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During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic
mouse brain undergo their final rounds of cell division, giving rise to awide spectrum

of postmitotic neurons and glia*2. The link between developmental lineage and
cell-type diversity remains an open question. Here we used massively parallel tagging
of progenitors to track clonal relationships and transcriptomic signatures during
mouse forebrain development. We quantified clonal divergence and convergence
across allmajor cell classes postnatally, and found diverse types of GABAergic neuron
that share acommon lineage. Divergence of GABAergic clones occurred during
embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is
initiated as alineage-dependent process at the progenitor cell level.

The central nervous system consists of diverse types of neurons and glia
that vary widely inmorphology, physiology, connectivity and molecu-
lar markers®*. During development, molecular diversity is initially
reflected in the regional expression of a narrow set of transcription
factors in mitotic progenitors>. Transcriptional signatures that dis-
tinguish mature neuronal subtypes emerge only after cell-cycle exit
and become more sharply defined during postnatal development>>~.,
Theextent to which developmental trajectories are predetermined by
specified progenitor lineages during mitotic stages, or emerge through
interactions with the environment later in development, remains an
open question.

Although previous lineage analyses have elucidated the spatial
distribution of clones, they provided little information regarding
subtype identities of sister cells®'%. More recently, breakthroughs
incellular barcoding strategies and single-cell sequencing* have
facilitated the recording of lineage tags and gene expression pro-
files in in vitro systems??, in zebrafish?**?* and in mouse embryo-
genesis®, but have not yet been used to study neurogenesis in the
mouse forebrain.

Here we combined high-throughput single-cell RNA sequenc-
ing (scRNA-seq) with massively parallel tagging of progenitors to
reconstruct lineage relationships during neurogenesis of the fore-
brain. We focus our analysis on GABAergic neurons, which displayed
asurprising degree of clonal divergence among different types of
inhibitory neurons. We found that immediately after cell-cycle exit,
GABAergic neurons that originated from the same mitotic progenitor
divergedinto different developmental trajectories. Our findings thus
revealed that differentiationinto GABAergic subtypesisinitiatedasa
lineage-dependent process at the progenitor cell level.

Capture of gene expression and lineages

To determine lineage relationships of diverse cell types in the mouse
forebrain, we first implemented a lentiviral lineage barcoding method
called STICR (scRNA-seq-compatible tracer for identifying clonal rela-
tionships; Fig. 1a, Extended Data Fig. 1a, see companion paper®), which
enables massively parallel tagging of single cells using a high-diversity
lentivirallibrary thatencodes synthetic oligonucleotide sequences (line-
agebarcodes). The STICR tag library wasintroduced viain uteroinjections
intothelateral ventricles of mouse embryos at embryonic day10.5(E10.5;
STICR™), E12.5 (STICR®?), E13.5 (STICR®?) and E14.5 (STICR™), stages
that encompass the peak of neurogenesis. This resulted in labelling of
mitotic progenitors along the ventricles and their daughter cells that
migrated throughout the forebrain, including the cortex, basal ganglia,
hippocampus and olfactory bulb (OB) (Fig. 1b, Extended Data Fig. 1b).
We waited until postnatal stages when labelled cells differentiated into
mature cell types, then dissociated forebrain tissue, FACS-enriched the
virallyinfected cells by selecting for enhanced GFP (eGFP) expression, and
performed scRNA-seqwith the10x Chromium System (Fig. 1a, Extended
DataFig.1c). We analysed transcriptomes from 65,700 high-quality cells
that passedfiltering (see Methods). To group cells on the basis of patterns
of gene expression, we performed a principal components analysis® and
batch normalized the different replicates using Harmony?, followed
by a UMAP visualization and clustering analysis (Extended Data Fig. 1d,
Supplementary Datal), and tracked the position of clonally related cells
in the transcriptomic cell-state landscape (Extended Data Fig. 1e-h).
The average and maximum size of multicellular clones was larger when
thelentiviral library was introduced at E10.5 than at E12.5 or E14.5, when
mitotic progenitors presumably undergo fewer divisions (Fig. 1c).
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Fig.1|Clonalrelationships of forebrain cell classes determined via
simultaneous capture of transcriptome and lineage barcodes from single
cells. a, Schematic of STICR experimental workflow. b, Images of coronal brain
sectionsinjected with STICR. ¢, Quantification of the average clone size. The
errorbarsindicates.e.m.Each dotrepresentsaclone.n=1,117 for STICR®,
n=169 for STICR™?, n=349 for STICR**and n=1,407 for STICR®. One-way
analysis of variance (ANOVA) with Tukey post-hoc test was performed;
**P<0.0015,***P<0.0001.d, Uniform manifold approximationand

projection (UMAP) plot of single cells coloured by cell classes. Intheinset,a
schematicof cell class origins. e, Heatmaps of STICR®® and STICR®*lineage
couplingscores between pairs of cell classes, clustered by correlation distance
andlinkage. The light grey lines link classes across stages. f, Quantification of
clones with100%, more than 80%, and less than 80% of cells within asingle
class. g, Quantification of clones containing neurons, gliaor amix. h, Number
of neurons and glial cells per clone is plotted against one another. The dotted
linerepresents asmooth local regression; the shadow represents the 95%
confidenceinterval.

During embryogenesis, asymmetrically dividing radial glia and
transiently amplifying mitotic progenitors along the ventricular sur-
face give rise to postmitotic neurons, astrocytes and oligodendro-
cytes**?2 (Fig. 1d). To quantify clonal relationships between cell
classes, we assigned the 41 clustersinto cell classes (Fig.1d) based on
the co-expression of multiple marker genes (Extended Data Fig. 2a,
b, Supplementary Data 2) and counted the distribution of STICR tags
across cell classes (Extended Data Fig. 2¢c, d). Next, we assessed the
likelihood of recovering shared lineage barcodes from all pairs of
cell classes and quantified lineage coupling by calculating a z-score
for clone counts with respect to a random distribution (see Meth-
ods)?. Hierarchical clustering of the pairwise correlation between
coupling scoresrevealed structured groups, which comprised clonally
related cell classes (Fig. 1e). STICR®™ and STICR™ clones stayed pre-
dominantly within a class (Fig. 1e). However, STICR®® showed stronger
coupling between oligodendrocytes and oligodendrocyte precursor
cells (OPCs), whereas STICR® showed stronger coupling between
oligodendrocytes, OPCs and astrocytes (Fig. 1e). Notably, 37.2% of
STICR™ clones contained cells of a single class, compared with 62%
of STICR®*-descent clones (Fig. 1f). Moreover, 57.2% of STICR® clones
were glial clones, 19% were neuronal clones and 23.8% were mixed
clones (that is, clones with cells spanning multiple cell classes) ver-
sus 21.7%, 62% and 16.3%, respectively, for STICR™ (Fig. 1g). STICR®®
mitotic progenitors produced larger clones, with up to 30 sister cells
per clone, compared to STICR™ mitotic progenitors, which produced
up to13sister cells (Fig. 1h). Together, early-labelled progenitors gen-
erated a higher proportion of clones that dispersed across multiple
cell classes than late-labelled progenitors that produced a majority of
neuronal clones, consistent with progressive temporal fate specifica-
tion of progenitors.

Clonal convergence and divergence

Our analysis thus far focused on the lineage relationships among cell
classes. Togain higher resolution, we next explored clonal relationships
between finer-grained subtypes. The 41 clusters were annotated on
the basis of marker gene expression and mapped to anatomical brain
regions using Visium Spatial Gene Expression® (Extended Data Figs. 3,4,
Supplementary Data 3). Of these, nine clusters were reclustered to gain
a higher level of detail (for example, cluster 7 was split into clusters
7aand 7b; Fig. 2a). Hierarchical clustering of the pairwise correlation
between coupling z-scores revealed structured groups of clusters
(‘clonal groups’ a-y; Extended Data Fig. 5).

First, we tested whether excitatory and inhibitory neuronsin the
neocortex originate fromthe same progenitor. We identified clusters
of cortical excitatory and inhibitory neurons based on the expression
of canonical marker genes (Gad1 inhibitory and Sic17a7 excitatory)
and Visium Spatial Gene Expression, and quantified their clonal rela-
tionship (Extended Data Fig. 6). In contrast to Delgado et al.*® in the
sameissue, who found clonally related GABAergic and glutamatergic
neurons in humans, we observed no evidence for shared lineages of
excitatory and inhibitory cortical neurons in STICR®® or STICR®* mice
(Extended Data Fig. 6c¢).

