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New discoveries expand possibilities for carboxysome 
engineering

Julia Borden, David Savage
Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720 USA

Abstract

Carboxysomes are CO2-fixing protein compartments present in all cyanobacteria and some 

proteobacteria. These structures are attractive candidates for carbon assimilation bioengineering 

because they concentrate carbon, allowing the fixation reaction to occur near its maximum rate, 

and because they self-assemble in diverse organisms with a set of standard biological parts. Recent 

discoveries have expanded our understanding of how the carboxysome assembles, distributes 

itself, and sustains its metabolism. These studies have already led to substantial advances in 

engineering the carboxysome and carbon concentrating mechanism into recombinant organisms, 

with an eye towards establishing the system in industrial microbes and plants. Future studies may 

also consider the potential of in vitro carboxysomes for both discovery and applied science.
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Introduction

All cyanobacteria and many chemoautotrophic proteobacteria use specialized proteinaceous 

organelles called carboxysomes to facilitate CO2 fixation. Carboxysomes have fascinated 

researchers and biotechnologists for both their icosahedral structure and ability to enable 

efficient carbon fixation kinetics. It’s estimated that ~10–25% of CO2 fixed globally passes 

through these compartments annually [1,2]. Since they were first purified in 1973 [3], 

researchers have sought to both understand and engineer carboxysomes. Although the 

presence of Rubisco signaled a critical role in CO2 fixation, studies on carboxysomes 

continue to reveal new and unexpected components, structures, and potential applications.
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Carboxysomes are icosahedral protein assemblies ranging from 100–500 nm in diameter, 

depending on the species [4]. They have a proteinaceous shell composed primarily of 

hexameric proteins and are capped with pentameric proteins at the icosahedral vertices. In 

general, they enclose Rubisco, carbonic anhydrase (CA), a Rubisco nucleating protein, and, 

likely, Rubisco activase. There are two lineages of carboxysomes, α and β, which evolved 

convergently in freshwater and coastal cyanobacteria (β lineage) and marine cyanobacteria 

and proteobacteria (α lineage) [5]. Remarkably, both lineages arrived at the same general 

carboxysome structure and function, though they differ in gene organization and protein 

sequences.

Carboxysomes function within a broader metabolic network called the Carbon 

Concentrating Mechanism, or CCM (Figure 1a). Inorganic carbon transporters in the cell 

membrane pump HCO3
− into the lumen, raising its concentration to about 30x the 

equilibrium concentration in water [2,6]. The disequilibrium between HCO3
− and CO2 is 

advantageous because it stockpiles a charged, and therefore membrane-impermeable, form 

of carbon in the cell. This preferences the dehydration reaction in the carboxysome, 

concentrating CO2 near Rubisco. Rubisco is thus poised to operate near its Vmax when 

carboxylating ribulose-1,5-bisphosphate (RuBP) to produce two molecules of 3-

phosphoglycerate (3-PG) (Figure 1b). In addition to carboxylation, Rubisco can also 

oxygenate RuBP; the product of this off-target reaction must be recycled via wasteful 

photorespiration pathways. The high CO2 environment of the carboxysome therefore 

competitively inhibits oxygenation, and it remains an open question as to whether exclusion 

of O2 by the shell is necessary for CCM function [2]. Finally, this unique environment 

enabled Rubisco evolution to maximize for carboxylation activity, and carboxysomal 

Rubiscos are among some of the fastest known Rubiscos, despite having low specificity for 

CO2 over O2 [7,8].

Knocking out various components of the CCM renders cells incapable of growing at the 

atmospheric CO2 concentration (~0.04%), and they must be grown in high CO2 (~1–10%) 

[9,10]. In particular, carbonic anhydrase must be active only inside of the carboxysome; 

knocking it out or expressing it in the cytosol destroys the CCM [11]. Carboxysomes must 

also limit CO2 permeability so that it doesn’t diffuse away from Rubisco. Pentamer deletion 

strains, which produce carboxysomes with pores at the icosahedral vertices, only grow in 

high CO2 [12]. A precise understanding of how shell proteins limit CO2 diffusion while 

allowing entry and exit of other intermediates such as 3-PG and RuBP is still not well 

understood. Despite speculation that the carboxysome shell is selectively permeable, 

promoting uptake of HCO3
− while blocking O2, no direct evidence has been experimentally 

measured. Mathematical models show that the CCM does not require O2 impermeability to 

function [2,13], though both O2 and CO2 may encounter an increased resistance at the 

hexamer pore compared to HCO3
− and 3-PG [13]. In total, these results show that 

concentrating CO2 near Rubisco by limiting CO2 leakage from the carboxysome is essential 

to the function of the CCM and is an important principle in the development of 

biotechnological tools to concentrate CO2.
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From carboxysome structure to functional CCM reconstitution

