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Single-cell delineation of lineage and genetic 
identity in the mouse brain

Rachel C. Bandler1,2,3,11, Ilaria Vitali1,11, Ryan N. Delgado4,5,6,11, May C. Ho1, Elena Dvoretskova1, 
Josue S. Ibarra Molinas1, Paul W. Frazel2, Maesoumeh Mohammadkhani2, Robert Machold2, 
Sophia Maedler7, Shane A. Liddelow2,8,9, Tomasz J. Nowakowski4,5,6, Gord Fishell3,10 & 
Christian Mayer1 ✉

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic 
mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum 
of postmitotic neurons and glia1,2. The link between developmental lineage and 
cell-type diversity remains an open question. Here we used massively parallel tagging 
of progenitors to track clonal relationships and transcriptomic signatures during 
mouse forebrain development. We quantified clonal divergence and convergence 
across all major cell classes postnatally, and found diverse types of GABAergic neuron 
that share a common lineage. Divergence of GABAergic clones occurred during 
embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is 
initiated as a lineage-dependent process at the progenitor cell level.

The central nervous system consists of diverse types of neurons and glia 
that vary widely in morphology, physiology, connectivity and molecu-
lar markers3,4. During development, molecular diversity is initially 
reflected in the regional expression of a narrow set of transcription 
factors in mitotic progenitors3. Transcriptional signatures that dis-
tinguish mature neuronal subtypes emerge only after cell-cycle exit 
and become more sharply defined during postnatal development1,2,5–7. 
The extent to which developmental trajectories are predetermined by 
specified progenitor lineages during mitotic stages, or emerge through 
interactions with the environment later in development, remains an 
open question.

Although previous lineage analyses have elucidated the spatial 
distribution of clones, they provided little information regarding 
subtype identities of sister cells8–12. More recently, breakthroughs 
in cellular barcoding strategies and single-cell sequencing13–21 have 
facilitated the recording of lineage tags and gene expression pro-
files in in vitro systems22, in zebrafish20,23,24 and in mouse embryo-
genesis25, but have not yet been used to study neurogenesis in the 
mouse forebrain.

Here we combined high-throughput single-cell RNA sequenc-
ing (scRNA-seq) with massively parallel tagging of progenitors to 
reconstruct lineage relationships during neurogenesis of the fore-
brain. We focus our analysis on GABAergic neurons, which displayed 
a surprising degree of clonal divergence among different types of 
inhibitory neurons. We found that immediately after cell-cycle exit, 
GABAergic neurons that originated from the same mitotic progenitor 
diverged into different developmental trajectories. Our findings thus 
revealed that differentiation into GABAergic subtypes is initiated as a 
lineage-dependent process at the progenitor cell level.

 
Capture of gene expression and lineages
To determine lineage relationships of diverse cell types in the mouse 
forebrain, we first implemented a lentiviral lineage barcoding method 
called STICR (scRNA-seq-compatible tracer for identifying clonal rela-
tionships; Fig. 1a, Extended Data Fig. 1a, see companion paper26), which 
enables massively parallel tagging of single cells using a high-diversity 
lentiviral library that encodes synthetic oligonucleotide sequences (line-
age barcodes). The STICR tag library was introduced via in utero injections 
into the lateral ventricles of mouse embryos at embryonic day 10.5 (E10.5; 
STICRE10), E12.5 (STICRE12), E13.5 (STICRE13) and E14.5 (STICRE14), stages 
that encompass the peak of neurogenesis. This resulted in labelling of 
mitotic progenitors along the ventricles and their daughter cells that 
migrated throughout the forebrain, including the cortex, basal ganglia, 
hippocampus and olfactory bulb (OB) (Fig. 1b, Extended Data Fig. 1b). 
We waited until postnatal stages when labelled cells differentiated into 
mature cell types, then dissociated forebrain tissue, FACS-enriched the 
virally infected cells by selecting for enhanced GFP (eGFP) expression, and 
performed scRNA-seq with the 10x Chromium System (Fig. 1a, Extended 
Data Fig. 1c). We analysed transcriptomes from 65,700 high-quality cells 
that passed filtering (see Methods). To group cells on the basis of patterns 
of gene expression, we performed a principal components analysis27 and 
batch normalized the different replicates using Harmony28, followed 
by a UMAP visualization and clustering analysis (Extended Data Fig. 1d, 
Supplementary Data 1), and tracked the position of clonally related cells 
in the transcriptomic cell-state landscape (Extended Data Fig. 1e–h). 
The average and maximum size of multicellular clones was larger when 
the lentiviral library was introduced at E10.5 than at E12.5 or E14.5, when 
mitotic progenitors presumably undergo fewer divisions (Fig. 1c).
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During embryogenesis, asymmetrically dividing radial glia and 
transiently amplifying mitotic progenitors along the ventricular sur-
face give rise to postmitotic neurons, astrocytes and oligodendro-
cytes3,4,29–32 (Fig. 1d). To quantify clonal relationships between cell 
classes, we assigned the 41 clusters into cell classes (Fig. 1d) based on 
the co-expression of multiple marker genes (Extended Data Fig. 2a, 
b, Supplementary Data 2) and counted the distribution of STICR tags 
across cell classes (Extended Data Fig. 2c, d). Next, we assessed the 
likelihood of recovering shared lineage barcodes from all pairs of 
cell classes and quantified lineage coupling by calculating a z-score 
for clone counts with respect to a random distribution (see Meth-
ods)24. Hierarchical clustering of the pairwise correlation between 
coupling scores revealed structured groups, which comprised clonally 
related cell classes (Fig. 1e). STICRE10 and STICRE14 clones stayed pre-
dominantly within a class (Fig. 1e). However, STICRE10 showed stronger 
coupling between oligodendrocytes and oligodendrocyte precursor 
cells (OPCs), whereas STICRE14 showed stronger coupling between 
oligodendrocytes, OPCs and astrocytes (Fig. 1e). Notably, 37.2% of 
STICRE10 clones contained cells of a single class, compared with 62% 
of STICRE14-descent clones (Fig. 1f). Moreover, 57.2% of STICRE10 clones 
were glial clones, 19% were neuronal clones and 23.8% were mixed 
clones (that is, clones with cells spanning multiple cell classes) ver-
sus 21.7%, 62% and 16.3%, respectively, for STICRE14 (Fig. 1g). STICRE10 
mitotic progenitors produced larger clones, with up to 30 sister cells 
per clone, compared to STICRE14 mitotic progenitors, which produced 
up to 13 sister cells (Fig. 1h). Together, early-labelled progenitors gen-
erated a higher proportion of clones that dispersed across multiple 
cell classes than late-labelled progenitors that produced a majority of 
neuronal clones, consistent with progressive temporal fate specifica-
tion of progenitors.

Clonal convergence and divergence
Our analysis thus far focused on the lineage relationships among cell 
classes. To gain higher resolution, we next explored clonal relationships 
between finer-grained subtypes. The 41 clusters were annotated on 
the basis of marker gene expression and mapped to anatomical brain 
regions using Visium Spatial Gene Expression33 (Extended Data Figs. 3, 4,  
Supplementary Data 3). Of these, nine clusters were reclustered to gain 
a higher level of detail (for example, cluster 7 was split into clusters 
7a and 7b; Fig. 2a). Hierarchical clustering of the pairwise correlation 
between coupling z-scores revealed structured groups of clusters 
(‘clonal groups’ a–y; Extended Data Fig. 5).

First, we tested whether excitatory and inhibitory neurons in the 
neocortex originate from the same progenitor. We identified clusters 
of cortical excitatory and inhibitory neurons based on the expression 
of canonical marker genes (Gad1 inhibitory and Slc17a7 excitatory) 
and Visium Spatial Gene Expression, and quantified their clonal rela-
tionship (Extended Data Fig. 6). In contrast to Delgado et al.26 in the 
same issue, who found clonally related GABAergic and glutamatergic 
neurons in humans, we observed no evidence for shared lineages of 
excitatory and inhibitory cortical neurons in STICRE10 or STICRE14 mice 
(Extended Data Fig. 6c).

