONCEmut were 0.907, 0.427, 0.501,
and 0.824, and 0.946, 0.777, 0.807, and 0.854 from SCONCE2 (Figure 7G). This demon-
strates that although SCONCEmut can partially capture the underlying tree structure and
higher read depth improves branch length estimates, SCONCEmut is unable to consistently
outperform SCONCE2.

Furthermore, R2 values of estimates for t2 + t3 from SCONCEmut in trees A, B, C, and
D were all significantly worse than t1 values, indicating higher confidence in the length of
ancestral branch compared to the derived branches. In contrast, R2 values for t2 + t3 were
on par with those for t1 in trees E, F, and G (increased read depth). Consistent with results
from Recovery of mutation counts, the noise in point mutations on branches t2 and t3 due
to low read depth obscure the underlying tree structure in trees A, B, C, and D.

Accuracy of phylogeny estimation using neighbor-joining

To reconstruct the tumor’s evolutionary history, we estimated phylogenies using neighbor-
joining [31, 32] with our t2 + t3 pairwise distance metric, previously shown to outperform
competing methods in [6]. Additionally, because the R2 values for t1 estimates were higher
than those for t2 + t3 for all trees (Figure 7), we also estimated phylogenies using t1. As t1
measures similarity (ie, shared history) between cells, we converted it to a distance metric
as follows:

dist(t̂1j) = 1− t̂1j

maxn(t̂1n)
(24)

for all n t̂1i estimates.
We compared our branch length distance metrics to three metrics based on copy number

profile similarity: the Euclidean distance as used in [4, 73], the cnp2cnp metric [75], and
the MEDICC distance [74] (reimplemented by [75]). Each of these distance metrics was run
on copy number profiles estimated by SCONCE, SCONCE2, and SCONCEmut (consensus
profiles summarized via the mean), as well as on the true simulated copy number profiles,
and phylogenies were estimated by neighbor-joining.
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We then compared inferred phylogenies with true phylogenies by calculating the
Robinson-Foulds (RF) distance [76], shown in Figure 8. In all cases, the t2 + t3 metric
from SCONCE2 had lowest RF distances than other methods, and outperformed the dist(t1)
metric in all cases except for tree D (maximally imbalanced and not ultrametric, with loga-
rithmically decaying external branch lengths), where the RF distance was 10 for dist(t1) and
16 for t2 + t3 (Figure 8D). However, SCONCEmut had higher RF distances than SCONCE2
in all cases, except for the t2 + t3 metric in tree C (maximally imbalanced and not ultra-
metric, with uniform branch lengths), where the RF distance was 14 for SCONCE2 and 12
for SCONCEmut (Figure 8C). While using t2 + t3 estimates from SCONCE2 consistently
outperforms other methods, neither dist(t1) nor t2+ t3 from SCONCEmut reliably has lower
RF distances than other methods.

Real data

Using point mutations identified in Detecting Point Mutations in Real Data, we applied
SCONCEmut to a 20 cell subset of previously published data [4]. To evaluate the improve-
ment upon SCONCE and SCONCE2, in Figure 9, we highlight differences between copy
number calls from SCONCE (independent copy number calls, shown in purple), SCONCE2
(joint CN calls across multiple cells, shown in pink), and SCONCEmut (joint CN calls across
multiple cells, using mutations, shown in blue) for cell SRR053672, where SCONCE2 and
SCONCEmut consensus profiles were created using the mean. In particular, both SCONCE
and SCONCE2 identify a copy number loss (left arrow) that SCONCEmut does not. Upon
examination, 8 reads map to the germline allele at 5 sites in this region (that is, the point
mutation evidence suggests no copy number changes in this region). In contrast, SCONCE2
calls a copy number gain that SCONCE2 and SCONCEmut do not (right arrow). How-
ever, SCONCE2 and SCONCEmut make the same exact call, suggesting no information was
gained by including point mutations in this region. Indeed, only 1 read maps to the germline
allele in this region, implying one read is not sufficient to gain any evidence for copy number
calls.

4.5 Discussion

We present an exploration of a method, SCONCEmut, that expands upon previous work
[3, 6] by incorporating point mutations. SCONCEmut jointly estimates copy number pro-
files, somatic point mutation counts, and pairwise branch lengths in tumor single cell whole
genome sequencing data. Although it accurately calls copy number alterations and break-
point distances, it does not present an improvement over SCONCE2 [6] in estimating branch
lengths or phylogenies. We now discuss model limitations, possible sources of error, and
future improvements.

