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ABSTRACT OF THE THESIS

Predicting the Complexity and Progression of the Gut Microbiome Using Temporal

Data and Deep Learning

By

Michael Wiest

Master of Science in Bioengineering

University of California San Diego, 2019

Professor Karsten Zengler, Chair

The human microbiota exhibit a highly dynamic composition over the course of life and changes in

the human gut microbiota have been associated with human health or disease. Reprogramming of the

gut microbiota by interventions that counter these changes and promote long-lasting health has been an

emerging topic in microbiome research. Predicting changes in the gut microbiome is therefore crucial for

the nature and design of these interventions. Here, we report on a new method based on deep learning to

forecast changes in the microbiome. We processed and analyzed nine time-course datasets of the human

gut microbiome, identifying the main microorganisms present in these microbial communities at any

given time. We then used an encoder-decoder neural network to train a model that successfully predicts

the progression of the microbiome composition over time given only five time points of context data.

Our results demonstrate the ability to predict the fate of the human gut microbiome into the future,

providing the foundation for rational intervention design.
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Introduction

As humans, from the moment we are born we are exposed to and become hosts of a rich and prolific

consortium of bacteria, viruses, and fungi. Our microbial stowaways are so impactful on our health

that they have been implicated in everything from metabolism to immune response.1 This diverse set of

microbes changes with us as we age,2 become ill,3 or while dieting4 or travelling.5 The human microbiome

is ubiquitous and very diverse, not only from person-to-person, but also between different sites on the

human body.6 For example, within a given host, at the same sampling site fewer than 50% of genes are

shared by greater than 50% of a host’s microbes.1 Current research suggests that the human microbiome

is in general stable, consisting of a core group of microbes with individual capabilities.7

The unit of measurement when analyzing the microbiome has traditionally been the operational taxo-

nomic unit (OTU), which is typically presented as the relative abundance of a particular fragment of 16S

rRNA.8 Numerous studies have demonstrated static snapshots of the human microbiome composition

in terms of OTU abundance during healthy and diseased states.6 Currently, there has been a grow-

ing interest in assessing the dynamics of the microbiota and its impact on human health and disease.9

Gut microbiota have been implicated in contributing to many diseases, such as Irritable Bowel Disease

(IBD),10 type-2 diabetes,11 and autism.12 Moreover, therapies that restore, alter, or restart the gut mi-

crobiota have shown promising results in combating microbiome-related diseases.13 A particular therapy,

microbial transplants, have shown success across a variety of diseased states,14 and have demonstrated

improved outcomes after transplantation.15 States of dysbiosis in a microbial system are not only clini-

cally problematic, but also financially burdensome; Clostridium difficile infections alone are estimated to

cost the U.S. Healthcare system 4.8 billion dollars annually.16 Maintaining healthy gut microbiota and

thus preventing dysbiosis in the first place would be highly desirable over drastic interventions, such as

fecal microbial transplantation. However, gut microbiota homeostasis and dysbiosis prevention require

the ability to predict changes in the microbiota before they take place.

Given the large number of potential interactions between microbes in a system, deconvoluting the

exact role of a microorganism in a sample is currently a challenging task. Thankfully due to advancements

in machine learning and artificial intelligence, computational tools are now available that master the

task of predictions from large-scale data, in particular time series data.17 Neural networks are machine

learning tools that have been deployed successfully for self-driving cars, natural language processing,

and many other tasks detecting patterns in high-dimensional data. Put simply, neural networks “learn”

a mapping from a set of inputs (X) to a set of output values (y). When training a neural network a

“loss function” is used to evaluate the model’s prediction accuracy. A loss function is a mathematical

representation between the similarity of a guess and the ground-truth. Different loss functions are

appropriate for different prediction tasks; cross-entropy loss (multi-class classification) and root mean

squared error (continuously valued data) are just two examples.18 For networks, where there is a known
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output value, y, to predict (such as OTU abundance) the learning process proceeds thusly: (1) The

model is given a set of inputs (X) and makes an estimate of the corresponding output values (ŷ). (2)

The model’s estimated output (ŷ) is compared to the ground-truth value (y) and the accuracy is evaluated

given a loss function. (3) Given the determined accuracy, the model reweights its internal representation

of the data through a process called backpropagation.19 (4) Steps 1-3 are repeated until the model has

converged or the accuracy is satisfactory.