Next, we tested whether developmental histories can be predicted 
from the assumption that cell types with transcriptomically similar 
identities are clonally related. This assumption may not always hold 
true, because similar cell states could arise from different lineages 
(that is, convergence) and distinct cell states could share a lineage 
(that is, divergence) (Fig. 2b). To explore these possibilities, we com-
pared hierarchies constructed from transcriptome information and 
hierarchies constructed from lineage coupling correlations (Fig. 2c). 
Seven astrocyte clusters appeared transcriptomically similar to one 
another, as they occupied a single clade on the transcriptome dendro-
gram, but largely belonged to different clades on the lineage dendro-
gram (Fig. 2c, clusters highlighted in purple). Moreover, we found that 
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Fig. 1 | Clonal relationships of forebrain cell classes determined via 
simultaneous capture of transcriptome and lineage barcodes from single 
cells. a, Schematic of STICR experimental workflow. b, Images of coronal brain 
sections injected with STICR. c, Quantification of the average clone size. The 
error bars indicate s.e.m. Each dot represents a clone. n = 1,117 for STICRE10, 
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projection (UMAP) plot of single cells coloured by cell classes. In the inset, a 
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coupling scores between pairs of cell classes, clustered by correlation distance 
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astrocyte lineages of the dorsal forebrain and astrocyte lineages of the 
ventral forebrain converged on seemingly identical astrocyte subtypes.  
In particular, clusters ‘3 Astrocyte Slca12’ and ‘12a Astrocyte Ntrk2’ were 

both clonally related to clusters ‘6 Inhibitory neuron OB Synpr’ and  
‘5a Excitatory neuron upper cortex’ (Fig. 2d, Extended Data Fig. 7), which 
suggests that distinct ventral and dorsal radial glia can give rise to tran-
scriptomically similar astrocyte populations (Fig. 2e). Another example 
of convergence was OB neuroblasts (‘4 Inhibitory NP OB Ccnd2’) and 
dentate gyrus neuroblasts (‘17 Excitatory NP Sox11’), which occupied 
a single clade on the transcriptome dendrogram but distant clades on 
the lineage dendrogram (Fig. 2c). Thus, cells originating from distinct 
mitotic progenitors located in different brain areas can converge to 
similar transcriptomic identities.

The most striking example of clonal divergence was observed for 
inhibitory neuron clones, which are known to derive from mitotic pro-
genitors in the ganglionic eminences of the ventral forebrain (Fig. 2c, 
clusters highlighted in green). In particular, we identified six GABAergic 
projection neuron and interneuron clusters of the subpallium and OB 
that displayed high lineage coupling (Fig. 2c, Extended Data Fig. 5, see 
‘clonal groups’ h,u,v). Neurons within these clusters included direct 
(D1) and indirect (D2) spiny projection neurons (SPNs) of the striatum 
(clusters 7b and 7a, respectively), projection neurons of the central 
extended amygdala (cluster 34), intercalated cells (ITCs) of the amyg-
dala (cluster 8) and OB interneurons (clusters 2 and 6; Extended Data 
Fig. 8a, b). These GABAergic neurons were clonally related, although 
they showed drastically different transcriptomic profiles (Fig. 2c, f, 
Extended Data Figs. 7, 8a) and are known to have different morpholo-
gies, connectivity patterns and occupy different brain regions3. For 
example, ITCs of the amygdala were clonally related to interneurons 
of the OB and multiple GABAergic projection neuron types, includ-
ing SPNs of the striatum and central extended amygdala. Moreover, 
both D1 and D2 SPNs were clonally related to interneurons of the OB 
(Fig. 2f). Next, we created three additional STICRE12 datasets of ana-
tomically dissected brain regions (the OB, striatum and amygdala) 
and measured the similarity between the average gene expression of 
clusters (Extended Data Fig. 8c, d). Clones of GABAergic neurons were 
distributed across different forebrain structures and frequently across 
transcriptomically diverse subtypes. Thus, individual progenitors of 
GABAergic neurons can give rise to a wide range of different GABAergic 
subtypes (Extended Data Fig. 8e).

Embryonic divergence of GABAergic neurons
To test whether clonal divergence of GABAergic subtypes is the result 
of early fate specification within embryonic progenitor zones, or rather 
emerges during postnatal development, we studied single-cell lineage 
histories when molecular diversity of cell types first occurs. Because 
STICR labels mitotic progenitors indiscriminately along the embryonic 
ventricles, it is not suited to deliver a large number of lineage tags to a 
spatially defined region. To tag mitotic progenitors specifically in the 
ganglionic eminences, we developed a transposon-based barcoding 
approach (TrackerSeq; Fig. 3a, Extended Data Fig. 9a–d; see Methods) 
that uses the piggyBac transposon system to randomly integrate an 
eGFP reporter cassette into the genome of electroporated mitotic 
progenitors24,34. A DNA sequence containing random nucleotides was 
cloned into the 3′ untranslated region of eGFP, making it detectable 
by scRNA-seq.

We targeted TrackerSeq to ganglionic eminence progenitors at 
E12.5, FACS-enriched electroporated cells at E16.5, and performed 
scRNA-seq (Fig. 3a, b). Hierarchical clustering of TrackerSeq DNA tags 
organized cells into 256 distinct multicellular clones of GABAergic neu-
rons (Extended Data Fig. 9e–h). To gain a high resolution of embryonic 
cell states in the ganglionic eminences, we integrated the TrackerSeq 
datasets with wild-type scRNA-seq datasets that we collected at E13.5 
and E15.5 from the medial, caudal and lateral ganglionic eminences 
(Fig. 3c, Extended Data Fig. 9e, f). We performed a pseudotime tra-
jectory analysis using Monocle335, which is a diffusion pseudotime 
algorithm that learns the sequence of gene expression changes and 
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identifies developmental branch points (Extended Data Fig. 9i).  
In addition, we used RNA velocity36, a method that compares the ratios 
of unspliced and spliced mRNA per gene, to predict the direction and 
speed of cell-state transitions across the trajectories (Extended Data 
Fig. 9j).

From a common pool of mitotic progenitors, five different tra-
jectories (that is, precursor states) of postmitotic inhibitory neu-
rons emerged soon after cell-cycle exit, which we named after the 
top marker genes that these clusters expressed (‘i_Six3/Gucy1a3’, 
‘i_Ebf1/Isl1’, ‘i_Phlda1/Isl1’, ‘i_Nr2f2’ and ‘i_Nxph1’; Fig. 3c, d). We 
used a correlation-based distance metric (see Methods) to map 
cells from each embryonic precursor state to inhibitory clusters of 
the postnatal STICR dataset (Fig. 3e–g, Extended Data Fig. 9k). For 
example, 83% of cells from the trajectory ‘i_Six3/Gucy1a3’ mapped 

to the postnatal cluster ‘7a D2 SPNs’, and 89% of cells from trajectory 
‘i_Ebf1/Isl1’ mapped to cluster ‘7b D1 SPNs’ (Fig. 3g), suggesting an 
early emergence of postnatal signatures. Consistent with this idea, 
OB interneuron precursors, as well as D1 and D2 striatal precursors, 
maintained multiple marker genes through development (Extended 
Data Fig. 9l).

