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Abstract

We develop and compare two non-parametric Bayesian ap-
proaches for modeling individual differences in cognitive pro-
cesses. These approaches both allow major discrete differ-
ences between groups of people to be modeled, without mak-
ing strong prior assumptions about how many groups are re-
quired. Instead, the number of groups can naturally grow as
more information about the behavior of people becomes avail-
able. One of our models extends previous work by allow-
ing continuous differences between people within the same
group to be modeled. We demonstrate both approaches in a
case study using a classic heuristic model of human decision-
making on bandit problems, applied to previously reported be-
havioral data from 451 participants. We conclude that the abil-
ity to model both discrete and continuous aspects of individual
differences in cognition is important, and that non-parametric
approaches are well suited for inferring these types of differ-
ences from empirical data.

Keywords: Individual differences, non-parametric Bayesian
modeling, bandit problems, win-stay lose-shift

Introduction

Individual differences in cognitive processes are basic, ubiqg-
uitous, and important. Almost all aspects of cognition, rang-
ing from the simplest reaction time task, to the most involved
problem-solving task, reveal systematic and meaningful vari-
ation in how different people perform. Entire fields are de-
voted to studying individual differences: the measurement
and understanding of individual variation is the basic goal for
research in psychometrics, including particularly the assess-
ment of how people co-vary in their cognitive abilities.
There has, however, been less consideration of individual
differences in experimental cognitive psychology, in the sense
that it is rare to see theories of how people differ in a cogni-
tive process directly incorporated into formal models. There
is a general recognition that averaging across participants can
be problematic when there are individual differences (e.g.,
Ashby, Maddox, & Lee, 1994; Estes, 1956), and often cogni-
tive models of fit on an individual-participant basis, so that
variations in model parameters can be observed and inter-
preted. But accounts of this variation are rarely formalized
within the modeling, and so theories of individual differences
are not yet fully incorporated in the modeling of cognition.
There are, nevertheless, a number of useful approaches—
directly adapted from the statistics literature— that have been
applied in the cognitive sciences to model individual differ-
ences. These include finding clusters of participants with dif-
ferent model parameters (e.g. Lee & Webb, 2005; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003) and hierarchical

modeling approaches that make assumptions about the distri-
bution of model parameters across participants (e.g. Perug-
gia, Van Zandt, & Chen, 2002; Rouder, Sun, Speckman, Lu,
& Zhou, 2003; Shiffrin, Lee, Kim, & Wagenmakers, 2008).
The clustering approach focuses on discrete differences be-
tween people, capturing major or ‘qualitative’ differences be-
tween people, whereas the hierarchical approach focuses on
continuous or ‘quantitative’ differences. In this sense, these
two approaches are complementary, and could be combined
in a natural way to allow for distinct groups of people who
also show smaller individual variation within their groups.

One problematic property of these existing approaches,
however, is that they require relatively strong prior assump-
tions about how many groups are needed to model the in-
dividual differences in observed performance. In contrast,
such strong assumptions are not required by a newer ap-
proach to modeling individual differences—also borrowed
from statistics—involving ‘non-parametric’ (also known as
‘infinite dimensional’) Bayesian modeling (Navarro, Grif-
fiths, Steyvers, & Lee, 2006).! In non-parametric approaches,
how a model represents individual differences can change as
additional information from additional peoples become avail-
able. Intuitively, one might believe it is quite likely the sec-
ond participant tested on an experimental task will be dif-
ferent from the first, but the likelihood the 41st participant
will be different from all of the first 40 is far smaller. In
this way, we expect the detail needed to express individual
differences will depend upon the empirical evidence that is
available, and grow with the number of participants. This
means the complexity needed to model individual differences
is not fixed, but inherently flexible. Non-parametric methods
naturally have this flexibility, and so provide an intuitive and
interesting perspective for modeling individual differences in
cognition.

In this paper, we develop two non-parametric approaches
for modeling individual differences, extending the previous
work of Navarro et al. (2006). In particular, we develop a
new non-parametric approach that can grow representations
of both the discrete and continuous aspects of individual dif-
ferences. We develop and evaluate both of the modeling ap-
proaches in terms of a case study, involving human decision-
making on bandit problems. This helps make our modeling

IThe name ‘non-parametric’ suggests there are no parameter in-
volved in modeling, which is not true. The name ‘infinite dimen-
sional’ suggests that there are potentially infinitely many parame-
ters, which is a much better conception. Nevertheless, the name
‘non-parametric’ is more widely used.
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approaches concrete, subjects them to a first empirical test,
and also makes a contribution to understanding how people
vary on an interesting and well-studied decision-making task.