Next, we tested whether developmental histories can be predicted
from the assumption that cell types with transcriptomically similar
identities are clonally related. This assumption may not always hold
true, because similar cell states could arise from different lineages
(thatis, convergence) and distinct cell states could share a lineage
(that s, divergence) (Fig. 2b). To explore these possibilities, we com-
pared hierarchies constructed from transcriptome information and
hierarchies constructed from lineage coupling correlations (Fig. 2c).
Seven astrocyte clusters appeared transcriptomically similar to one
another, as they occupied asingle clade on the transcriptome dendro-
gram, but largely belonged to different clades on the lineage dendro-
gram (Fig. 2c, clusters highlighted in purple). Moreover, we found that
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Fig.2|Lineage convergence and divergence in the mouse forebrain.

a, UMAP plot of single cells from the forebrain coloured by cluster.

b, Schematics of patterns of lineage convergence and divergence.
c,Dendrograms representing cluster relationships based on transcriptomic
similarity (left) and lineage coupling correlations (STICR™, right). In purple are
examples oflineage convergence;in green are examples of lineage divergence.
CGE, caudal ganglionic eminence; EAC, central extended amygdala; IN,
interneuron; MGE, medial ganglionic eminence; NP, neuronal precursor; PN,
projection neuron; VIP, vasoactive intestinal polypeptide. d, UpSet plot of
selected intersections for STICR®*, Only dispersing clones are shown. The bar
graphat the top shows the number of observed intersections, and the bar
graphontherightshows the number of cells per cluster. e, Schematic for
lineage convergence of astrocyte clusters 3 and 12a. f, UpSet plot for selected
ventral inhibitory neuron types in STICR®. The bar graph at the top shows the
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astrocyte lineages of the dorsal forebrain and astrocyte lineages of the
ventral forebrain converged on seemingly identical astrocyte subtypes.
Inparticular, clusters ‘3 Astrocyte Slcal2 and ‘12a Astrocyte Ntrk2 were
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both clonally related to clusters ‘6 Inhibitory neuron OB Synpr’ and
‘SaExcitatory neuron upper cortex’ (Fig.2d, Extended Data Fig.7), which
suggests that distinct ventraland dorsal radial gliacangive rise to tran-
scriptomically similar astrocyte populations (Fig. 2e). Another example
of convergence was OB neuroblasts (‘4 Inhibitory NP OB Ccnd2’) and
dentate gyrus neuroblasts (‘17 Excitatory NP Sox11’), which occupied
asingle clade onthe transcriptome dendrogrambut distant clades on
thelineage dendrogram (Fig. 2c). Thus, cells originating fromdistinct
mitotic progenitors located in different brain areas can converge to
similar transcriptomic identities.

The most striking example of clonal divergence was observed for
inhibitory neuron clones, which are known to derive from mitotic pro-
genitorsin the ganglionic eminences of the ventral forebrain (Fig. 2c,
clusters highlighted in green). In particular, we identified six GABAergic
projection neuron and interneuron clusters of the subpalliumand OB
that displayed high lineage coupling (Fig. 2c, Extended DataFig. 5, see
‘clonal groups’ h,u,v). Neurons within these clusters included direct
(D1) and indirect (D2) spiny projection neurons (SPNs) of the striatum
(clusters 7b and 7a, respectively), projection neurons of the central
extended amygdala (cluster 34), intercalated cells (ITCs) of theamyg-
dala (cluster 8) and OB interneurons (clusters 2 and 6; Extended Data
Fig. 8a, b). These GABAergic neurons were clonally related, although
they showed drastically different transcriptomic profiles (Fig. 2c, f,
Extended Data Figs. 7, 8a) and are known to have different morpholo-
gies, connectivity patterns and occupy different brain regions®. For
example, ITCs of the amygdala were clonally related to interneurons
of the OB and multiple GABAergic projection neuron types, includ-
ing SPNs of the striatum and central extended amygdala. Moreover,
both D1 and D2 SPNs were clonally related to interneurons of the OB
(Fig. 2f). Next, we created three additional STICR® datasets of ana-
tomically dissected brain regions (the OB, striatum and amygdala)
and measured the similarity between the average gene expression of
clusters (Extended DataFig. 8c, d). Clones of GABAergic neurons were
distributed across different forebrain structures and frequently across
transcriptomically diverse subtypes. Thus, individual progenitors of
GABAergic neurons cangive rise to awide range of different GABAergic
subtypes (Extended Data Fig. 8e).

Embryonic divergence of GABAergic neurons

To test whether clonal divergence of GABAergic subtypes isthe result
of early fate specification withinembryonic progenitor zones, or rather
emerges during postnatal development, we studied single-cell lineage
histories when molecular diversity of cell types first occurs. Because
STICR labels mitotic progenitorsindiscriminately along the embryonic
ventricles, itis not suited to deliver alarge number of lineage tagstoa
spatially defined region. To tag mitotic progenitors specifically inthe
ganglionic eminences, we developed a transposon-based barcoding
approach (TrackerSeq; Fig. 3a, Extended Data Fig. 9a-d; see Methods)
that uses the piggyBac transposon system to randomly integrate an
eGFP reporter cassette into the genome of electroporated mitotic
progenitors®***, ADNA sequence containing random nucleotides was
cloned into the 3’ untranslated region of eGFP, making it detectable
by scRNA-seq.

We targeted TrackerSeq to ganglionic eminence progenitors at
E12.5, FACS-enriched electroporated cells at E16.5, and performed
scRNA-seq (Fig.3a, b). Hierarchical clustering of TrackerSeq DNA tags
organized cellsinto 256 distinct multicellular clones of GABAergic neu-
rons (Extended Data Fig. 9e-h). To gain a high resolution of embryonic
cell states in the ganglionic eminences, we integrated the TrackerSeq
datasets with wild-type scRNA-seq datasets that we collected at E13.5
and E15.5 from the medial, caudal and lateral ganglionic eminences
(Fig. 3¢, Extended Data Fig. 9e, f). We performed a pseudotime tra-
jectory analysis using Monocle3*, which is a diffusion pseudotime
algorithm that learns the sequence of gene expression changes and
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Fig.3|Newlyborn GABAergicsister cellsdiverge into different precursor
states. a, Schematic of the TrackerSeq experimental workflow. PBase,
piggyBactransposase.b,Images of coronal brain sections electroporated with
TrackerSeq®?and collected at E14.5. Cx, cortex; GE, ganglionic eminence.
Magnificationon the bottomright panel shows aradial cluster of newborncells
(whitearrowheads).c, UMAP plot of integrated embryonic scRNA-seq datasets,
coloured by clusters. i, inhibitory; m, mitotic. d, Heatmap showing the
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states. e, Schematic of the strategy for computationally mapping embryonic
precursor state cells to postnatal clusters. f, UMAP of the embryonic dataset,
with precursor state cells coloured based on the mapping results. g, Bar graph
quantifying the correlation-based mapping of cells from the five precursor

identifies developmental branch points (Extended Data Fig. 9i).
Inaddition, we used RNA velocity®, amethod that compares the ratios
of unspliced and spliced mRNA per gene, to predict the direction and
speed of cell-state transitions across the trajectories (Extended Data
Fig. 9j).

From a common pool of mitotic progenitors, five different tra-
jectories (that is, precursor states) of postmitotic inhibitory neu-
rons emerged soon after cell-cycle exit, which we named after the
top marker genes that these clusters expressed (‘i_Six3/Gucyla3’,
‘i_Ebf1/IslT’, i_Phldal/IslT’, “i_Nr2f2’ and ‘i_NxphI’; Fig. 3c, d). We
used a correlation-based distance metric (see Methods) to map
cells from each embryonic precursor state to inhibitory clusters of
the postnatal STICR dataset (Fig. 3e-g, Extended Data Fig. 9k). For
example, 83% of cells from the trajectory ‘i_Six3/Gucyla3 mapped

states toselected postnatal ventral GABAergic neuron clusters. The numbers
onthebarsindicate the dominant mapped postnatal cluster. Inhib., inhibitory;
VS, ventral striatum. h, UpSet plot for all intersections of TrackerSeq™2. The bar
graphonthetop shows the number of intersections. Mitotic clusters were
mergedinasingle cluster (mitotic). The total cellnumber per cluster is
represented inthe bar graphontheright. Intersectionsamong precursor
statesare colouredinochre. Thebarsare colour-coded according to Fig. 3c.
Theinsetinthetoprightrepresentsthe percentage of multicellular clones that
follow assingle trajectory or dispersed across several precursor state
trajectories. i, Examples of clones where sibling cells traverse asingle
developmental trajectory (left) or different trajectories (right) on the UMAP.

to the postnatal cluster ‘7a D2 SPNs’, and 89% of cells from trajectory
‘i_Ebf1/IslI’ mapped to cluster ‘7b D1 SPNs’ (Fig. 3g), suggesting an
early emergence of postnatal signatures. Consistent with thisidea,
OBinterneuron precursors, as well as D1and D2 striatal precursors,
maintained multiple marker genes through development (Extended
DataFig. 9I).