As in SCONCE [3] and SCONCE2 [6], SCONCEmut requires matched diploid data that
must be sequenced with the same procedure as the tumor data, in order to do GC and
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mappability correction. While investigators may be interested in matched normal sequencing
to differentiate between germline and somatic point mutations, investigators might not be
directly interested in using single cell sequencing to study germline variants due to the
increased cost, compared to bulk sequencing. Nonetheless, as a by-product of single cell
sequencing, diploid cells are often sequenced as in [4, 5], and can be identified using other
methods such as cell sorting.

Additionally, SCONCEmut only infers the counts of mutations on each branch, and is
unable to identify which mutations fall on a particular branch, which could provide useful
information. For example, identifying the mutations that fall on the ancestral t1 branch
could highlight potential driver mutations. Additionally, SCONCEmut assumes a constant
rate of mutations, but the rate of mutation accumulation can increase as the mutational load
increases (for example, if DNA repair mechanisms are knocked out) [128]. Although accurate
mutation calling remains challenging due to the low sequencing depth in single cell whole
genome sequencing, identifying sites of interest and accounting for changes in mutation rate
would be improvements to the SCONCEmut model.

Another weakness of SCONCEmut is it models germline variants and somatic mutations
using presence/absence indicator variables. Because germline heterozygous sites are not
explicitly modeled, SCONCEmut is unable to detect loss of heterozygosity events, a well
known phenomenon in breast cancers [129]. Additionally, using indicator variables assumes
all sites are biallelic and does not consider sequence composition, such as GC content (which
is known to affect mutation rates [130]). Furthermore, if a site is observed in only one cell of
a pair, the unobserved cell is assumed to be germline at that site. This can incorrectly inflate
our estimates for t2 and t3 branch lengths. Explicitly modeling heterozygous sites, sequence
content, and missing data is the subject of future work, and could improve estimates from
SCONCEmut.

Furthermore, in Equation 20g, we assume all possible derived allele frequencies have equal
weight. While this is a helpful simplifying assumption, this results in two unmodeled factors.
First, allele frequency is dependent on the age of the point mutation. That is, under the
infinite sites model, point mutations at a particular site can only affect one allele and occur
once, and require subsequent copy number changes to change the allele frequency. Therefore,
point mutations occurring earlier in evolutionary time (ex, on branch t1) are more likely to
experience subsequent copy number amplifications, simply because they have more time to
accumulate overlapping copy number events. This could lead to a higher allele frequency
than point mutations occurring closer to the leaves of the tree (ex, on branches t2 or t3), which
have less time to be hit with a subsequent copy number event, making them more likely to
have allele frequency 1

CNi
for site i. Secondly, allele frequency is dependent on mutation effect

and evolutionary dynamics. For example, driver mutations may quickly cause an increase in
copy number and allele frequency, which can also affect nearby passenger mutations [131].
One possible approach is to give high derived allele frequencies less weight in Equations 18

and 20g, by using P(g = CNi − s|CNi) =
(

1
CNi

)s

instead of P(g = CNi − s|CNi) =
(

1
CNi

)
(following [122]). Robustly modeling these effects is the subject of future work.
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Another possible source of error in SCONCEmut lies in potential optimization problems
and failures (see Pipeline details for optimization details), as evidenced by persistently poor
tree branch length estimation in simulation sets with higher read counts (trees E, G, and
F). Higher read counts should decrease uncertainty and error in mutation count estimation
because as read depth increases, all simulated mutations become observed, as seen in the
left column of panels F and G in Figure 6 (that is, there is no allelic dropout). However,
estimates of mutation counts and, therefore, tree branch lengths, do not improve accordingly.
One example of an optimization problem is in trees E, G, and F, the joint optimization for φ,
the scaling factor between CNA and point mutations, and ω, the BetaBinomial overdispersion
parameter (see Equation S1), failed to move from the initial starting point. That is, instead
of using parameter set specific maximum likelihood estimates for φ and ω in downstream
optimization steps, common constants (optimization starting points) were used for trees
E, G, and F. This could lead to incorrect point mutation count and tree branch length
estimates, thereby propagating this error throughout all subsequent analyses. One way to
address this problem is to restart the optimization procedure in several different starting
points, to avoid getting stuck in local maxima. Another debugging step would be to remove
potential confounding variables, such as simulated sequencing error. Furthermore, one could
explore estimating tree branch lengths using true/known point mutation counts, rather than
estimates, to rule out snowballing point mutation count errors. Despite best efforts to
identify and address these optimization errors, some persist, and are the subject of future
work.