Neural networks have an advantage over traditional machine learning techniques such as support

vector machines or linear regressions in that they can learn non-linear relationships between inputs and

outputs and are able to handle long range temporal interactions.20 In simpler neural networks, examples

of training data are considered to be independent of one another. These networks are known as feed-

forward networks (FFN). On the other hand, recurrent neural networks (RNN) are given training data

that are explicitly ordered in time.20 More formally, at a given timepoint, t, the model is supplied an

input tensor Xt that corresponds to a target value of yt. This input tensor can be one-dimensional (e.g.

containing expression data over time for a single gene), three-dimensional (e.g. for still frames of a video

over time), or 36-dimensional as used in this study. Additionally, the sequences supplied to an RNN

have a defined order but no explicit notion of the size of the temporal distance between data points; an

example of this is a string of nucleotides.20

Collection of time series data enables unraveling of microbial dynamics over time. In one yearlong

study of the gut microbiome of two subjects, the authors found that the hosts’ experiences (e.g. trav-

eling, illness) had a significant impact on the composition of the host’s microbiome.5 Traveling abroad

resulted in a reconfiguration of the gut microbiome; however, upon returning to the subject’s home, the

microbiome returned to its previous equilibrium. On the other hand, the host’s microbiota was perma-

nently altered when the subject was infected with Salmonella, without recovering the equilibrium state

observed prior to infection.5

Here, we used time series data (OTU abundance) from the gut microbiome of nine human donors.

These data were used to train and evaluate a single neural network (Fig 1) for predicting the dynamic

profiles of nine different gut microbiomes. We also performed microbial association analysis21 to estimate

the associated partners in gut microbial communities of all nine donors. An initial modeling framework

to predict the future composition of the human gut microbiome based on past microbiome data of a

subject is presented.
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Figure 1 Example schematic of the neural network used to learn the dynamics of a microbial community.
Data are sampled in time and supplied to the neural network. Over the course of training, the model
learns to both predict forward in time and to reconstruct the supplied input sequence.

Results

Dataset Description and Preprocessing

Stool samples from nine individuals were collected over time periods ranging from months to years and

downloaded from the microbiome repository QIITA.22 Characteristics of the datasets for each donor used

in this study are shown in Table 1. Datasets were suitable for modeling after normalization and com-

pletion (Materials and Methods).23 Utilizing matrix completion circumvented problems of zero-counts

traditionally encountered when computing OTU tables.23 This is a necessary step when analyzing micro-

biome data and especially while training a neural network because erroneous zero-counts act adversarially

against true zero-counts in the input data.

Metagenomic amplicon 16S sequence libraries were generated for all samples identically, resulting in

metagenomes for 4,113 time points, consisting of between 3,000 and 177,000 OTUs in total. Greater

than 90% of sample collection for donors occurred within zero or one days of the previous sampling

date (Fig. S1). Fig. S2 highlights the properties of the datasets before and after normalization and

completion. We observed that the microbiome composition was consistent across all datasets, containing

up to 75% similar OTUs. OTU variance before and after normalization was estimated, finding a Pearson

correlation above 0.83, p-value= 4 × 10−5. We found that the completion processes enriched OTUs

such as Stenotrophomonas, Holdemania, and Lactobacillus (Fig. S2). Evaluation of typical regression

models (linear, quadratic, cubic, and exponential) for all OTUs in each donors showed poor regression

coefficients (R2) below 0.15 (Fig. S1), demonstrating that microbial dynamics could not be predicted

using simple regression models.

To reduce the dimensionality of the OTUs in the input data, OTUs were collapsed to the genus level.

Collapsed OTUs present in each dataset were sorted by abundance and the top OTUs present across all
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donors datasets were selected, resulting in 36 collapsed OTUs in total. This table of collapsed, completed,

and normalized OTUs are what will be referred to as OTUs throughout the rest of the manuscript and

are used for time series neural networks training and prediction. Only OTUs present in all donors were

used because the neural network needs input data of the same shape from each donor (same number of

input channels).

Table 1 Metadata about each of the donors included in this study.