We next asked whether clonally related cells traverse the same
or different trajectories. Notably, while cells of 63.6% of clones
entered the same trajectory, 36.4% of the clones diverged into dif-
feringtrajectories shortly after they exited the cell cycle (Fig. 3h, i).
For example, we found sister cells located on the ‘7b D1 SPN’ and
‘7aD2SPN’ trajectories, ‘7aD2 SPN’ and ‘8 Inhibitory ITC-amygdala’
trajectories, and the ‘2 Inhibitory neuron OB Meis2’ and ‘8 Inhibitory
ITC-amygdala’ trajectories (Fig. 3h, i). Taken together, these data
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show that progenitor cellsin the ganglionic eminences can produce
daughter cells that traverse different developmental trajectories
during peak neurogenesis. This suggests that clonal divergence
into different GABAergic precursor states is initiated at the level of
mitotic progenitor cells and thus as a lineage-dependent process
(Extended Data Fig. 10).

Discussion

During neurogenesis, a wide range of postmitotic neurons and glia
arise from mitotic progenitors lining the embryonic ventricles. The
extent to which developmental histories of mature cell types can be
predicted onthe basis of the assumption that cell types with transcrip-
tomically similaridentities are developmentally related has remained
obscure. Using methods that simultaneously capture transcriptomic
signatures and lineage histories of individual cells, we found both tran-
scriptomically similar cell types that arose from different lineages (that
is, convergence) and transcriptomically distinct cell types that share a
clonalrelationship (thatis, divergence). The most striking example of
divergence was GABAergic clones stemming from mitotic progenitors
inthe ventral forebrain. These clones did not only disperse into distinct
brainregions, butalso diverged into types with grossly different tran-
scriptomicsignatures. While perhaps some degree of clonal divergence
would be expected early in neurogenesis at atime when alarge number
of radial glial progenitors undergo symmetric proliferative divisions,
our results reveal clonal divergence at later stages of neurogenesis.

In agreement with Mayer et al.!, we found that in all ganglionic emi-
nences, newborn GABAergic neurons diverge into different precursor
states after cell-cycle exit. It was not clear whether clonally related sis-
ter cells enter the same or different precursor states (Extended Data
Fig.10). Because our new methods capture clonal histories, we were
able to address this question and found that newborn sister cells often
diverged in different trajectories, suggesting that mechanisms on the
level of progenitors delineate genetic identity and ultimately cell fate®*®,
The ganglionic eminences can be divided into more than a dozen pro-
genitor subdomains that are uniquely demarcated by the combinatorial
expression of transcription factors®**°, The superimposition of a cellu-
lar mechanism that gives rise to different postmitotic signatures with
domain-specific factors and morphogens provides alarge combinatorial
framework that could explain how an enormous diversity of inhibitory
typesisgeneratedintheforebrain. Whether the sequential production
of different types follows astereotypic sequence, or involves stochastic
events that occur during cell-cycle exit, remains unknown. One pos-
sibility is that the sequential production of cell types depends on the
interaction of progenitors with developmentally dynamic transcription
factors and morphogens.

While recent work has examined how cell populations vary across
species*, the methods developed in our study and Delgado et al.® in
the same issue enable comparison of developmental histories of cell
typesacross mouse and human. The identification of species-specific
lineages will provide insight into the evolution of cellular diversity.
Both STICR and TrackerSeq capture partial clones, which is sufficient
todetect clonal divergence and convergence. However, at present, our
methods caninfer but not prove lineage restriction.

Somatic mutations, which are clonally inherited, contribute to
numerous neurodevelopmental diseases*> ™. Determining lineage
relationships might explain why certain subsets of cells are affected in
developmental disorders. Looking forward, we anticipate that studies
combining lineage information with genetic mutations will facilitate
the explorations of such clinical phenotypes.
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Methods

STICR Ientiviral library preparation and validation

We synthesized a high-complexity lentivirus barcode library that
encodes approximately 60-70 million distinct oligonucleotide RNA
sequences (STICR barcodes). STICR barcodes comprised three distinct
oligonucleotide fragments cloned sequentially into a multicloning
sitewithinthe 3’ UTR of an enhanced green fluorescent protein (eGFP)
transgene under control of a ubiquitous CAG promoter in a modified
lentiviral plasmid (pSico, Addgene, #11578). Each barcode fragment
was derived from one of three oligonucleotide pools comprising 500
distinct sequences, allowing for up to 125 million unique combinato-
rialbarcode sequences (500°). Following the ligation of each oligonu-
cleotide fragment into the multicloning site, the plasmid library was
electroporated into electrocompetent MegaX DH10B cells (Fisher,
#C640003) and grown for 12 h overnight at 37 °C on LB agar plates
(Fisher, BP1425-500) with carbenicillin (Fisher, #BP26481). The result-
ing colonies were scraped and plasmid extraction was performed using
amidi-prep kit (Macherey Nagel, 740412.5). This process was repeated
until all three barcode fragments were added.

Lentivirus production was performed by first transfecting HEK293
cells with the barcode library along with lentiviral helper plasmids
pMDLg/pRRE (Addgene, #12253), pRSV-Rev (Addgene, #12253) and
envelope protein VSV-G (Addgene, #8454) using JetPrime (PolyPlus,
114-07). HEK293 media were changed 24 h after transfection and
replaced with 35 ml Ultraculture media (Lonza BE12-725F), 350 pl
sodium pyruvate (11 mg/ml stock, Thermo Fisher, 11360070), 350 pl
sodium butyrate (0.5 M stock, Sigma, B5887), and 350 pl antibiotic/
antimycotic (Thermo, 15-240-062) (http://syntheticneurobiology.org/
protocols/protocoldetail/31/12). After an additional 48 h, media were
collected, concentrated with an ultracentrifuge, and then resuspended
in50-100 pl of sterile PBS.

To confirmthat transcribed STICR barcodes canbe accurately recov-
ered using scRNA-seq, we performed a ‘barnyard experiment’in which
weinfected separate cultures of human cortical cells (GW18 sample) and
mouse 3T3 cells (ATCC) with different STICR libraries. These libraries
couldbedistinguished from each other by a constant sequence unique
toeachlibrary (‘viralindex’). After 3 days, we dissociated cultures with
papain and FACS-isolated eGFP" cells. eGFP* cells from both species
were then mixed together and loaded into a10X Genomics Chromium
Single Cell’3 primekit (10x Genomics, PN-100007). Following sequenc-
ing, transcript libraries were aligned with CellRanger (version 3.0.2)
to a hybrid mouse/human genome and droplets were determined to
be either a mouse cell, human cell or multiplet. STICR barcodes were
recovered (see below) and the recovered viralindex sequence was used
tomatchrecovered barcode to the barcodeinitially used toinfect each
experiment. Finally, we quantified recovered viral indices for mouse,
human and multiplet droplets.

Tomeasure STICR plasmid library barcode diversity, we first digested
1pgof each library with Xhol and then ligated a PCR adapter contain-
ing a unique molecular identifier (UMI) to this site. Ligation products
were amplified by PCR using Q5 Hot Start High Fidelity 2x Master Mix
(NEB, #M0494) using primers targeting the STICR sequencing primer
site and the adapter sequence using the following program: (1) 98 °C
for30s,(2)98 °Cfor10s, (3) 62°Cfor20s,(4) 72°Cfor10ss, (5) repeat
steps 2-415times, (6) 72 °Cfor2 min, and (7) 4 °C hold. Following PCR
amplification, a 0.8-0.6x dual-sided size selection was performed using
Ampure XP beads (Beckman Coulter, #A63881). Theresulting libraries
were sequenced to the depth of approximately 30 million reads. STICR
barcode sequences were extracted using custom scripts that removed
PCR duplicate reads using the UMI (see below in ‘SCRNA-seq analysis
and STICR barcode analysis’ for ageneral description). Since it is pro-
hibitively expensive to sequence the library to saturation, we extrapo-
lated the total number of unique STICR barcodes using the Preseq*®
command Ic_extrap and default settings. Together with the measured

relative barcode abundances, we used the extrapolated STICR barcode
library size to model barcode collisions using the R (v4.0.1) program-
ming language. Using base R functions, we simulated the labelling of
astarting population of cells with a range of sizes from 10 to 10° and
repeated eachsimulation 20,000 times. We then quantified the mean
number of unique barcodes chosen for each starting cell population
size. The difference between the starting cell population size and the
number of unique barcodes present represented the number of colli-
sions that had happened at that population size.