We next asked whether clonally related cells traverse the same 
or different trajectories. Notably, while cells of 63.6% of clones 
entered the same trajectory, 36.4% of the clones diverged into dif-
fering trajectories shortly after they exited the cell cycle (Fig. 3h, i).  
For example, we found sister cells located on the ‘7b D1 SPN’ and 
‘7a D2 SPN’ trajectories, ‘7a D2 SPN’ and ‘8 Inhibitory ITC–amygdala’ 
trajectories, and the ‘2 Inhibitory neuron OB Meis2’ and ‘8 Inhibitory 
ITC–amygdala’ trajectories (Fig. 3h, i). Taken together, these data 
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Fig. 3 | Newly born GABAergic sister cells diverge into different precursor 
states. a, Schematic of the TrackerSeq experimental workflow. PBase, 
piggyBac transposase. b, Images of coronal brain sections electroporated with 
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with precursor state cells coloured based on the mapping results. g, Bar graph 
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VS, ventral striatum. h, UpSet plot for all intersections of TrackerSeqE12. The bar 
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show that progenitor cells in the ganglionic eminences can produce 
daughter cells that traverse different developmental trajectories 
during peak neurogenesis. This suggests that clonal divergence 
into different GABAergic precursor states is initiated at the level of 
mitotic progenitor cells and thus as a lineage-dependent process 
(Extended Data Fig. 10).

Discussion
During neurogenesis, a wide range of postmitotic neurons and glia 
arise from mitotic progenitors lining the embryonic ventricles. The 
extent to which developmental histories of mature cell types can be 
predicted on the basis of the assumption that cell types with transcrip-
tomically similar identities are developmentally related has remained 
obscure. Using methods that simultaneously capture transcriptomic 
signatures and lineage histories of individual cells, we found both tran-
scriptomically similar cell types that arose from different lineages (that 
is, convergence) and transcriptomically distinct cell types that share a 
clonal relationship (that is, divergence). The most striking example of 
divergence was GABAergic clones stemming from mitotic progenitors 
in the ventral forebrain. These clones did not only disperse into distinct 
brain regions, but also diverged into types with grossly different tran-
scriptomic signatures. While perhaps some degree of clonal divergence 
would be expected early in neurogenesis at a time when a large number 
of radial glial progenitors undergo symmetric proliferative divisions, 
our results reveal clonal divergence at later stages of neurogenesis.

In agreement with Mayer et al.1, we found that in all ganglionic emi-
nences, newborn GABAergic neurons diverge into different precursor 
states after cell-cycle exit. It was not clear whether clonally related sis-
ter cells enter the same or different precursor states (Extended Data 
Fig. 10). Because our new methods capture clonal histories, we were 
able to address this question and found that newborn sister cells often 
diverged in different trajectories, suggesting that mechanisms on the 
level of progenitors delineate genetic identity and ultimately cell fate37,38. 
The ganglionic eminences can be divided into more than a dozen pro-
genitor subdomains that are uniquely demarcated by the combinatorial 
expression of transcription factors39,40. The superimposition of a cellu-
lar mechanism that gives rise to different postmitotic signatures with 
domain-specific factors and morphogens provides a large combinatorial 
framework that could explain how an enormous diversity of inhibitory 
types is generated in the forebrain. Whether the sequential production 
of different types follows a stereotypic sequence, or involves stochastic 
events that occur during cell-cycle exit, remains unknown. One pos-
sibility is that the sequential production of cell types depends on the 
interaction of progenitors with developmentally dynamic transcription 
factors and morphogens.

While recent work has examined how cell populations vary across 
species41, the methods developed in our study and Delgado et al. 26 in 
the same issue enable comparison of developmental histories of cell 
types across mouse and human. The identification of species-specific 
lineages will provide insight into the evolution of cellular diversity. 
Both STICR and TrackerSeq capture partial clones, which is sufficient 
to detect clonal divergence and convergence. However, at present, our 
methods can infer but not prove lineage restriction.

Somatic mutations, which are clonally inherited, contribute to 
numerous neurodevelopmental diseases42–47. Determining lineage 
relationships might explain why certain subsets of cells are affected in 
developmental disorders. Looking forward, we anticipate that studies 
combining lineage information with genetic mutations will facilitate 
the explorations of such clinical phenotypes.
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Methods

STICR lentiviral library preparation and validation
We synthesized a high-complexity lentivirus barcode library that 
encodes approximately 60–70 million distinct oligonucleotide RNA 
sequences (STICR barcodes). STICR barcodes comprised three distinct 
oligonucleotide fragments cloned sequentially into a multicloning 
site within the 3′ UTR of an enhanced green fluorescent protein (eGFP) 
transgene under control of a ubiquitous CAG promoter in a modified 
lentiviral plasmid (pSico, Addgene, #11578). Each barcode fragment 
was derived from one of three oligonucleotide pools comprising 500 
distinct sequences, allowing for up to 125 million unique combinato-
rial barcode sequences (5003). Following the ligation of each oligonu-
cleotide fragment into the multicloning site, the plasmid library was 
electroporated into electrocompetent MegaX DH10B cells (Fisher, 
#C640003) and grown for 12 h overnight at 37 °C on LB agar plates 
(Fisher, BP1425-500) with carbenicillin (Fisher, #BP26481). The result-
ing colonies were scraped and plasmid extraction was performed using 
a midi-prep kit (Macherey Nagel, 740412.5). This process was repeated 
until all three barcode fragments were added.

Lentivirus production was performed by first transfecting HEK293 
cells with the barcode library along with lentiviral helper plasmids 
pMDLg/pRRE (Addgene, #12253), pRSV-Rev (Addgene, #12253) and 
envelope protein VSV-G (Addgene, #8454) using JetPrime (PolyPlus, 
114-07). HEK293 media were changed 24 h after transfection and 
replaced with 35 ml Ultraculture media (Lonza BE12-725F), 350 µl 
sodium pyruvate (11 mg/ml stock, Thermo Fisher, 11360070), 350 µl 
sodium butyrate (0.5 M stock, Sigma, B5887), and 350 µl antibiotic/
antimycotic (Thermo, 15-240-062) (http://syntheticneurobiology.org/
protocols/protocoldetail/31/12). After an additional 48 h, media were 
collected, concentrated with an ultracentrifuge, and then resuspended 
in 50–100 µl of sterile PBS.

To confirm that transcribed STICR barcodes can be accurately recov-
ered using scRNA-seq, we performed a ‘barnyard experiment’ in which 
we infected separate cultures of human cortical cells (GW18 sample) and 
mouse 3T3 cells (ATCC) with different STICR libraries. These libraries 
could be distinguished from each other by a constant sequence unique 
to each library (‘viral index’). After 3 days, we dissociated cultures with 
papain and FACS-isolated eGFP+ cells. eGFP+ cells from both species 
were then mixed together and loaded into a 10X Genomics Chromium 
Single Cell ’3 prime kit (10x Genomics, PN-100007). Following sequenc-
ing, transcript libraries were aligned with CellRanger (version 3.0.2) 
to a hybrid mouse/human genome and droplets were determined to 
be either a mouse cell, human cell or multiplet. STICR barcodes were 
recovered (see below) and the recovered viral index sequence was used 
to match recovered barcode to the barcode initially used to infect each 
experiment. Finally, we quantified recovered viral indices for mouse, 
human and multiplet droplets.

To measure STICR plasmid library barcode diversity, we first digested 
1 µg of each library with XhoI and then ligated a PCR adapter contain-
ing a unique molecular identifier (UMI) to this site. Ligation products 
were amplified by PCR using Q5 Hot Start High Fidelity 2x Master Mix 
(NEB, #M0494) using primers targeting the STICR sequencing primer 
site and the adapter sequence using the following program: (1) 98 °C 
for 30 s, (2) 98 °C for 10 s, (3) 62 °C for 20 s, (4) 72 °C for 10 s, (5) repeat 
steps 2–4 15 times, (6) 72 °C for 2 min, and (7) 4 °C hold. Following PCR 
amplification, a 0.8–0.6× dual-sided size selection was performed using 
Ampure XP beads (Beckman Coulter, #A63881). The resulting libraries 
were sequenced to the depth of approximately 30 million reads. STICR 
barcode sequences were extracted using custom scripts that removed 
PCR duplicate reads using the UMI (see below in ‘ScRNA-seq analysis 
and STICR barcode analysis’ for a general description). Since it is pro-
hibitively expensive to sequence the library to saturation, we extrapo-
lated the total number of unique STICR barcodes using the Preseq48 
command lc_extrap and default settings. Together with the measured 

relative barcode abundances, we used the extrapolated STICR barcode 
library size to model barcode collisions using the R (v4.0.1) program-
ming language. Using base R functions, we simulated the labelling of 
a starting population of cells with a range of sizes from 101 to 106 and 
repeated each simulation 20,000 times. We then quantified the mean 
number of unique barcodes chosen for each starting cell population 
size. The difference between the starting cell population size and the 
number of unique barcodes present represented the number of colli-
sions that had happened at that population size.

