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Abstract

Statistical Methods for the Detection and Space-Time Monitoring
of DNA Markers in the Pollen Cloud

by
Philippe Marchand
Doctor of Philosophy in Environmental Science, Policy and Management
University of California, Berkeley

Professor Ignacio H. Chapela, Chair

The analysis of pollen grains finds applications in fields as diverse as allergology, pale-
oecology, apiculture and forensics. In contrast with morphological identification methods
that require the visual inspection of individual pollen grains, recently-developed genetic ap-
proaches have the potential to increase both the scale and resolution of pollen analyses.
In the first part of this dissertation, I describe efficient experimental designs to determine
the prevalence of a genetic marker in an aggregate pollen sample from the results of DNA
amplification by polymerase chain reaction (PCR). The method is based on the theory of
limited dilution assays and takes into account potential sources of assay failure such as DNA
degradation and PCR inhibition. In the following parts, I show how the genetic composition
of air-sampled and bee-sampled pollen can be used to infer spatial characteristics of the floral
landscape. Through individual-based simulations of the foraging behavior of honey bees, I
obtain theoretical relationships between the genetic differentiation of pollen loads collected
at a beehive and the spatial genetic structure of the plant populations visited by foragers.
At a larger scale, I present a hierarchical Bayesian model that describes the distribution and
spread of common ragweed in France by integrating annual pollen counts from aerobiological
stations and presence data from field observations. As the capacity for pollen sampling and
analysis increases, these models could be expanded to describe in more detail the biological
and physical processes affecting pollen production and transport, and thus provide better
predictions for ecological applications such as the control of invasive species.
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Chapter 1

Introduction: Pollen mapping in four
dimensions

In this dissertation, I introduce and develop statistical methods to determine the genetic
composition of pollen samples and relate this composition to spatial and space-time char-
acteristics of plant populations. To motivate these methods and put them into the proper
context, I first review the importance of pollen analysis in the environmental sciences and
discuss the potential for genetic methods to increase the capacity of pollen analyses.

1.1 The study of pollen and its applications

Pollen grains are the microgametophytes or male gamete producers of flowering plants. In
the anthers, a diploid mother cell first undergoes meiosis to produce a tetrad of haploid
microscopores. Each microspore undergoes mitosis to produce the two cells forming the
pollen grain: a generative cell and a vegetative cell. Upon reaching a receptive stigma,
the pollen grain is hydrated and germinates: the generative cell divides in two sperm cells,
while the vegetative cell will form the pollen tube (McCormick 1993). In some species,
the generative cell divides prior to germination to form a tricellular pollen grain: this class
includes agriculturally important genera such as Zea (maize), Triticum (wheat) and Brassica
(canola, cabbage, turnip) (Matthys-Rochon et al. 1987).

Multiple factors contribute to make pollen analysis a powerful tool for studying the
spatio-temporal dynamics (distribution over time) of plant species of interest. The pollen
grain’s outer wall or exine is characterized by its high level of morphological differentiation
as well as its exceptional chemical stability (Scott 1995). These properties make pollen a key
source of evidence for paleoecologists and paleoclimatologists; ancient pollen preserved in
lake sediments, for example, provides a historical record of the vegetation in the surrounding
area. Reference texts in palynology (e.g. Erdtman 1986) describe the specific morphological



features that can be used for taxonomic identification up to the family, sometimes even
genus, level.

For studies of contemporary plant dispersal and distributions, pollen sampling offers a
powerful way to collect aggregate information from a landscape. Wind-pollinated species
produce very large quantities of pollen — over a million grains per plant per day for maize at
its peak (Jarosz et al. 2003) — and disperse it over typical distances ranging from hundreds
of meters to kilometers, although there is evidence for rare long-distance transport at a
continental scale (Rousseau et al. 2008). The “pollen cloud” present at a given location can
be sampled either through a passive (e.g. slide deposition) or active device (e.g. sunction
trap, rotating rod impaction). Colonies of social bees also accumulate pollen from their
foraging area, and the study of pollen found in honey (melissopalynology) is a well-established
subdiscipline of palynology (Von der Ohe et al. 2004).

Despite the challenges involved in extracting information on pollen sources from aggregate
samples (such as those collected by air samplers and bees), pollen analysis offers the prospect
of learning about plant sources that cannot be sampled directly by the researcher. As I will
discuss in the next chapter, it is also possible to perform genetic analysis of pollen samples
faster and at a cheaper cost than for bulk plant samples.

The abundance and composition of pollen in an ecosystem impacts more than just plant
dispersal and reproduction. Pollen is the primary source of protein for a wide range of
herbivorous insects (Romeis et al. 2005). Since the pollen of some transgenic crops, such as
the Bt varieties, expresses insecticidal proteins, determining the pollen exposure from these
crops is necessary to evaluate their impact on non-target insect populations (Rose et al.
2007; Stanley-Horn et al. 2001). From a human health perspective, the need to monitor and
forecast the concentrations of allergenic pollen may constitute the most important and most
publicly known purpose of pollen sampling and mapping.

Pollen identification has even found applications in forensics, as the detection of rare

pollen types on clothing and shoes can be used to corroborate or contradict assertions on
the whereabouts of individuals (Horrocks and Walsh 1998).

1.2 Genetic methods for pollen analysis

As mentioned in the previous section, visual inspection of the exine (pollen outer wall) has
been the primary method for taxonomic classification of pollen. Pollen grains can be isolated
from environmental samples through some version of the acetolysis procedure: samples are
treated with strong acids to remove most organic contaminants, while the exine’s exceptional
chemical stability allows its essential morphological characteristics to be preserved. Pollen
is then stained and fixed to microscope slides for identification (Agashe and Caulton 2009).

Morphological identification and counting of pollen under a microscope is a labor-intensive



process, requiring specialized training to recognize the distinctive features of various pollen
types. Even in the best case, identification can only be carried to the genus level. Recently,
methods based on pollen autofluoresence have been proposed to largely automate the pollen
identification process and increase its taxonomic resolution, although these techniques are
still at the prototype stage (Mitsumoto et al. 2009; Pan et al. 2011).

In this dissertation, I focus on the possibilities offered by the genetic analysis of pollen
samples. Genetic approaches can be used to discriminate between pollen types without
relying on characteristic features of the exine morphology, autofluorescence spectrum or
some other visible phenotype. These methods are also versatile: the same techniques used
to monitor pollen could potentially be adapted to other questions of biological interest, such
as the dispersal of fungal spores or the spread of airborne diseases.

The last few years have seen an increase in the use of single-pollen DNA amplification
techniques to identify the genotype of individual pollen grains (Isagi and Suyama 2011).
Due to the low DNA copy number, single-pollen polymerase chain reaction (PCR) has a
relatively high failure rate. As a result, the time and cost involved in applying this technique
to large ecological samples can be prohibitive. However, Bektas and Chapela (2013) have
shown that the use of loop-mediated isothermal amplification (LAMP) instead of traditional
PCR can simplify the amplification process as well as improve the reliability of single-pollen
genetic identification. These recent developments raise the prospect of a high-throughput
identification method for pollen that could be used for ecological applications.

1.3 Pollen pools and flows in ecosystems

The anthers of flowering plants (and the corresponding microsporangia in gymnosperms) are
the only source of pollen in the environment. Pollen is released from the anther either by
the wind or animal pollinators, which constitute its two main dispersal vectors. Pollen can
terminate its course on a receptive plant stigma, get degraded on the ground or some other
surface, be buried and preserved in sediments, or get consumed by living organisms.

It can be useful then to think of pollen as being partitioned in different pools: pollen
on anthers, in the air, on pollinators, etc. Figure 1.1 presents a graphical summary of
those pools, along with the main biological and physical processes controlling the pollen
distribution within and between pools. This representation is not meant to be exhaustive!,
but it provides a conceptual framework linking together different areas of pollen research.

IFor example, it doesn’t cover water transport of pollen, or “buzz pollination”, where bee movement
releases pollen in the air.
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In this section, I review the sampling and analysis methods used to study three major
processes: the aerial transport of pollen, its transport and consumption by animal pollinators,
and its accumulation in sediments.

1.3.1 Wind dispersal

Estimating the density and composition of airborne pollen is a prerequisite for both the
development of theoretical models of wind pollination and the production of pollen maps,
such as those used in allergy forecasts. The Rotorod and the Hirst trap are two samplers
commonly used for this purpose: the former captures airborne particles on two rotating
arms covered with silicon grease, while the latter uses a vacuum pump for air intake and
collects particles on an rotating drum coated with adhesive tape. In principle, pollen counts
obtained from these volumetric samplers are directly proportional to the concentration in
the air; in practice, their sampling efficiency can vary based on meteorological conditions or
particle size (Frenz 1999, 2000). When absolute pollen concentrations are not required (e.g.
one is only interested in the relative amount of pollen deposition at different sites), passive
samplers of the Durham type can be a cost-effective option: a microscope slide coated with
petroleum jelly is set between two parallel plates, which protect the slide from rain and
ensure a more constant air flow (Durham 1944).