Name
Age

(years)
Sex

Number of
Time Points

Training
Data

Validation
Data

Test
Data

QIITA22

Study ID
Donor0 36 F 68 X 1015†

Donor1 33 M 274 X 1015†

Donor2 26 M 48 X 1015†

Donor3 63-68 M 145 X X 102833

Donor4 33, 37 F 248 X X 11052†24

Donor5 0.3-3 F 680 X X 11052†24

Donor6 31-33, 35-38 M 2124 X X 11052†24

Donor7 26 M 335 X X 22025

Donor8 36 M 191 X X 22025

*Donor4 is the mother of Donor5.
† Unpublished data.

Input Data Quality Control

The taxonomic assignment for all OTUs is available in Fig. S3. Throughout the remainder of the

manuscript, OTUs will simply be referred to by their assigned number instead of the full taxonomic

name as seen in Fig. S3. Given the amount of data-preprocessing necessary to make the time series

data into the form being supplied to the neural network, we first performed quality control to ensure

confidence in the data pipeline. We explored the characteristics of each donor by averaging their OTUs

across the time axis yielding a static representation of the microbiota (Fig. 2A).
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Figure 2 Static analysis of donor and OTU properites. All explained variances are listed as
fractions, not percentages. A. PCA of donor’s OTUs averaged across time: Each donor’s OTUs
plotted in principal coordinates. This gives a measure of similarity of each donor to the others with
closer points being more similar. B. Color-key following taxonomic grouping This same coloration
is used in Figure 3. C. Bubble plot of OTU group prevalence: After grouping at the first four
taxonomic levels, Clostridia in Firmicutes have the most OTUs in the input data, which was also noted
during microbial associations analysis in Fig. S4. However, Bacteriodetes have the highest average OTU
count. D. PCA performed on OTUs averaged across donors: These results are the average of
Fig. S5 taken across all donors. On average it is clear that certain OTUs, such as numbers 4, 12, and
30 are outliers from the other OTUs (given their position in the principal coordinates).

The results of Fig. 2 serve as a quality control of our data to check for errors in the data-preprocessing

pipeline. Donor0, Donor4, and Donor5 were all female and are separated from all the male donors by a

clear line in the principal coordinates. Furthermore, Donor4 and Donor5 were very similar (Donor5 is

the daughter of Donor4) (Fig. 2A). Additionally, proximity of Donor2 and Donor6 could be explained

by the fact that they all traveled abroad together (unpublished data from QIITA).22

In Fig. 2B and C the OTUs are grouped at the first four taxonomic levels: kingdom, phylum, class,

and order (Fig. 2). Averaged across all donors, many of the OTUs exhibit similar counts (are close to

one another in principal coordinates). On the other hand, OTUs 4, 12, and 30 were consistent outliers

given that their dynamics are dissimilar from those of other OTUs. Figs. S5 and S6 show how Donor6

is the primary contributor to OTU 4’s placement as an outlier. Of particular note is the fact that the

PCA performed here accounts for greater than 96% of all the variance (Fig. 2C). The most prominent
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phyla found in these donors are in general agreement with previously reported microbiome compositions

(Fig. 2B).25 Again, these results serve to validate the data processing pipeline implemented here and

provide confidence in the data being supplied to the neural network.

Loss Over Training

After validating the OTU time series datasets, these data were used as inputs and targets to train the

neural network. A train-validation split of 80:20 was used, splitting along the time axis for each donor.

In other words, model was shown the first 80% of the data while learning and the last 20% of the data

were held out (used to evaluate the model). For example, Donor4 has 248 time points in total, so 198 of

those were used for training and 50 for validation.

Because the model eventually learned to predict sequences of 30 time points, in order to be used for

validation data 20% of a donor’s time points needed to be of length 30 or more (the minimum number

of total time points for a donor is therefore 150). Four donors’ data did not contain enough time points

for them to be used as validation data so those donors were only used to train the model (Table 1).

When training a neural network it is common to use a test dataset that the model has never seen

to assess the model’s generalizability to new data. Given the similarity between Donor1 and Donor6,

Donor1 was held-out as a test dataset while all other donors were used to train the model (using the

aforementioned training-validation split) (Fig. 2). This decision was made because Donor6 has the

largest number of time points of data and therefore the model will likely be biased toward those data.

Donor1 exhibits less variance than Donor2 and was therefore deemed an easier test dataset for the model

(Fig. S6). Thus, eight of the nine datasets were used to train the neural network.