There are also a number of limitations in our analysis of real data from [4]. First, in
order to remove sites with little information, we applied minimum cell and average read
depth filters. While this reduces noise, it also biases the mutations analyzed towards those
more likely to be on the shared ancestral t1 branch, and is prone to removing rare point
mutations/singletons, which may be of interest to investigators using single cell sequencing.
Additionally, the loglikelihood ratio cutoff in Identifying variable sites in tumor data was
chosen to give a reasonably sized input dataset, but does not have rigorous statistical backing.
Furthermore, we estimated overdispersion, ω, on diploid data (that is, we assumed uniform
copy number 2 across the genome). However, because overdispersion might change based on
copy number, applying it to sequencing data with copy numbers other than 2 can introduce
error when calculating logliklihood ratios (see Identifying variable sites in tumor data). In
future studies, high resolution bulk sequencing could be used to identify and filter for high
confidence variable sites and rigorously calibrate sequencing error in single cell sequencing
data.

4.6 Conclusions

In conclusion, we present an exploration of a model for incorporating somatic point muta-
tions into joint copy number inference and evolutionary distances estimation between cells.
SCONCEmut is able to accurately estimate copy number calls and somatic mutation counts,
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but does not yet improve upon evolutionary distances estimates from previous work [6]. This
work shows that jointly estimating both copy number alterations and counts of somatic muta-
tions can capture novel aspects of cancer evolution, but further work is necessary to improve
branch length estimates in this model.

4.7 Appendix

Code Availability

SCONCEmut is implemented in C++11 and is freely available on GitHub at https://github.
com/NielsenBerkeleyLab/SCONCEmut. SCONCEmut requires the Boost C++ Libraries

(developed on v1.71) and the GNU Scientific Library (developed on v2.5) [63], and was
developed and tested on Ubuntu 20.04.4. The simulation program, written in C, and corre-
sponding parameter files are available on GitHub. Plotting scripts and some of the real data
analysis were done in R (developed on v4.2.0) [88], and additionally require the R packages
ape [89], cowplot [92], ggplot2 [93], ggtree [94–96], grid [88], gtools [97], phangorn [90,
91], plyr [98], reshape2 [99], scales [100], and stringr [101].

We analyzed one previously published real dataset from [4], available at the Sequence
Read Archive under accession number SRR054616. Pipeline scripts for processing this data
are available on GitHub, and require samtools (developed on v1.11 with htslib v1.11) [68],
bedtools (developed on v2.27.1) [58], bedops (developed on v2.4.35) [132], and python3

(developed on v3.8.10).
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Figure 1: Tree structure for SCONCEmut. Tree T = [t1, t2, t3] is shown with copy numbers
in windows i and i + 1 in parentheses. Within this tree structure, cells A and B evolve
together from ancestral diploid cell D for time t1 before divergence at unobserved point
Z, with unknown copy state (W,Y ). Cells A and B continue to independently evolve for
times t2 and t3 into copy number states (CNiA, CNi+1,A) and (CNiB, CNi+1,B), respec-
tively.
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Figure 2: Boxplots of sum of squared errors (SSE) across simulation sets and methods. The
genome wide SSE was calculated between the simulated (true) and inferred copy number
profiles. Different copy number calling methods are shown along the x-axis, with SSE on the
y-axis. Results shown here include SCONCE (independent cell estimation); mean, median,
and mode consensus CNPs from SCONCE2 (no point mutations; pink); and mean, median,
and mode consensus CNPs from SCONCEmut (with point mutations; blue). Panel letters
correspond to simulation sets described in Supplementary Table S1. Each dot represents one
cell, with median SSE shown as a black horizontal bar and at the top of each column. SSE
results are consistent across SCONCE2 and SCONCEmut.
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Figure 3: Breakpoint distance accuracy across simulation sets and methods. Breakpoint
distances, shown on the y-axis, are calculated by summing the distance from each true
breakpoint to its nearest inferred breakpoint. ω = # inferred breakpoints