Reconstituting functional carboxysomes, i.e. those that can concentrate carbon, into an 

alternative host organism has been a major academic and bioengineering goal. However, it 

has been difficult to do because structure alone cannot recapitulate the CCM. The first 

recombinantly produced carboxysomes were α-carboxysomes from the model 

proteobacterium Halothiobacillus neapolitanus, expressed in E. coli. Expressing the native 

10-gene operon was sufficient to produce wild-type looking carboxysomes [14]. Similarly, a 

synthetic operon of 12 genes from cyanobacterium Synechococcus elongatus PCC7942 

produced wild-type looking β-carboxysomes in E. coli [15]. The engineered heterologous 

systems in both studies possessed active Rubisco, but it remained unclear whether 

recombinant carboxysomes could concentrate carbon, arguably the carboxysome’s essential 

feature. A transposon mutagenesis screen of H. neapolitanus under high CO2 vs. low CO2 

conditions revealed dozens of new genes responsible for the functioning of the α-

carboxysome CCM, including several uncharacterized proteins in a secondary operon [16]. 

Characterizing unknown hits, as well as undertaking a systematic study in β-carboxysomes 

beyond the previous screens [9,10], will be crucial to uncovering what components are 

necessary to fully reconstitute the CCM. The following sections highlight recently 

discovered proteins and protein activities and how they may translate into using CCMs for 

enhancing metabolism.

New discoveries in carboxysome assembly and CCM function

Researchers made early progress in identifying and characterizing major players in the 

carboxysome and CCM such as Rubisco, CA, shell proteins, and carbon transporters, 

reviewed in greater detail in references [5,17]. This section reviews proteins discovered or 

characterized in recent years that have greatly increased our understanding of the 

carboxysome and CCM, and which are important new entries in the carboxysome 

biotechnological toolbox.

CsoS2 & CcmM –

CsoS2, from α-carboxysomes, and CcmM, from β-carboxysomes, are essential for 

carboxysome assembly and structure. Though they have no sequence or domain homology 

(Figure 2a & b), they share many striking similarities. Both are conserved, essential proteins 

located in the core carboxysome locus of their respective lineages [17]. Both are highly 

abundant in the carboxysome, with numbers roughly equal to Rubisco holoenzyme [5].

Notably, both CsoS2 and CcmM bind Rubisco and facilitate carboxysome nucleation. Both 

α-and β-carboxysome Rubiscos evolved binding sites that bridge two large subunits while 

making contacts with the small subunit (Figure 2c) [18,19]. This likely ensures that only the 

16-subunit Rubisco holoenzyme is encapsulated during carboxysome assembly. Both CsoS2 

and CcmM Rubisco-binding domains contain 3–5 repeat motifs separated by predicted 

disordered sequences (Figure 2a & b). Despite these shared features, the binding domains 

differ in their secondary structure. In CsoS2, the Rubisco-binding N-terminal domain (NTD) 

repeats are alpha helical, while the C-terminal CcmM repeats have structural similarity to 

the Rubisco small subunit (termed small subunit-like or SSUL) [18–20]. In CsoS2, a single 
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repeat binds with low affinity, but multivalent interactions could promote high affinity 

binding across multiple Rubiscos, thus nucleating carboxysome assembly (Figure 2d) [19]. 

Likewise, the three CcmM repeats together bind Rubisco with micromolar affinity [18,20]. 

Following a common theme for repetitive, multivalent proteins, both Rubisco-binding 

domains of CsoS2 and CcmM were shown to undergo liquid-liquid phase separation (LLPS) 

with Rubisco, though it should be noted both studies required salt concentrations below that 

of physiological 150 mM [18,19].