TrackerSeq library preparation and validation

TrackerSeqis a piggyBac transposon-based* library, developed to be
compatible withthe 10x single-cell transcriptomic platform. It records
thein vivo lineage history of single cells through the integration of
multiple oligonucleotide sequences into the mouse genome. Each of
theseindividual lineage barcodesis a37-bp long synthetic nucleotide
that consists of short random nucleotides bridged by fixed nucleo-
tides. This design results in a library with a theoretical complexity of
approximately 4.3 million lineage barcodes (16%) with each barcode
differing from another by at least 5bp.

To construct the library, the piggyBac donor plasmid (Addgene
#40973) was altered to include a number of modifications. A Read2
partial primer sequence was clonedintothe 3’ UTR of the eGFP to enable
retrieval by the 10x platform. The sucrose gene was cloned into the vec-
tor, so that empty plasmids that fail to incorporate a lineage barcode
during the cloning process are removed. Following digestion with BstXI
to remove the sucrose gene, the plasmid was run on agel and column
purified. The lineage barcode oligo mix was cloned downstream of
the Read2 partial primer sequence in the purified donor plasmid via
multiple Gibson Assembly reactions, as previously described®. Gibson
assembly reactions (NEB, #E2611S) were then pooled and desalted with
0.025 um MCE membrane (Millipore, #VSWP02500) for 40 min, and
finally concentrated using aSpeedVac. 3 pl of the purified assembly is
incubated with 50 pl of NEB10-B-competent Escherichia coli cells (NEB,
#C3019H) for 30 minat4 °C, then electroporated at2.0kV,200 Q, 25 uF
(Bio-Rad, Gene Pulser Xcell Electroporation Systems). Electroporated
E. coliwereincubated for 90 min shakingat37 °C and then plated into
pre-warmed sucrose/ampicillin plates. The colonies were scraped off
the plates after 8 h, and the plasmids were grown in LB medium with
ampicillin up to OD = 0.5. The plasmid library was purified using col-
umn purification kit (Zymo Pure Il Plasmid Maxiprep kit, #D4202).
We first assessed the integrity of the TrackerSeq barcode libraries by
sequencingthelibrary toadepthof approximately 42 million reads to
test whether any barcode was over-represented. Around 3.6 million
valid lineage barcodes that had a quality score of 30 or higher were
extracted from the R2 FASTQ files using Bartender*°. One thousand
barcodes were randomly sampled from the extracted lineage barcodes
to assess hamming distance. To group similar extracted barcodesinto
putative barcodes, Bartender assigns a UMI to each barcode read to
handle PCRjackpottingerrors, and clusters them. The cluster distance
was set to 3 so that extracted barcodes within3 bp of each other havea
chance of being clustered together. A total of 2 x 10° clusters of barcodes
wereidentified, suggesting that the barcode library has adiversity that
is at least in the 10° range.

Mice and in utero surgeries

All mouse colonies were maintained in accordance with protocols
approved by the Bavarian government at the Max Planck Institute
of Neurobiology or the IACUC at the NYU Grossman School of Medi-
cine. Swiss Webster and C57BL/6 wild-type females were used, and
embryos were staged in days post-coitus, with EQ.5 defined as 12:00
of the day a vaginal plug was detected after overnight mating. Timed
pregnant mice were anaesthetized with isoflurane (5% induction,
2.5% during the surgery) and treated with the analgesic Metamizol
(WDT). In utero surgery and injection of the STICR lentiviral library
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in the lateral ventricles of the embryonic mouse forebrains at E10.5-
E14.5were performed as previously described®. A microsyringe pump
(Nanoject Il Programmable Nanoliter Injector (100/240V) (#DRUM3-
000-207)) was used to inject approximately 0.5 pl of the STICR library
per embryo. For embryos injected at E10.5, ultrasound backscatter
microscope (UBM) was used to allow for image-guided injections.
For in utero electroporation of the TrackerSeq library, E12.5 embryos
wereinjected unilaterally with 700 nl of DNA plasmid solution made of
0.5 pg/pl pEFla-pBase (piggyBac-transposase; a gift fromR. Platt) and
the TrackerSeqlibrary 0.5 pg/pl, diluted in endo-free TE buffer and
0.002% Fast Green FCF (Sigma), into the lateral ventricle viaa microsy-
ringe pump. Embryos were then electroporated by holding each head
between platinum-plated tweezer electrodes (5 mmin diameter, BTX,
#45-0489) across the uterine wall, while 5 electric pulses (35 V, 50 ms
at1Hz) were delivered with a square-wave electroporator (BTX, ECM
830)*2 Pregnant dams were kept in single cages and pups were kept
with their mothers, in the institutional animal facility under standard
12:12-h light-dark cycles, at aroom temperature of 72°F + 2° Fand a
humidity of 30-70%.

Sample collection

Virally injected brains were collected from mouse pups between ages
postnatal day 5 and day 15 (P5-P15) (Supplementary Data 1). Brains
were dissected in ice-cold pre-bubbled artificial cerebrospinal fluid
(aCSF), and sectioned into 400-pm coronal sections onaLeicaVT1200S
Vibratome. Coronal brain sections were then dissected such that the
forebrainwas collected, thus excluding the thalamus, hypothalamus,
brainstem and cerebellum. Alternatively, OBs, amygdalae and striata
were manually dissected out from sliced brains, and processed sepa-
rately. Collected tissue was then dissociated with the Miltenyi BioTech
Neural Tissue Dissociation Kit (P) (#130-092-628) on the gentleMACS
Dissociator according to the protocol of the manufacturer. To iso-
late and collect virally infected cells, flow cytometry was done using a
SY3200 Cell Sorter (software WinList 3D version 8.0.) or BD FACSAria
1l Cell Sorter (BD FACSDiva Software, version 8.0.2) with a100-pm
nozzle. The cell suspensions were first gated on forward scatter, then
within this population based on eGFP expression. eGFP-expressing cells
were collectedin bulk for downstream processing on the 10x Genomics
Chromium platform.

Ganglionic eminences were collected from mouse embryos at E13.5
and E15.5 (Supplementary Data 1) according to the following protocol:
embryos were removed from the uterus of wild-type Swiss Webster
females, and stored inice-cold L-15 medium. Brains were removed from
the embryonic skulls, and the MGE, CGE and LGE were dissected out.
MGEs, CGEs and LGEs were then each pooled together from multiple
embryos, so that each eminence type was processed independently,
and dissociated with the Miltenyi BioTech Neural Tissue Dissociation
Kit (P) (#130-092-628) on the gentleMACS Dissociator according to
the protocol of the manufacturer.

For embryonic lineage tracing, we collected electroporated brains
from mouse embryos at E16.5 (Supplementary Data 1) in Leibowitz
medium with 5% FBS. Papain dissociation system was carried out
according to the recommended protocol (Wortington, #LK003150),
andtoisolate positive cells, flow cytometry was done using a BD FAC-
SArialll Cell Sorter (BD FACSDiva Software, version 8.0.2) witha100-pum
nozzle. For all FACS experiments, non-eGFP-expressing brain tissue
was used as anegative control for excluding background fluorescence.

Immunohistochemistry

E14.5 and P10 mice were perfused with 4% PFA and post-fixed over-
nightin 4% PFA at4 °C. Coronal sections (60 um) were performed using
vibrating microtome. Immunofluorescent staining was performed as
follows: sections were incubated for1 hatroom temperature in block-
ing solution (5% BSA and 0.3% Triton-X100 in PBS), then overnight at
4 °Cwith primary antibodies. Sections were rinsed three times in PBS

1Xandincubated for1hatroom temperature with the corresponding
secondary antibody (1:500, Life Technologies). Three washes with PBS
1X were performed, the second wash using Hoechst staining solution
(1:10,000 in PBS 1X, Invitrogen) to label nuclei, before dry mounting
on slides with Fluoromount-G (Invitrogen). For imaging, the primary
somatosensory area was used as region of study. Images were acquired
onaleicaSp8 confocal laser scanning microscope.

