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Abstract: Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma her-
pesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression,
while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies
and infects neighboring cells. KSHV genome encodes 80+ open reading frames. One of the KSHV
genes, K2, encodes viral interleukin 6 (vIL-6), a homolog of human IL-6 (hIL-6), mainly expressed
in the lytic phase of the virus. vIL-6 plays a crucial role in regulating the expression of other viral
genes and is also associated with inducing angiogenesis, cell survival, and immune evasion, which is
suggested to promote the development of KSHV-associated diseases. This review summarizes the
current knowledge on vIL-6. We focus on the vIL-6 regarding its protein structure, transcriptional
regulation, cell signaling pathways, and contribution to the KSHV-associated diseases.

Keywords: vIL-6; KSHV; transcription; immune response; oncogenesis

1. Introduction

Cytokines are signaling proteins that stimulate host immune response and control
homeostasis in our body. They include a family of interleukins (ILs), interferons (IFNs),
tumor necrosis factor (TNF), and other chemokines. For activating cell signaling, each
cytokine binds to a specific receptor on its target cells [1]. They are normally secreted
from cells for intercellular signaling, while some function within the cell by binding to
the intracellular receptor. Since they regulate multiple cellular responses such as inflam-
mation, growth, and maturation, their dysregulation is associated with various disease
development [2,3].

Viral infection and subsequent host response are strongly associated with the disease
development, in unfortunate cases, leading to uncontrolled cytokine production. Kaposi’s
sarcoma-associated herpesvirus (KSHV) is one of the oncogenic gamma herpesviruses and
encodes a viral cytokine; viral IL-6 (vIL-6) [4,5]. vIL-6 is a homolog of human IL-6 (hIL-6),
in structure, receptor binding, and biological functions [6–8]. The evolutionary origins of
vIL-6 can be traced back to the adaptation of KSHV to manipulate host immune responses
for its survival. Other mammalian herpesviruses, such as herpes simplex virus (HSV) and
Epstein–Barr virus (EBV), do not encode an IL-6 homolog [9]. KSHV has developed unique
adaptations during evolution, allowing the virus to stimulate hIL-6 signaling pathways
more effectively. vIL-6 has evolved to mimic hIL-6’s function [10]. The vIL-6 is highly
expressed in KSHV-replicating cells and is also expressed in a small population of latently
infected cells at low concentrations [4,11]. The experiments using cell lines with minimal
background reactivation strongly suggest that vIL-6 may be expressed independently of full
lytic activation. However, the possibility of spontaneous reactivation in a small subset of
cells cannot be entirely ruled out. The detection of latent vIL-6 transcripts and its variability
across cell lines highlight KSHV’s flexible transcription program, enabling the virus to adapt
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its gene expression to distinct cellular environments or stress conditions [11]. In a murine
xenograft model, the vIL-6 transgenic mice developed a multicentric Castleman disease
(MCD)-like disease and supported tumor metastasis [12]. vIL-6 is clinically detectable in the
blood and tissues of patients with KSHV-associated diseases such as Kaposi sarcoma (KS),
primary effusion lymphoma (PEL), and MCD [13]. KSHV inflammatory cytokine syndrome
(KICS) is also characterized by a high KSHV viral load and sustained elevations of serum
vIL-6, which lead to severe systemic inflammation [14,15]. Because of abundant expression
and the ability to induce inflammatory signaling in infected cells and surrounding tissues,
vIL-6 plays a critical role in developing KSHV-associated diseases. Since the discovery of
KSHV in 1994 [16], KSHV research communities as a whole uncovered multiple biological
functions of vIL-6. vIL-6 may also play different roles depending on whether the virus is
in the latent or lytic phase. In the latent phase, small amounts of vIL-6 [11] can activate
downstream cellular signaling, which might contribute to cell survival and proliferation
through STAT3 signaling activation. On the other hand, during the lytic phase, where
infected cells die, and vIL-6 is released extracellularly, vIL-6 might contribute to viral
replications rather than cell survival. Here, we will focus on the vIL-6 localization and
viral transcription regulation, receptor engagement, associated cell signaling pathways,
and association in KSHV-related diseases.