Here we implement a root mean squared error (RMSE) loss function because it is used for measuring

the similarity of a continuous valued OTU estimate to that of a continuous valued OTU target. High

values from the loss function imply that the model is less accurate in its predictions. Over the course

of training the loss should decrease as the model learns a more appropriate mapping from its inputs to

outputs.
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Figure 3 A. Root Mean Squared Error (RMSE) over training: As the loss (RMSE) decreases,
the model’s accuracy of prediction is by definition increasing. The highlighted portion has the lowest
validation loss and is therefore considered to be the best version of the model that is used for evaluation.
B, C, D. Individual OTU contribution to loss: Each bar represents the normalized contribution
of each OTU to the overall loss. Higher values indicate less accurate predictions. Coloration is as used
in Figure 2B. B corresponds to training data, C to testing data, and D to validation data.

The loss observed between the training and validation data are similar given that they are trained

on the same data just at different time points (Fig. 3A). Interestingly, all datasets exhibit high loss on

those OTUs that correspond to outliers as seen in Fig. 2A. These OTUs are dissimilar from other OTUs

and are therefore harder to predict (see high loss associated with OTUs 4, 9, 12, and 30: Fig. 3, Fig.

S7). The training data exhibits the highest variability of prediction accuracy (see large whiskers in Fig.

3B). This can be explained by the fact that the training data has the largest number of donors (eight),

which leads to the larger variability (Fig. S7).

Neural Network Predictions

After the model was trained, it was used to generate predictions in time about the abundance and

dynamics of a given set of OTUs. As during training, the model was shown (or ”primed” with) a

sequence of five time points that contain all 36 OTUs. The model then predicts into the future given

the context established by the priming sequence.
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Figure 4 All predictions here are performed over the validation period of data. Because each donor has
a different number of time points of data, the validation data begin at different points in time for each
donor. For clarity, only three of the possible 36 OTUs are plotted. A-F. Model’s predictions after
five time points of context on validation data: The model accurately predicts a large variety of
different behaviors. G. Model’s predictions after five time points of context on testing data:
Donor1 is the test set and qualitatively exhibits worse predictions. H. Effect of priming sequence
length on prediction accuracy: On average the model exhibits similar ability to predict with greater
than five time points of primer, but accuracy suffers below five time points (lower y-values are higher
accuracy).

The neural network has developed an internal representation of the data allowing it to exhibit both

periodic behavior (Fig. 4F) and also accurately predict when certain OTUs will decrease or increase in

relative abundance (Fig. 4A). While only three OTUs are plotted in Fig. 4, the model predicted the

changes for all 36 OTUs. Large fluctuations in microbe abundance were challenging for the model to
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accurately predict (Fig. 4C). The challenge here is that the same OTUs that exhibit slightly oscillatory

behavior in one donor can also oscillate wildly in other donors (Fig. 4E, F).

We further tested what is the minimal number of time points of context that the model needs to

see in order to make accurate predictions. Figure 4H highlights the relationship between the length of

the context sequence being shown to the model and its accuracy of prediction. The model’s ability to

predict suffers when the priming sequences are shorter than five time points, and appears independent of

priming length when shown sequences of length five or above (excluding Donor3). Throughout the course

of training, the model was given five time points of priming data and trained to predict increasingly far

into the future. Thus the fact that the model’s predictions are less accurate when shown fewer than five

time points of priming data is logical. Notably, the model’s accuracy improves above five time points of

primer when predicting on the test dataset (Fig. 4H blue line). The additional context likely assists in

the model’s predictive power for data in which it has lower confidence. For Donor3 the model’s accuracy

suffers as the length of the context sequence increases beyond five.

Discussion

Here we present a pipeline by which human gut microbiome time series data can be used to predict the

composition of the gut microbiome into the future. This same approach can be used with other sampling

sites such as mouth, skin, etc. Despite the large number of sequencing runs needed to assemble these

datasets, the data processing pipeline appears strong as many of the results are highly logical such as the

fact that Donor5’s most similar neighbor is Donor4 (Figure 2A) and that Donor5 is Donor4’s daughter.