The primary antibodies used included: rabbit anti-CUX11:500
(Santa Cruz, #SC13024), rabbit anti-GABA 1:2,000 (Merck, #A2052),
rabbit anti-GFP 1:1,000 (Invitrogen, #A11122), rabbit anti-Ibal 1:500
(Wako, #019-19741), rabbit anti-OLIG21:500 (Merck, #AB9610), rabbit
anti-S100 1:500 (Merck, #S2644), and rat anti-CTIP2 [25B6] 1:500
(Abcam, #AB18465).

The secondary antibodies used were: 647 Alexa Fluor plus goat
anti-rabbit (Invitrogen, #A32733), 555 Alexa Fluor goat anti-rat (Inv-
itrogen, #A21434), and 555 Alexa Fluor goat anti-rabbit (Invitrogen,
#A21428).

Preparation of RNA-seq, STICR and TrackerSeq libraries

For experiments utilizing the 10x Genomics platform, the following
reagents were used: Chromium Single Cell 3’ Library & Gel Bead Kit
v2 (PN-120237), Chromium Single Cell 3’ Chip Kit v2 (PN-120236) and
Chromium i7 Multiplex Kit (PN-120262) were used according to the
manufacturer’s instructions in the Chromium Single Cell 3’ Reagents
Kits V2 User Guide; Chromium Single Cell 3’ Library & Gel Bead Kit v3
(PN-1000075), Chromium Single Cell 3’ Chip Kit V3 (PN-1000073) and
Chromium i7 Multiplex Kit (PN-120262) were used according to the
manufacturer’s instructions in the Chromium Single Cell 3’ Reagents
Kits V3 User Guide; Chromium Single Cell 3’ Library & Gel Bead Kit v3.1
(PN-1000268), Chromium Single Cell 3’ Chip Kit V3.1 (PN-1000127)
and Dual Index Kit TT Set A (PN-1000215) were used according to the
manufacturer’s instructions in the Chromium Single Cell 3’ Reagents
Kits V3.1 User Guide (Dual Index).

Thelineage barcode library retrieved from RNA was amplified with
astandard NEB protocol for Q5 Hot Start High-Fidelity 2X Master Mix
(#M094S) ina50-pl reaction, using 10 pl of cDNA as template. Specifi-
cally, each PCR contained: 25 pl Q5 High-fidelity 2X Master Mix, 2.5
10 uM P7_indexed reverse primer, 2.5l 10 uMi5_indexed forward rimer,
10 plmolecular grade H,0, 10 pl cDNA (for primer sequences and indi-
ces, see Supplementary Data1). The PCR protocol for amplifying STICR
lineage libraries was: (1) 98 °C for 30 s, (2) 98 °C for 10 s, (3) 62 °C for
205, (4) 72°Cfor10s, (5) repeat steps 2-4 11-18 times, (6) 72 °C for
2min,and (7) 4 °Chold. The PCR protocol foramplifying TrackerSeqlin-
eagelibrarieswas: (1) 98 °Cfor30s, (2) 98 °Cfor10s, (3) 63 °Cfor20s,
(4) 72°Cfor10s, (5) repeat steps 2-4 11-18 times, (6) 72 °C for 2 min,
and (7) 4 °Chold. Libraries were purified with a dual-sided SPRI selec-
tion using Beckman Coulter Agencourt RNAClean XP (A63987), and
quantified withan Agilent BioAnalyzer. Some STICR libraries (DI_T_199,
DIT 203, DI_T 211, DI T 222, D1T 233, DIT_238, DI_T 239, DI T 240,
DI T 241, DI T 242, DI T 287, DI T 289, DI T 304 and DI_T_305) were
constructed and sequenced twice to achieve higher resolution.

Sequencing and read mapping

Transcriptome and barcode libraries were sequenced either on an
lllumina NextSeq 500 at the Next Generation Sequencing Facility of
the Max Planck Institute of Biochemistry, at the Genomics Core Facil-
ity at the Helmholtz Center in Munich, or on a NovaSeq at the Broad
Institute. For a detailed report on each dataset, see Supplementary
Data 1. Sequencing reads in FASTQ files were aligned to a reference
transcriptome (mm10-2.1.0) and collapsed into UMI counts using the
10x Genomics Cell Ranger software (version 3.0.2 or 5.0.1).

Processing of STICR barcode reads
STICR barcode analysis was performed using custom scripts. First,
BBMap (BBMap—Bushnell B.; sourceforge.net/projects/bbmap/) was
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used to remove low-quality reads and then extract reads containing
STICRbarcode sequences. Then, BBMap was used to extractindividual
STICR barcode fragments, which were then aligned to our pre-defined
fragment reference sets using Bowtie (v5.2.1)*3, allowing for up to two
mismatches per fragment. Aligned STICR barcodes were compiled
into a file containing their corresponding 10X cell barcode and 10X
UMl sequences using Awk. Finally, UMI-tools (v.0.5.1)** was used to
remove duplicate STICR barcode or cell barcode reads by UMI, allow-
ing for 1bp mismatchin the UMI. STICR barcodes-CBC pairings with at
least five distinct UMIs were retained for clonal analysis. Among cells
with multiple STICR barcodes passing these criteria, we attempted to
find a‘dominant’ STICR barcode that we defined as containing greater
than or equal to five times the number of UMI counts than the next
most abundance STICR barcode. Dominant STICR barcodes meet-
ing these criteria were considered to be the clonal barcode of their
respective cells and retained for further analysis. Within metadatafiles,
these CBC-STICR barcode pairings are referred to as tier 2, whereas
CBC-STICR barcode pairs with only a single STICR barcode meeting
threshold criteriaarereferred toastier 1. Only CBCs associated witha
single STICR barcodetier1) were used in this study, with the exception
of the OB-amygdala-striatum experiment in Extended Data Fig. 8,
where tier 2was used. Finally, we applied an additional UMI threshold
to STICR barcodes, requiring that all STICR barcode-CBC pairings
used for clonal analysis have at least nine distinct UMIs. Three STICR
barcodes (Index1_Bitl_F_083-Bit2_F_060-Bit3_F_055, Bitl F_057-Bit2_
F_103-Bit3_F_244 and IndexE_Bitl_F_246-Bit2_F_178-Bit3_F_497) were
removed from downstream analyses, because they were present in
more than one dataset. Two of the total 21 STICR datasets (CA199 and
CA233) contained only single-cell clones. These datasets were retained
to support single-cell cluster analysis and clone size quantification.

Processing of TrackerSeq barcode reads

Readsinthe R2 FASTQ files were pre-processed so that the sequences
to the left and right of the lineage barcodes (BC) were trimmed. Line-
age barcodes shorter than 37 bp were discarded. Cell barcodes (Cell)
were extracted fromthe corresponding Seurat object of the dataset to
generate a cell barcode whitelist. The extracted cell barcodes and UMIs
were added to the read names of the lineage barcode FASTQ files. The
resulting FASTQ files were processed to output a sparse matrix in csv
format, where rows were cells identified by individual cell barcodes and
columns were lineage barcodes. Only Cell-UMI-BC triples supported
by at least 10 reads and Cell-BC pairs with at least 6 UMI were consid-
ered for further analyses. ClonelDs were assigned to cell barcodes by
clustering the matrix using Jaccard similarity and average linkage as
demonstrated by Wagner and colleagues®. The resulting dendrogram
was cut at a height of 0.999 to obtain the clonal groupings. The clonal
groupings showed that there were 4,282 barcodes distributed over
2,370 cellsinthe total dataset, where 56.0% of them were marked by 2
or more barcode integrations, and 8.4% of them were marked by 5 or
more integrationsin the total dataset. Among the inhibitory neurons
featuredin Fig. 3, these numbers were 85.7% and 9.5%, respectively.

Cellfiltering, data normalization, batch correction and
clustering of STICR datasets

The Seurat workflow (version 3.1.4) was used for cell filtering, data
normalization and cluster identification in scCRNA-seq datasets. Data
were read into R (version 3.6.0) as a count matrix. Each dataset was
filtered with cut-offs for: maximum and minimum gene expression,
maximumnCount_RNA, and the percentage of total reads that aligned
to the mitochondrial genome (for applied cut-offs, see Supplemen-
tary Datal).Filtered datawere then used for standard processing with
Seurat. Unless otherwise indicated, gene expression values for each
cell were divided by the total number of transcripts and multiplied
by 10,000. These values were then log transformed using loglp via
the NormalizeData() function. Genes were scaled and centred using

the ScaleData() function. We used Harmony (v1.0)*® within the Seurat
workflow with default parameters (theta =2, lambda =1, sigma=0.1)
to integrate different STICR datasets. We used the first 35 Harmony
embeddings for UMAP (https://github.com/Imcinnes/umap) visualiza-
tions and clustering analysis.