2. Localization and Transcription Regulation of vIL-6

KSHV, also known as human herpesvirus 8 (HHV-8), was initially detected in KS
lesions in 1994 [16]. KSHV is an oncogenic gamma herpesvirus [17] with an enveloped
virion and a double-stranded DNA genome [18]. The KSHV genome consists of a central
coding area of roughly 145 kb of DNA, flanked by approximately 30 kb of terminal repeats
(TRs) [19,20]. KSHV establishes a latent infection with limited gene expression [21] that lasts
throughout the host’s life [22]. Upon reactivation, KSHV expresses viral genes, including
K2, encoding vIL-6 to efficiently produce progeny viruses. In this section, we focus on the
localization and transcription regulation of vIL-6.

(i) Localization

vIL-6 becomes detectable within 10 h after reactivation and increases for another
2 days [21]. Although vIL-6 is known to be expressed at low concentrations in latently
infected cells, vIL-6 has been categorized as the primary early lytic gene, since the expres-
sion of vIL-6 is explosively increased during viral replication at early time points [11,23,24].
A significant amount of vIL-6 remains within the ER, resulting in less efficient secretion
compared to hIL-6 [25,26]. The endoplasmic reticulum (ER) chaperone protein, calnexin,
affects the localization and cellular retention of vIL-6 [27]. In addition, vIL-6 can bind to the
ER-localized protein, the nonsignaling membrane receptor vitamin K epoxide reductase
complex subunit 1 variant 2 (VKORC1v2) [28], thereby inhibiting the viability of PEL cells
and the replication of the progeny virus [28].

The receptor for the IL-6 family consists of an alpha subunit (IL-6R) and a beta subunit
(gp130) [5]. Blocking the interaction between vIL-6 and gp130, specifically in the ER, by
using the gp130 dimerization-defective vIL-6 variant (W167G) reduces cell proliferation
and viability [29], highlighting the importance of the vIL-6 ER localization. Importantly,
the exogenous supplementation of the culture supernatant with vIL-6 did not restore the
production of the vIL-6 knockout virus [30]. Following lytic reactivation, the death of
KSHV-infected cells can result in the release of vIL-6 into surrounding tissues [31]. The
differences in vIL-6 primary localization at different KSHV replication stages and their
associated biological roles could be subjects for future investigation.

(ii) Transcription Regulation

The KSHV lytic phase is triggered by the activation of the open reading frame (ORF)
50, known as a replication and transcription activator (Rta). The Rta activates vIL-6 through
direct or indirect interaction with the vIL-6 promoter by triggering Notch signaling, me-
diated by the recombination signal-binding protein for Ig kappa J region (RBP-Jκ) [32–34].
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vIL-6 expression is also increased by ORF57, known as mRNA transcript accumulation
(Mta). The coding region of vIL-6 contains an Mta-responsive element (MRE) consisting
of two specific binding sites, MRE-A and MRE-B. Mta binds to MRE-A and stabilizes
vIL-6 RNA. In the cytoplasm, Mta binds MRE-B, which inhibits the binding of the miRNA-
containing RNA-induced silencing (RISC) complex (miR-1293) to the vIL-6 mRNA [19,35].
It prevents the formation of stress granules by attaching to protein kinase R (PKR), block-
ing PKR activation and the phosphorylation of eukaryotic translation initiation factor 2
(eIF2α) [19,35].

In addition to Mta, the glycoproteins B (gB) and K8.1, which function in virion attach-
ment to cell surface integrins and virus entry as late lytic genes, also positively regulate
the expression of vIL-6. The treatment of PEL cells with neutralizing antibodies against
the gB and K8.1 leads to a notable decrease in the vIL-6 and vascular endothelial growth
factor (VEGF), inhibiting angiogenesis [13]. In the contexts of iSLK and iTIME cells, vIL-6
expression is inhibited by viral interferon regulatory factor-1 (vIRF-1) through its regulation
of tyrosine kinase (TYK2), which may involve the suppression of interferon (IFN)-I signal-
ing. However, the indirect effects of vIRF-1 might mediate the positive regulation of the
viral cytokine, contributing to the balanced expression of vIL-6 [36,37]. The levels of vIL-6
were significantly reduced in BCBL-1/anti-K9 (vIRF-1) cells compared to those observed in
BCBL-1 cells [38]. Hypoxia plays an important role in the oncogenesis of KSHV-induced
tumors, with hypoxia-inducible factors (HIFs) serving as the primary mediators of the
cellular response. In addition, even under normal oxygen conditions, HIF-1 is crucial for
expressing KSHV lytic genes in PEL cell lines. HIF-1α knockdown resulted in a decrease in
vIL-6 expression as well as viral production [39].