TrackerSeq library preparation and validation
TrackerSeq is a piggyBac transposon-based34 library, developed to be 
compatible with the 10x single-cell transcriptomic platform. It records 
the in vivo lineage history of single cells through the integration of 
multiple oligonucleotide sequences into the mouse genome. Each of 
these individual lineage barcodes is a 37-bp long synthetic nucleotide 
that consists of short random nucleotides bridged by fixed nucleo-
tides. This design results in a library with a theoretical complexity of 
approximately 4.3 million lineage barcodes (168) with each barcode 
differing from another by at least 5 bp.

To construct the library, the piggyBac donor plasmid (Addgene 
#40973) was altered to include a number of modifications. A Read2 
partial primer sequence was cloned into the 3′ UTR of the eGFP to enable 
retrieval by the 10x platform. The sucrose gene was cloned into the vec-
tor, so that empty plasmids that fail to incorporate a lineage barcode 
during the cloning process are removed. Following digestion with BstXI 
to remove the sucrose gene, the plasmid was run on a gel and column 
purified. The lineage barcode oligo mix was cloned downstream of 
the Read2 partial primer sequence in the purified donor plasmid via 
multiple Gibson Assembly reactions, as previously described49. Gibson 
assembly reactions (NEB, #E2611S) were then pooled and desalted with 
0.025 μm MCE membrane (Millipore, #VSWP02500) for 40 min, and 
finally concentrated using a SpeedVac. 3 μl of the purified assembly is 
incubated with 50 μl of NEB10-β-competent Escherichia coli cells (NEB, 
#C3019H) for 30 min at 4 °C, then electroporated at 2.0 kV, 200 Ω, 25 µF 
(Bio-Rad, Gene Pulser Xcell Electroporation Systems). Electroporated 
E. coli were incubated for 90 min shaking at 37 °C and then plated into 
pre-warmed sucrose/ampicillin plates. The colonies were scraped off 
the plates after 8 h, and the plasmids were grown in LB medium with 
ampicillin up to OD = 0.5. The plasmid library was purified using col-
umn purification kit (Zymo Pure II Plasmid Maxiprep kit, #D4202). 
We first assessed the integrity of the TrackerSeq barcode libraries by 
sequencing the library to a depth of approximately 42 million reads to 
test whether any barcode was over-represented. Around 3.6 million 
valid lineage barcodes that had a quality score of 30 or higher were 
extracted from the R2 FASTQ files using Bartender50. One thousand 
barcodes were randomly sampled from the extracted lineage barcodes 
to assess hamming distance. To group similar extracted barcodes into 
putative barcodes, Bartender assigns a UMI to each barcode read to 
handle PCR jackpotting errors, and clusters them. The cluster distance 
was set to 3 so that extracted barcodes within 3 bp of each other have a 
chance of being clustered together. A total of 2 × 105 clusters of barcodes 
were identified, suggesting that the barcode library has a diversity that 
is at least in the 105 range.

Mice and in utero surgeries
All mouse colonies were maintained in accordance with protocols 
approved by the Bavarian government at the Max Planck Institute 
of Neurobiology or the IACUC at the NYU Grossman School of Medi-
cine. Swiss Webster and C57BL/6 wild-type females were used, and 
embryos were staged in days post-coitus, with E0.5 defined as 12:00 
of the day a vaginal plug was detected after overnight mating. Timed 
pregnant mice were anaesthetized with isoflurane (5% induction, 
2.5% during the surgery) and treated with the analgesic Metamizol 
(WDT). In utero surgery and injection of the STICR lentiviral library 
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in the lateral ventricles of the embryonic mouse forebrains at E10.5–
E14.5 were performed as previously described51. A microsyringe pump 
(Nanoject III Programmable Nanoliter Injector (100/240V) (#DRUM3-
000-207)) was used to inject approximately 0.5 µl of the STICR library 
per embryo. For embryos injected at E10.5, ultrasound backscatter 
microscope (UBM) was used to allow for image-guided injections. 
For in utero electroporation of the TrackerSeq library, E12.5 embryos 
were injected unilaterally with 700 nl of DNA plasmid solution made of  
0.5 µg/µl pEF1a-pBase (piggyBac-transposase; a gift from R. Platt) and 
the TrackerSeq library 0.5 µg/µl, diluted in endo-free TE buffer and 
0.002% Fast Green FCF (Sigma), into the lateral ventricle via a microsy-
ringe pump. Embryos were then electroporated by holding each head 
between platinum-plated tweezer electrodes (5 mm in diameter, BTX, 
#45-0489) across the uterine wall, while 5 electric pulses (35 V, 50 ms 
at 1 Hz) were delivered with a square-wave electroporator (BTX, ECM 
830)52. Pregnant dams were kept in single cages and pups were kept 
with their mothers, in the institutional animal facility under standard 
12:12-h light–dark cycles, at a room temperature of 72° F ± 2° F and a 
humidity of 30–70%.

Sample collection
Virally injected brains were collected from mouse pups between ages 
postnatal day 5 and day 15 (P5–P15) (Supplementary Data 1). Brains 
were dissected in ice-cold pre-bubbled artificial cerebrospinal fluid 
(aCSF), and sectioned into 400-µm coronal sections on a Leica VT1200S 
Vibratome. Coronal brain sections were then dissected such that the 
forebrain was collected, thus excluding the thalamus, hypothalamus, 
brainstem and cerebellum. Alternatively, OBs, amygdalae and striata 
were manually dissected out from sliced brains, and processed sepa-
rately. Collected tissue was then dissociated with the Miltenyi BioTech 
Neural Tissue Dissociation Kit (P) (#130-092-628) on the gentleMACS 
Dissociator according to the protocol of the manufacturer. To iso-
late and collect virally infected cells, flow cytometry was done using a 
SY3200 Cell Sorter (software WinList 3D version 8.0.) or BD FACSAria 
III Cell Sorter (BD FACSDiva Software, version 8.0.2) with a 100-µm 
nozzle. The cell suspensions were first gated on forward scatter, then 
within this population based on eGFP expression. eGFP-expressing cells 
were collected in bulk for downstream processing on the 10x Genomics 
Chromium platform.

Ganglionic eminences were collected from mouse embryos at E13.5 
and E15.5 (Supplementary Data 1) according to the following protocol: 
embryos were removed from the uterus of wild-type Swiss Webster 
females, and stored in ice-cold L-15 medium. Brains were removed from 
the embryonic skulls, and the MGE, CGE and LGE were dissected out. 
MGEs, CGEs and LGEs were then each pooled together from multiple 
embryos, so that each eminence type was processed independently, 
and dissociated with the Miltenyi BioTech Neural Tissue Dissociation 
Kit (P) (#130-092-628) on the gentleMACS Dissociator according to 
the protocol of the manufacturer.

For embryonic lineage tracing, we collected electroporated brains 
from mouse embryos at E16.5 (Supplementary Data 1) in Leibowitz 
medium with 5% FBS. Papain dissociation system was carried out 
according to the recommended protocol (Wortington, #LK003150), 
and to isolate positive cells, flow cytometry was done using a BD FAC-
SAria III Cell Sorter (BD FACSDiva Software, version 8.0.2) with a 100-µm 
nozzle. For all FACS experiments, non-eGFP-expressing brain tissue 
was used as a negative control for excluding background fluorescence.