A comprehensive review of wind pollination models is outside the scope of this intro-
duction; instead, I focus on presenting examples of the different modelling approaches. The
majority of those studies pertain to maize: this is due in part to labelling laws for transgenic
food products in specific markets (such as the European Union), which created an economic
incentive for research aimed at predicting and minimizing cross-pollination between trans-
genic and non-transgenic fields.

Pollen dispersal models can be broadly divided in two classes: empirical or mechanistic.
Empirical models select among simple parametric curves to fit dispersal data. For example,
Gustafson et al. (2006) have used data from different field studies to estimate the effect
of isolation distance and border rows on pollen-mediated gene flow between transgenic and
non-transgenic maize fields. While these empirical models have been more successful than
mechanistic ones at reproducing observed data, their functional forms and parameters values
are not based on specific biological or physical processes. As a result, their conclusions cannot
be readily extended to experimental conditions outside of those used to derive the model
(Beckie and Hall 2008).

Mechanistic dispersal models can be classified as Eulerian or Lagrangian, based on
whether they focus on the evolution of a pollen density field or the stochastic movement
of individual grains, respectively.

Eulerian models are generally described as a system of partial differential equations that
approximate atmospheric fluid dynamics. A basic example is given by Gaussian plume mod-



els, which reduce turbulence to a mean transport (advection) term and a diffusive term.
In reality, since gusts of wind can transport pollen over exceptionally long distances, the
observed dispersal functions are strongly leptokurtic, i.e. with greater probability of ex-
treme values. Loos et al. (2003) account for this by summing two Gaussian plumes (one
for short-range, one for long-range dispersal). More complex models account for some of
the correlations inherent in the turbulence field, as well as the effect of heterogeneous plant
canopies on air flow (Dupont et al. 2006).

Lagrangian models use stochastic differential equations (including deterministic and ran-
dom terms) to describe the motion of pollen grains in three dimensions. The dispersal kernel,
or fraction of pollen deposited at a given distance from its source, is obtained by simulating
a large number of individual pollen trajectories. In a random walk or Brownian motion
model, the change in each coordinate at each time step is taken from a normal distribution
with a given mean and variance (Klein et al. 2003; Tufto et al. 1997). Random walk models
(much like Gaussian plumes) reduce turbulence to a diffusive process and ignore its coherent
structure. More realistic models apply a random variation to the velocity vector, rather than
the position (Aylor and Flesch 2001; Aylor et al. 2003; Jarosz et al. 2004).

Both first-order (random walk) and second-order Lagrangian models require as an input
some statistical knowledge of the turbulence field. These parameters can be found by fitting
the model to dispersal data (Klein et al. 2003), by adding an Euleriance turbulence model
(Nathan et al. 2002; Arritt et al. 2007) or by using a measured time series of the wind velocity
(Kuparinen et al. 2007).

A typical field experiment used to either fit or validate dispersal models consists in a
small (< 100x100m) source patch located in the middle of a larger receptor field (Arritt
et al. 2007; Dupont et al. 2006; Klein et al. 2003). An important question is whether the
resulting dispersal curves apply for larger scales than those where they were established.
One application of these dispersal curves is to predict cross-pollination and gene flow at the
landscape scale, by summing the individual contributions from all pollen sources (Angevin
et al. 2008). Validating these models at the landscape scale would require sampling very
large quantities of pollen; this is an area where high-throughput methods for pollen analysis
and classification could become useful.

1.3.2 Transport and consumption by animal pollinators

If the complexity of atmospheric turbulence limits the measurement and prediction of wind-
mediated pollen transport, understanding animal-mediated transport may be an even greater
challenge, based on both the diversity of pollinator species and their highly situational be-
havior. In this section, I review models and methods used in the study of pollinator foraging
behavior and the associated pollen flow. While most of the research cited here focuses on
Hymenoptera and particularly social bees, the range of animal pollinators extends beyond
insects to vertebrates such as hummingbirds and bats (Castellanos et al. 2003; Knudsen and



Tollsten 1995).

Pollinator visits can be recorded either by observation in a fixed quadrat or by walking
transects through the field, in order to estimate the visit rate per flower (Dafni 1992). Direct
observation provides information on pollinator behavior at a small scale, such as the distance
and direction change between flowers visited (Goulson 2000; Cresswell and Osborne 2004).
Large scale parameters, such as the foraging range, must be determined by indirect means.
Individuals can be marked and recaptured (Walther-Hellwig and Frankl 2000), and some
larger pollinators (e.g. bumblebees) can be tracked using radar transponders (Osborne et al.
1999). In the special case of honey bees, researchers can infer the distance and direction of
foraging sites by decoding the waggle dance of foragers returning to the hive (Visscher and
Seeley 1982; Steffan-Dewenter and Kuhn 2003).

Some attempts have been made to find general principles underlying foraging behavior,
under the topic of optimal foraging theory (Pyke 1978). This approach is based on the
idea that foraging animals, including pollinators, would have evolved to search and collect
resources in the most energy-efficient way. Optimal foraging theory provides an adaptative
rationale for some observed patterns of behavior, but to my knowledge has not been used to
make predictions about foraging range or other parameters.

Insect pollinators can be captured in the field using a net or a number of available traps.
Pollen is typically collected from the insect body using cellophane tape, washing with ethanol,
or ultrasound treatment. Corbicular pollen pellets, located on the hind legs of honey bees
and bumblebees, are readily separated from the insect, although it should be kept in mind
that this pollen is not available for pollination of further plants on the bee’s path (Dafni
1992).

Neither the movement patterns of pollinators nor the analysis of their pollen loads pro-
vides us with direct information on typical pollination distances. In their model of cross-
pollination in canola, Cresswell et al. (2002) use the result of an experiment where a single
bumblebee was left to forage in a small patch of herbicide-resistant canola plants, then moved
to a patch of non-resistant plants. By recording the order of non-transgenic plants visited
and the proportion of resistant offspring, they determined the proportion of pollination to
due to each previous plant in the visit sequence, which they call the “paternity shadow”.
This result can be combined with knowledge of foraging behavior to produce a model for
gene flow for that particular combination of pollinator and pollinated species.

In addition to the social organization of their foraging behavior, another important char-
acteristic of honey bees is the accumulation of collected pollen in the hive. On a given
foraging bout, worker bees are specialized as either nectar or pollen foragers: although the
former do carry some pollen and contribute to cross-pollination, the latter will visit plants
specifically for their pollen (including nectarless, wind-pollinated species), collecting about
15mg of pollen in two corbicular pellets (Pouvreau 2004).

Commercial honey bee hives can be outfitted with traps to collect corbicular pollen



loads from returning foragers. In some circumstances, analyzing the composition of these
pollen loads provides information on the foraging range, when one taxon has a very limited
distribution in the surrounding region (Beil et al. 2008), or when researchers are able to
detect genetic markers with a known source (e.g. transgenes, as in Ramsay et al. 2003).

It is estimated that a hive of 50,000 bees will consume about 40kg of pollen in a year
(Pouvreau 2004). Within the hive, pollen is stored in separate combs than nectar/honey
and tends to be closer to the brood area. Compared to honey, pollen tends to be collected
in bursts as surrounding plants go through their pollination peak. This creates temporary
accumulations of pollen in the hive; however, virtually all pollen is consumed by the end of
the season, while about 40% of the honey is saved over winter (Camazine 1991). This means
that pollen sampled from the hive combs at any one time may not be representative of the
whole season to date. As for the trace amounts of pollen that are found in honey combs,
they may have been deposited at various times by the movement of pollen-covered bees, or
even from gusts of wind passing through the hive.

1.3.3 Ground deposition and accumulation

The vast majority of wind-dispersed pollen does not reach a female inflorescence, instead
being deposited on some other part of the canopy, on the ground or in water. Although there
is good evidence that gusts of wind can resuspend some of this deposited pollen (Tauber
1967; Aylor et al. 2003), rarely is this phenomenon explicitly considered in dispersal models
(Jarosz et al. 2004).

The accumulation and conservation of pollen grains at the bottom of water basins (such
as lakes and bogs) has provided an important tool for paleoecologists who investigate the
history of vegetation cover at a specific site.

Pollen can be extracted from various types of sediments or even sedimentary rocks such as
lignite or coal. Processing techniques vary with sample type. Sedimentary rocks are generally
crushed and demineralized by soaking in strong acids, while the organic matter portion is
dissolved in a heated alkali solution. As an alternative or in conjunction with chemical
treatments, gravity separation techniques may be used, as pollen is typically lighter than the
mineral matrix, but heavier than the organic matter fraction (Agashe and Caulton 2009).