The transcription factor X-box binding protein-1 (XBP-1s), activated by ER stress, can
directly bind to the XBP-response elements (XREs) in the promoter region of vIL-6 and
initiate its activation in latently infected KSHV cells [40]. When BCBL-1 cells were treated
with tunicamycin, a chemical that induces XBP-1s, there was an upregulation of vIL-6 [40].
XBP-1s can also stimulate human IL-6 expression, creating a positive feedback loop that
further enhances the effects of vIL-6 and supports the survival of infected cells [41,42].
Importantly, vIL-6 positively regulates the expression of lytic genes, including Rta and viral
DNA replication-related genes [10,30].

3. Receptor Engagement of vIL-6 and hIL-6

vIL-6 shares structural similarities, receptor utilization, and biological activity with
hIL-6. The IL-6 homolog is absent in other herpesviruses, such as herpes simplex virus
and Epstein–Barr virus (EBV) [9]. While hIL-6 has 212 amino acids, vIL-6 comprises 204
amino acids with 24.8% of sequence homology and 62.2% of similarity in their amino acid
composition [4,43,44]. While the molecular weight of vIL-6 is approximately 22.6–24 kDa,
hIL-6 is approximately 23.7 kDa [45,46]. Despite their structural similarity, vIL-6 exhibits
a signaling potency that is 100 to 1000 times less than hIL-6 in vitro [6]. This weakened
activity likely may help KSHV avoid excessive inflammatory responses during the latent
phase. Pulse-chase analysis showed that the half-time of the recombinant vIL-6 secretion is
approximately 4 h, 8 times longer than hIL-6 [47]. vIL-6 can substitute the function of hIL-6
and maintain the viability of human myeloma cell lines [43,45,48–50]. Table 1 shows the
basic similarities and differences between vIL-6 and hIL-6. In this section, we focus on the
differences between vIL-6 and hIL-6 in terms of their receptor engagement.

(i) Cellular tropism of vIL-6 and hIL-6

The receptor for the hIL-6 cytokine family consists of an hIL-6 receptor alpha subunit
(IL-6R), which binds to hIL-6 strongly, and a beta subunit known as gp130. This receptor is
utilized in common with hIL-6 family cytokines, including oncostatin M, IL-11, leukemia
inhibitory factor (LIF), and novel neurotrophin-1/B-cell stimulating factor-3 [5,51]. Upon
hIL-6’s attachment to IL-6R, gp130 undergoes the homodimerization and phosphorylation
of specific tyrosine residues, initiating several downstream signaling pathways. Cells
without IL-6R are unresponsive to hIL-6, as it cannot bind effectively to gp130; this restricts
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signaling since IL-6R’s expression is limited to epithelial cells, hepatocytes and, certain
leukocytes [12,52].

vIL-6 signals by forming tetrameric complexes. The gp130 signal transducer medi-
ates the effects of vIL-6 and does not rely on the IL-6R component of the receptor–signal
transducer complex. However, vIL-6 is also capable of binding to IL-6R, creating a hexam-
eric complex. The hexameric complex possesses greater signaling efficacy and complex
stability [25,53–56]. Since vIL-6 does not require IL-6R for downstream signaling and many
types of cells in our body express gp130, vIL-6 can potentially induce more widespread
effects than traditional hIL-6 signaling [4,5,47,57]. vIL-6 transgenic mice exhibit systemic
symptoms like MCD, including hyperplasia of the spleen and lymph nodes, hypergam-
maglobulinemia, plasmacytosis in peripheral lymph nodes, and splenic extramedullary
hematopoiesis [12]. The expanded tropism of vIL-6, which only requires gp130 to acti-
vate downstream signaling, may contribute to the severe systemic symptoms observed.
KICS patients, who are characterized by high levels of vIL-6, experience severe systemic
inflammation [15].

The differences in receptor engagement between vIL-6 and hIL-6 may represent an
adaptation of KSHV, allowing vIL-6 to signal to a broader range of target cells that have
downregulated IL-6R to protect against hIL-6 hyperstimulation [5].