Immunohistochemistry
E14.5 and P10 mice were perfused with 4% PFA and post-fixed over-
night in 4% PFA at 4 °C. Coronal sections (60 µm) were performed using 
vibrating microtome. Immunofluorescent staining was performed as 
follows: sections were incubated for 1 h at room temperature in block-
ing solution (5% BSA and 0.3% Triton-X100 in PBS), then overnight at 
4 °C with primary antibodies. Sections were rinsed three times in PBS 

1X and incubated for 1 h at room temperature with the corresponding 
secondary antibody (1:500, Life Technologies). Three washes with PBS 
1X were performed, the second wash using Hoechst staining solution 
(1:10,000 in PBS 1X, Invitrogen) to label nuclei, before dry mounting 
on slides with Fluoromount-G (Invitrogen). For imaging, the primary 
somatosensory area was used as region of study. Images were acquired 
on a Leica Sp8 confocal laser scanning microscope.

The primary antibodies used included: rabbit anti-CUX1 1:500 
(Santa Cruz, #SC13024), rabbit anti-GABA 1:2,000 (Merck, #A2052), 
rabbit anti-GFP 1:1,000 (Invitrogen, #A11122), rabbit anti-Iba1 1:500 
(Wako, #019-19741), rabbit anti-OLIG2 1:500 (Merck, #AB9610), rabbit 
anti-S100β 1:500 (Merck, #S2644), and rat anti-CTIP2 [25B6] 1:500 
(Abcam, #AB18465).

The secondary antibodies used were: 647 Alexa Fluor plus goat 
anti-rabbit (Invitrogen, #A32733), 555 Alexa Fluor goat anti-rat (Inv-
itrogen, #A21434), and 555 Alexa Fluor goat anti-rabbit (Invitrogen, 
#A21428).

Preparation of RNA-seq, STICR and TrackerSeq libraries
For experiments utilizing the 10x Genomics platform, the following 
reagents were used: Chromium Single Cell 3′ Library & Gel Bead Kit 
v2 (PN-120237), Chromium Single Cell 3′ Chip Kit v2 (PN-120236) and 
Chromium i7 Multiplex Kit (PN-120262) were used according to the 
manufacturer’s instructions in the Chromium Single Cell 3′ Reagents 
Kits V2 User Guide; Chromium Single Cell 3′ Library & Gel Bead Kit v3 
(PN-1000075), Chromium Single Cell 3′ Chip Kit V3 (PN-1000073) and 
Chromium i7 Multiplex Kit (PN-120262) were used according to the 
manufacturer’s instructions in the Chromium Single Cell 3′ Reagents 
Kits V3 User Guide; Chromium Single Cell 3′ Library & Gel Bead Kit v3.1 
(PN-1000268), Chromium Single Cell 3′ Chip Kit V3.1 (PN-1000127) 
and Dual Index Kit TT Set A (PN-1000215) were used according to the 
manufacturer’s instructions in the Chromium Single Cell 3′ Reagents 
Kits V3.1 User Guide (Dual Index).

The lineage barcode library retrieved from RNA was amplified with 
a standard NEB protocol for Q5 Hot Start High-Fidelity 2X Master Mix 
(#M094S) in a 50-µl reaction, using 10 µl of cDNA as template. Specifi-
cally, each PCR contained: 25 µl Q5 High-fidelity 2X Master Mix, 2.5 µl  
10 µM P7_indexed reverse primer, 2.5 µl 10 µM i5_indexed forward rimer, 
10 µl molecular grade H20, 10 µl cDNA (for primer sequences and indi-
ces, see Supplementary Data 1). The PCR protocol for amplifying STICR 
lineage libraries was: (1) 98 °C for 30 s, (2) 98 °C for 10 s, (3) 62 °C for 
20 s, (4) 72 °C for 10 s, (5) repeat steps 2–4 11–18 times, (6) 72 °C for 
2 min, and (7) 4 °C hold. The PCR protocol for amplifying TrackerSeq lin-
eage libraries was: (1) 98 °C for 30 s, (2) 98 °C for 10 s, (3) 63 °C for 20 s, 
(4) 72 °C for 10 s, (5) repeat steps 2–4 11–18 times, (6) 72 °C for 2 min, 
and (7) 4 °C hold. Libraries were purified with a dual-sided SPRI selec-
tion using Beckman Coulter Agencourt RNAClean XP (A63987), and 
quantified with an Agilent BioAnalyzer. Some STICR libraries (DI_T_199, 
DI_T_203, DI_T_211, DI_T_222, DI_T_233, DI_T_238, DI_T_239, DI_T_240, 
DI_T_241, DI_T_242, DI_T_287, DI_T_289, DI_T_304 and DI_T_305) were 
constructed and sequenced twice to achieve higher resolution.

Sequencing and read mapping
Transcriptome and barcode libraries were sequenced either on an 
Illumina NextSeq 500 at the Next Generation Sequencing Facility of 
the Max Planck Institute of Biochemistry, at the Genomics Core Facil-
ity at the Helmholtz Center in Munich, or on a NovaSeq at the Broad 
Institute. For a detailed report on each dataset, see Supplementary 
Data 1. Sequencing reads in FASTQ files were aligned to a reference 
transcriptome (mm10-2.1.0) and collapsed into UMI counts using the 
10x Genomics Cell Ranger software (version 3.0.2 or 5.0.1).

Processing of STICR barcode reads
STICR barcode analysis was performed using custom scripts. First, 
BBMap (BBMap—Bushnell B.; sourceforge.net/projects/bbmap/) was 

http://sourceforge.net/projects/bbmap/
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used to remove low-quality reads and then extract reads containing 
STICR barcode sequences. Then, BBMap was used to extract individual 
STICR barcode fragments, which were then aligned to our pre-defined 
fragment reference sets using Bowtie (v5.2.1)53, allowing for up to two 
mismatches per fragment. Aligned STICR barcodes were compiled 
into a file containing their corresponding 10X cell barcode and 10X 
UMI sequences using Awk. Finally, UMI-tools (v.0.5.1)54 was used to 
remove duplicate STICR barcode or cell barcode reads by UMI, allow-
ing for 1 bp mismatch in the UMI. STICR barcodes–CBC pairings with at 
least five distinct UMIs were retained for clonal analysis. Among cells 
with multiple STICR barcodes passing these criteria, we attempted to 
find a ‘dominant’ STICR barcode that we defined as containing greater 
than or equal to five times the number of UMI counts than the next 
most abundance STICR barcode. Dominant STICR barcodes meet-
ing these criteria were considered to be the clonal barcode of their 
respective cells and retained for further analysis. Within metadata files, 
these CBC–STICR barcode pairings are referred to as tier 2, whereas 
CBC–STICR barcode pairs with only a single STICR barcode meeting 
threshold criteria are referred to as tier 1. Only CBCs associated with a 
single STICR barcode tier 1) were used in this study, with the exception 
of the OB–amygdala–striatum experiment in Extended Data Fig. 8, 
where tier 2 was used. Finally, we applied an additional UMI threshold 
to STICR barcodes, requiring that all STICR barcode–CBC pairings 
used for clonal analysis have at least nine distinct UMIs. Three STICR 
barcodes (Index1_Bit1_F_083-Bit2_F_060-Bit3_F_055,_Bit1_F_057-Bit2_
F_103-Bit3_F_244 and IndexE_Bit1_F_246-Bit2_F_178-Bit3_F_497) were 
removed from downstream analyses, because they were present in 
more than one dataset. Two of the total 21 STICR datasets (CA199 and 
CA233) contained only single-cell clones. These datasets were retained 
to support single-cell cluster analysis and clone size quantification.