To partition cells into clusters, we constructed a shared-nearest
neighbour graph based on Harmony embeddings via the FindNeigh-
bors() function to use as input to the SLM algorithm, implemented
through the FindClusters() function in Seurat (dimensions = 35,
res =1) . Cluster-specific marker genes were identified by compar-
ing cells of each cluster to cells from all other clusters. Genes were
considered differentially expressed based on fold change, minimum
expression and adjusted P value cut-offs (Supplementary Data 3).
The Wilcoxon rank sum test was implemented via the Seurat func-
tion FindAllIMarkers().

Clusters were manually annotated based on marker gene expression,
spatial transcriptome mapping, as well as publicly available databases,
primarily DropViz (dropviz.org)* and Mouse Brain Atlas (http://mouse-
brain.org/genesearch.html)*®. Of the 41 unsupervised STICR clusters,
9 clusters werereclustered to gain a higher level of detail (for example,
cluster 7 was split into clusters 7a and 7b; Fig. 3a). More specifically,
clusters were isolated using subset() and clustered again using Find-
Clusters(). Sub-clusters that could not be assigned to a cell type were
assigned ‘unknown’ and excluded from the lineage analysis (0.76% of
the total cells). Cluster 22, which contained sub-clusters of different
classes, was labelled ‘mixed’. All analyses were carried out based on
refined clusters, except for panelsillustrating the spatial analysis.

Lineage analysis of cell classes in STICR

To quantify clonal relationships between cell classes, Seurat clusters
were merged into cell classes (Fig. 1d) based on the co-expression of
multiple marker genes (neurons (Tubb3 and Mef2c); neuronal precur-
sors (Gadl and Neurod2); mitotic cells (Ube2c and Top2a); astrocytes
(Aldh1l1 and Gfap); oligodendrocytes (Oligl and PlpI1); OPCs (Pdgfra
and ClIql1); vascular cells (Rgs5); epithelial cells (Ttr); ependymal cells
(Tmem212); and macrophages (Ccl4 and Ciga)) (Extended DataFig. 2a,
Supplementary Data 2). Clones were categorized as containing sister
cellsthat were glia only (astrocyte, OPC and oligodendrocyte classes),
neurononly, or gliaand neuron mix (neuron, astrocyte, OPC and oligo-
dendrocyte classes), and the number of clones in each of these three
categories was quantified relative to the total number of clones at each
developmental stage.

Lineage coupling z-scores and correlations forebrain-wide
STICR datasets
The numbers of shared clones, as well as lineage coupling z-scores and
correlations were calculated for each pair of cell states based on the
methods outlined by Wagner and colleagues® as follows:
1. Definitions:For agiven clone c, with ncells, and agiven cell-state pair
{su 55k
1.1. Let kbe the number of cells of clone ¢, that were assigned to either
of the cell states of the pair, that s, s, or s,.
1.2.Clone ¢, is defined to be ‘shared’ between states s, and s, if k> 2,
and there was at least one cell of clone ¢, assigned to each state.
1.3.Let pbethefraction of clonec, that krepresents, thatis, p=k/n.
1.4. Ametric for the cell-state pair {s,, s,} is defined as the sum, over
all ‘shared’ clones, of the p of each clone.
2. The metricdefinedin (1.4) was computed for each pair of cell states,
according to the observed data.
3. Adistribution of values of the metric was computed for each pair of
cell states in the following way:
3.1.For N=10,000 iterations, the following simulation was done:
3.1.1. Maintaining the observed distribution of the number of
cells per cell state, the state assignments of the individual
cells were randomly shuffled.


https://github.com/lmcinnes/umap
http://mousebrain.org/genesearch.html
http://mousebrain.org/genesearch.html

3.1.2. The metric defined in (1.4) was computed for each pair
of cell states, according to the data resulting from this
simulation.

4. For each pair of cell states, its lineage coupling z-score is defined as
the z-score of its observed metric computedin (2), with respect to the
distribution computed in (3).Positive z-scores indicate pairs of cell
states that shared more lineage barcodes than expected by chance,
whereas anegative score indicates that astate pair was significantly
less coupled than expected by chance.

5. Foreach pair of cell states, its lineage coupling correlationis defined
asthe correlation between all the lineage coupling z-scores of each
individual cell state of the pair.

Dendrograms and UpSet plots
Dendrograms representing transcriptomic relationships were gener-
ated with the BuildClusterTree() function in Seurat, which constructs a
phylogenetic treerelating the ‘average’ cell from eachidentity cluster.
The tree is estimated on the basis of a distance matrix constructed in
the gene expression space. Dendrograms representing lineage rela-
tionships were generated using the hclust() and dist() functions on
lineage coupling correlations, with an average linkage clustering and
Euclidean distance metric. The interrelation between cell types canonly
be coarsely represented in hierarchical dendrograms. Dendrograms
represent overall transcriptomic similarities and dissimilarities, but
they fail to capture less obvious similarities between otherwise distinct
celltypes. Similarly, dendrograms may represent the general nexus of
clonal relationships but overlook infrequent relationships.

UpSet plots were created in R using the UpSetR library®’. For set size,
we used the number of cells per cluster.

Correlation-based distance measure for amygdala, OB and
striatum datasets

Amygdala, OB and striatum datasets were pre-processed as men-
tioned above. Cell types were manually annotated and neuronal types
were divided via subset(). The distance between the log-normalized
average cluster gene expression was calculated using the Spearman
correlation-based distance measure inthe get_dist() function and visu-
alised using fviz_dist() from the R package factoextra v1.0.7.

Cellfiltering, data normalization batch correction and
clustering of embryonic datasets

TheSeurat pipeline (version 3.1.4) was used for cluster identificationin
scRNA-seq datasets. Embryonic transcriptome datasets (MUC28072,
CA303,CA300,CA302,CA299,CA301and CA298) werereadintoR (ver-
sion 3.6.0) as acount matrix. Each dataset was filtered with cut-offs for:
maximum or minimum gene expression, maximum nCount_RNA and
the percentage of total reads that aligned to the mitochondrial genome
(forapplied cut-offs, see Supplementary Datal). Inaddition, embryonic
datasets were filtered with DoubletFinder version 2.0.3 (ref.*®).

We used regularized negative binomial regression* to normalize UMI
count data for all embryonic datasets. Cells with UMI counts for Neu-
rod2>2and Neurodé6 > 2, which are markers of excitatory neurons, were
removed. The TrackerSeq dataset was clustered using Seurat standard
procedures and clusters expressing marker genes for excitatory neu-
rons were removed. We created an ‘integrated’ dataassay including all
embryonic datasets for downstream analysis as described by Stuart
and colleagues®. Clusters of cells were identified by a shared near-
est neighbour modularity optimization-based clustering algorithm.
Uniformmanifold approximationand projection (UMAP) dimensional
reduction (https://github.com/Imcinnes/umap) was applied to the
integrated data assay for visualization.

Trajectory analysis of embryonic datasets
Trajectoryinference and pseudotime calculations were done with Mono-
cle3(ref.). RNA velocity was estimated using the Rlibrary velocyto.R*. 10x

output fileswere preprocessed with velocyto, version 0.17.17 (https://velo-
cyto.org) using the command velocyto runlOx. The velocyto.R-package
‘velocyto.R’ version 0.6 was used for RNA velocity estimationinR.

Mapping embryonic cells to postnatal clusters

Tomap cells fromembryonic trajectories to postnatal cell types, we first
selected the five embryonic Seurat clusters from the ‘integrated’ data
assay that were located at the tip of the Monocle trajectories, as well as
Seurat clusters fromthe postnatal STICR dataset that were identified and
annotated as subpallial GABAergic neuron types. We focused on 1,855
genes that were identified as variable features at both developmental
stages using the Seurat FindVariableFeatures() function. For these genes,
we averaged the log-normalized expressionin the postnatal clusters to
create postnatal cell-type model vectors. We then calculated Pearson
correlations between all individual cells of the embryonic clusters and
the model vectors as described in Mayer et al'. We assigned each cell to
the postnatal cluster with the highest correlation, but also calculated
empirical Pvalues to determine the significance of the assignment by
permuting the single-cell data for arandom background. We left the
model vectors unchanged, but permuted the single-cell expression data
100times. Foreach permutationand each cell, we kept track of the largest
Pearson correlation to the model vectors, and calculated a P value for
the cluster assignment by counting what fraction of correlation scores
was larger than the one used for the cluster assignment. In a final step,
we turned all Pvalues into false discovery rates (FDRs) and mapped only
cells with an FDR < 0.1to the postnatal clusters.