(ii) Binding sites of vIL-6 and hIL-6

IL-6 family cytokines interact with their receptors at three sites; site I engages with the
nonsignaling receptor, IL-6R. Site II engages with the D2D3 region of gp130, and site III
with the D1 region of a second gp130 signaling receptor [53,58,59]. Site II and III epitopes of
vIL-6 have more hydrophobic content compared to hIL-6 [53]. vIL-6 binds directly to gp130
at sites II and III, but site I, which usually binds to the IL-6R, remains unoccupied [60].
vIL-6 and hIL-6 both engage with site II [53]. The amino acid residues in vIL-6 that align
with sites I and III in hIL-6 play a critical role in IL-6Rα-dependent signaling [55]. The
corresponding sequences of hIL-6 can replace the N- and C-terminal parts of vIL-6 without
losing the signal ability in an IL-6R-independent manner [61]. However, if other regions of
vIL-6, such as helix A, B, C, the first half of D (not the distal region of helix-D), and the A/B
loop are swapped with their counterparts in hIL-6, this IL-6R independent signaling is lost
(Figure 1A) [61].

Using neutralizing anti-vIL-6 monoclonal antibodies (mAbs), which specifically bind
to a domain within site I (on the C-terminal of the A/B loop and the start of the B helix of
vIL-6), showed that this binding may affect the conformation of sites II and III. In hIL-6,
the corresponding region interacts with IL-6R. Additionally, these mAbs hindered vIL-6’s
binding to soluble gp130. The mAbs bindings were mapped outside the binding surface to
gp130, suggesting that these mAbs might have blocked necessary conformational changes
for vIL-6 binding to gp130. This may also explain the vIL-6 having a 1000 times weaker
binding affinity to gp130 compared to the hIL-6/IL-6R complex’s affinity [58].

(iii) Glycosylation of vIL-6 and hIL-6

Many cytokines undergo posttranslational modification by oligosaccharides, impact-
ing protein folding and maturation, biological functions, molecular stability, receptor usage,
and signaling [62,63]. The degree of glycosylation and their attached sites determine the
variations in biological functions and receptor binding of hIL-6 and vIL-6 [63]. Specific
glycans located at Asparagine-89 on vIL-6 protein enable vIL-6 to independently interact
with gp130 without IL-6R [64]. Unlike hIL-6, these sites are fully glycosylated in vIL-6 [47].
One study demonstrated that vIL-6’s N-linked glycosylation enhances vIL-6’s ability to
bind to gp130 and downstream signaling pathways [64]. In contrast, hIL-6’s N- or O-linked
glycosylation is not crucial for hIL-6 binding to gp130. Unlike vIL-6, glycosylated or
unglycosylated hIL-6 retains its potency in B-cell proliferation induction, regardless of
glycosylation status [64].
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Table 1. The list of biological characteristics on vIL-6 and hIL-6.

Differences References

Amino Acid Similarity vIL-6 has 62.2% amino acid composition similarity with hIL-6. [4,43,44]

Sequence Homology vIL-6 has approximately 24.8% sequence homology with hIl-6. [4,43,44]

Molecular weight Molecular weight of vIL-6 is 22.6–24 kDa and molecular weight of hIL-6 is
23.7 kDa. [45,46]

Cell Expression in KS vIL-6 expresses in only 1% to 2% of cells but hIL-6 expresses abundantly. [43,65]

Secretion Half-time Secretion half-time of vIL-6 is 8 times longer than hIL-6. [47]

Signaling Potency Signaling potency of vIL-6 is 100 to 1000 times less than hIL-6. [6]

Receptor Interaction vIL-6 can directly bind to gp130 without needing IL-6R, forming a tetramer
complex. hIL-6 requires IL-6R and gp130, forming a hexamer complex. [25,53–56]

Location vIL-6 is located mostly in ER, but hIL-6 is effectively secreted. [25,26]

Posttranslational modification vIL-6 needs glycosylation to be fully functional, hIL-6 does not need
glycosylation to be functional. [64]

Pathways vIL-6 and hIL-6 have similar signaling pathways including JAK/STAT,
MAPK, and PI3K/Akt pathways. [5,49,66]

Target cells
vIL-6 can affect a wider variety of cells expressing gp130. hIL-6 affects cells
expressing IL-R and gp130 both like hepatocytes, leukocytes, and epithelial
cells.

[4,5,47,57]

4. Signaling Pathways of vIL-6

vIL-6 plays a crucial role in promoting tumorigenesis by driving cell survival, prolifer-
ation, and angiogenesis. It enhances angiogenesis by upregulating the vascular endothelial
growth factor (VEGF) and downregulating caveolin 1 (CAV1), which promotes endothe-
lial cell growth and vascular development [67–69]. Like hIL-6, vIL-6 exerts its effects
through the activation of the JAK/STAT, Ras/MAPK, PI3K/Akt, and H7-sensitive path-
ways (Figure 1B) [5,49,66]. In this section, we will overview the representative signaling
pathways of vIL-6 (Table 2).