Processing of TrackerSeq barcode reads
Reads in the R2 FASTQ files were pre-processed so that the sequences 
to the left and right of the lineage barcodes (BC) were trimmed. Line-
age barcodes shorter than 37 bp were discarded. Cell barcodes (Cell) 
were extracted from the corresponding Seurat object of the dataset to 
generate a cell barcode whitelist. The extracted cell barcodes and UMIs 
were added to the read names of the lineage barcode FASTQ files. The 
resulting FASTQ files were processed to output a sparse matrix in csv 
format, where rows were cells identified by individual cell barcodes and 
columns were lineage barcodes. Only Cell–UMI–BC triples supported 
by at least 10 reads and Cell–BC pairs with at least 6 UMI were consid-
ered for further analyses. CloneIDs were assigned to cell barcodes by 
clustering the matrix using Jaccard similarity and average linkage as 
demonstrated by Wagner and colleagues24. The resulting dendrogram 
was cut at a height of 0.999 to obtain the clonal groupings. The clonal 
groupings showed that there were 4,282 barcodes distributed over 
2,370 cells in the total dataset, where 56.0% of them were marked by 2 
or more barcode integrations, and 8.4% of them were marked by 5 or 
more integrations in the total dataset. Among the inhibitory neurons 
featured in Fig. 3, these numbers were 85.7% and 9.5%, respectively.

Cell filtering, data normalization, batch correction and 
clustering of STICR datasets
The Seurat workflow (version 3.1.4) was used for cell filtering, data 
normalization and cluster identification in scRNA-seq datasets. Data 
were read into R (version 3.6.0) as a count matrix. Each dataset was 
filtered with cut-offs for: maximum and minimum gene expression, 
maximum nCount_RNA, and the percentage of total reads that aligned 
to the mitochondrial genome (for applied cut-offs, see Supplemen-
tary Data 1). Filtered data were then used for standard processing with 
Seurat. Unless otherwise indicated, gene expression values for each 
cell were divided by the total number of transcripts and multiplied 
by 10,000. These values were then log transformed using log1p via 
the NormalizeData() function. Genes were scaled and centred using 

the ScaleData() function. We used Harmony (v1.0)28 within the Seurat 
workflow with default parameters (theta = 2, lambda = 1, sigma = 0.1) 
to integrate different STICR datasets. We used the first 35 Harmony 
embeddings for UMAP (https://github.com/lmcinnes/umap) visualiza-
tions and clustering analysis.

To partition cells into clusters, we constructed a shared-nearest 
neighbour graph based on Harmony embeddings via the FindNeigh-
bors() function to use as input to the SLM algorithm, implemented 
through the FindClusters() function in Seurat (dimensions = 35,  
res = 1) . Cluster-specific marker genes were identified by compar-
ing cells of each cluster to cells from all other clusters. Genes were 
considered differentially expressed based on fold change, minimum 
expression and adjusted P value cut-offs (Supplementary Data 3). 
The Wilcoxon rank sum test was implemented via the Seurat func-
tion FindAllMarkers().

Clusters were manually annotated based on marker gene expression, 
spatial transcriptome mapping, as well as publicly available databases, 
primarily DropViz (dropviz.org)55 and Mouse Brain Atlas (http://mouse-
brain.org/genesearch.html)56. Of the 41 unsupervised STICR clusters, 
9 clusters were reclustered to gain a higher level of detail (for example, 
cluster 7 was split into clusters 7a and 7b; Fig. 3a). More specifically, 
clusters were isolated using subset() and clustered again using Find-
Clusters(). Sub-clusters that could not be assigned to a cell type were 
assigned ‘unknown’ and excluded from the lineage analysis (0.76% of 
the total cells). Cluster 22, which contained sub-clusters of different 
classes, was labelled ‘mixed’. All analyses were carried out based on 
refined clusters, except for panels illustrating the spatial analysis.

Lineage analysis of cell classes in STICR
To quantify clonal relationships between cell classes, Seurat clusters 
were merged into cell classes (Fig. 1d) based on the co-expression of 
multiple marker genes (neurons (Tubb3 and Mef2c); neuronal precur-
sors (Gad1 and Neurod2); mitotic cells (Ube2c and Top2a); astrocytes 
(Aldh1l1 and Gfap); oligodendrocytes (Olig1 and Plp1); OPCs (Pdgfra 
and C1ql1); vascular cells (Rgs5); epithelial cells (Ttr); ependymal cells 
(Tmem212); and macrophages (Ccl4 and C1qa)) (Extended Data Fig. 2a, 
Supplementary Data 2). Clones were categorized as containing sister 
cells that were glia only (astrocyte, OPC and oligodendrocyte classes), 
neuron only, or glia and neuron mix (neuron, astrocyte, OPC and oligo-
dendrocyte classes), and the number of clones in each of these three 
categories was quantified relative to the total number of clones at each 
developmental stage.

Lineage coupling z-scores and correlations forebrain-wide 
STICR datasets
The numbers of shared clones, as well as lineage coupling z-scores and 
correlations were calculated for each pair of cell states based on the 
methods outlined by Wagner and colleagues24 as follows:
1.	� Definitions:For a given clone c1 with n cells, and a given cell-state pair 

{s1, s2}:
1.1. �Let k be the number of cells of clone c1 that were assigned to either 

of the cell states of the pair, that is, s1 or s2.
1.2. �Clone c1 is defined to be ‘shared’ between states s1 and s2 if k ≥ 2, 

and there was at least one cell of clone c1 assigned to each state.
1.3. �Let p be the fraction of clone c1 that k represents, that is, p = k /n.
1.4. �A metric for the cell-state pair {s1, s2} is defined as the sum, over 

all ‘shared’ clones, of the p of each clone.
2.	�The metric defined in (1.4) was computed for each pair of cell states, 

according to the observed data.
3.	A distribution of values of the metric was computed for each pair of 

cell states in the following way:
3.1. For N = 10,000 iterations, the following simulation was done:

3.1.1. �Maintaining the observed distribution of the number of 
cells per cell state, the state assignments of the individual 
cells were randomly shuffled.

https://github.com/lmcinnes/umap
http://mousebrain.org/genesearch.html
http://mousebrain.org/genesearch.html


3.1.2. �The metric defined in (1.4) was computed for each pair 
of cell states, according to the data resulting from this 
simulation.

4.	For each pair of cell states, its lineage coupling z-score is defined as 
the z-score of its observed metric computed in (2), with respect to the 
distribution computed in (3).Positive z-scores indicate pairs of cell 
states that shared more lineage barcodes than expected by chance, 
whereas a negative score indicates that a state pair was significantly 
less coupled than expected by chance.

5.	 For each pair of cell states, its lineage coupling correlation is defined 
as the correlation between all the lineage coupling z-scores of each 
individual cell state of the pair.

Dendrograms and UpSet plots
Dendrograms representing transcriptomic relationships were gener-
ated with the BuildClusterTree() function in Seurat, which constructs a 
phylogenetic tree relating the ‘average’ cell from each identity cluster. 
The tree is estimated on the basis of a distance matrix constructed in 
the gene expression space. Dendrograms representing lineage rela-
tionships were generated using the hclust() and dist() functions on 
lineage coupling correlations, with an average linkage clustering and 
Euclidean distance metric. The interrelation between cell types can only 
be coarsely represented in hierarchical dendrograms. Dendrograms 
represent overall transcriptomic similarities and dissimilarities, but 
they fail to capture less obvious similarities between otherwise distinct 
cell types. Similarly, dendrograms may represent the general nexus of 
clonal relationships but overlook infrequent relationships.

UpSet plots were created in R using the UpSetR library57. For set size, 
we used the number of cells per cluster.

Correlation-based distance measure for amygdala, OB and 
striatum datasets
Amygdala, OB and striatum datasets were pre-processed as men-
tioned above. Cell types were manually annotated and neuronal types 
were divided via subset(). The distance between the log-normalized 
average cluster gene expression was calculated using the Spearman 
correlation-based distance measure in the get_dist() function and visu-
alised using fviz_dist() from the R package factoextra v1.0.7.