# true breakpoints
values are shown on

the x-axis, where ω values closest to 1 (red dashed line) indicate highest accuracy. Each
dot represents one cell, with colors indicating summarizing method, and subpanel letters
correspond to simulation sets described in Supplementary Table S1. Breakpoint distance
accuracy is consistent between SCONCE2 (circles) and SCONCEmut (triangles), with lines
connecting cell specific results between SCONCE2 and SCONCEmut.
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Figure 4: Correlation between branch specific counts of inferred and observed point mu-
tations, for each simulation set. Counts of observed point mutations (ie, mutations with
non-zero read counts), for branches t1, t2, t3, are shown on the x-axis, with inferred muta-
tion counts for each branch on the y-axis. Each dot denotes one mutation count estimate,
and R2 values and a linear regression line are shown for each branch specific mutation
count. Figure subpanel letters correspond to simulation set letters (see Supplementary Ta-
ble S1). In all simulation sets, the number of inferred mutations positively correlates with
the number of observed mutations.
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Figure 5: Correlation between point mutation counts and branch lengths for each simulation
set. For each simulation set (subpanel labels correspond to simulation sets described in
Supplementary Table S1), the true number of mutations (top row), the number of observed
mutations (center row), and the number of inferred mutations (bottom row) is shown on the
y-axis, while true branch lengths for t1, t2, and t3 are shown on the x-axis. R2 values between
mutation counts and branch lengths are shown for each combination. For all parameter sets,
the true numbers of mutations positively correlates with branch lengths. However, the
numbers of observed and inferred mutations have weaker correlations due to low read depth.
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Figure 6: Correlation between branch specific true, observed, and inferred counts of point
mutations, for each simulation set. Each row (subpanel letter) corresponds to parameter
sets described in Supplementary Table S1. In the three left most columns, the number
of observed mutations (ie, mutations that have non-zero reads mapping to them; y-axis)
is compared to the true number of mutations (x-axis). In the center three columns, the
number of inferred mutations from SCONCEmut (y-axis) is compared to the true number
of mutations (x-axis). For comparison, the three right most columns show the comparison
of numbers of inferred (y-axis) and observed (x-axis) point mutations (previously shown in
Figure 4). Each dot represents one mutation count value, separated by branch (colors),
and R2 values are shown for each subpanel. Across simulation sets, the number of inferred
point mutations best correlates with the number of observed mutations, and is limited by
the number of observed mutations.
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Figure 7: Correlation between inferred and true tree branch lengths for each simulation set.
Subpanel letters correspond to parameter set labels in Supplementary Table S1. True tree
branch lengths, for branch lengths t1, t2, t3, t2 + t3, are shown on the x-axis, with inferred
branch lengths on the y-axis. Each dot represents on branch length estimate. The top
row of each subpanel shows estimates from SCONCE2 (pink label), and the bottom row of
each subpanel shows estimates from SCONCEmut (blue label). As true and inferred branch
lengths are scaled differently, R2 values and a linear regression are shown for each branch
length. Although SCONCEmut is able to partially capture the underlying tree structure,
SCONCE2 performs better.
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Figure 8: Barplots of Robinson-Foulds (RF) distances between true trees and trees in-
ferred via neighbor-joining with different distance metrics, for each simulation set. Dis-
tance metrics based on copy number profile similarity (Euclidean, cnp2cnp [75], and
MEDICC [74] distances) were computed on CNPs from SCONCE, SCONCE2 (mean
consensus profiles), and SCONCEmut (mean consensus profiles), as well as on true CNPs.
These are shown on the x-axis, along with the dist(t1) and t2 + t3 metrics from SCONCE2
and SCONCEmut. RF distances are shown on the y-axis for estimates from SCONCE2
(pink) and SCONCEmut (blue). While phylogenies inferred from t2 + t3 estimates from
SCONCE2 consistently have lower or equivalent RF distances than other methods, phylo-
genies estimated by SCONCEmut do not show a marked or consistent improvement over
SCONCE2 or other methods.
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Figure 9: Comparison of genome traces for cell SRR053672 from [4] using SCONCE,
SCONCE2, and SCONCEmut. For both SCONCE2 and SCONCEmut, the mean was
used to generate consensus profiles for this cell. Genomic window is shown on the x-axis,
with read depth on the right y-axis and inferred copy number on the left y-axis. Each dot
represents the observed read depth for a given window, and the light blue line shows the
mean diploid read depth, ±1 SD (light blue band). Colored lines indicate the copy number
profile inferred by each method. Yellow arrows highlight differences between SCONCE
(purple), SCONCE2 (pink), and SCONCEmut (blue).
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4.9 Supplementary Material

Pipeline details

A graphical overview for the SCONCEmut pipeline is shown in Supplementary Figure S1,
where white boxes show input data, pink boxes show steps from SCONCE [3] and SCONCE2
[6] (described in SCONCE and SCONCE2 review), and blue boxes show novel expansions
for incorporating point mutations. Each step is detailed in the following sections.