The structure of this paper is as follows: First, we develop,
in a general way, the infinite discrete and discrete and contin-
uous approaches to modeling individual differences. We then
apply these approaches to the specific case of modeling vari-
ation in a model of human decision-making on bandit prob-
lems. Using previously reported data from 451 participants
on bandit problems, we evaluate both of the approaches. We
conclude that it is important to be able to capture both dis-
crete and continuous individual differences, and discuss the
merits of our non-parametric models in this light.

Infinite Individual Differences Models

Model-based approaches to individual differences make ex-
plicit assumptions about the ways people can vary and co-
vary. As described in the Introduction, the literature on
model-based individual differences is dominated by two dis-
joint, but quite compatible, points-of-view, which we now
formalize. The discrete individual differences (DID) mod-
eling approach holds that there are M < o distinct groups
of individuals, where M is fixed, each possessing a unique
value 6, of the parameter of the cognitive model. If we let
0; denote the cognitive model parameter of participant i, then
0; = 0, for each participant in group z. Thus, we can think
of DID models as picking out which individuals are alike and
aggregating across only these individuals.

The continuous individual differences (CID) modeling ap-
proach holds that individuals are related through a continu-
ous, typically uni-modal probability density P, specifying the
relative probabilities of values of the parameters in a cogni-
tive model. If we again define 0; to be the cognitive model
parameter of participant i, CID models of individual differ-
ences assume that 6; ~ P.

Navarro et al. (2006) developed what we call the infinite
discrete individual differences (iDID) model®>. This model
assumes there are an infinite number of groups to which indi-
viduals can be potentially belong, but that only a finite num-
ber of these will be manifest in finite data. In other words,
M = o for the population at large, but in a given experiment,
we will only observe m < oo of these groups. Just as in the
finite DID model, within any one of these groups, the param-
eter value for each individual is the group value.

To extend this approach to allow for individual differences,
we take the following approach: Suppose we have M < oo
groups of individuals. To each of these groups we associate
a continuous, unimodal distribution P, specifying how proba-
ble values of the parameter are in group z. Within group z, we
take the parameters of each participant to be given by a CID
model. In other words, for participant i in group z, 6; ~ P,.
We refer to this as the discrete and continuous individual dif-
ferences (D&CID) model.

Unfortunately, this model suffers the same drawback as the
DID model, which is that the number of groups is a fixed
rather than function of available information. Fortunately,
however, it can be rectified in the same way. Suppose in the

%In their paper, Navarro et al. (2006) refer to this as the infinite
groups model.

D&CID model we assume that M = oo for the entire popu-
lation, but that in a given experiment, only m < oo of these
groups will be observed. Then, as in that model, the cogni-
tive model parameter for a particular participant is distributed
as the group level distribution of the group to they belong.
We term this the infinite discrete and continuous individual
differences (iD&CID) model?.

Application to Bandit Problems

In this section we apply the general iDID and iD&CID
approaches to the specific problem of modeling human
decision-making on bandit problems. First we describe ban-
dit problems themselves, and the basic cognitive model we
will use, and then we describe the individual differences mod-
els in detail.

Bandit Problem Decision-Making

Since their original mathematical formulation (Robbins,
1952), bandit problems have been studied extensively in the
machine learning and statistics literatures (e.g. Berry, 1972;
Brezzi & Lai, 2002; Gittens, 1989; Macready & Wolpert,
1998), as a classic example of reinforcement learning, and
in psychology as a task requiring people to balance the com-
peting demands of exploration and exploitation (e.g. Banks,
Olson, & Porter, 1997; Cohen, McClure, & Yu, 2007; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Meyer & Shi,
1995; Steyvers, Lee, & Wagenmakers, in press).

In a K-armed bandit problem, there is a sequence of N tri-
als, on each of which a participant chooses one of K possible
alternatives. Each arm k < K offers the participant a reward
with probability ¢y, which is fixed over the trial sequence, but
not known by the participant. The goal for the participant is
to make choices that maximize the total number of rewards
attained over the N trials.

The Win-Stay Lose-Shift (WSLS) heuristic is a classic
account of decision-making on bandit problems (Robbins,
1952), and can be used as a basic cognitive model to under-
stand human behavior (Steyvers et al., in press). In its deter-
ministic form, it says people choose a bandit arm k so long as
that arm continues to give them a reward. Thus, if a partici-
pant received a reward choosing arm k on the previous trial,
WSLS says the participant will choose k again. If they did
not receive a reward, WSLS says they will move from arm k
to arm kK’ # k.