Most efforts to relate the representation of taxa in pollen samples to the composition
of vegetation surrounding the sampling sites start with the model of Prentice and Sugita
(Prentice 1985; Sugita 1993, 1994). If pollen is sampled at different sites within a landscape,
the quantity of pollen from species i deposited at site k (y;, the pollen load) can be described
by a function of the form:

Zmaz
Yi = ozi/ zik(2)gi(2)dz + wig, (1.1)
z2=R

where «; represents the pollen productivity of species i, x;x(2) is the average density of



species i at a radial distance z from sampling site k, and g;(z) is the dispersal kernel (as
defined in the “wind dispersal” section above) for species 7. The integral is taken from the
edge of the basin (assumed to be circular, with radius R) to an arbitrary limit Z,,,,. Any
pollen contributed by sources outside that limit radius is included in the background pollen
term, wjp.

Assuming that this background pollen contribution is constant from site to site, then
the pollen load of species 7 is a linear function of the distance-weighted plant abundance
(DWPA), the integral term in eq. (1.1). The size of the source area represented in a pollen
sample increases with the size of the basin. This idea is the basis of a two-stage algorithm
developed by Sugita (2007a,b) to estimate differences in species composition between sites
located in the same region: pollen from large lakes is used to determine the pollen background
w; and this background level becomes an input when determining the species composition
around smaller basins, using eq. (1.1) .

With knowledge of the relative pollen production rates of each species (the «;), the
Prentice-Sugita model provides a simple link between collected pollen samples and the
DWPA. However, the DWPA itself is a convolution of species distribution and dispersal
dynamics, hence it is difficult to extract the species distribution itself without making sim-
plifying assumptions (e.g. isotropic dispersal, spatial homogeneity).

Instead of reconstructing past vegetation from pollen data, an alternative approach is
to simulate the pollen load resulting from a given hypothetical landscape, then compare
the output with observed pollen counts. This method can incorporate more complex land-
scape features, including topography, heterogeneous (patchy) vegetation and non-isotropic
dispersal (Bunting and Middleton 2005; Fyfe 2006). Such simulations allow researchers to
determine if a species distribution is consistent with the pollen record, although it should be
kept in mind that many distributions could produce very similar pollen loads.

1.4 Objectives of this dissertation

In the previous section, I have reviewed the main physical and biological processes that
determine the composition of environmental pollen samples. The essential steps required to
extract information on these processes from pollen analysis are shown in Fig. 1.2. This is
a general workflow that could apply to other ecological questions. The underlying spatio-
temporal process could be the wind-mediated dispersal function for a given species, the
spatial genetic structure of a plant population, or the movement of bees during foraging, to
give a few examples.

The two sets of arrows in the diagram represent the complementary uses of statistical
models. At the design stage, a tentative model for the process of interest is used to choose
an appropriate sampling scheme in the field, and the nature of the collected samples is used
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Figure 1.2: A workflow model for pollen analysis: questions about spatio-temporal processes
inform the sampling design, and the nature of samples collected informs analytical methods in the
laboratory. The experimental results from these methods are used to estimate the composition of
samples, which is then used to make inferences about the processes of interest.

to design an experimental assay in the laboratory. At the inference stage, the same models
are used to estimate properties of the sample from the assay results, and then make inference
about parameters or other characteristics of the underlying spatio-temporal process.

The statistical models in this dissertation address both the problem of sample analysis
and that of process inference. These methods only require the capacity to determine the
presence or absence of a specific genetic marker from a pollen sample. Their aim is to answer
autecological questions pertaining to the abundance, distribution and dispersal of individual
species or genotypes.

In Chapter 2, I propose a method based on limited dilution assays to estimate the fre-
quency of a specific genetic marker in a pollen sample from the binary outcome of endpoint
PCR reactions. I calculate the uncertainty of this estimate under different models of the
PCR error rate, and use the results to define a strategy for the design of efficient assays, i.e.
those providing the most precise estimate for a given experimental effort.

The following two chapters present applications of pollen analysis to infer spatial char-
acteristics of plant populations.

The composition of honey bees’ corbicular pollen loads contains information on both
the bees’ foraging behavior and the floral resources surrounding the hive, but so far there
has been little emphasis on describing these relationships through quantitative models. In
Chapter 3, I develop an individual-based model to relate the distribution of a genetic marker
in bee pollen to parameters describing foraging behavior and the spatial distribution of plants
bearing that marker.
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Just as fossil pollen analysis has become an essential tool for reconstructing past vegeta-
tion, contemporary pollen records could help us better understand the dynamics of extant
plant populations. In Chapter 4, I discuss the use of airborne pollen records for moni-
toring the spread of invasive species, focusing on the case of common ragweed (Ambrosia
artemisiifolia) in France. I use a hierarchical modelling approach to estimate the spatial
and temporal variation of the plant’s density from the combination of two datasets: pollen
concentrations measured at a sparse set of stations over the last decade, and the presence
data from a one-time national survey.
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Chapter 2

Efficient designs for PCR analysis of
pollen samples

In the previous chapter, I discussed some advantages of genetic methods for determining
the composition of pollen samples. Only recently (around 15 years ago) have researchers
developed the capacity to amplify DNA from single pollen grains, using the polymerase
chain reaction (PCR). While the small number of DNA copies (2 or 3) in each pollen grain
represents the main challenge of single-pollen PCR (abbreviated from hereon as spPCR),
it requires a much simpler DNA extraction step, compared with methods using bulk plant
tissue (Petersen et al. 1996).

A recent compilation of studies on single-pollen genotyping by Isagi and Suyama (2011)
shows how spPCR can be used to analyze pollen sampled in the air, from the bodies of insects
and birds, from the styles of flowers, and even ancient pollen preserved in lake sediments.

In the study of plant dispersal and pollination, a key advantage of spPCR is its phylo-
genetic resolution. For example, researchers succeeded in amplifying multiple microsatellite
markers from individual pollen grains (Matsuki et al. 2011; Kondo et al. 2011). However,
these studies also illustrate one of the drawbacks of this technique: only a very small fraction
of the effective “pollen rain” can be sampled.

Consider the problem of monitoring the dispersal of a specific genetic trait or allele in
an insect-pollinated species. One possibility is to collect insect pollen loads and analyze
them as bulk samples through standard DNA extraction methods (see for example Ramsay
et al. 2003, a study of gene flow in oilseed rape). This technique could be too coarse at the
individual level, since each insect provides a single binary (presence/absence) data point.
At the other extreme, one could pick individual pollen grains from each insect an perform
spPCR. For 30 insects and an average of 50 grains/insect, a sample size typical of the studies
cited above, this amounts to 1,500 PCR reactions, a considerable experimental effort. While
this approach provides an estimate of the genetic marker frequency in each pollen load, it
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could fail to detect rare alleles (e.g. present at a frequency below 1%) and could be difficult
to interpret statistically. (What does it mean to “randomly” pick pollen grains from an
insect?)

When researchers are interested in determining the frequency of a genetic marker in
some pollen sample, an alternative approach is to perform a series of PCR reactions, while
varying the number of pollen grains in each reaction. If the original sample is well-mixed,
the frequency of the marker in that sample may be inferred from a statistical model. This
method is analogous to the limiting dilution assays (LDA) commonly used in microbiology
and immunology (Taswell 1981).

In this chapter, I develop a LDA-like model specific to pollen PCR analysis. Model pa-
rameters are determined by PCR experiments performed on samples of known composition.
By calculating the model’s performance (bias, variance) at estimating the unknown marker
frequency as a function of different experiment designs, I provide specific criteria for efficient
design of pollen PCR assays.

2.1 Statistical theory of dilution assays

Limiting dilution assays (LDA) (or serial dilution assays, as both terms are used almost inter-
changeably in the literature) are a type of experiment design commonly used to estimate the
number or concentration of a specific type of cells in a sample, when the underlying test only
produces a binary (presence/absence) response (e.g. growth medium to determine presence
of culturable cells, or antibody test to determine presence/absence of a given infection). The
LDA design consists in making successive dilutions of the original sample and replicating the
assay multiple times at each dilution level. As theory predicts mostly positive results at low
dilutions and negative results at sufficiently high dilutions, the statistical behavior between
these two extreme cases can be used to estimate the initial concentration of target cells.

Statistical methods to analyze LDA results were developed in the early 1980s by Taswell
(1981) and Fazekas de St. Groth (1982), although a brief discussion of the problem is included
in Fisher’s original work on maximum likelihood estimation (Fisher 1922). For the question
of pollen identification by PCR, the parameter of interest (¢) is the fraction of pollen grains
in the sample bearing a specific DNA marker. The equations presented here are based on
Myers et al. (1994), who also consider the LDA parameter as a proportion.