The model was not trained knowing that each donors’ data were distinct from one another, or

provided with certain metadata about sex, age, etc.. However, the model still managed to learn an

accurate internal representation of the microbial community. The fact that a single model had the

flexibility to predict changes across nine different donors supports its utilization as a general model for

the gut microbiome. The success of the model lends credence to the fact that there are underlying

trends in the data irrespective of donor. Moreover, the model was able to predict changes in microbiome

composition through times of sickness and health of the donors without being told explicitly of the host’s

health state.

Despite the different microbial association networks present in each of the donors (Fig. S4), the

model still learns a relationship between the input OTUs that is generalizable across donors. It is of

particular note that the model is able to generate accurate predictions for Donor5 (infant) despite the

fact that there is only one example of a child’s microbiome in the training set. The success of the model

in translating its understanding of adult microbiomes to that of a child lends credence to the fact that

this framework is highly scalable to a diverse range of microbial landscapes. The logical next step for
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this research is to combine the results of the association graphs with the neural network. Providing

the neural network with this type of structured input will allow for implementing a graph convolutional

network. This type of network has been very successfully implemented on such structured data.26

Significantly, given the ability of this model to forecast changes in the microbiome, it could be used in

concert with other machine learning models to predict whether or not an individual will trend toward a

diseased state. This is clinically significant as it could allow for preventative measures for dysbiosis related

diseases prior to the patient exhibiting symptoms. Furthermore, given this model’s ability to generate

accurate predictions of microbial consortia, it can be used to supplement other existing microbiome

datasets by generating new data. This last point is impactful as it will allow for more robust modeling

of disease states with few data samples.

A shortcoming of the model is in its bias toward Donor6 (Figure 4D), compared to other donors.

This is particularly evident when the data are highly oscillatory. This is due to the fact that the network

was shown many more examples from Donor6 given that those data account for over half of all training

data shown to the neural network.

Among the OTUs that the model struggles to accurately predict, OTU 17 corresponds to a Corynebac-

terium which has been implicated as a major driver of dysbiosis in mucosal microbial systems.27 OTU

12 (Bacteroides) has been shown to be a dominant organism in the adult human intestinal tract with

known roles in digestion.28 Given the role these microbes play in human microbial systems, further

refining the models predictions of them is an important next step. A major drawback in the training of

this model is in the volume input data. Typically when training neural networks millions of examples are

utilized over the course of training, so the 4,113 time points utilized here are diminutive in comparison.

Furthermore, these data are inherently biased as they are either taken from members of the scientific

community or those adjacent to it.22 Thus continuing to collect time series microbiome data from a large

variety of individuals in varying states of health is paramount in refining the predictive capabilities of

neural network-based models.

The results of using a neural network are highly encouraging because unlike other computational

tools, this model does not fit any preexisting ecological models to the data.9,29 Instead the neural

network was allowed to learn for itself from the community composition how the OTUs interact with one

another. As more and more time series microbial data become available, the accuracy of these models

will likely increase. Unlike traditional predator-prey or differential equation based models, this network

requires only observing system dynamics to make predictions. Thus, this same framework is scalable to

include new data types in the future.
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Materials and Methods

All code for data preprocessing, model generation, and model evaluation can be found in this Github

repository:

https://github.com/michaelwiest/microbiome-rnn

Data Acquisition

Datasets for training and evaluating the neural networks were downloaded from QIITA with accession

IDs: 550, 1015, 11052, 2202, and 10283.22 Specifically, deblurred samples with a read length of 100 were

selected.

Each of these datasets result in a matrix of shape: [Number of OTUs xNumber of timepoints]

Data Preprocessing

Given that the samples taken from QIITA had no taxonomy data associated with them, the QIIME

processing tool assign_taxonomy was used to populate taxonomy information. All default parameters

were used when calling this function.30,31

Following taxonomy assignment, each dataset from QIITA was broken out into samples based on the

subject and the area sampled (ie, subject_a_stool, subject_b_skin, etc.). Next, each sample was

sorted by the field collection_timestamp present in the metadata. These steps can be found in the

directory data_preprocessing/.

Prior to matrix completion, each OTU was grouped by summing the values according to the assigned

taxonomy from the above steps. Specifically the OTUs were grouped up to the level of genus (ignoring

species). This helps to reduce the number of input dimension to the model from on the order of 1000s

to 100s.