(i) JAK/STAT pathway

The JAK/STAT signaling cascade begins with the dimerization of gp130 by catalyzing
the phosphorylation of crucial tyrosine residues on gp130. This phosphorylation then
activates Janus kinases (JAKs) such as JAK1, JAK2, and Tyk2 [70]. Subsequently, the signal
transducer and activator of transcription 1 (STAT1) and STAT3 proteins bind to these
phosphorylated tyrosine residues and undergo phosphorylation. They then dimerize and
translocate to the cell nucleus, where they activate the inflammation pathway [5,71]. Similar
to hIL-6, vIL-6 triggers JAK/STAT signaling by binding to gp130 [5].

Integrins are membrane glycoproteins that act as receptors for growth factors and
cytokines. Integrins initiate “outside–inside” signaling upon ligand binding [72] and
promote angiogenesis [73–77]. vIL-6 promotes an increase in the integrinβ 3 subunit
(ITGB3) expression in endothelial cells by JAK/STAT pathway, contributing to its role
in angiogenesis [77]. Notably, this induction of ITGB3 is unique to vIL-6, and hIL-6
overexpression does not alter ITGB3 levels [77].

vIL-6 also induces the upregulation of DNA methyltransferase 1 (DNMT1) and methy-
lates the CAV1 promoter, leading to the downregulation of CAV1 and promoting angiogen-
esis via STAT3 [67,78].

vIL-6 enhances the expression of carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) through the JAK/STAT pathway [69]. CEACAM1, a transmem-
brane adhesion protein in endothelial cells, enhances the migration of endothelial cells,
promoting angiogenesis, contributing to vascular remodeling, and is essential for the sur-
vival of infected B cells in PEL and MCD [79–83]. Phosphorylated CEACAM1 increases
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cell motility by decreasing the activation of focal adhesion kinase and interacting with
the integrin regulator. Like ITGB3, hIL-6 does not increase the expression of CEACAM1
despite its ability to initiate the JAK/STAT pathway [69].

Hypoxia-upregulated protein 1(HYOU1), a member of the ER stress protein family,
amplifies the capacity of vIL-6 to engage with gp130, subsequently boosting the JAK/STAT
pathway activation [84]. HYOU1 is overexpressed under hypoxic conditions and con-
tributes to the movement and metastasis of cancer cells in various human cancers [85].

(ii) Ras/MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway consists of a series of proteins,
such as RAS, RAF, MEK, and ERK, which play a role in cell survival and proliferation [86,87].
RAF kinase is responsible for the sequential activation of downstream targets, such
as MEK and the transcription factor ERK, which plays multiple roles in cellular pro-
cesses, such as cell cycle, cell proliferation, and cell survival [88]. vIL-6 can activate
RAS/MAPK [5,26,49,66].

(iii) PI3K/Akt Pathway

vIL-6 activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) path-
way by binding to its receptor gp130. This leads to the PI3K-mediated production of PIP3,
which recruits and activates Akt, a key player in promoting cell survival, proliferation, and
angiogenesis [89].

Many studies have shown that individuals infected with KSHV who are also HIV-1
positive have an increased risk of developing KS-associated diseases compared to those who
are HIV-negative [90,91]. One study demonstrated that vIL-6 works synergistically with
the HIV-1-secreted protein, trans-activator of transcription (Tat), to promote tumorigenesis
and angiogenesis. In vIL-6-expressing epithelial cell lines with the exogenous expression
of Tat, it activates PI3K and Akt pathways while deactivating tumor-suppressing proteins
such as PTEN and GSK-3β. Tat upregulates the expression of VEGF, b-FGF, and cyclin
D1, promoting angiogenesis [92]. Considering that Tat does not directly increase the vIL-6
expression, its impact on tumorigenesis and angiogenesis might be due to indirect effects
such as the activation of cellular signals [92]. In addition to Tat, another HIV-secreted
protein named negative factor (Nef) facilitates the angiogenesis and tumor development
induced by vIL-6 by activating the PI3K/Akt pathway [68].

Table 2. Key molecules mediated by vIL-6 in tumorigenesis and angiogenesis.