The main assumption behind the classical analysis of LDA results is that the number of
target cells per replicate follows a Poisson distribution, and that a positive result occurs for all
replicates containing at least one target cell (the so-called “Poisson single-hit model”). The
Poisson distribution is generally fit for representing rare, independent events. In the LDA
context, the rarity condition means that the probabilty of any specific cell being represented
in each replicate is low, or said otherwise, that each replicate only represents a small volume
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of the whole sample. The independence condition requires that target cells be distributed
randomly within the sample; any clustering (cells sticking closely together) or partitioning
(cells “repelling” each other) effect must be negligible. The single-hit criterion excludes the
possibility of either false positive (positive signal when no target cell is present) or false
negative (negative signal when one or more target cells are present) errors.

2.1.1 Maximum-likelihood analysis of dilution assay data

Suppose a LDA is conducted with D dilution levels and R, replicates at the d™ dilution
level. Under the Poisson single-hit model, if A\; is the average number of cells per replicate at
the d*® dilution level and ¢ is the fraction of target cells among all cells in the sample, then
the probability of getting no target cells in a replicate is e~*. Therefore, the probability
pq of getting a positive result for any given replicate at the d* dilution level is:

pg=1—e % (2.1)

Assuming all replicates are independent, the probability of getting k; positive results
at the d*™® dilution level is given by the binomial distribution with Ry tries and probability
of success pg. The joint probability of the set {ks} (results for all D dilution levels) is
obtained by multiplying the probabilities at each level. Therefore, given the results of one
LDA experiment, the likelihood (£) of the (unknown) parameter ¢ is calculated as:

(o kay) =11 (]Z )pdw)kd(l —pa(@)" (22)

d=1

where it is emphasized that pg depends on ¢ through eq. (2.1).

The same likelihood equation (2.2) also applies for experiments where the number of
tested units (e.g., cells) at each “dilution” level is known, rather than being the outcome of a
Poisson process.! One example is the testing of seed lots for infections, when the number of
seeds in each replicate can be exactly counted (Ridout 1995). If Ny is the number of tested
units at the d* level, then the probability of not having a single unit responding to the test
is (1 — ¢)N4, and eq. (2.1) for pg is replaced by:

pa=1- (1 - <Z5)Nd . (2-3)

~

The estimate of ¢ (¢) that maximizes the likelihood of the observed data corresponds to
a root (zero) of the score function U, which is the derivative of the logarithm of £:

0L N[ ke Ra—ka]dpa
Vo) ="3; “;[pdw) T—pato)] 4o 24)

'For simplicity, I will refer to “dilution level” and “limited dilution assay” for those experiments as well,
even though the sets of replicates are not produced by successive dilutions.
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In general, finding the root of U requires the use of a numerical algorithm (e.g. Newton-
Raphson).

2.1.2 Bias correction for the maximum likelihood estimator

~

Given one set of outcomes {ky}, applying the method above will yield a single estimate ¢.
While this single estimate will likely deviate from the true value of ¢, the estimator is said
to be unbiased if its expected value, taken over all possible experimental outcomes, equals
the true value of the parameter: E[¢] = 6.

Unfortunately, the maximum likelihood estimator (MLE) of ¢ obtained from eq. (2.4) is
generally biased. This is easily illustrated in the case where d = 1, where the probability of
getting k positives of of R replicates is a simple binomial distribution, and the MLE of p:

ok
P=g

is unbiased. The MLE of ¢ is found by inverting either eq. (2.1) or (2.3), depending on the
model used:

o) = L=,

o(p) =1- V1-p.
In either case, ¢ is a convex function of p, so that by Jensen’s inequality:

Elo(p)] > ¢(E[p]) = ¢.

or

Therefore, the curvature of p(¢) combined with the unbiasedness of p results in é overesti-
mating the true value of ¢. This is shown graphically in Fig. 2.1.

A useful property of MLE is that they are asymptotically unbiased, that is, their expected
value approaches the true value as the sample size n (here, n is the total number of replicates
used at all levels) approaches infinity. In particular, the bias can be represented as a power
series over (1/n):

Ep—9¢l=—+—=+—=+..., (2.5)
n o n
where the coefficients b,, depend on the specific problem.

Different strategies have been used to correct the MLE bias at the first-order (b; /n term
in eq. (2.5)). The jackknife is a general bias-correction method that has been used in the
context of LDA analysis (e.g. Does et al. 1988): it requires the computation of (5 for n
subsamples of size n — 1, each of them created by omitting a different replicate from the
original sample.
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Figure 2.1: Tllustration of Jensen’s inequality in estimating ¢ from the observed proportion of
successes, p, under a Poisson single-hit model (A = 10). Due to the convex curvature of the
function, the average estimate of ¢, E[¢p(p)], is always greater than the true value of ¢, corresponding

to ¢(Ep]).
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The jackknife method, although robust, is computationally burdensome (due to the n re-
peats of the estimation procedure). In the context of dilution assays, Mehrabi and Matthews
(1995) also found that the jackknife cannot reliably quantify the estimator’s variance. In-
stead, they recommend using Firth’s bias-corrected score function, U* (Firth 1993):

R e IR )

where U is the uncorrected score function (2.4) and all expected values are calculated over

the set of experimental outcomes. The bias-corrected MLE of ¢ corresponds to the root of
U-.

2.1.3 Variance, confidence intervals and mean square error

In addition to any systematic bias, it is important to quantify the random variation of
any estimator over the set of possible experimental outcomes. A general estimator for the
variance of a MLE is the inverse of the Fisher information, I:

~ 1 1

<72q3 — 0] = = [B_U} : (2.7)

2]

For the LDA score function (2.4), I is calculated as:

1 dpa\”
P ) (1= pa(@) (%) ] | 28

As defined in eq. (2.7), I corresponds to the “steepness” of the log-likelihood curve
around its maximum at (5 It is sensible to expect that the MLE would be more precise
if the likelihood function is very sensitive to small changes in ¢. We also see that the
Fisher information for a dilution assay (2.8) is additive: the term in square brackets can be
interpreted as the amount of information provided by each of the R, replicates at the d*®

level.

[(¢):ZRd

d=1

When ¢ approximately follows a normal distribution, the 100(1-a))% confidence interval

can be estimated as q%j: Zoé/m/aA2 5, where 2,5 is the a/2 percentile of the standard normal
distribution.

In her study on the design of LDA experiments with small sample sizes, Macken (1999)
underlines two problems with these conventional estimates of the variance and confidence

interval: (1) ¢ is not distributed normally, and (2) the Fisher information, while providing
a lower bound on the variance of an unbiased estimator, does not always indicate for which
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design parameters the actual variance is minimized. Instead, she calculates the exact distri-
bution of the MLE, ng, by determining the probability of each experimental outcome and the
value of ¢ that would be inferred from that outcome. Since at each level, ky can take values
from 0 to Ry, the total number of outcomes is:

Nowr = H(Rd + 1) (29)

d=1

If N, is too large for the exact calculation to be feasible, Monte-Carlo methods can
be used to generate a representative set of outcomes. FEither the exact or approximate
distribution of (/5 can serve as a basis for calculating the bias, variance and confidence intervals
for the MLE, without making any assumptions beyond the validity of the specified likelihood
equation.

The overall performance of a biased estimator can also be characterized by its mean
square error (MSE), which equals the sum of the variance and squared bias:

B|(9-0)| =B|(5-Bi)"| + Bl6 - o2

2.1.4 Non-informative outcomes

When estimating the statistical properties of gg, outcomes with all negatives or positives (for
all replicates at all levels) need to be considered separately. These outcomes will correspond
to a QAS of 0 or 1 (respectively), regardless of the particular experimental design, which means
they provide little information on the actual value of the parameter. Under the Poisson
model, which does not explicitly treat ¢ as a proportion, all-positive outcomes are even
more problematic, corresponding to ng) = oo! In practice, these experimental outcomes would
not be used to infer ¢; rather, they would lead to a repetition of the experiment at a more
suitable range of dilution levels.

Two approaches have been used to avoid non-informative outcomes. With the primary
concern of avoiding infinite estimates, Does et al. (1988) suggest arbitrarily replacing one
of the positive tests with a negative. Macken’s approach is to define a probability of non-
informative assay (PNI), representing the frequency of all-negative or all-positive outcomes,
then ignore these non-informative outcomes when calculating statistics from the ngS distribu-
tion. In this second approach, the PNI becomes a separate criterion that, just like the bias
and variance, should be minimized in a good experimental design (Macken 1999).
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2.2 Optimal design of dilution assays

While the results of a dilution assay can be analyzed in a straightforward way through
maximum likelihood methods, finding optimal assay designs has proved to be a difficult
problem, whether it is defined in terms of quality maximization (i.e. most precise estimate
for a given experimental effort) or cost minimization (i.e. achieving a given precision level
with the least effort). Optimum design theory has been concerned with defining suitable
measures of efficiency - these are often functions of the Fisher information, or information
matrix in the case of multiple parameters - and finding equivalences between them (Atkinson
and Donev 1992).