SCONCE and SCONCE2 review

Similar to the pipeline presented in [6], we first estimate constants {a, b, c} (see Equation 10e)
using diploid data only. We then use SCONCE [3] to do independent parameter estimation
on all τ tumor cells, resulting in independent estimates for library size scaling factors, CNA
rate parameters, and branch lengths for each cell. The shared rate parameter estimates are
summarized using the median, and branch lengths are reestimated for each cell, using these
summary rate parameters. This is shown in pink boxes 1 and 2 in Supplementary Figure S1.

Jointly estimating Beta Binomial Parameters

Next, we jointly estimate ω, the overdispersion parameter for the BetaBinomial distribution
(defined in Equation 22b), and φ, the scaling factor between CNA and point mutation event
rates (defined in Equation 14), across all τ individual tumor cells. To do this, we use the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [125] to optimize the joint likelihood
function

ℓ(φ, ω) =
τ∑

j=1

logP(Xj = xj;φtj) (S1)

using a two step optimization procedure. First, for every proposed ω value, we estimate the
mutation count, Xj, for the j’th individual cell, by optimizing the following loglikelihood
function using the Nelder-Mead simplex optimization algorithm [133]:

P(Xj = xj|ω) =
Nj∑
i=1

log

[
P(Dij|Sij = 1, ω)

xj

Nj

+ P(Dij|Sij = 0, ω)
Nj − xj

Nj

]
(S2)

where Nj is the total number of sites observed in cell j. Note, this is the one cell version
of the function used to calculate the numbers of mutations in a two cell tree T , defined in
Equation 16. Recall ω is only used in calculating the likelihood of the observed read data
in the BetaBinomial probability function defined in Equation 22b. This step is trivially
parallelizable, as each cell is analyzed independently of each other.
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Once mutation counts are estimated for each cell, we sum the loglikelihood of these
mutation counts across all cells using Equations 14 and S1:

ℓ(φ, ω) =
τ∑

j=1

logP(Xj = xj;φtj) (S3a)

=
τ∑

j=1

log

[
(φtj)

xje−φtj

xj!

]
(S3b)

where tj is the reestimated branch length estimate for cell j from SCONCE [3] after rate
parameter summarizing (see SCONCE and SCONCE2 review).

By maximizing Equation S1 using BFGS, we jointly estimate both ω and φ across all
individual tumor cells. This is shown in blue box 3 in Supplementary Figure S1.

Branch length estimation

Using these estimates of φ and ω, we next estimate the number of point mutations,
{X1, X2, X3}, on each tree branch in T , for every pair of cells, by maximizing the summed
genome wide loglikelihood of the number of point mutations on each branch (defined in
Equation 16) using the Nelder-Mead simplex optimization algorithm [133].

Finally, for every pair of cells, we estimate tree T by using BFGS to maximize the summed
loglikelihood of the tree from copy number alterations, ℓCNA(T ), and from point mutations,
ℓmut(T ) (see Equation 11), shown in blue box 4 in Supplementary Figure S1. The Viterbi
decoding on the trained model is used to output the pairwise copy number profiles, which are
then summarized into consensus profiles for each cell (pink boxes 5 and 6 in Supplementary
Figure S1).

Simulations with Mutations

We simulated 7 different datasets on 4 different tree structures, where the tree structures were
chosen to cover the extremes of possible trees and a variety of evolutionary models (such as
those described in [26]). Tree A was ultrametric and maximally imbalanced/fully pectinate;
tree B was ultrametric and perfectly balanced; tree C was maximally imbalanced and not
ultrametric, with uniform branch lengths; and tree D was maximally imbalanced and not
ultrametric, with logarithmically decaying terminal branch lengths. To evaluate the effect of
read depth on SCONCEmut, we simulated three additional trees, E, F, and G, with the same
structure and parameter values as tree A (ultrametric and maximally imbalanced), with the
exception of the expected total number of reads per cell (4e7, 4e8, and 4e9, respectively,
instead of 4e6, see Supplementary Table S1). The length of each internal branch was set to
1/128 for trees A, C, D, E, F, and G, and to 1/8 for tree B. The length of the branch leading
to the root (ie, time to first divergence from ancestral diploid) was set to 1.