Spatial gene expressionin STICR

Toinfer the spatial location of the clusters, the STICR datasets were inte-
grated with the Visium Spatial Transcriptomic datasets for sagittal and
coronal sections of the mouse brain provided by 10x genomics (https://
support.10xgenomics.com/spatial-gene-expression/datasets). We applied
an ‘anchor’-based integration workflow in Seurat v3, which enables the
probabilistic transfer of annotations from areference toaquery set. The
spatial reference dataset and the lineage dataset were normalized using
the SCTransform() function, which builds regularized negative binomial
models of gene expression, and performed dimensionality reduction
using the RunPCA() function and then performed label transfer using
the functions FindTransferAnchors() and TransferData(). This procedure
outputs, for each spatial spot, aprobabilistic classification for each of the
scRNA-seq-derived cell states. We added these predictions asanewassayin
theSeurat object for visualization using the function SpatialFeaturePlot ().

Scatter plots

The top 100 marker genes were calculated using the Seurat function
FindMarkers () for a selection of GABAergic clusters in the postnatal
STICRdataset and the merged embryonic dataset, respectively (postna-
tal: 2 Inhibitory neuron OB Meis2, ‘6 Inhibitory neuron OB Synpr’,‘7aD2
SPNs’,"7b D1SPNs’, ‘8 Inhibitory ITC amygdala’, 34 Inhibitory PN ventral
striatum/central extended amygdala (EAC)’; ‘13a MGE IN SnhgiI’, ‘19a
CGEVIPIN’,19b CGE neurogliaformIN’,‘13a MGE IN Snhg11’; embryonic:
‘i_Six3/Gucyla3, i_Ebf1/IslT’, i_Phldal/Isll’, i_Nr2f2,i_NxphI’). Onthe
basis of the correlation-based mapping of embryonic cells to postnatal
clusters (see previous paragraph), we selected pairs of embryonic and
adultclustersforthescatter plot. We plotted the SCT normalized average
cluster gene expression of the top 100 marker genes from each stage.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The sequencing datasets generated for the current study are available
in the Gene Expression Omnibus (GEO) under the accession number
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GSE188528. Publicly available gene expression data used for cluster
annotation can be accessed as follows: DropViz (dropviz.org) and
Mouse Brain Atlas (http://mousebrain.org/genesearch.html). Visium
Spatial Transcriptomic Datasets for sagittal and coronal sections of the
mouse brain provided by 10x genomics (https://support.10xgenomics.
com/spatial-gene-expression/datasets).

Code availability

The analyses described here are available on GitHub: https://github.
com/mayer-lab/Bandler-et-al_lineage.
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Extended DataFig. 3 | Differential gene expression analysis of celltype
clusters. Single-cell heatmap showing the normalised expression of the top-5
marker genes for cell types. Bars are colour-coded based on key in Fig. 2a. Astro,
astrocyte; CGE, caudal ganglioniceminence; Ctx, neocortex; EAC, central

extended amygdala; Excit, excitatory; Hip, hippocampus; IN, interneuron;
Inhib, inhibitory; MGE, medial ganglionic eminence; NP, neuronal precursor;
OB, olfactory bulb; Oligo, oligodendrocyte; OPC, oligodendrocyte precursor
cell; PN, projection neuron; SPN, spiny projection neuron.
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Extended DataFig. 4 |Spatial transcriptomic mapping of celltypeclusters. interneuron;Inhib, inhibitory; MGE, medial ganglionic eminence; NP, neuronal
Spatial transcriptomic mapping showing localization of cell type precursor; OB, olfactory bulb; Oligo, oligodendrocyte; OPC, oligodendrocyte
clusters. Astro, astrocyte; CGE, caudal ganglionic eminence; Ctx, neocortex; precursor cell; PN, projection neuron; SPN, spiny projection neuron.

EAC, central extended amygdala; Excit, excitatory; Hip, hippocampus; IN,
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Extended DataFig. 5| Clonal coupling of forebrain cell types. a, Heatmaps
of STICR¥® (left) and STICR™ (right) lineage coupling scores between pairs of
celltypes, clustered by correlation distance and linkage. Values range from
positive (red, coupled) to negative (blue, anti-coupled). Light-grey lines link
clusters across stages. Clonal groups are surrounded with grey lines and
manually annotated (a-y). Astro, astrocyte; CGE, caudal ganglioniceminence;
Ctx, neocortex; EAC, central extended amygdala; Excit, excitatory; Hip,

hippocampus; IN, interneuron; Inhib, inhibitory; MGE, medial ganglionic
eminence; NP, neuronal precursor; OB, olfactory bulb; Oligo, oligodendrocyte;
OPC, oligodendrocyte precursor cell; PN, projection neuron; SPN, spiny
projection neuron. b, Feature plots highlighting examples of clonal groups that
are maintained (left), split (middle) or merged (right) on the UMAP plot for
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eminence; Ctx, neocortex; EAC, central extended amygdala; Excit, excitatory;
Hip, hippocampus; IN, interneuron; Inhib, inhibitory; MGE, medial ganglionic
eminence; NP, neuronal precursor; OB, olfactory bulb; Oligo, oligodendrocyte;
OPC, oligodendrocyte precursor cell; PN, projection neuron; SPN, spiny
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Extended DataFig.7|Clonal dispersion across cell types. UpSet plots
displaying intersections for cell type clusters in STICR® (top) and STICR®*
(bottom). Bar graphsontopindicate the number of observed intersections.
Thetotal cellnumber per cluster isshownontheright bar graphs. Intersection
cut-off wassetto3 tofit onthe plot. Astro, astrocyte; CGE, caudal ganglionic
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Extended DataFig. 8| Lineage divergencein ventralinhibitory neurons.

a, Dot plot showing gene expression markers of ventral inhibitory neuron
clusters. The size of the dots indicates the percentage of cells expressing a
specific marker gene. The colour of the dots represents the average expression
level. EAC, central extended amygdala; Inhib, inhibitory; MGE, medial
ganglioniceminence; OB, olfactory bulb; PN, projection neuron; SPN, spiny
projection neuron. b, Spatial transcriptomic mapping showinglocalization of
ventralinhibitory neuron clusters in the mouse brain. ¢, Schematic
representing the workflow for the manual dissection of striatum, olfactory
bulb (OB), and amygdala from P6-P8 brainsinjected with STICR®. d, UpSet plot

displaying clonalintersections amongst and within neuronal clusters of
striatum, OB and amygdala. Only dispersing clones are shown. Bar graph on top
indicate the number of observed intersections. The total cellnumber per
clusterisrepresented ontherightbar plot. Intersections amongst striatum,
OBand amygdalaare coloured ingreen. The heatmap shows the Spearman
distance between thelog-normalized average cluster gene expression. The
insets (top right) are UMAP plots of single cells from striatum, OB and amygdala
datasets, with clusters coloured by cell class type. NP, neuronal precursor.

e, Schematic oflineage divergence for ventral inhibitory neuron cell types.
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Extended DataFig. 9| Characterization of TrackerSeq. a, Vector mapsand
cloning strategy of TrackerSeq. PBase: piggyBactransposase. b, Sanger
sequencing results of individual £. coli colonies (‘clones’), depicting the
consensus sequence of the TrackerSeq lineage barcode. ¢, Pairwise hamming
distance of 1000 barcodes randomly sampled from the TrackerSeqlibrary.
d,-3.6 x10°raw sequencing reads were collapsedinto -2 x 10° clusters, where
eachclusterisdefined as aunique lineage barcode. e, UMAP plot of embryonic
scRNA-seq datasets, cells coloured by dataset type (blue, TrackerSeq; grey,
wild type). f, UMAP plot of single cells from the caudal, lateral and medial
ganglioniceminences (CGE, LGE, MGE) of wild type (wt) embryos, coloured by
clusters from Fig.3c. g, Histogram showing distribution of clone sizes for
TrackerSeq dataset. h, Clustered heatmap of TrackerSeq®*barcodes. Rows are
single GABAergic precursor cells for which both transcriptome and >1

TrackerSeqbarcodes wereretrieved; columnrepresents unique TrackerSeq
barcodes. Highlighted barcodes are those represented in Fig. 3i.