Models where the observed response depends nonlinearly on the parameters pose a par-
ticular problem, as the optimum design depends on the (a priori unknown) values of those
parameters. Dilution assays clearly fit in this category: for a given value of ¢, there is a
single dilution level - corresponding to roughly 1.6 responding cells per reaction - which max-
imizes the Fisher information. However, this single-level assay will become non-informative
for much smaller or larger values of ¢ (Fazekas de St. Groth 1982).

As an empirical solution to this problem, Strijbosch et al. (1987) propose the use of a
geometric progression of dilution levels: the concentration of cells at level d, is given by
coa®, where ¢y is the initial concentration and a is a dilution factor chosen based on the
expected range of ¢. The main advantage of this method is that its efficiency is stable over
the whole range of ¢ considered, instead of peaking at a single value of the parameter. As
an alternative, Abdelbasit and Plackett (1983) describe a sequential (multi-step) design: the
dilution level at step 1 is chosen to optimize the information based on an initial guess of ¢,
then the estimate from step 1 becomes the initial guess for step 2, and so on. As the authors
note, the efficiency of this method strongly depends on how close the initial guess is to the
true value.

Bayesian approaches (Ridout 1995; Mehrabi and Matthews 1998) provide a general frame-
work to incorporate prior information or guesses about the parameter values. This knowledge
is expressed in the prior distribution of ¢, so that the performance of a specific assay de-
sign is defined by the expected value of the efficiency criterion over that prior distribution.
Maximizing the logarithm of the Fisher information or minimizing its inverse (which, as
seen above, estimates the variance) are both commonly used criteria. Maximizing the Fisher
information itself is not desirable, as it always produces assays with single dilution levels.?
As an alternative to average performance measures, minimax (best performance in the worst
case) or centile optimization criteria (best performance in X% of cases) can also be used
within a Bayesian framework (Matthews 1998).

2For a given prior distribution of ¢, there will be a dilution level which maximizes the expected information
from a single reaction. Since Fisher information is additive, the information from the whole assay will be
maximized when all reactions are replicates of that same dilution level.
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2.3 Previous work on PCR-based dilution assays

As the polymerase chain reaction (PCR) technique of DNA amplification was popularized in
the 1990s, a few authors discussed the potential of dilution assays as a way to quantify DNA
copy numbers. Compared with other quantification techniques that rely on assumptions
about amplification efficiencies of different sequences, methods based on LDA only require
the binary (amplification or no amplification) endpoint result (Sykes et al. 1992). PCR-based
assays, however, do not generally satisfy the single-hit criterion; that is, the possibility of
false negatives or false positives cannot be ignored. Different approaches have been used to
address this challenge.

In developing a PCR-based LDA to quantify the number of leukemic DNA copies from
blood cell samples, Sykes et al. (1992) looked at two sources of amplification failure at low
target copy number. To account for the possible degradation of DNA samples, they added
a second set of primers for an endogenous gene (which should be present in all cells). They
also observed that detection of their leukemic marker was significantly reduced when large
amounts of non-leukemic DNA was added to the mix, a result they attribute to competition
from homologous templates for primer binding. By performing two rounds of PCR (with
nested primers), they estimate that they could detect as few as two leukemic templates in
a background of over 10° non-leukemic genomes. Even with the added round of PCR, their
data shows that adding non-specific DNA reduces the number of positive results.

The PCR-based LDA model of Rodrigo et al. (1997) incorporates false negatives and
false positive rates, but treats them as constants. A more realistic model was developed
by Hughes and Totten (2003), who use the results of a LDA performed at known DNA
concentrations to estimate the sensitivity of the PCR reaction. Their method only assume
that rate of success increases monotonically with the number of DNA templates. They do
not consider the possibility of PCR inhibition at high template concentration, or the effect
of non-target DNA molecules.

2.4 Limited dilution assay model for pollen PCR

In this section, I will apply the basic LDA principles to the genetic analysis of environmental
pollen samples. The quantity of interest is the proportion of pollen grains containing a given
DNA sequence, and the experimental test is a PCR amplification performed on varying
numbers of pollen grains, using primers specific to this sequence.

The model presented here is based on the following assumptions:

1. At dilution level d, replicates are sampled in one of two ways:

e exactly Ny pollen grains are picked randomly from the original sample (“exact N
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sampling”); or
e a constant volume is taken from a well-mixed pollen suspension, obtained by

dilution of the original sample; Ny is assumed to follow a Poisson distribution
with an average of A\; (“Poisson sampling”).

2. The probability of amplification in a given replicate depends on the number of pollen
grains present (N,) as well as the number of grains with the marker of interest (m);
this probability is written as Pr (+ | m, Nd).

Note that Pr (—l— | m, Nd) represents the probability of amplification conditional on Ny
grains being present, m of them having the target marker. It encompasses both the possibility
of false positives (if Pr(+) > 0 when m = 0) as well as false negatives (if Pr(4+) < 1 when
m > 1).

The probability of a positive amplification at the d' level, pg, is equal to the average
(expected value) of Pr (+ | m, N,) over all possible values of m and Ny.

In the Poisson sampling case, N, follows a Poisson distribution, and m follows a binomial
distribution with Ny attempts and probability of success ¢. Therefore, py is calculated as:

Nmax )\deei)\d Nd Nd N
pa(9) = P TN mZ:O (m>¢m (1—9¢)"“ "Pr (+ | m, ]Vd). [Poisson] (2.10)

In theory, the Poisson distribution extends to arbitrarily large values of N; (with tiny prob-
abilities); it is truncated to some value N4, for computational purposes.

For the exact N sampling case, N, is fixed, while m still follows a binomial distribution:

pa(d) =) (]X;’) ¢"™ (1 — )N Pr (+ | m, Ny). [exact N] (2.11)

2.4.1 Parametric model for failed assays

In the model above, the possibility of failed assays (i.e. false positives or false negatives) is
accounted for by the function Pr (—|— | m, Nd), corresponding to the probability of amplifica-
tion in a reaction where m out of Ny pollen grains have the marker of interest. Since this
probability depends on both the experimental protocol used and the sample being tested
(species, age, etc.), it should be determined experimentally by performing the assay on rep-
resentative samples of known pollen composition. However, for the purpose of testing the
model’s sensitivity to failed assays, it would be useful to represent Pr (+ | m, Nd) in a simple
parametric form. Here, I propose a parametric failed assay model that, despite its simplicity,
is broad enough to encompass many of the suspected sources of false positives or negatives.

I assume the false negative rate is due to three independent components:
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e DNA from each of the m pollen grains with the marker could fail to amplify (due to
degradation, for example), with a probability fges;

e some component of the pollen could inhibit PCR, causing the reaction to fail with
probability fi.n(Vg);

e the reaction could fail for reasons having nothing to do with the number of pollen
grains, with probability feqc.

Common sources of false positives in PCR include contamination (by amplicons from
previous assays) and non-specific amplification (due to primer design or experimental con-

ditions). Therefore, I will assume that the probability of false positives, f,os, is independent
of both m and Nj.

These combined assumptions lead to the following equation for Pr (+ | m, Nd):

Pr (+ | m,Ny) = {f”"s ifm =0, (2.12)

(1 - f?"e(w) (1 - (fdeg)m) (1 - fmh(Nd)) if m>1.

I still have to specify the inhibition function f;,,(Ng). This function should be strictly
increasing, approaching 0 at low pollen numbers and 1 for high pollen numbers. A logistic
equation of the form:

1

finn(Ng) =
1+ exp (= 7inn(Na — Ninnso))

(2.13)

meets these criteria and constitutes a common choice to model dose-response relationships
(e.g. Haanstra et al. 1985). The parameter N;,;50 corresponds to the value of Ny for which
50% of reactions would be inhibited, while r;,;, determines the steepness of the curve around
that point.

Figure 2.2 illustrates how the probability of success of a single reaction is affected by
each of the false negative parameters, as well as their combined effect.

2.4.2 Numerical implementation

I have written a Fortran 90 program to calculate the distribution of é for a specific ex-
perimental design under this model. It takes as input a value of ¢ (representing the true
concentration in the hypothetical sample to be tested) as well as the following design pa-
rameters:

e whether the Poisson or exact N sampling method is used;
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Figure 2.2: Effect of the three false negative sources (fgeq, finh and freac) on the probability p
of a successful reaction, as a function of the number of pollen grains N (exact N sampling with

¢ =0.1).

e the number of dilution levels D;
e the number of replicates R, for each level; and

e for each level, either the number of pollen grains tested by replicate Ny (exact N
sampling) or the average number of grains Ay (Poisson sampling).

The function Pr (+ | m, Nd) also needs to be specified in the program. To calculate pg in the
Poisson sampling case (eq. 2.10), I use Npae = 2Ag + 3, which includes >99.9% of possible
outcomes.