For each tree, 128 tumor and 100 diploid cells were simulated, and 20 cells were sampled
from trees A, B, C, and D to form test sets. In order to isolate the effect of read depth on
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inference accuracy, test sets for trees E, G, and F were formed using the same 20 cell labels
sampled from tree A. The genome was divided into 12,397 bins (to match the number of
uniform 250kb non-overlapping windows in hg19), and the error rate was set to 1e-3. The
simulated genome length was set to 100 (arbitrary units), with amplification and deletion
rates ( φ

τa
and δ

τd
) and lengths (τa and τd, relative to the simulated genome length), and

expected number of point mutations per time unit per genome length unit, θ, given in
Supplementary Table S1. The read length was set to 4.032735e-6 (relative to the simulated
genome length of 100) to match the probability of 100bp reads covering one of 2,479,706,951
mappable bases in hg19 (as determined by the Duke Uniqueness of 35bp Windows from
ENCODE/OpenChrom (UCSC accession wgEncodeEH000325) [61, 62], to match data from
[4]).

The expected read depth across the genome was set to be uniform, in the absence of
CNAs. Reads were sampled from a Negative Binomial distribution, with parameter r = 50
and 4e6 expected total number of reads for trees A, B, C, and D, and 4e7, 4e8, 4e9 for trees
E, F, and G, respectively.

Identifying point mutations in real data

We identified variable tumor sites (ie, somatic point mutations) in real data from [4] with a
loglikelihood ratio test using the BetaBinomial distribution defined in Equation 22b. Error
and overdispersion were modeled from the diploid cells, described in the following sections.
Full scripts for this analysis are provided on GitHub.

Preprocessing sequencing data

Sequencing data was downloaded from [4], and preprocessed as previously described [3,
6], using standard tools. Briefly, reads were trimmed and cleaned using cutadapt [64] and
trimmomatic [65], low complexity reads were removed using prinseq [66], reads were aligned
to hg19 with bowtie2 [67], reads with q scores less than 20 were removed using samtools

[68], and PCR duplicates were removed using picard [69]. Diploid cells were identified using
orthogonal cell sorting as described in [4].

Identifying the major germline allele

All diploid cells were pooled and converted into an mpileup file using samtools [68], and
the major germline allele was found in the pooled diploid sample. Then, for each individual
diploid and tumor cell, the number of reads mapping to the germline/ancestral (defined
by the major allele in the pooled diploid sample) and somatic/derived alleles were counted
genome wide. The script to do this (find major allele.py) is available on GitHub.
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Modeling overdispersion using the diploid data

To estimate ω, the overdispersion parameter defined in Equation 22b, we first identified
observations likely to be sequencing error in the diploid data. To do this, we filtered for sites
that were not likely to be variable and were not present in dbSNP (that is, sites not known
to be variable in humans).

To identify non variable sites in the diploid data, we first estimated the allele frequency,
fgij, for major germline allele g ∈ {A,C,G, T}, for each site i in each cell j:

f̂gij = min

{
ngij − ε× nij

(1− 2ε)nij

, 1

}
(S4)

where nij and ngij are the total number of reads and number of reads mapping to the major
germline allele, respectively, and ε = 5e− 3 is the sequencing error rate. The log likelihood
function assumed to derive this expression is:

ℓ(fgij) = ngij log[(1− ε)fgij + ε(1− fgij)]+

(nij − ngij) log[(εfgij + (1− ε)(1− fgij)]
(S5)

Then, we calculated the following loglikelihood ratio:

LLRdiploid,ij = ℓ(f̂gij)− ℓ(fgij = 1) (S6a)

= ngij [log(ε+ fgij − 2εfgij)− log(1− ε)]−
(nij − ngij) [log(ε)− log(1− ε− fgij + 2εfgij)]

(S6b)

Summed across d diploid cells, this gives

LLRdiploid,i =
d∑

j=1

LLRdiploid,ij (S7)

such that high values of LLRdiploid,i indicate high evidence for site i to be variable within
the diploid cells, while low values of LLRdiploid,i indicate low evidence for variability.

We then evaluated the number of sites by dbSNP membership (build 155) [134]. The
fraction of sites in dbSNP above a given loglikelihood ratio cutoff grows quickly, with 95%
of all diploid sites appearing in dbSNP above a LLR cutoff of 33 (blue vertical line in Fig-
ure S2A). In contrast, the total number of sites above a given LLR cutoff drops precipitously,
from 447,672,658 sites in dbSNP (blue) and 869,879,075 sites not in dbSNP (pink) at a LLR
cutoff of 0, to 12691 and 604 sites, respectively, above a LLR cutoff of 33 (see Figure S2B).
We then selected all sites with LLRdiploid,i values of 32 or less that were not present in db-
SNP (that is, sites that are likely to contain sequencing errors, following [127]), resulting in
869,878,372 sites.