Cell filtering, data normalization batch correction and 
clustering of embryonic datasets
The Seurat pipeline (version 3.1.4) was used for cluster identification in 
scRNA-seq datasets. Embryonic transcriptome datasets (MUC28072, 
CA303, CA300, CA302, CA299, CA301 and CA298) were read into R (ver-
sion 3.6.0) as a count matrix. Each dataset was filtered with cut-offs for: 
maximum or minimum gene expression, maximum nCount_RNA and 
the percentage of total reads that aligned to the mitochondrial genome 
(for applied cut-offs, see Supplementary Data 1). In addition, embryonic 
datasets were filtered with DoubletFinder version 2.0.3 (ref.58).

We used regularized negative binomial regression59 to normalize UMI 
count data for all embryonic datasets. Cells with UMI counts for Neu-
rod2 > 2 and Neurod6 > 2, which are markers of excitatory neurons, were 
removed. The TrackerSeq dataset was clustered using Seurat standard 
procedures and clusters expressing marker genes for excitatory neu-
rons were removed. We created an ‘integrated’ data assay including all 
embryonic datasets for downstream analysis as described by Stuart 
and colleagues60. Clusters of cells were identified by a shared near-
est neighbour modularity optimization-based clustering algorithm. 
Uniform manifold approximation and projection (UMAP) dimensional 
reduction (https://github.com/lmcinnes/umap) was applied to the 
integrated data assay for visualization.

Trajectory analysis of embryonic datasets
Trajectory inference and pseudotime calculations were done with Mono-
cle3 (ref.35). RNA velocity was estimated using the R library velocyto.R36. 10x 

output files were preprocessed with velocyto, version 0.17.17 (https://velo-
cyto.org) using the command velocyto run10x. The velocyto.R-package 
‘velocyto.R’ version 0.6 was used for RNA velocity estimation in R.

Mapping embryonic cells to postnatal clusters
To map cells from embryonic trajectories to postnatal cell types, we first 
selected the five embryonic Seurat clusters from the ‘integrated’ data 
assay that were located at the tip of the Monocle trajectories, as well as 
Seurat clusters from the postnatal STICR dataset that were identified and 
annotated as subpallial GABAergic neuron types. We focused on 1,855 
genes that were identified as variable features at both developmental 
stages using the Seurat FindVariableFeatures() function. For these genes, 
we averaged the log-normalized expression in the postnatal clusters to 
create postnatal cell-type model vectors. We then calculated Pearson 
correlations between all individual cells of the embryonic clusters and 
the model vectors as described in Mayer et al1. We assigned each cell to 
the postnatal cluster with the highest correlation, but also calculated 
empirical P values to determine the significance of the assignment by 
permuting the single-cell data for a random background. We left the 
model vectors unchanged, but permuted the single-cell expression data 
100 times. For each permutation and each cell, we kept track of the largest 
Pearson correlation to the model vectors, and calculated a P value for 
the cluster assignment by counting what fraction of correlation scores 
was larger than the one used for the cluster assignment. In a final step, 
we turned all P values into false discovery rates (FDRs) and mapped only 
cells with an FDR < 0.1 to the postnatal clusters.

Spatial gene expression in STICR
To infer the spatial location of the clusters, the STICR datasets were inte-
grated with the Visium Spatial Transcriptomic datasets for sagittal and 
coronal sections of the mouse brain provided by 10x genomics (https://
support.10xgenomics.com/spatial-gene-expression/datasets). We applied 
an ‘anchor’-based integration workflow in Seurat v3, which enables the 
probabilistic transfer of annotations from a reference to a query set. The 
spatial reference dataset and the lineage dataset were normalized using 
the SCTransform() function, which builds regularized negative binomial 
models of gene expression, and performed dimensionality reduction 
using the RunPCA() function and then performed label transfer using 
the functions FindTransferAnchors() and TransferData(). This procedure 
outputs, for each spatial spot, a probabilistic classification for each of the 
scRNA-seq-derived cell states. We added these predictions as a new assay in 
the Seurat object for visualization using the function SpatialFeaturePlot().

Scatter plots
The top 100 marker genes were calculated using the Seurat function 
FindMarkers () for a selection of GABAergic clusters in the postnatal 
STICR dataset and the merged embryonic dataset, respectively (postna-
tal: ‘2 Inhibitory neuron OB Meis2’, ‘6 Inhibitory neuron OB Synpr’, ‘7a D2 
SPNs’, ‘7b D1 SPNs’, ‘8 Inhibitory ITC amygdala’, ‘34 Inhibitory PN ventral 
striatum/central extended amygdala (EAC)’; ‘13a MGE IN Snhg11’, ‘19a 
CGE VIP IN’, ‘19b CGE neurogliaform IN’, ‘13a MGE IN Snhg11’; embryonic: 
‘i_Six3/Gucy1a3’, ‘i_Ebf1/Isl1’, ‘i_Phlda1/Isl1’, ‘i_Nr2f2’, ‘i_Nxph1’). On the 
basis of the correlation-based mapping of embryonic cells to postnatal 
clusters (see previous paragraph), we selected pairs of embryonic and 
adult clusters for the scatter plot. We plotted the SCT normalized average 
cluster gene expression of the top 100 marker genes from each stage.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The sequencing datasets generated for the current study are available 
in the Gene Expression Omnibus (GEO) under the accession number 
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GSE188528. Publicly available gene expression data used for cluster 
annotation can be accessed as follows: DropViz (dropviz.org) and 
Mouse Brain Atlas (http://mousebrain.org/genesearch.html). Visium 
Spatial Transcriptomic Datasets for sagittal and coronal sections of the 
mouse brain provided by 10x genomics (https://support.10xgenomics.
com/spatial-gene-expression/datasets).

Code availability
The analyses described here are available on GitHub: https://github.
com/mayer-lab/Bandler-et-al_lineage.
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Extended Data Fig. 1 | Characterization of STICR datasets. a, Barcode 
diversity extrapolations derived from sequencing ca. 30 million reads of a 
representative STICR plasmid library. Mean ± 95% CI. b, Images of whole mount 
brains injected with STICR. c, Representative FACS gating for negative control 
(matching non-injected brain) and STICRE10. d, UMAP plot coloured and 
numbered for each unsupervised cluster. Each dot represents a single cell.  

e, UMAP plot coloured by cells with recovered transcriptome and cells with 
recovered transcriptome and lineage barcode. f, Examples of clones on UMAP 
plot. Sibling cell relationships represented by shapes (dot, square, star, cross, 
triangle). g, UMAP plot and bar graph showing the distribution of recovered 
cells, coloured by stage of injection. h, UMAP plot and bar graph showing the 
distribution of recovered cells, coloured by experimental replicate.
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Extended Data Fig. 2 | Clonal relationships among cell classes. a, Single-cell 
heatmap showing the normalised expression of the top-5 marker genes for cell 
classes. Bars are colour-coded based on key in Fig. 1d. b, Immunohistochemestry 
showing STICRE10 viral labelling of excitatory (CTIP2/CUX1) and inhibitory 
(GABA) neurons, astrocytes (S100B), oligodendrocytes (Olig2) and microglia 
(Iba1). White arrowheads indicate co-labelled cells, empty arrowheads indicate 
negative cells. Scale bar: 100 μm (top), 30 μm (insets), 50 μm (bottom). 
Biological replicates, n = 2. c, Heatmap showing clonal distributions across cell 

classes for STICRE10 (left) and STICRE14 (right). Every horizontal line in the plot is 
a clone, with number of cells per clone indicated by colour. d, UpSet plots 
displaying clonal intersections between Astrocytes, Neurons, 
Oligodendrocyte Precursor Cells (OPCs), Neuronal precursors and 
Oligodentrocytes in STICRE10 (top) and STICRE14 (bottom). Bar graphs on top 
indicate the number of observed intersections. The bar graphs on the right 
depicts total cell number per cell class.