Molecule Function/Pathway References

Integrinβ 3 subunit (ITGB3) Promoting angiogenesis by JAK/STAT pathway
activation [77]

DNA methyltransferase 1 (DNMT1) Downregulation of CAV1 and promoting
angiogenesis via STAT3 [67,78]

Carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1)

Migration of endothelial cells, promoting
angiogenesis, via JAK/STAT pathway [69]

Hypoxia-upregulated protein 1 (HYOU1) Boosting vIL-6 to engage with gp130 and JAK/STAT
pathway activation [84]

Trans-activator of transcription (Tat) Tumorigenesis and angiogenesis via activation of
PI3K and Akt pathway [92]

Negative factor (Nef) Tumorigenesis and angiogenesis by activating the
PI3K/Akt pathway [68]
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plexes and JAK/STAT, RAS, and PI3K signaling pathways.
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flammatory CC chemokines, keeping the surface of lymphatic endothelial cells (LECs) free 
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Figure 1. (A) Schematic structure model of vIL-6 (Biorender). (B) vIL-6 and hIL-6 signaling complexes
and JAK/STAT, RAS, and PI3K signaling pathways.

5. Manipulation of Host Immune Response by vIL-6

The host immune response to viral infection involves innate and adaptive immune
systems, which work together to detect and eliminate the virus, prevent its spread, and
develop long-term immunity [93]. The innate immune system is the first line of defense and
responds rapidly to viral infection within hours. The adaptive immune system is activated
when the virus evades the innate response. This response is specific to the virus and takes
longer to develop [94].

(i) Innate Immune Response

(i-1) Inhibition of Immune Cell Infiltration by vIL-6

Cytokines act as messengers that coordinate the activities of immune cells, regulate
the immune response, and help the body respond rapidly to infections before the adaptive
immune response [95]. IL-1β is a pro-inflammatory cytokine secreted by macrophages
and monocytes and plays a critical role in the immune response, particularly in recruiting
immune cells [96,97]. vIL-6 inhibits the expression of IL-1β-induced C-X-C motif chemokine
ligand 8 (CXCL8), preventing neutrophil infiltration during B-cell infection. This reflects the
regulatory role of vIL-6 in leukocyte recruitment and suppressing innate immune responses,
which might affect the progression of KSHV-associated disease [98]. In addition, vIL-6 can
upregulate the expression of the D6 decoy receptor, which scavenges pro-inflammatory
CC chemokines, keeping the surface of lymphatic endothelial cells (LECs) free of CC
chemokines. This reduces the inflammatory response and the recruitment of immune cells
to the tumor microenvironment [99].

(i-2) Suppressing Interferon Signaling by vIL-6

The human immune system produces interferons (IFNs) in response to viral infections
to create an antiviral state in cells and trigger apoptosis and growth arrest [100]. IFNs
contribute to initiating G1/S cell cycle arrest by promoting the production of the cyclin-
dependent kinase inhibitor p21CIP1/WAF1 [37,101]. The promoter of vIL-6 contains
two interferon-sensitive response element (ISRE) regions; ISRE-1 at the −509 to −496 bp
upstream from the vIL-6 translation initiation region, and ISRE-2 is situated at −420
to −401 bp. Both elements are necessary for the interferon-induced activation of vIL-6
transcription [20,37]. In PEL cell lines, including BCP-1 and BC-1 cells, treatment with
IFN-α activates vIL-6 transcription. vIL-6 then suppresses the IFN-induced p21 cyclin-
dependent kinase inhibitor, creating a negative feedback loop [37,102]. Electrophoretic
mobility–shift assays demonstrated that vIL-6 blocks IFN signaling by inhibiting interferon-
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stimulated gene factor 3 (ISGF3) binding to the ISRE probe. This inhibition is mediated by
interfering with the phosphorylation of Tyk2 kinase at the IFN receptor. As a result, the
JAK-STAT signaling pathway detaches, impairing the cell’s ability to respond to interferon
signaling. In contrast, hIL-6 has no such effect [37]. IFN-α inhibits hIL-6-induced but not
vIL-6-induced gp130 tyrosine phosphorylation mostly at the receptor level and mainly
posttranscriptional. Also, treatment with IFN-α leads to the downregulation of the surface
expression of IL-6R while not affecting the surface expression of gp130 [37,103].