Because single cell data is so sparse, we additionally removed sites that had data from
very few cells or had very low average coverage per observation. Each of these filtered
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sites was observed in 2.47439 diploid cells on average, with an average of 1.75195 reads per
observation. To filter out non informative sites due to low sequencing depth, we removed
any sites that were observed in fewer than 5 cells (≈ 2 × 2.47439) or had fewer than 3.5
(≈ 2× 1.75195) reads per observation on average, resulting in 3,959,722 sites.

Next, we estimated the BetaBinomial overdispersion parameter, ω, by maximizing the
following likelihood function using the Brent algorithm for one dimensional optimization
[135]:

ℓ(ω) =
d∑

j=1

N∑
i=1

P(Dij = (aij, nij)|f, ω) (S8a)

=
d∑

j=1

N∑
i=1

(
nij

aij

)
B(aij + fω, nij − aij + (1− f)ω)

B(fω, (1− f)ω)
(S8b)

where

d = # of diploid cells (S9a)

N = # of sites (S9b)

f = 1− ε (S9c)

ε = sequencing error (S9d)

resulting in ω̂ = 8.68008.
Note this is the same distribution described in Equation 22b. Here, however, f , the

major germline allele frequency, is set to 1 − ε, under the null hypothesis that the sites
under consideration are not variable (that is, any allele frequency not equal to 1 is due to
sequencing error). The full script (fitBetaBinomNull.R) is available on GitHub.

Identifying variable sites in tumor data

To identify sites in tumor cells that are likely to be somatic point mutations, we removed
any sites that were observed in fewer than 5 cells or had fewer than 3.5 average reads per
observation (ie, the same cutoffs as in the diploid data), or had only reads mapping to the
ancestral allele (ie, no variability in the observed tumor data), resulting in 433,947 sites. We
note requiring sites to have read data in multiple cells biases our results, by selecting sites
more likely to be on the shared t1 branch, but we chose to keep this filter to reduce the
number of spurious somatic mutations with very little evidence.

Next, for each site i, we estimated the tumor somatic allele frequency, fi, by maximizing
the following loglikelihood function (first defined in Equation 22b), again using the Brent
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algorithm [135]:

ℓ(fi) =
τ∑

j=1

log [P(Dij = (aij, nij)|fi, ω̂)] (S10a)

=
τ∑

j=1

log

[(
nij

aij

)
B(aij + fiω̂, nij − aij + (1− fi)ω̂)

B(fiω̂, (1− fi)ω̂)

]
(S10b)

where

τ = # of tumor cells (S11a)

ω̂ = 8.68008 (from Modeling overdispersion using the diploid data) (S11b)

We note using ω̂ from Modeling overdispersion using the diploid data has limitations, as
ω̂ was estimated using diploid (ie, copy number of 2) data. However, changes in copy number
could lead to differences in overdispersion, thereby potentially biasing or invalidating this
analysis. Further modeling of overdispersion in non-diploid data could be accomplished by
comparing bulk and single cell sequencing, where bulk tumor sequencing could be used to
robustly identify variable sites. Then, overdispersion on these known variable sites could be
estimated in a copy number specific manner.

Using the estimates f̂i and Equation S10, we then calculate the following loglikelihood
ratio for each site i:

LLRtumor,i = ℓ(f̂i)− ℓ(fi = 0) (S12)

All sites with LLRtumori values greater than 3 were carried forward, resulting in 39,180
somatic sites. 3136.97 sites were observed, on average, in each cell, with an average of 10.0847
sites with reads aligning to the derived allele.