We employ a probabilistic generalization of the WSLS
heuristic. Instead of always staying with arm k after receiving
a reward, and always switching to k" after not receiving one,
we assume people will stay on arm k with (high) probability 6
after receiving a reward, and switch with the same probability
0 after not receiving one. In this way, the parameter 6 can be
conceived as an ‘accuracy of execution’ parameter that mea-
sures how faithfully the basic deterministic WSLS heuristic
is applied in practice.

3Mathematically, every iD&CID model corresponds to an iDID
model, which can be derived by integrating the each group’s contin-
uous individual differences model over its support. Psychologically,
however, the two models are different, as they make different quali-
tative statements about human behavior.
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Non-parametric Models

In this section we develop iDID and iD&CID models of in-
dividual differences in human bandit problem behavior using
the WSLS heuristic. The two models share the same cog-
nitive model, WSLS, but differ in how they model the varia-
tion between individuals in the parameter of that model. Both
models assume there are an infinite number of groups; how-
ever, the iDID model assumes that within one these groups
individuals do not vary whereas the iD&CID model assumes
that, within a group, individuals vary continuously with re-
spect to a unimodal distribution.

In order to understand better the two models and their re-
lation to each other, it is helpful describe how each gener-
ates data. Both can be thought of as probabilistic genera-
tive models of human decision-making on the bandit problem
task, operating in three stages. First, an assignment of partici-
pants to groups is sampled. Then, each participant’s cognitive
model parameter is sampled given this assignment. Finally,
each participant’s observed data is sampled given their model
parameter. The remainder of this section is devoted to dis-
cussing each of these steps in greater detail.

Cognitive Model On trial t > 2 of a bandit problem (WSLS
cannot be applied on the first trial, and the model itself as-
sumes guessing on the first trial) a participant chooses the
same alternative as on the previous trial with probability 6;,
given that a reward was received on that trial. If a reward was
not received, they will switch to another alternative with the
same probability.

For each participant, let the observed data, x;, be the num-
ber of times that participant applied the WSLS heuristic. This
means the data follow a binomial distribution, with

x,-NBin(N,Gi). (1)

Parameters Next we specify how the 0; are generated.
In the iDID case, an participant’s probability of following
WSLS is simply the probability for the group of which they
are a member. Thus, if participant i is a member of group
z, 0; = 0,, where 0, is the probability of following WSLS
in group z. We take the 6, to be independently uniformly dis-
tributed on the unit interval. In other words, a priori we know
nothing about the value of 0, for each group z except that it
lies between 0 and 1.

The iD&CID case is slightly more complicated. In this
case, each participant’s WSLS probability is a random draw
from some unimodal group distribution. If participant i is a
member of group z, 6; ~ P,, where P, is the group distribu-
tion for group z, which we take to be a Beta distribution with
shape parameters a, and b,. The Beta distribution is a com-
monly used density on the unit interval as it has a number
of desirable statistical properties. Moreover, in this case, the
parameters have an intuitive interpretation. Suppose we ran
some experiment before running the current one. Then a, can
be thought of as the number of times in this previous exper-
iment participants from group z used WSLS and b, can be
thought of the number of times they did not.

It remains to specify a prior distribution on the pair (a;,b;).
In this we follow Gelman, Carlin, Stern, and Rubin (2004)
and Steyvers et al. (in press), defining flat prior distributions
over the mean, a;/(a; + b;), and the square root of the in-

verse ‘sample size’, (a, + b.)~'/2, of the Beta distribution.
Converting to a joint distribution over (a;,b;), we get

p(azvbz) < (az+bz)75/2~ )

Assignments Finally, we specify how groups assignments
are generated. Both the iDID and iD&CID modeling ap-
proaches rest on the assumption that there are an infinite num-
ber of ways in which individuals can potentially vary, only a
finite number of which will ever manifest in finite data. The
Chinese restaurant process (Aldous, 1985; see Navarro et al.,
2006, for an introduction aimed at cognitive scientists) is a
prior distribution which implements this idea in a probabilis-
tic way.

The Chinese restaurant process operates as follows. Sup-
pose we have a Chinese restaurant containing an infinite num-
ber of tables each with an infinite capacity. These tables are
assumed to be distinguishable only by which customers are
seated at them. When the first customer walks in they are
seated at the first table (we can of course pick a table arbi-
trarily to be first since the tables are indistinguishable). For
each subsequent customer one of two things happens: (i) the
customer is seated at a previously seated table, or (ii) the cus-
tomer is seated at a new table. For each previously seated
table, the new customer is seated at that table with probabil-
ity proportional to the number of customers already seated at
that table. The new customer is seated at a new table with
probability proportional to a constant o0 > 0. In this analogy,
the customers are the participants in our experiment, and the
tables represent groups with individual differences to which
they may belong.