CsoS2 and CcmM both have a short and long isoform, and the significance of this is not 

fully understood (Figure 2a & b). The isoforms are produced in CsoS2 by ribosomal 

frameshifting and by an internal ribosome entry site (IRES) in CcmM [21,22]. In wild-type 

α-carboxysomes, both the short (Csos2A) and long (CsoS2B) forms are present at a roughly 

equimolar ratio [21]. When the frameshifting site is mutated, CsoS2B is sufficient to 

reconstitute carboxysomes on its own, but CsoS2A cannot [21]. Relatedly, CcmM has a 

short (M35) and long (M58) form. Both M35 and M58 are needed for functional β-

carboxysomes [22].

Both CsoS2 and CcmM may possess redox-regulated intrinsic flexibility. Suggestively, in 

Thermosynechococcus elongatus BP-1, the CcmM C-terminal γ-CA is only active under 

disulfide-forming oxidizing conditions [23]. Most repeat segments of both CsoS2 and 

CcmM contain 1–2 cysteines. Cells with β-carboxysomes with mutated CcmM cysteines 

grew 2–3 times slower than wild-type, and many carboxysomes were irregularly shaped 

[18]. The effect in α-carboxysomes is not yet known. In biochemical studies, the reduced 

form of CcmM repeats bound Rubisco with higher affinity but showed less mobility under 

LLPS conditions [18]. This suggests a model in which the carboxysome nucleates under 

reducing cytosolic conditions and, upon complete assembly, matures into a liquid-like 

oxidizing environment (Figure 2d). Microscopy of developing β-carboxysomes using a 

redox-sensitive GFP suggested that this model may be true in vivo [24]. The effect of redox 

regulation in these compartments remains an understudied, yet potentially highly significant, 

aspect of their assembly and function.

McdA & McdB –

Cells with β-carboxysomes arrange them linearly along a central longitudinal axis 

throughout growth and equally distribute carboxysomes to daughter cells during division 

[25]. This organization is driven by a pair of proteins, McdA and McdB [26]. McdA is a 

ParA-type ATPase that binds the nucleoid and shows a characteristic oscillatory behavior 

between cell poles. McdB, by analogy to plasmid partitioning systems [27], is thus thought 

to engage both the carboxysome and McdA. This facilitates an even distribution of 

carboxysomes, and those that lack either or both proteins show carboxysome clumping at a 

polar end. Expression of carboxysomes in a strain that lacks the proper positioning and 

partitioning machinery results in carboxysome aggregation, and loss of carbon fixation 

function in descendants without carboxysomes [25,28]. However, cells with McdA/B 

knockouts do not require high CO2 to grow, likely because carboxysome-less cells can 

simply produce new ones, though their doubling time is significantly longer [25].
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DabA & DabB –

Inorganic carbon (Ci) transporters are essential to the CCM as active Ci accumulation 

powers the downstream action of the carboxysome [2,6]. A review by Price et al. 

summarizes five of the Ci uptake systems [6]. Recently, the DAB complex joined this list. 

DabA and DabB form a membrane-bound complex that appears to couple CO2 transport into 

the cell to a cation gradient [16,29,30].

Rubisco activases –

Rubisco is prone to inhibition by its substrate, RuBP, and other sugar derivatives. Rubisco 

activases catalyze release of this inhibitor. These enzymes are essential in plants and algae, 

but do not appear to be essential in carboxysome-containing bacteria [31,32]. The activases 

are divergent in the two carboxysomal lineages: α-lineages contain activase CbbQ and 

associated protein CbbO, while β-lineages contain β-Rca. Through convergent but different 

mechanisms, both activases bind Rubisco and are likely targeted to the carboxysome [32–

35]. Though the biochemistry of these activases is increasingly understood, more research 

needs to be done to understand their role in carboxysomal carbon fixation.

Bioengineering the carboxysome and CCM

Optimizing the bacterial CCM

CCM-enhanced microbes could serve many bioindustrial applications seeking to take 

advantage of CO2-dependent metabolism. New discoveries suggest optimization could start 

with Rubisco (Figure 3c). Fixation flux could, in theory, be improved via encapsulation of a 

faster Rubisco, many of which were recently discovered and characterized [8]. In contrast to 

carboxysomal Form I Rubiscos, most of the fastest Rubiscos are Form II, and would need to 

be engineered for carboxysome targeting likely using CsoS2, CcmM, or other encapsulation 

peptides [36,37]. The carboxysome appears to be sensitive to the type of Rubisco it 

encapsulates - cells with an orthologous Form Iα Rubisco expressed in an α-carboxysome 

did not grow well in air, and replacement with a Form II lacked carboxysomes and required 

high CO2 for growth [38,39]. A recombinant Rubisco may also require its cognate Rubisco 

activase to be expressed in the carboxysome.