The program first calculates the probability of each outcome {k,}:

Pr({ka}) = ] (Z)pdwfl(l —pal(@)

d=1

Then, for any outcome exceeding a minimum probability, the maximum likelihood esti-
mate (ﬁ is calculated. The minimum probability is used to avoid wasting computation time
on very improbable outcomes which do not significantly affect the statistics of é The thresh-
old is set at /Ny, with N, being the total number of possible outcomes (eq. 2.9). This
ensures that the outcomes retained for the calculation of ¢ represent at least 100(1-a)% of
the total probability (as a conservative estimate).
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The MLE is determined as the root of the corrected score function (2.6), found using
Brent’s algorithm (Press et al. 1996) under the assumption there is a root in the interval
¢ € (0,1). In the absence of a root, the likelihood is maximized at either 0 or 1 and the
outcome is classified as non-informative (see discussion of non-informative outcomes above).
Note that this definition of non-informative outcome is not equivalent to an outcome with
only negative or positive results. Indeed, in the presence of a (known) false positive rate, an
outcome with very few positives could be non-informative; conversely, as the results below
will show, the corrected score function may have a root in (0, 1) even when all replicates are
positive.

The program outputs the distribution of é as well as summary statistics including the
bias, variance and probability of non-informative assay (PNI). Confidence intervals at any
desired level can be determined from the distribution itself.

Derivation of the equations used in the program (such as the corrected score function)
as well as the complete source code are included as Appendix A.

I first apply this model to calculate the distribution of estimates when there are no false
negatives or positives, as in the Poisson single-hit model: T call this situation the ’ideal
response case’. Following this treatment of the ideal case, I will consider the problem of
estimating the error parameters, and evaluate how these rates of false positives or false
negatives affect the accuracy of ¢ estimates.

2.5 Model calculations in the ideal response case

2.5.1 Assays with a single dilution level

For a single dilution level, there are only two scalar design parameters: the number of pollen
grains per reaction (NN, or its average value A in the Poisson sampling case) and the number
of replicates (R).

Figure 2.3 shows an example of the probability mass function (pmf) predicted for gZ; in
a single level assay, with and without the correction applied to the score function. Unless
specified otherwise, for all results presented here I set the parameter o = 10™2 (meaning that
the pmf is calculated for outcomes totalling at least 99.9% of the total probability). While
the results shown are for Poisson sampling, the pmf retains the same shape in the exact N
sampling case.

In this example, it is clear that the distribution of parameter estimates is positively
skewed and not normal. Using a quantile-quantile plot (not shown), I have verified that the
distributions in Fig. 2.3 are very close to lognormal, which is consistent with the results of
Macken (1999). However, it should not be assumed that this lognormal shape generalizes to
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Figure 2.3: Probability mass function of the maximum likelihood estimate gzg in the ideal response
case with ¢ = 0.1, a single dilution level at A =10 (Poisson sampling), and R = 20. Vertical lines
represent the expected value of ¢ for each pmf.

more complex assay designs or non-ideal responses.

Another specific feature of this example is that the bias-corrected distribution includes
one more outcome at the high end (ngS = 0.37), which is the estimated frequency when all
20 replicates are positive; in the uncorrected case, the estimate of ¢ = 1 is rejected as non-
informative. This frequency could be interpreted as a strict upper bound on the true value
of ¢ that can be estimated from this specific design (number of replicates and number of
pollen grains per replicate); that is, the assay would be useless on any sample with ¢ > 0.37.
Simulation results also show that ¢ becomes more and more underestimated at it approaches

this upper bound.

Figures 2.4 and 2.5 show how, for a given frequency ¢ and number of replicates R, the
mean number of pollen grains per tube N (equal to A for Poisson sampling, and N for exact
number sampling) affects the relative bias, coefficient of variation (CV) and probability of
non-informative outcomes (PNI) of the estimator. The CV is the ratio of the standard

deviation to the expected value:

o2

E—ﬁ,

which is useful for comparing the relative uncertainty of estimates.

CV =
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Figure 2.4: Bias of the corrected and uncorrected maximum likelihood estimator (Z) for a single

dilution level, as a function of the average number of pollen grains per reaction, N (for ¢ = 0.1 and
R = 20).
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Figure 2.5: Coefficient of variation (CV) and probability of non-informative outcome (PNI) of ¢
for a single dilution level, as a function of N (for ¢ = 0.1 and R = 20). The dotted line shows the
theoretical value (based on Fisher’s I) of the CV for Poisson sampling.
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In Figure 2.4, I have included the results produced with an uncorrected score function
(only the corrected version will be used from this point on). For mid-values of N, the
uncorrected version overestimates ¢ by about 5%, while the corrected estimates fall within
0.1% of the true value. The positive bias at low values of N, even in the corrected case,
is due to the rejection of all negative outcomes (more common when N is low) as non-
informative, rather than assigning them ngb = 0 and including them in the average. Similarly,
the negative bias at high N is due to all positive outcomes either being rejected, or resulting
in an underestimate under the correction procedure (see above). One interesting feature of
these results is that a reliable estimate can be produced at higher N using Poisson sampling;;
since the number of pollen grains vary from one replicate to another, there will be enough
replicates with a lower N to reduce the chance of an all positive outcome.

I have displayed both the CV and PNI in the same graph (Fig. 2.5), to show the CV
can be misleadingly low when many outcomes are rejected as non-informative. I have also
added a theoretical curve of the CV, as calculated from Fisher’s information in the Poisson
sampling case (see eq. 2.7 and the accompanying discussion).

Taking into account the bias, CV and PNI, I can determine an optimal range for N
for a given marker frequency (here ¢ = 0.1). For exact N sampling, the range providing
the best estimate seems to be betwen 5 and 15, corresponding to an average of 0.5 to 1.5
“positive” pollen grains per reaction. For Poisson sampling, this range extends to at least
20 (or 2 positive pollen grains per reaction). Note that the PNT at high N is low for Poisson
sampling due to the correction procedure, but there is still an undesirable bias. The PNT is
still high for exact N sampling.?

These results also show the usefulness of calculating statistics based on the complete
distribution of ngS when R is not too large. As noted before, the estimation of the variance
using Fisher’s information leads to an optimal target of around 1.6 positive cells per replicate
for the Poisson single-hit model (corresponding to N = 16 in Fig. 2.5). However, for the
relatively small-scale assays discussed here, it might be better to speak of an optimal range
where the CV remains approximately constant. The Fisher optimum is not in the middle of
that range, but rather at the high end.

Since Poisson sampling from a diluted pollen suspension adds uncertainty about the
number of pollen grains per replicate, compared with picking an exact number of grains each
time, it is not surprising that the coefficient of variation for Poisson sampling is higher than
for exact N sampling in Fig. 2.5. This reduction of the CV by a few percentage points needs
to be weighted against the additional work involved when manually picking out pollen grains
from the sample, unless the experimenter has access to automated cell-sorting equipment.

As discussed before, dilution assays generate nonlinear likelihood models, so that the
performance of a specific assay design depends on the value of the parameter one seeks to

3This is due to the difference in the shape of the function p(¢) in the Poisson and exact N cases. When the
probability of success becomes large, its derivative is too close to zero in the exact IV case for the correction
procedure to give good results, so the outcome still has to be rejected. See Appendix A for details.
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Figure 2.6: Relative bias, CV and PNI of é for a single dilution level, as a function of ¢ (for
N =10 and R = 20).

estimate. Figure 2.6 shows how the relative bias, CV and PNI of the estimator are affected
by the true frequency ¢, for a given assay design (N = 10 and R = 20). The results in the
Poisson sampling case are the same as those obtained above when varying A: assuming an
ideal response (the Poisson single-hit model), the probability of success of a reaction only
depends on the product ¢\, which is also the expected number of positive cells per replicate
(see eq. 2.1). However, the estimate obtained from exact N sampling “tolerates” high values
of ¢ better than high values of N: above ¢ = 0.2, the PNI is still negligible, but a negative
bias appears, just as in the Poisson case.

These results show an approximately fourfold change in ¢ (from 0.05 to 0.2) where a
given assay design can produce unbiased estimates, and where the variation stays within a
relatively narrow range (CV between 26% and 33% for exact N sampling, or between 29%
and 35% in the Poisson sampling case). This suggests a multiple stage design where ¢ is first
confined to a sufficiently narrow range, followed by a single level assay with N or A chosen
by the method presented here. I will discuss this type of design further in the next section.

Based on the theoretical relationship between Fisher’s information and the estimator
variance (eqs. 2.7 and 2.8), I expect the variance to be proportional to 1/R and the standard
deviation to vary as 1/ VR. Figure 2.7 shows how the number of replicates affects the relative
bias, CV and PNI (for fixed ¢ = 0.1 and N = 10). Except for small values of R, where
non-informative outcomes are common and gzg is biased (especially in the exact N sampling
case), the coefficient of variation does vary as the inverse square root of R (regression not
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Figure 2.7: Relative bias, CV and PNI of ¢ for a single dilution level, as a function of R (for
¢ =0.1 and N = 10).

shown).