One issue remains with regard to assignment. Clearly, the
magnitude of o affects the number of tables seated since in-
creasing the magnitude of o increases the probability of seat-
ing a new table. Hence, increasing the value of o increases
the number of tables we expect to seat a priori, which may in
turn affect the number of tables we see a posteriori. To deal
with this, Antoniak (1974) suggests placing a prior distribu-
tion on o. Following Escobar and West (1995) and Navarro
et al. (2006), we use an inverted Gamma distribution.

Inference Methods

Inference on the model was performed numerically using
Markov Chain Monte Carlo (MCMC) posterior sampling
methods in two stages. In the first, the posterior distribu-
tion over assignments was sampled using Gibbs sampling,
for the iDID model, and a Gibbs sampling scheme with a
Metropolis-Hastings step, for the iD&CID model. In the sec-
ond, parameter values for the models were sampled given
particular assignments. For the iDID model, the posterior
was sampled exactly using beta-binomial conjugacy. For the
iD&CID model, posterior sampling required another Gibbs
sampler to integrate across the group level distributions.

Results for Bandit Problem Data

We applied the two models to data collected by Steyvers et
al. (in press). Their experiment consisted of 451 participants
who each completed 20 bandit problems with 15 trials and 4
alternatives. For each problem, both reward rates were chosen
from a Beta distribution with mean 1/2 and sample size 4.
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Figure 1: a) Posterior distributions over number of groups for iDID and iD&CID models. b) Posterior distributions over WSLS
probability for iDID and iD&CID models conditional upon their MAP group estimates of 3 and 1, respectively.

This resulted in a 20 pairs of reward rates, used in a randomly
permuted order for each of the 451 participants.

In their analysis, Steyvers et al. (in press) compared four
models of human bandit performance: a guessing model that
assumed people chose at random; WSLS, as we have de-
scribed; a success ratio model that assumed people chose al-
ternatives based on their ratios of successes to failures; and
the optimal decision process, which can be found by standard
recursive programming methods (e.g., Kaebling, Littman, &
Moore, 1996). Steyvers et al. (in press) found using, Bayes
Factors, WSLS fit 47% of participants better than the other
three models. This suggests that, despite its simplicity, WSLS
is a good model of these participants on the task; however, all
participants were used in our analysis.

Our analysis proceeds in three stages. In the first, we per-
form inference on the number of groups using the iDID and
iD&CID models. In the second, we fix the number of groups
for each model, and perform inference over the most likely
assignment of people to groups and the probabilities of apply-
ing WSLS given this assignment. Finally, we generate data
given these distributions WSLS probabilities, and use these
predictive data to assess the fit of each model.

Number of Groups

The marginal posterior distributions over the number of
groups inferred by each of the iDID and iD&CID models are
shown in Figure 1a. The former has a mode at three groups,
indicating the assignments sampled by the iDID model con-
sist of three groups more often than any other number. The
latter has a mode at one group. In fact, the iD&CID model
samples the assignment placing all participants in a single
group about 75% of the time.

Figure la illustrates an important distinction between the
two models, which is that the number of groups inferred
by the iDID model is stochastically greater than that of the
iD&CID model. If kg and kg are random variables denot-
ing the number of groups present in an assignment under the
iDID and iD&CID models respectively, kg is stochastically
greater than kg means p(ky > K) < p(ks > K) forany K > 1.
This occurs because the iD&CID model allows within group

variability in the probability of applying WSLS that the iDID
model does not. Within group variability in this parameter
leads to group distributions in the iD&CID model giving non-
negligible mass to a wider range of data values than the iDID
model, making distinct individuals more likely to belong to
the same group under the iD&CID model.

Parameter Inference

We now focus our attention on inference about the distribu-
tion of WSLS probabilities given a fixed number of groups.
For each model, we fix the number of groups to its modal
value (3 for the iDID model, 1 for the iD&CID model, see
Figure 1a) and determine the maximum a posteriori (MAP)
assignment of individuals to groups. Finally, we infer the
conditional distributions over the probabilities of applying
WSLS given this MAP assignment. Figure 1b shows the
distribution over the conditional probabilities of applying
WSLS. In the figure, each mode corresponds to a single
group?; thus, the three groups of the iDID model have modes
near 0.4, 0.51, and 0.6 and the single group of the iD&CID
model has a mode near 0.51. This shows how the iDID model
subdivides participants into groups: there is an “average”
probability of applying WSLS group, into which most par-
ticipants fall, a “high” probability of applying WSLS group,
into which participants well-described by WSLS fall, and a
“low” probability of applying WSLS group, into which par-
ticipants poorly described by WSLS fall. In contrast, Fig-
ure 1b shows why the iD&CID model does not require these
groups to account for the data. Because it allows individuals