To engineer a heterologous bacterial host to utilize a carboxysomal CCM, more genes are 

needed than just those in the major carboxysomal operon, which typically contains Rubisco, 

a carboxysomal nucleating protein, CA, and shells. A complete reconstitution of the H. 
neapolitanus CCM in E. coli required expression of a secondary operon alongside the major 

operon, thus enabling Rubisco-dependent E. coli to grow at atmospheric CO2 [40]. This 

secondary operon included the DAB inorganic carbon transporter, the CbbO and CbbQ 

Rubisco activase complex, and acRAF, a proposed Rubisco chaperone [41], along with 

several other unknown ORFs. Of these, both the DAB and acRAF were shown to be 

essential CCM components in the native organism H. neapolitanus [16]. The DAB complex 

and bicarbonate transporter SbtA are the only transporters that have been demonstrated to be 

active when expressed in a heterologous system [16,42], making them useful candidates for 

CCM engineering. This successful reconstitution marks a substantial progression in our 

knowledge from carboxysome structure to CCM function.
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Now that a first-principles study in E. coli has shown heterologous reconstitution of a 

carboxysomal CCM to be possible, expansion into industrial hosts is a logical next step 

(Figure 3a). Baumgart et al. expressed the H. neapolitanus carboxysome operon in the 

biotechnologically relevant bacterium Corynebacterium glutamicum, but carboxysomes 

were small and malformed [43]. Despite this, there is precedent for recombinant bacterial 

microcompartments to express in many diverse bacterial species, as was demonstrated with 

expression of the Pdu compartment in over 6 different hosts [44]. Introducing the CCM into 

eukaryotic hosts such as yeast may enable efforts to engineer bioindustrial strains that are 

better equipped to utilize carboxylation as part of a metabolic engineering strategy [45]. In 

other cases, the CO2-dependent growth behavior of autotrophic strains, such as C. necator, 
could be improved through introduction of a CCM [46]. Finally, lower DNA payloads are 

advantageous for recombinant CCM engineering, and researchers are testing the limits of 

minimal carboxysome systems by eliminating unnecessary proteins or creating fusions 

(Figure 3d). Many of these minimal systems show structural integrity and Rubisco activity 

[47–50].

Optimizing the plant CCM

Much effort has gone towards creating bacterial CCMs in plants. Many agriculturally 

important C3 plants such as wheat and rice lack CCMs, and instead devote ~5% of leaf 

biomass to Rubisco [51], consuming large amounts of nitrogen in the process. Plants with 

engineered carboxysomal CCMs could theoretically increase yield while consuming far less 

nitrogen [52]. Many groups have proposed how to engineer carboxysomal CCMs into plants, 

and readers are directed to cited papers for more in-depth details [53,54]. In general, the 

engineering milestones are as follows: (1) Insert bicarbonate transporters into the chloroplast 

inner membrane to raise the concentration of bicarbonate in the stroma, (2) Express 

carboxysomes in the chloroplast, and (3) Knock out stromal carbonic anhydrases in order to 

maintain a high ratio of HCO3
− to CO2 (Figure 3b).

Initial efforts towards this ultimate goal are already underway. Minimal α- and β-

carboxysomes have been expressed in chloroplasts, and studies showed the formation of 

carboxysome-like structures [49,55,56]. Cyanobacterial Rubiscos expressed in plants 

maintained kinetic properties equivalent to those of their native host [49,56,57]. As expected 

due to lack of bicarbonate transporters, plants only grew under high CO2 conditions, though 

with severe growth deficiencies compared to wild-type. Single-gene bicarbonate transporters 

BicA and SbtA have been expressed in the chloroplast inner envelope membrane, though it 

is unclear if they had activity [58,59]. Future efforts will thus need to focus on identifying, 

characterizing, and testing transporters that are capable of functional heterologous 

expression. A recent survey of dissolved inorganic carbon transporters in bacteria may 

provide useful candidates [60]. It is also possible that additional components such as the 

partitioning proteins McdA and McdB will improve growth by ensuring even carboxysome 

distribution among dividing chloroplasts in leaf cells.