(ii) Adaptive Immune Response

(ii-2) Th2 cell Polarization and B-Cell Modulation by vIL-6

T helper2 (Th2) cells rather than T helper1(Th1) cells drive the adaptive immune
response in KSHV [104,105]. vIL-6 enhances the basal and IL-1β-induced expression of the
C-C Motif chemokine (CC chemokine), such as C-C Motif Chemokine Ligand 2 (CCL2),
which is implicated in directing Th2 cell polarization. Th2 polarization and Th2-induced
humoral immunity through B cells result in a weaker antiviral response compared to Th1-
mediated immunity [98,106]. B cells, the major player in humoral immunity activated by
Th2 cells, are crucial to the development and progression of KSHV-associated diseases by
acting as reservoirs, facilitating the spread of the virus, and secreting cytokines [104,107,108].
During the cancer development, KSHV-infected B cells exhibit mutated immunoglobulin
genes and markers like CD45, CD38, and CD138 and lack B-cell markers such as CD19
and CD20. This is consistent with the absence of B-cell-associated antigens in PEL cell
lines [109,110]. PEL cells express markers that exhibit characteristics of both plasma cells
and immunoblasts, corresponding to an intermediate stage in B-cell development between
these two cell types [111]. In KSHV-infected BJAB cells, vIL-6 absence was associated with
the pro-apoptotic marker CD30. In contrast, pro-growth markers such as CD45 increased
in cells containing vIL-6, suggesting that vIL-6 promotes cell growth and inhibits apoptosis
during B-cell infection [109].

B cells are able to change an antibody’s isotype by class-switching recombination
(CSR), to preserve antigen specificity and enhance its effector function [112]. Activation-
induced cytidine deaminase (AID) is the key mediator of antibody diversification for
CSR by targeting highly repetitive switch regions to mediate DNA double-stranded breaks
(DSBs) [113]. Unlike hIL-6, vIL-6 promotes class-switching recombination with an increased
expression of AID in murine B cells [104]. Consistent with that observation, in vIL-6-
dependent manner KSHV has altered the specificity of the immunoglobulin light chain
and enhanced the switching to IgG1 and IgA isotypes [104,114]. Immunoglobulin class-
switching isotypes will help KSHV evade the strong systemic immune response [114]. In
addition, vIL-6 but not vIL-6 knock-out KSHV-infected monocytes showed a decrease in
the expression of MHC class II genes (HLA-DR), which is vital for presenting the antigens
to T cells. These monocytes showed a unique transcriptional profile indicative of immune
suppression, reduced capacity for T-cell stimulation, and increased survival rate compared
to those lacking vIL-6 or uninfected controls [10].

6. Association of vIL-6 in KSHV-Related Diseases

In individuals without immunodeficiencies, KSHV infection typically does not present
clinical symptoms and remains unnoticed despite periods of lytic activation [57]. vIL-6
contributes to the pathogenesis of KS, PEL, and MCD, with its role potentially differing
in these conditions due to the virus’s varying extents of lytic replication. In total, 2–5%
of PEL cells and 5–25% of LANA-expressing MCD tumor cells express vIL-6 [115]. In a
group of HIV-1 patients, serum vIL-6 was found in 38.2% of KS patients and 85.7% of PEL
and MCD patients [116]. On average, the vIL-6 transcription in both PEL and MCD was at
least ten-fold greater than the low amounts in a subset of KS [117,118]. On the other hand,
no clear correlation was found between the levels of vIL-6 in the patient’s serum and the
occurrence of malignancies related to KSHV [116]. Here, we will take a closer look at the
association of vIL-6 with each KSHV-associated disease.
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(i) Kaposi’s Sarcoma (KS)

KS is a tumor with lymphatic endothelial system origin, expressing endothelial cell
markers, and thus presents as a vascular-rich tumor. It is typically found on the skin, less
commonly in the oral cavity, gastrointestinal system, and lungs [119–122]. vIL-6 was first
detected in KS lesions [116]. vIL-6 induces differentiation of the blood endothelial cells
into the lymphatic endothelial cells (LEC), which are thought to be the origin of KS tumors,
by activating the JAK/STAT and PI3k/AKT pathways [123]. The vIL-6-positive patients
mostly have severe forms of KS with visceral involvement [124]. In KS lesions, only 1% to
2% of the cells express vIL-6, while those expressing hIL-6 are significantly more [43,65].

(ii) Primary Effusion Lymphoma (PEL)

PEL, typically found in immunocompromised individuals with AIDS, is a non-Hodgkin
lymphoma that manifests primarily as pleura and peritoneum lymphomatous effusions,
mostly without solid tumor formation [125,126]. vIL-6 was found to contribute to an
increased number of tumors in an immunocompromised mouse model of B-cell lym-
phoma [109]. A monoclonal antibody targeting vIL-6 was shown to inhibit the proliferation
of the PEL cell line and the activation of STAT3. This inhibition occurs through the an-
tibody’s binding to the region on vIL-6 that interacts with gp130, thereby blocking its
signaling function [4,127].