Finally, cell specific lists of somatic sites and binned read depths were processed through
SCONCEmut. The full program (fitBetaBinomTumor.cpp) to calculate LLRtumor,i values
for all i is provided on GitHub.
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Figure S1: Pipeline overview for SCONCEmut. White boxes indicate input data, pink boxes
denote steps previously described in SCONCE2 [6], and blue boxes denote steps where point
mutation data has been added for SCONCEmut. Investigators must first clean and align
diploid and tumor sequencing data, count the number of reads falling into each genomic
bin, and count the number of reads aligning to each allele for all somatic point mutations.
SCONCEmut starts by calling SCONCE [3] on each cell to independently estimate library
size scaling and CNA rate parameters by optimizing the forward loglikelihood given by the
copy number HMM (box 1). Summary estimates of CNA rate parameters are calculated with
the median across cells (box 2). Next, mutation parameters φ and ω are jointly estimated
across all cells (box 3). Then, branch lengths and mutation counts are estimated for each
pair, by optimizing ℓ(T ) = ℓCNA(T )+ ℓmut(T ) (box 4). Finally, the Viterbi decoding is used
to estimate pairwise copy number profiles (CNPs) for each cell (box 5), and consensus CNPs
are called for each cell using a summary statistic (mean, median, or mode; box 6).
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Figure S2: Fraction and number of sites by dbSNP membership and loglikelihood ratio
for site variability in diploid data from [4]. Each bar represents the fraction or number of
sites above a given loglikelihood ratio (LLR) along the x-axis, where loglikelihood ratios
are calculated using Equation S7 across all diploid cells. Color indicates membership in
dbSNP (version 155), where pink means a site is not in dbSNP and blue means a site is
present in dbSNP. The vertical dark blue line shows the LLR cutoff of 33, where 95% of
sites are in dbSNP. All sites not in dbSNP (pink) with LLR < 33 were used to fit the
overdispersion parameter ω in Equation S8b. Panel A shows the fraction of sites, while
panel B shows the total number of sites. Note that for plot scaling reasons, the first col-
umn (LLR = 0) in panel B is excluded, where 447,672,658 sites were in dbSNP and
869,879,075 sites were not (1,317,551,733 sites total).
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Supplementary Tables

Sim-
ula-
tion
set/
tree

Short description Dele-
tion
rate,
δ
τd

Am-
pli-
fica-
tion
rate,
φ
τa

Mean
dele-
tion
length,
τd

Mean
am-
plifi-
cation
length,
τa

Ex-
pected
number
of point
muta-
tions,
θ

Expected
total
number
of reads
per cell

A maximally imbal-
anced, ultrametric

0.02 0.02 8 8 8 4e6

B perfectly balanced,
ultrametric

0.02 0.02 8 8 8 4e6

C maximally imbal-
anced, not ultra-
metric, all branches
have equal length

0.055 0.055 7.5 6 8 4e6

D maximally imbal-
anced, not ultra-
metric, terminal
branch lengths de-
cay logarithmically

0.055 0.055 7.5 6 8 4e6

E maximally imbal-
anced, ultrametric

0.02 0.02 8 8 8 4e7

F maximally imbal-
anced, ultrametric

0.02 0.02 8 8 8 4e8

G maximally imbal-
anced, ultrametric

0.02 0.02 8 8 8 4e9

Table S1: Description of simulation parameters, relative to a genome length of 100 (arbi-
trary units), for all simulated trees. Simulation values and tree structures were chosen to
demonstrate a wide variety of possible trees.
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SCONCE one pair mean median mode
A 120.5 92.5 45 88.5 88.5
B 50.5 44 25 41.5 41.5
C 92.5 70 29.5 61.5 64
D 220 231.5 102 194.5 196
E 109 76 29.5 64 64.5
F 83.5 71 25.5 64.5 64.5
G 89 67 23.5 61.5 61.5

(a) Median breakpoint distances from SCONCE2

SCONCE one pair mean median mode
A 120.5 94 50.5 89.5 89.5
B 50.5 44 25 44 44
C 92.5 71 31 66.5 68.5
D 220 232 103 198 199.5
E 109 70.5 27 59.5 60
F 83.5 66.5 22.5 64.5 64.5
G 89 61.5 21 55 55.5

(b) Median breakpoint distances from SCONCEmut

Table S2: Median breakpoint distances for each simulation set and method.
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SCONCE one pair mean median mode
A 0.493 0.5105 0.9938 0.5072 0.507
B 0.5081 0.5231 0.8666 0.5231 0.5231
C 0.5155 0.5596 0.9564 0.5613 0.5526
D 0.5062 0.5395 1.0108 0.5404 0.5361
E 0.4928 0.519 0.987 0.5129 0.5129
F 0.4937 0.52 1.0452 0.5185 0.5099
G 0.4938 0.52 1.0507 0.52 0.5067

(a) Median ω values from SCONCE2

SCONCE one pair mean median mode
A 0.493 0.5067 0.9529 0.5064 0.5002
B 0.5081 0.5224 0.8333 0.5231 0.5231
C 0.5155 0.5524 0.9067 0.5505 0.5449
D 0.5062 0.5378 0.973 0.5458 0.5378
E 0.4928 0.5316 1.1027 0.5201 0.5201
F 0.4937 0.5362 1.1543 0.5339 0.5313
G 0.4938 0.5432 1.2116 0.5368 0.5321

(b) Median ω values from SCONCEmut

Table S3: Median ω = # inferred breakpoints
# true breakpoints

for each simulation set and method.
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