Future Directions

The relative simplicity of carboxysomes opens up the possibility of creating in vitro 

structures capable of performing carbon concentration, fixation, and other activities in order 

Borden and Savage Page 6

Curr Opin Microbiol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to understand and engineer function (Figure 3e). Rubisco and CsoS2 or CcmM readily form 

liquidseparated droplets in vitro, achieving the first step of cargo nucleation [18,19]. A 

logical next step is to show partitioning of other cargo proteins such as a CA and Rubisco 

activase into the droplets, followed by shell encapsulation. Experiments to test preferential 

partitioning of metabolites such as RuBP, HCO3
−, or CO2 into the light or dense phase could 

probe whether or not LLPS plays a role in metabolite transfer and CO2 concentration.

Recent insights on carboxysome structure and assembly are now enabling them to be re-

engineered for alternative metabolisms, a domain which has mostly been limited to other 

types of bacterial microcompartments (Figure 3f) [61]. Recently, Li et al. expressed an 

[FeFe]-hydrogenase and ferredoxin in the α-carboxysome shell in E. coli to enhance H2 

production while shielding the hydrogenase from inactivating O2. They observed an increase 

in H2 in an aerobic environment compared to unencapsulated enzyme [37]. This kind of 

study opens doors for exciting new biotechnological applications of carboxysomes and 

structures engineered from them, while continuing to shed light on basic carboxysome 

biology. In particular, this study suggests that the carboxysome is an O2-excluding 

environment, a theory which has generated significant discussion [2,13]. In addition, shell 

protein pore engineering (Figure 3g) may continue to further enable novel metabolism, 

including even redox-based reactions, while also providing exciting new insights into how 

carboxysomes permit entry of substrates, exit of products, and restrict loss of intermediates.

Conclusion

Carboxysomes are unique among protein microcompartments for their ability to concentrate 

CO2 and turn it into a useful cellular product. They are a biotechnologist’s dream: they self-

assemble in diverse organisms with a set of standard biological parts. They are, however, 

deceptively simple structures. Recent studies reveal that we are still discovering many of the 

proteins necessary to build functional carboxysome-based CO2-concentrating systems. 

These and future discoveries will prove crucial to making meaningful engineering advances.
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Figure 1. 
a) The CCM in a cyanobacterial cell. Bicarbonate transporters and facilitated CO2 uptake 

proteins raise the intracellular HCO3
− concentration while CO2 flows freely across the 

plasma membrane. b) Carboxysome metabolism. HCO3
− enters the carboxysome along its 

concentration gradient, where it is converted to CO2 via a carbonic anhydrase. CO2 and 

RuBP serve as substrates for Rubisco, which produces two molecules of 3-PG. O2 may 

occasionally serve as a Rubisco substrate, though at a minimal level.
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Figure 2. 
a) Domain structure of CsoS2 from H. neapolitanus (uniprot ID: O85041; 

CSOS2_HALNC), with marked short (CsoS2A) and long (CsoS2B) forms. b) Domain 

structure of CcmM from S. elongatus PCC7942 (uniprot ID: Q03513; CCMM_SYNE7), 

with marked short (M35) and long (M58) forms. SSUL stands for “small subunit-like” 

domain. c) Structures of the CsoS2 NTD bound to Form 1A Rubisco (PDB: 6UEW) and 

CcmM SSUL bound to Form 1B Rubisco (PDB: 6HBC). Structures were rendered in 

ChimeraX. d) Hypothesized model of carboxysome nucleation. The carboxysome nucleating 

protein binds Rubisco with high avidity and affinity in the reducing cytosol. Maturation may 

involve oxidation (or exclusion of reducing agents) and disulfide-bond induced 

conformational changes.
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Figure 3. 
a) Engineering a carboxysomal CCM into industrial microbes could convert atmospheric 

CO2 into high value products. b) Engineering a carboxysomal CCM into plants could 

increase plant CO2 efficiency and promote growth and biomass yield. c) Faster Rubiscos 

could enable more efficient carbon fixation. d) A minimal gene set lowers the DNA payload 

when engineering the CCM into new host organisms. e) In vitro carboxysomes are a novel 

platform to study carboxysome assembly, and could act as in vitro catalytic reactors. f) 

Carboxysomes can be repurposed for alternative metabolisms. Enzymatic activity may 

depend on whether or not the carboxysome is an oxygen privileged environment, which 

remains unknown. g) Pore engineering, such as changing the charge or size of the pore, may 

aid development of alternative metabolisms.
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