(iii) Multicentric Castleman Disease (MCD)

MCD is a lymphoproliferative disorder associated with waxing and waning symptoms
such as fever, cachexia, and fatigue accompanied by lymphadenopathy and splenomegaly.
The flare-ups, which are often accompanied by autoimmune hemolytic anemia and gam-
mopathy, if left untreated, rapidly progress and have a poor prognosis. Although the
long-term outcomes are favorable with proper treatment nowadays (71% overall survival at
10 years for 62 patients), the vIL-6-positive MCD patients have been reported to experience
higher fatality rates [48,57,128–130]. vIL-6 has been reported to stimulate the expression
of human IL-6 in cell lines derived from MCD patients [12]. MCD patients, who have
higher expression levels of hIL-6 and vIL-6, show higher C-reactive protein (CRP), worse
hyponatremia, higher KSHV viral load, and higher IL-10 compared to those who have
higher expression levels of only hIL-6 [131]. This indicates that both vIL-6 and hIL-6 have
the potential to cause severe KSHV-associated MCD symptoms. A recombinant soluble
gp130Fc (sgp130) protein, a dimerized fusion protein combining sgp130, and the constant
region of human IgG1, inhibits the IL-6/sIL-6R complex and vIL-6 [4,12,127,132,133]. These
results suggested that vIL-6 is a promising therapeutic target for patients with MCD. Since
the hIL-6 monoclonal antibody (tocilizumab) binds to IL6R, while vIL-6 binds to the gp130
without the requirement of IL6R, the effect of this treatment on KSHV patients is likely
to be incomplete [134]. Although the neutralizing antibody of vIL-6 is not commercially
available now, it is important to examine the contribution of vIL-6 in the pathogenesis of
MCD to explore the efficacy of treatments, including combination therapy.

(iv) KSHV inflammatory cytokine syndrome (KICS)

KICS patients are characterized by a sustained elevation of vIL-6 [15]. KICS shares
the pathophysiology mechanism and clinical presentation with MCD, but unlike MCD,
individuals with KICS do not present with severe lymphadenopathy. KICS patients face a
higher rate of developing KSHV-related cancers and other malignancies over their lifetime.
Due to the cytokine storm induced by vIL-6 secretion in the serum, KICS is accompanied
by increased IL-10, hIL-6, and viral loads [57]. vIL-6 drives monocyte proliferation, dif-
ferentiation into dysfunctional macrophages, and an immune-suppressive phenotype via
STAT1/STAT3 activation [10]. It has been suggested that chronic STAT3 activation induced
by vIL-6 production may alter the genomic chromatin landscape and enhance inflammatory
responses [7]. An increased amount of bromodomain containing 4 (BRD4), a transcription
regulator, on chromatin by the prolonged vIL-6 exposure might be responsible for the
alteration of chromatin landscape and transcription deregulation observed in KICS [7].
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7. Summary and Future Direction

The majority of studies on vIL-6 focus on its association with KSHV pathogenesis. Con-
sidering the high concentration of vIL-6 in clinical isolates in KSHV-associated tumors and
its association with inflammatory signaling, vIL-6 is clearly involved in KSHV-associated
disease development. Mouse models indeed proved this notion [65]. An important remain-
ing question is, why does KSHV take the risk of alerting the host immune response by
stimulating inflammation? What is the benefit for KSHV to evolutionally maintain vIL-6
homologue, which is not efficiently secreted? The simultaneous activation of NF-κB and
STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the
hIL-6-STAT3 axis, which is called IL-6 amplification (IL-6 Amp) [135]. We speculate that
vIL-6 may be designed to trigger IL-6 Amp in infected/residential cells and utilize the
NF-κB and STAT3 signal activation to establish and maintain epigenetically reactivatable
KSHV latent chromatins. In this regard, KSHV has captured multiple cellular homologues
that are capable of activating NF-kB signaling [136–139]. In unfortunate circumstances,
such as a patient with other chronic inflammation, the localized vIL-6-Amp may become
systemic IL-6(s)-Amp, leading to disease development. A previous study also showed that
STAT3 colocalized with the LANA/TR complex, suggesting the recruitment of activated
STAT3 at the KSHV enhancer (LANA nuclear body) [140,141]. Further studies are needed to
understand the biological and virological significance of vIL-6 in KSHV replication cycles.
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