The previous results assume that the number of replicates R and the number of pollen
grains per replicate N are independent design parameters. While this will often be true,
there are cases when the total pollen grain number will be a limiting factor (e.g. when
sampling from a very small insect pollinator). In this case, where the product RN is a
design constant, is it better to keep N within its optimal range, or to decrease it in favor
of more replicates? Figure 2.8 shows that under this constraint, the coefficient of variation
monotonically decreases with greater R. However, the additional material and labor cost of
performing more replicates may not be worth a relatively modest increase in precision.

2.5.2 Multiple level assays

Based on the discussion of optimal assay designs in section 2.2, it does not seem possible
to define a single best experimental design for a multiple level dilution assay. There are
multiple criteria proposed to qualify a better design. (For example, should it produce the
most precise estimate on average, or in the worst case scenario?) Even if one measure of
quality is ageed upon, it may not be feasible to compute it for all possible values of the
design parameters.

Therefore, I will narrow my search to a particular type of two-step sequential designs,
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Figure 2.8: Coefficient of variation of 6 for a single dilution level as a function of R, with the
product RN fixed at 200 (¢ = 0.1).

where step 1 is a geometric dilution series and step 2 has a single dilution level, chosen based
on the estimate of ¢ obtained from step 1. This choice aims to combine the advantages of the
geometric progression (which is effective for a large range of values of ¢) and the additional
precision provided by the single-dilution step. It differs from the type of multi-step designs
proposed by Abdelbasit and Plackett (1983), where all steps including the first are performed
at a single dilution level. Applying a two-step design in practice requires the pollen sample to
be mixed and split into two parts of (nearly) identical composition, which should be feasible
as long as the number of grains in the initial sample is large.

Concretely, this two-step design is specified by four parameters:

D, the number of dilution levels for step 1;

R, the number of replicates for the first, multiple-dilution step (same for all D levels);

e R, the number of replicates for the second, single-dilution step; and

Gmin, the minimum value of ¢ that the assay is meant to detect (¢4, is set at 1).

For step 1, the mean number of pollen grains at level d is a®~!, rounded to the nearest
integer. The value of a is chosen to form a geometric progression from 1 to 1/@in:

1
¢min .
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The mean number of pollen grains for step 2 is taken as 1/ quS, rounded to the nearest
integer, which corresponds to one positive pollen grain per reaction. This is based on the
optimal range of around 0.5 to 2 positive grains per reaction found in the previous section.
Since the distribution of QAS is approximately lognormal, it makes sense to choose the midpoint
of (0.5, 2) on a log scale, which is 1. T also verified that using a target above 1 positive grain
per reaction (up to the Fisher information optimum of 1.6) did not improve the accuracy of
the estimate.

In the following simulations, I set ¢,,;, = 0.01 and the total number of reactions Ny, =
50. For each set of parameters (D, R,, and Ry), I use the algorithm above to calculate the
bias and variance of qB Figure 2.9 shows the relative root mean squared error (the square
root of MSE as a fraction of ¢) for different values of D and R,,.* Exact N sampling was
used to speed up calculations, although I have found the same pattern in a smaller-scale
simulation with Poisson sampling.

To put these relative root MSE values into perspective, I note that their theoretical
minimum (if all N, reactions were conducted at the optimal dilution level) is 0.14 for
¢ = 0.4 and 0.17 for ¢ = 0.02.

These results, which were replicated at more values of ¢ than the two shown, do not
display a very sharp optimum, as many possible choices of the parameters yield comparable
estimation accuracy. There is, however, a trend emerging from these results that suggests a
general strategy for step 1 design: choose more dilution levels but less replicates at each level.
In this particular case, six dilution levels (approx. 2.5-fold dilutions from N = 1 to 100)
seem to suffice. This is useful knowledge, since it allows the experimenter to maximize the
experimental effort at step 2, where additional reactions have the biggest impact in reducing
the uncertainty about ¢.

As an illustration of the gain in precision from the two-step assay, Fig. 2.10 shows the
probability density of ¢ for a true value ¢ = 0.1, using one of the best designs found above:
6 dilution levels with 2 replicates per level at step 1, and the remaining 38 reactions at step
2. Based on a quantile-quantile plot (not shown), I found that the probability density of the
estimate after step 2 closely followed a lognormal distribution, just as in the single-level case
(Fig. 2.3).

None of the results from this section take into account the experimental errors associated
with pollen PCR. In the following section, I will look in the impact of those errors on the
design and analysis of the PCR-dilution assays.

4Since Ny is fixed, Ry can be found from DR, + Rs = Nioy.
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Figure 2.9: Relative root mean squared error (RMSE) of ¢ as a function of the number of dilution
levels (D) and the number of replicates per level (R,,) at the first step of a two-step assay, for two
values of ¢ (50 total reactions, ¢, = 0.01).
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Figure 2.10: Probability density function (pdf) of ¢ after step 1 and step 2 of a two-step assay,
with D = 6, R, = 2, Rs = 38 and ¢,;, = 0.01; the true value of ¢ is 0.1.

2.6 Model calculations in the non-ideal case

For the purpose of illustrating how failed assays can be accounted for in my model, as well as
how they impact its capability to estimate ¢, I have introduced a parametric expression for
the probability of success of a PCR reaction, given the number of pollen grains present (/Ny)
and the number of grains bearing the DNA marker of interest (m). That model assumes
a constant rate of false positives (fp,s) and three independent sources of false negatives,
corresponding to the degradation of the DNA template (fge,), the inhibition of PCR by non-
target DNA or other components of the pollen ( fi5), and a reaction failure rate independent
of pollen grain number (feqc):

fpos if m=0,

(1= Freae) (1 = (faeg)™) (1 = Fiun(N2)) if m > 1, (2.12 revisited)

Pr(+|m,Nd):{

with
1

#(Na) 1+ exp (= Tinn(Na — Ninnso))

(2.13 revisited)

Since the probability of success will depend on sample quality as well as the specific
experimental protocol used, the error model needs to be calibrated by performing PCR
reactions on samples of known composition (m and NV,;), using pollen that is as similar as
possible to the samples of interest. As an example, for a study measuring the proportion of
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maize pollen in aerial samples taken around a flowering field, a calibration sample of 100%
maize pollen could be collected from stamens in that field on the same day and stored in the
same condition as the aerial samples.

Even if their rate of occurrence were exactly known, false positives and false negatives
could reduce the precision and accuracy of the estimator ngS, compared with the ideal case pre-
viously described. I will look at this effect first, before considering the additional uncertainty
involved in estimating the error parameters themselves.

2.6.1 Effect of known error parameters

The inference power of dilution assays is based on a known relationship (egs. 2.1, 2.3)
between the probability of observing the response (here, PCR amplification) and the con-
centration of responsive cells in the sample. Different types of PCR errors will affect the
precision of ¢ estimates by weakening this concentration-response link.

When a constant rate of false positives (fp.s) or false negatives (freq.) occurs indepen-
dently of the number of pollen grains present, the probability of amplification is confined
to the range (fpos, 1 - freae) instead of (0,1). A smaller difference in outcome between low
and high pollen numbers means a less sensitive assay, therefore I expect a decrease in the
precision of gZA)

When each grain bearing the marker has the same probability (f4.,) of not having its
DNA amplified, this reduces the effective marker frequency by a factor of (1 - fyze,). All other
sources of error being equal, a sample composed of 10% marked pollen that amplifies 80% of
the time (fgey, = 0.2) would produce the same distribution of outcomes as a sample with 8%
marked pollen where every grain’s DNA can be amplified. If the value of f;, were exactly
known, it should have little effect on the accuracy of qB; however, ignoring or misevaluating
this source of error could be a source of systematic bias for inferring ¢.

I calculated the impact of these PCR errors on the accuracy (measured as the relative
root MSE) of a two-step dilution assay of the type presented in section 2.5.2 above, using
reasonably high values of the error parameters: 5% of false positives, a constant PCR failure
rate of up to 20%, as well as a per grain failure rate up to 50%. Different error scenarios are
compared to the ideal case in Table 2.1, for a particular set of assay design parameters (D
= 6, Ry = 2 and R, = 38) that ranked consistently among the best designs with 50 total
reactions. As expected, the estimator’s accuracy is more sensitive to fixed errors (f,,s and
freac). The effect of fye, only becomes apparent for its largest value (0.5) and for the smallest
marker frequency considered (0.02).5 T also note that the exact N and Poisson sampling
schemes achieve similar accuracies, except when the marker frequency is high (¢ = 0.4) so
that the optimal number of pollen grains per reaction approaches 1.