All OTUs (row of data) with fewer than ten non-zero entries across all time points were removed.

Next, each OTU was normalized to account for sequencing bias:

new val =
old val ·median(column sums)

column sum
(1)

Where column sum is the sum of all of the filtered OTUs at each time point. Following normalization,

matrix completion was implemented by DEICODE with parameters: minval = 0.1 and iterations =

100.23 Code can be found in data_preprocessing/filtering_normalization_completion.py.

In order to reduce the very large number of genera present (order of 100s) only the top OTUs that

are present in all donors are kept. This results in 36 OTUs being kept from each donor.
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Regression analysis

Regression analysis was performed as attempt to benchmark and categorize the microbes behaviour over

the course of time. We normalized the time series abundance data using z-scores. Subsequently, nor-

malized trends were iteratively fitted to linear, quadratic, cubic, exponential, and two-term exponential

regression models. We used the coefficient of determination, R2, as a measure of the quality of the fit.

The R2 was determined by least-minimum squares fitting using MATLAB (The MathWorks Inc.).

Neural Network Training Procedure

All training of the neural networks was done using the Pytorch library for Python.32

In all networks Root Mean Squared Error (RMSE) was used as the loss function and the Adam

Optimizer was used for model optimization.

Prior to data being fed through the model they are normalized by taking the centered-log-ratio (CLR)

and z-scoring. For a given array −→x , a z-scored value is given by:

x′i =
xi · x
σx

(2)

Where x and σx are −→x ’s mean and standard deviation taken on a per-time point basis, respectively.

Lastly, a train-validation split of 80:20 was used. These data were split along the axis of time. That

is the model was shown the first 80% of the data while learning and the last 20% of the data was held

out. Donor1 was used as a test dataset while all other donors were used to train the model (using the

aforementioned training/validation split).

In other neural network architectures, such as a convolutional neural network, the data are struc-

tured in how they are passed to the network. For example, when doing image classification there is an

explicit relationship between pixels given that they are spatially near one another. Potential methods

for structuring the inputs are graph convolution or structuring based on taxonomy, but neither of those

were used in this study.26 As such, the 36 input channels (one for each input OTU) are not structured.

Encoder-decoder Network

The network that achieved the best results in an attention based encoder-decoder network.33 This

network is based off the results of Srivasta et al. where the model must learn to predict into the future

and also recapitulate its input data.17 In this implementation, the encoder and decoder modules are all

long short term memory (LSTM) units.
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Figure 5 Architecture and training schematic of the encoder decoder. 1) The input array is passed to
the encoder LSTM. 2) The hidden state of the encoder is copied to the forward and backward decoders.
3) The last entry of the input sequence is passed to both decoder LSTMs. 4 Each of the decoders
generates a new output estimate. 5) Depending on the teacher forcing fraction (α), either the output of
the decoder (from 4) or the actual value is passed to the decoder to generate the next prediction. This
process of passing the predicted or actual values to the decoders proceeds until the output sequence is
of the desired length. Once the ˆinput and ˆtarget have been produced then the loss is generated and the
error backpropogated through the network.

The input to the neural network are tensors of shape [batch size x 36 x sequence length], where the

value 36 is the number of OTUs in the input data.

The training began by passing sequences of length 5 to the network and attempting to predict the

following sequence of the same length. After every two epochs the length of the sequence being predicted

was increased by one. This is in an effort to train the network to learn gradually longer range interactions

among the input strains.

Generally it is believed that teacher forcing, the process of using the desired output to produce

the decoders next guess leads to faster convergence than just purely using the output of the decoder;
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furthermore some claim that teacher forcing is necessary for the network learning oscillatory behavior

(which these data are as seen in Fig. 4).34

Evaluation of microbial associations

OTU counts data of gut microbiome of all nine donors have been deployed to compute the microbial

association networks. A previously published statistical method, namely SPIEC-EASI21(Sparse Inverse

Covariance Estimation for Ecological Association Inference) has been employed for inference of microbial

associations network. This method relies on the transformation of OTU counts data using central log-

ratio (clr) that can be defined as the log-ratio of OTU counts and a geometric mean of all OTU counts

(1981Aitchison):

clr(x) = [log(
x1
g(x)

), ..., log(
xp
g(x)

)]