4Though similar, the densities shown in Figure 1b are not, in fact,
with respect to the same quantity. In the iDID model, each group
has a single WSLS probability 6, and the observed data for every
member of that group follow a binomial distribution with rate 0.
Thus, the density in the iDID plot should be thought of as depicting
the uncertainty as to where the three modes lie rather than a sampling
distribution for the individual 6;. In the iD&CID model, individuals
within a group are not constrained to use exactly the same 6, but
instead to follow the same unimodal distribution. That being the
case, the distribution shown in the figure should be interpreted as
the expected sampling distribution the 0; (since it is averaged across
the full joint posterior distribution of its parameters).
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Figure 2: Posterior predictive distribution over the number of applications of WSLS conditional on the groups shown in Figure 1
plotted against the observed data for the iDID (top) and iD&CID (bottom) models.

within a group to vary continuously across a range of values,
the iD&CID model is able to capture the “average” group
with the center of its single group distribution and the “high”
and “low” groups with the tails.

In addition to illustrating the group structure in parame-
ter space of the two models given their respective conditional
MAP assignments, Figure 1b shows how each models fits the
observed data using the groups and their WSLS probability
distributions. The central mode of the iDID model is approx-
imately equal to the mode of the iD&CID model and the den-
sities of the upper and lower modes of the iDID model cor-
respond to the densities of tails of the iD&CID model. For
the iDID, intuitively, this tells us that the iDID is doing its
best to capture variation in the data—perhaps more naturally
captured by the continuous iD&CID model—by finding the
best placement of group modes. For the iD&CID model, the
model tries to balance peakedness near the mode of the data
against the rate at which mass falls off away from the mode.

Model Fit

Figure 2 shows the posterior predictive distributions over
the number of applications of WSLS for the iDID (top) and
iD&CID (bottom) models conditional on the MAP assign-
ment of individuals to groups. For both models, the poste-
rior predictive distribution is the distribution of the number
of applications of WSLS averaged across the posterior distri-
bution of the probability of applying WSLS. Comparing these
distributions to the observed data offers a standard Bayesian
posterior predictive check (e.g. Gelman et al., 2004) for the
models.

Figure 2 shows both models are able to capture general
features of the observed data, such as the shape of the his-
togram, but not all of the specifics. The iDID is too peaked,
as it overestimates the masses of points near the mode and
underestimates those of points near the tails. Alternatively,
the iD&CID is too flat. Though it predicts the masses of
the observed data away from the mode well, it is not peaked
enough at the mode. Overall, however, we would argue that
the iD&CID model fits the data better, because none of the
observed data are given low predictive probability. There is
a sense in which the iDID is too confident in its assessment

of the variation in human performance, because it specifies
too narrow a range in human performance. This could be re-
garded as a form of over-fitting. The iD&CID , in contrast, is
too vague, and so, while giving high probability to the modal
data values, slightly under-estimates their magnitude. This
could be regarded as a form of under-fitting. A general rule
in modeling is that over-fitting is dangerous, because it makes
you think you know more than you really know, while under-
fitting is relatively harmless (Griinwald, 2007).

Discussion

Our results suggest that both the iDID and iD&CID are good
accounts of individual differences with respect to the WSLS
model employed here, but that the iD&CID is better. Both
models are able to are able to fit the data reasonably well,
as measured by posterior predictive distributions. But the
iD&CID model is able to capture the single group structure,
and fit the pattern in the observed data better.

In terms of bandit problem performance, this paper builds
upon the results of Steyvers et al. (in press) by showing that,
among those individuals applying WSLS, the winning and
staying or losing and shifting is not the same for all people,
or even subsets of people. Rather, the suggestion is that peo-
ple exhibit a wide range of behaviors on bandit problems, and
that multiple models will probably be necessary to explain
human behavior fully. Future bandit problem work should fo-
cus on evaluating numbers of different heuristic models, and
partitioning participants into groups to capture variations in
the way those models are applied, using accounts of individ-
ual differences similar to those presented here.

More generally, we have presented a new approach to mod-
eling of individual differences, iD&CID, and compared this
to an existing model, iDID in a concrete way. We found that
the iD&CID model was better able to account for both the
group structure and distributional pattern of the data, suggest-
ing the larger-scale applicability of the iD&CID model to the
general problem of modeling individual differences in human
cognitive processes.
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