i, Developmental trajectories of single-cell transcriptomes, coloured by
pseudotimescore.j, RNA Velocity plot. Arrows direction represent prediction
of cells’ future gene expression. k, Bar graph quantifying the correlation-based
mapping of cells fromthe 5 embryonic precursor states to clusters of postnatal
GABAergic forebrain neurons, including cortical interneuron types. EAC,
central extended amygdala; IN, interneuron; Inhib, inhibitory; NP, neuronal
precursor; OB, olfactory bulb; PN, projection neuron; SPN, spiny projection
neuron.l, Scatter plots showing the normalized average cluster gene
expression of the top 100 marker genes for aselected embryonic cluster and
thetop 100 marker genes for aselected postnatal cluster. Clusters were
selected based on the mapping efficiency.
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Extended DataFig.10|The contribution oflineage to the generation of cell
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stochasticregulation (b, right) could drive the differentiation into different
subtypes. Lineage-dependent and independent mechanisms are not mutually
exclusive. c) Convergenceis the process by which similar cell states arise from
differentlineages.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Flow cytometry was done using a SY3200 Cell Sorter (software WinList 3D version 8.0.) or BD FACSAria Ill Cell Sorter (BD FACSDiva Software,
version 8.0.2).

Data analysis The following software/packages were utilized in the manuscript: 10x Genomics Cell Ranger software (version 3.0.2 and 5.0.1), Seurat (version
3.1.4), R (version 3.6.0 and version 4.0.1), DoubletFinder (version 2.0.3), Harmony (version 1.0), UMAP (https://github.com/Imcinnes/umap,
RNA velocity (R library velocyto.R, version 0.17.17, https://velocyto.org), Monocle (version 3), Bartender (version 1.1, https://github.com/
LaoZz777/bartender-1.1), BBMap (version 38.67, BBMap — Bushnell B. — sourceforge.net/projects/bbmap/), Bowtie (v5.2.1), UMI-tools
(v.0.5.1), LARRY (https://github.com/AllonKleinLab/LARRY, modified from last commit on 31 Oct 2018). All in-house scripts for analysis are
available at https://github.com/mayer-lab/Bandler-et-al_lineage.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The sequencing datasets generated for the current study are available in the Gene Expression Omnibus (GEO) at GEO accession number. Publicly available gene
expression data used for cluster annotation can be accessed as follows: DropViz (dropviz.org) and Mouse Brain Atlas (http://mousebrain.org/genesearch.html).
Visium Spatial Transcriptomic Datasets for sagittal and coronal sections of the mouse brain provided by 10x genomics (https://support.10xgenomics.com/spatial-
gene-expression/datasets).
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. After filtering out low-quality cells, the following number of cells was
analysed: Postnatal (STICR) analyses: 65700 cells; Postnatal (STIRC_AQS) analyses: 12519 cells; Embryonic analyses: 29380 cells.

Data exclusions  During sub-cluster assignment, cells that could not be assigned to a cell type based on marker gene expression were assigned “unknown” and
excluded from the lineage analysis (0.76% of the total cells). For analysis of the embryonic datasets, which focused on inhibitory lineages,

excitatory neurons were removed. For more details, see methods sections.

Replication Postnatal (STICR) analyses: 18 samples including 25 brains; Postnatal (STIRC_AQS) analyses: 3 samples including 10 brains; Embryonic
analyses: 7 samples including 14 brains.

Randomization Not relevant to this study; no need to prevent selection bias or bias in treatment assignments.

Blinding Not relevant to this study; no need to prevent selection bias or bias in treatment assignments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|Z Antibodies |:| ChiIP-seq
X Eukaryotic cell lines |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
Animals and other organisms
Human research participants

Clinical data

XXXOXO s
O0O0XO

Dual use research of concern

Antibodies

Antibodies used Primary antibodies used are: rabbit anti-CUX| 1-500 (Santa Cruz, #5C13024), rabbit anti-GABA 1:2000 (Merck, #A2052), rabbit
anti-lbal 1:500 (Wako, #019-19741), rabbit anti-OLIG2 1:500(Merck, #AB9610), rabbit anti-SIO0b 1:500 (Merck, #52644), rat
anti-CTIP2 [25B6] 1:500 (Abcam,#AB18465). Secondary antibodies used: 647 Alexa Fluor Plus goat anti-rabbit (Invitrogen,
#A32733), 555 Alexa Fluor goat anti-rat (invitrogen, #A21434), 555 Alexa Fluor goat anti-rabbit (Invitrogen, #A21428).




Validation

Below please find description of validation for all primary antibodies used in this study:

Rabbit anti-CUXI (SC, 5(13024) is a rabbit polyclonal IgG, whose epitope corresponds to amino-acids 1111-1332 mapping at the
(terminus of mouse Cuxl protein. Previously used to label excitatory neurons of upper cortical layers (Mattugini et al., Neuron, 2019,
103:1086-95).

Rabbit anti-GABA (Merck, A2052) is produced in rabbit affinity isolated antibody, previously used to label inhibitory GABAergic
neurons (Teissier et al., J. Neurosci., 2010, 30(31): 10563-74).

Rabbit anti-lbal (Wako #019-19741) is a rabbit polyclonal antibody largely used as standard marker for labelling microglia (Mattugini
et al., Neuron, 2019, 103: 1086-95).

Rabbit anti-OLIG2 (Merck AB9610) is a purified rabbit polyclonal antibody, previously used to label oligodendrocytes in the brain in
IHC (Teissier et al., J. Neurosci., 2010, 30(31): 10563-74).

Rabbit anti-SI00b (Merck, 52644) is a rabbit polyclonal antibody largely used as standard marker for labelling astrocytes (Bengoetxea
et al., Front. Cell. Neurosci., 2013, 7:170).

Rat anti-CTIP2 (Abeam AB18465) is a rat monoclonal antibody, previously used to label excitatory neurons of lower cortical layers
(Mattugini et al., Neuron, 2019, 103: 1086-95 ).

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

Lenti-X HEK293T (Takara Bio)

Cell lines were not authenticated.

Mycoplasma contamination Cell Lines were not tested for mycoplasma.

Commonly misidentified lines  No commonly misidentified lines used.

(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

See Methods section "Mice and In Utero Surgeries." Swiss Webster Wild Type Females and C57BL/6 Wild Type Females (between
6-10 weeks in age) were used for timed pregnant in-utero injections. In utero surgery and injection of STICR library were performed
on embryonic mouse forebrains at E10.5, E12.5, E13,5 and E14.5. Virally injected brains were collected from mouse pups between
ages postnatal day 5 to 15 (P5-15). For in utero electroporation of the TrackerSeq library, E12.5 embryos were used, and forebrains
were collected at E16.5. For collection of ganglionic eminences, embryos were collected at E13.5 and E15.5. Pregnant dams were
kept in single cages and pups were kept with their mothers, in the institutional animal facility under standard 12: 12 h light / dark
cycles, room temp: 72° +/- 2° F, humidity: 30%-70%.

This study did not involve wild animals.
This study did not involve samples collected from the field.

All mouse colonies were maintained in accordance with protocols approved by the IACUC at the NYU Grossman School of Medicine
and the Bavarian government at the Max Planck Institute of Neurobiology.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Please see "Sample Collection" section of the methods section.

For STICR datsets, brains were dissected in ice-cold pre-bubbled aCSF (Artificial Cerebrospinal Fluid), and sectioned into 400
um coronal sections on a Leica VT1200S Vibratome. Coronal brain sections were then dissected such that the forebrain was
collected. Alternatively, OBs, amygdalae and striata were manually dissected out from sliced brains, and processed
separately. Collected tissue was then dissociated with the Miltenyi BioTech Neural Tissue Dissociation Kit (P) (#130-092-628)
on the gentleMACS Dissociator according to the protocol of the manufacturer.

For embryonic TrackerSeq dataset, we collected E12.5-electroporated brains from 2 mouse embryos at E16.5 in Leibowitz
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medium with 5% FBS. Papain dissociation system was carried out according to the recommended protocol (Wortington,

#LK003150).
Instrument SY3200 Cell Sorter and BD FACSAria Il Cell Sorter
Software WinList 3D version 8.0., BD FACSDiva Software, version 8.0.2
Cell population abundance Cell population abundance was less than 1% of the total cells sorted.
Gating strategy The cell suspensions were first gated on forward scatter, then within this population based Dapi to exclude dead cells, and

finally on eGFP expression.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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