Where g(x) = [
∏p

i=1 xi]
1
p is the geometric mean a composition vector. x represents a composition

vector of an abundance matrix. p denotes the number of OTUs in abundance matrix.Further, this data

was used to generate the inverse covariance matrix, which is, in turn, employed to compute the taxon-

taxon associations.21 All microbial associations related calculations have been done using SpiecEasi

package21 on R platform (R version 3.4.4) (https://www.R-project.org/) in Rstudio environment (Version

1.1.453) (http://www.rstudio.com/). SpiecEasi relies on additional R packages like huge35 and MASS.36

Cytoscape (version 3.7.1)37 was used to generate the networks using microbial associations data from

SpiecEasi. All above tools have been installed and deployed on Linux platform (Ubuntu 18.04.1 LTS).

Robustness of microbial association networks was estimated as natural connectivity that has been

demonstrated previously as a measure of robustness of complex network38 and stability of microbial

communities.39 It is estimated based on remaining connectivity in the association network after removing

each node from the network. Robustness or natural connectivity (λ) can be defined as:

λ = log(
1

N

N∑
i=1

expλi)

λ represent the eigenvalue for each node, which can be defined as remaining connectivity in the

network after removing each node. N represents a total number of nodes in the network, where each

node represents an individual OTU.
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Supplemental information

Figure S1 Histogram of the difference in time points between samples. The counts at zero are because
the donor sampled him or herself in the same day. Greater than 90% of all sampling was done within
one or zero days of the previous sampling day.
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Figure S2 Data preprocessing. (A) Distribution of normalized counts across OTUs. (B) Matrix com-
pletion benchmarking and enriched OTUs. Completed and uncompleted datasets were sorted and a
sub-sample of 150 OTUs was obtained. The OTUs were compared before and after completion, observ-
ing enrichment of 4% up to 33% depending on the donor. (C) Statistical regression analysis. Histograms
show all regression coefficients R2 calculated for the top 62 strains present in all the donors.
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Figure S3 Phylogenetic relationship between input OTUs with available data. The strain number listed
on the right is used throughout the manuscript. Six OTUs were unable to be phylogenetically aligned
in the tree on the left because of no available data.
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Figure S4 Evaluation of microbial associations A. Microbial association networks of the human gut
microbiome. OTU count matrices were used to generate microbial association networks for all nine
donors. Nodes and edges in the association network represent the individual OTUs (Figure S3) and
predicted interactions (Materials and Methods), respectively. The size of each node represents the
degree of that node, which is defined as number of edges connected with said node. Nodes have been
colored by phyla in the network graphs. Nodes that are spatially close to each other demonstrate
stronger associations than those that are further away. B. Distribution of degree of nodes (K). C.
Robustness plots of all nine network graphs. Natural connectivity, or robustness, is considered as a
measure of stability of microbial communities.39 X-axis denotes percentage of removed nodes. Y-axis
denotes natural connectivity of remaining network after sequential removal of nodes. Curves are color-
coded by different donors as in Panel B. Natural connectivity determined by the remaining connectivity
in the network after sequentially removing nodes (Materials and methods). A larger area under the curve
represents a more robust network (C).

In addition to predicting the dynamics of individual OTUs over the course of time, we also estimated the

associations between different OTUs. Microbial associations were estimated by inferring the association
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networks using OTU count matrices (Materials and Methods; Figure S4). Figure S4 shows microbial

association networks for all nine donors. In general, this analysis demonstrated that among all donors,

Firmicutes were the most connected microbes to both themselves and to other phyla. Further, based

on average number of association partners (average degree of nodes; Kavg) for each OTU, OTUs from

Donor5 were the least connected (Kavg = 1) compared to other donors. This can be explained by the

fact that Donor5 is an infant, whereas the others are adults (Table 1). It has been shown by previous

studies that a child’s gut microbiome is less diverse and less stable than those of adults.40 Comparing

the model’s predictions and connectivity of OTUs in the association networks, it was found that the

model was able to predict the abundance profiles despite the different OTU connectivity of the donors.

Figure S5 PCA performed across the time-axis for each donors OTUs. The results of Fig. 2C are this
figure averaged across donors.
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Figure S6 Standard deviation taken across time for each OTU and donor.

Figure S7 Prediction accuracy by OTU broken out by donor. These results correspond to Figure 3B.
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