Extended Data Fig. 3 | Differential gene expression analysis of cell type 
clusters. Single-cell heatmap showing the normalised expression of the top-5 
marker genes for cell types. Bars are colour-coded based on key in Fig. 2a. Astro, 
astrocyte; CGE, caudal ganglionic eminence; Ctx, neocortex; EAC, central 

extended amygdala; Excit, excitatory; Hip, hippocampus; IN, interneuron; 
Inhib, inhibitory; MGE, medial ganglionic eminence; NP, neuronal precursor; 
OB, olfactory bulb; Oligo, oligodendrocyte; OPC, oligodendrocyte precursor 
cell; PN, projection neuron; SPN, spiny projection neuron.
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Extended Data Fig. 4 | Spatial transcriptomic mapping of cell type clusters. 
Spatial transcriptomic mapping showing localization of cell type 
clusters. Astro, astrocyte; CGE, caudal ganglionic eminence; Ctx, neocortex; 
EAC, central extended amygdala; Excit, excitatory; Hip, hippocampus; IN, 

interneuron; Inhib, inhibitory; MGE, medial ganglionic eminence; NP, neuronal 
precursor; OB, olfactory bulb; Oligo, oligodendrocyte; OPC, oligodendrocyte 
precursor cell; PN, projection neuron; SPN, spiny projection neuron.



Extended Data Fig. 5 | Clonal coupling of forebrain cell types. a, Heatmaps 
of STICRE10 (left) and STICRE14 (right) lineage coupling scores between pairs of 
cell types, clustered by correlation distance and linkage. Values range from 
positive (red, coupled) to negative (blue, anti-coupled). Light-grey lines link 
clusters across stages. Clonal groups are surrounded with grey lines and 
manually annotated (a-y). Astro, astrocyte; CGE, caudal ganglionic eminence; 
Ctx, neocortex; EAC, central extended amygdala; Excit, excitatory; Hip, 

hippocampus; IN, interneuron; Inhib, inhibitory; MGE, medial ganglionic 
eminence; NP, neuronal precursor; OB, olfactory bulb; Oligo, oligodendrocyte; 
OPC, oligodendrocyte precursor cell; PN, projection neuron; SPN, spiny 
projection neuron. b, Feature plots highlighting examples of clonal groups that 
are maintained (left), split (middle) or merged (right) on the UMAP plot for 
STICRE10 and STICRE14.
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Extended Data Fig. 6 | Excitatory and inhibitory lineages do not overlap in 
the murine cortex. a, Violin plots showing the normalised marker gene 
expression Slc17a7 (marker gene for excitatory neurons) and Gad1 (marker 
gene for inhibitory neurons). CGE, caudal ganglionic eminence; Ctx, 

neocortex; Excit, excitatory; IN, interneuron; Inhib, inhibitory; MGE, medial 
ganglionic eminence. b, Spatial transcriptomic mapping showing localization 
of cortical neuron clusters in the mouse brain. c, Venn diagram quantifying the 
number of clones within excitatory and inhibitory clusters.



Extended Data Fig. 7 | Clonal dispersion across cell types. UpSet plots 
displaying intersections for cell type clusters in STICRE10 (top) and STICRE14 
(bottom). Bar graphs on top indicate the number of observed intersections. 
The total cell number per cluster is shown on the right bar graphs. Intersection 
cut-off was set to 3 to fit on the plot. Astro, astrocyte; CGE, caudal ganglionic 

eminence; Ctx, neocortex; EAC, central extended amygdala; Excit, excitatory; 
Hip, hippocampus; IN, interneuron; Inhib, inhibitory; MGE, medial ganglionic 
eminence; NP, neuronal precursor; OB, olfactory bulb; Oligo, oligodendrocyte; 
OPC, oligodendrocyte precursor cell; PN, projection neuron; SPN, spiny 
projection neuron.
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Extended Data Fig. 8 | Lineage divergence in ventral inhibitory neurons.  
a, Dot plot showing gene expression markers of ventral inhibitory neuron 
clusters. The size of the dots indicates the percentage of cells expressing a 
specific marker gene. The colour of the dots represents the average expression 
level. EAC, central extended amygdala; Inhib, inhibitory; MGE, medial 
ganglionic eminence; OB, olfactory bulb; PN, projection neuron; SPN, spiny 
projection neuron. b, Spatial transcriptomic mapping showing localization of 
ventral inhibitory neuron clusters in the mouse brain. c, Schematic 
representing the workflow for the manual dissection of striatum, olfactory 
bulb (OB), and amygdala from P6-P8 brains injected with STICRE14. d, UpSet plot 

displaying clonal intersections amongst and within neuronal clusters of 
striatum, OB and amygdala. Only dispersing clones are shown. Bar graph on top 
indicate the number of observed intersections. The total cell number per 
cluster is represented on the right bar plot. Intersections amongst striatum,  
OB and amygdala are coloured in green. The heatmap shows the Spearman 
distance between the log-normalized average cluster gene expression. The 
insets (top right) are UMAP plots of single cells from striatum, OB and amygdala 
datasets, with clusters coloured by cell class type. NP, neuronal precursor.  
e, Schematic of lineage divergence for ventral inhibitory neuron cell types.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Characterization of TrackerSeq. a, Vector maps and 
cloning strategy of TrackerSeq. PBase: piggyBac transposase. b, Sanger 
sequencing results of individual E. coli colonies ('clones'), depicting the 
consensus sequence of the TrackerSeq lineage barcode. c, Pairwise hamming 
distance of 1000 barcodes randomly sampled from the TrackerSeq library.  
d, ~3.6 x 106 raw sequencing reads were collapsed into ~2 x 105 clusters, where 
each cluster is defined as a unique lineage barcode. e, UMAP plot of embryonic 
scRNA-seq datasets, cells coloured by dataset type (blue, TrackerSeq; grey, 
wild type). f, UMAP plot of single cells from the caudal, lateral and medial 
ganglionic eminences (CGE, LGE, MGE) of wild type (wt) embryos, coloured by 
clusters from Fig. 3c. g, Histogram showing distribution of clone sizes for 
TrackerSeq dataset. h, Clustered heatmap of TrackerSeqE12 barcodes. Rows are 
single GABAergic precursor cells for which both transcriptome and >1 

TrackerSeq barcodes were retrieved; column represents unique TrackerSeq 
barcodes. Highlighted barcodes are those represented in Fig. 3i.  
i, Developmental trajectories of single-cell transcriptomes, coloured by 
pseudotime score. j, RNA Velocity plot. Arrows direction represent prediction 
of cells’ future gene expression. k, Bar graph quantifying the correlation-based 
mapping of cells from the 5 embryonic precursor states to clusters of postnatal 
GABAergic forebrain neurons, including cortical interneuron types. EAC, 
central extended amygdala; IN, interneuron; Inhib, inhibitory; NP, neuronal 
precursor; OB, olfactory bulb; PN, projection neuron; SPN, spiny projection 
neuron. l, Scatter plots showing the normalized average cluster gene 
expression of the top 100 marker genes for a selected embryonic cluster and 
the top 100 marker genes for a selected postnatal cluster. Clusters were 
selected based on the mapping efficiency.



Extended Data Fig. 10 | The contribution of lineage to the generation of cell 
diversity. Schematic illustrating different scenarios of how cellular diversity 
could arise in the brain. Different cell types could arise from specified or 
fate-restricted progenitor cells (a), or be born sequentially from a common 
pool of progenitor cells (b, left). Such lineage-dependent processes suggest 
that cell-intrinsic mechanisms or local cues at the mitotic progenitor level, 

determine the fate of newborn cells. As another option, lineage-independent 
mechanisms such as extracellular induction, activity-dependent processes, or 
stochastic regulation (b, right) could drive the differentiation into different 
subtypes. Lineage-dependent and independent mechanisms are not mutually 
exclusive. c) Convergence is the process by which similar cell states arise from 
different lineages.
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