5In that case, only 1 out of every 100 pollen grains would test positive, which corresponds to the smallest
frequency (@min) for which the assay was designed.
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Relative root mean squared error of ¢ (%)

¢ = 0.02 ¢=0.1 ¢=04
Exact N Poisson Exact N Poisson Exact N Poisson
No error 21 21 20 22 15 22
fdeg = 0.2 22 22 21 23 17 21
Jreae = 0.1 24 25 26 27 21 26
freac = 0.1, fgeg = 0.2 25 25 26 27 22 25
freac = 0.2 28 28 31 32 27 32
freac = 0.2, fieqg = 0.5 33 33 32 33 27 29
fpos = 0.05 22 23 21 24 16 23

Table 2.1: Effect of fgeg, freae and fpos on the relative root mean squared error of qZA), calculated
for a two-step assay with D =6, R, = 2, Rs = 38 and ¢,;,, = 0.01.

Relative root mean squared error of ¢ (%)

Ninnso = 20 Ninnso = 40

Exact N Poisson Exact N Poisson
Tinh = 0.1 42 43 29 30
Tinh = 0.25 36 37 26 26
Tinh = 1 33 34 25 26
freac = 0.1, 75, = 0.25 38 40 28 29
Freae = 0.2, 7inn = 0.25 41 44 31 32

Table 2.2: Effect of PCR inhibition on the relative root mean squared error of qg, calculated for a
two-step assay with ¢ = 0.02. Assay parameters are set as follows: D =6, R,,, = 2, R; = 38, and

B S
Omin = 0.6Ninhs0 "

If PCR amplificiation is inhibited at high pollen numbers, as modelled by eq. (2.13), the
probability of success of a reaction decreases past some critical value of N (see Fig. 2.2).
This turning point depends most strongly on N;,n50, but also on 7;,;, and ¢. Calculations of
single-level assay outcomes with PCR inhibition produce a sharp drop in the precision and
accuracy of ¢ if N exceeds the same threshold (results not shown here).

In the design of a two-step dilution assay, this turning points puts an upper limit on Np,
the number of pollen grains to use at the highest concentration level. As long as the marker
frequency is greater than ¢,,;, = 1/Np, it is still possible to set N at step 2 to 1/¢ (rounded)
and estimate ¢ with no loss of accuracy.

However, this accuracy decreases the further ¢ falls below ¢,,;,, as shown in Table 2.2.
In these calculations, I conservatively set the limit to 60% of N;,u50, so that it lies under the
turning point for a broad range of values of r;,;, and ¢. With a N;,, of 20 and r;,;, between
0.1 and 1, the root MSE for a sample with ¢ = 0.02 (approximately one fourth of @)
can be 1.5 to 2 times as large as in the no error case. While a RMSE equal to 42% of the
parameter value seems rather high, I note that 275 single-pollen reactions would be required
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to achieve a comparable precision to the 50 reactions performed in the dilution assay.® Even
when the number of grains per reaction is limited by PCR inhibition effects, the dilution
assay remains an efficient strategy to estimate ¢.

In the last two cases considered in Table 2.2, a fixed PCR failure rate f, ... is added to
the model. Interestingly, the increase of RMSE due to f,.q. is comparable to that predicted
when it was the only source of error (in Table 2.1). This suggests an additive effect of these
two independent types of reaction failures.

2.6.2 Estimating assay failure parameters

The discussion below focuses on the estimation of the false negative parameters, starting
with freqe and fgey — which determine the probability of success at low pollen numbers —
then adding the inhibition function f;,,. There are a few reasons why I ignore the false
positive rate fpos at this point. Since it is assumed to be constant, its estimation would
only entail the replication of PCR on samples with non-target pollen. Furthermore, taking
precautions against contamination and choosing specific enough PCR primers should make
false positives much less frequent than false negatives.

According to my error model, the probability of amplification for a reaction with N

pollen grains, all known to possess the marker of interest (i.e. ¢ = 1), is equal to (1 —
freac) (1 — (faeg)™ ) The values of N used here will be small enough (less than 10) that it
seems reasonable to neglect inhibition effects.

I used the following method to simulate the estimation of these parameters and the effect
of these estimates on the accuracy of the PCR dilution assay:

1. Simulate 100 outcomes of a calibration assay performed on known samples with ¢ = 1,
for some values of freqc and fueqy. For the results presented here, the assay consists of
30, 10, 6 and 4 replicates for N = 1, 2, 4 and 8, respectively (50 reactions total).

2. For each of the 100 outcomes, obtain joint maximum likelihood estimates of f,.q. and

fdeg-

3. For each pair of (freac, faeq), calculate the distribution of outcomes of a two-step
dilution assay and the estimate ¢ corresponding to each outcome.

I wrote a R script (see Appendix A) to perform the first two steps and generate 100
joint estimates of the error parameters, given the true values of f,eqc and fze,. At the third

step, I use the same algorithm as in previous sections, except that ¢ for each outcome is

6For N = 275 binomial trials with p = 0.02, the standard deviation of p is given by W = 0.0084,
which is 42% of p.
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Relative Bias (mean (s.d.) in %) CV (mean (s.d.) in %)

(freacs fdeg) =002 ¢=0.1 ¢=04 =002 ¢=01 ¢=04
(0, 0.2) known 2 1 0 22 21 17

T estimated 3 (9) 3(9) 1(9) 22 (0.4) 21(0.3) 17 (0.1)
(0.1, 0) known 0 -3 -5 24 26 22

" estimated 0 (10) -4 (11) -7 (10) 24 (0.4) 27 (2) 24 (4)
(O 1,0.2) known 2 -1 -3 25 26 22

R estimated 3 (12) -2 (13) -5 (13) 25 (1) 27 (1) 25 (5)
0.2, 0) known -1 -6 -8 28 32 28

- estimated 0 (13) -6 (15) -10 (14) 28 (1) 34 (3) 31 (7)
(0.2, 0.5) known 5 2 -2 31 31 27

o estimated 7 (23) 0 (21) -7 (20) 31 (2) 31 (1) 30 (5)

Table 2.3: Relative bias and coefficient of variation (CV) of ¢ predicted for a two-step assay (exact
N sampling with D = 6, R, = 2, R; = 38 and ¢y,;, = 0.01), for known and estimated values of
the error parameters freqc and fgeq. Error parameter estimates are based on 100 simulations of the
following assay: 30, 10, 6 and 4 replicates using 1, 2, 4 and 8 marked pollen grains per reaction,
respectively.

determined using the estimated error parameters (whereas the distribution of outcomes is
always calculated from the true values of the parameters).

The calibration assay proposed here places a majority of the experimental effort at the
single grain level (N = 1), for two main reasons. On the one hand, the variance of binomial
outcomes will usually be greater at smaller N, which motivates the use of more replicates at
that level.” On the other hand, since the two-step dilution assay is designed to achieve an av-
erage concentration of 1 marked grain per reaction, knowing the probability of amplification
in this case is particularly important.

I repeated this process for different combinations of ¢, fi, and freqe, using the same
two-step dilution assay design in all cases, to produce the results of Table 2.3. Since each of
the 100 pairs of (faeg, freac) estimates resulted in a different bias and CV of (;AS, I report the
mean and standard deviation of those statistics in the table, and present their distribution
as histograms in Fig. 2.11 (for the case where fz, = 0.2 and free = 0.1). For comparison
purposes, I also include in Table 2.3 the calculated values of the bias and CV under the
assumption that the error parameters are exactly known.

The frequent occurence of a large negative or positive bias in these simulation results
could pose an obstacle to the use of this assay in practice. Its cause is not the biasedness of
the calibration assay itself; on average, it produces accurate estimates of the error parame-
ters. Rather, the statistical variability of the calibration assay translates into a systematic

"The binomial variance is proportional to p(1 — p), which achieves a maximum when the probability of
success p = 0.5 and decreases as p approaches 1.
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Figure 2.11: Relative bias and coefficient of variation (CV) of ¢ predicted for a two-step assay

with error parameters freqc = 0.1 and fgey = 0.2. Histograms show the distribution of each statistic
for 100 simulated estimations of (freac, fdeg). All assay parameters are the same as in Table 2.3.
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Table 2.4: Relative bias and coefficient of variation (CV) of & predicted for a two-step assay (exact
N sampling with D = 6, R, = 2, Rs = 38 and ¢, = 0.01), for known and estimated values of
the inhibition parameters, with ¢ = 0.02 in all cases. Inhibition parameter estimates are based on
100 simulations of a two-step calibration assay: 3 replicates each for [5, 15, ..., 95] marked pollen
grains, followed by 5 replicates each for [n-4, n-2, n-1, n, n+1, n+2, n+4] grains, where n is the
estimate of N;,p50 after the first step.

error, when the estimated error parameters are used to interpret the outcome of a series of
experiments performed on samples of unknown composition. These results suggest that to
minimize the risk for bias, the calibration assay should include many more reactions than
the subsequent dilution assays performed on individual samples (whereas I had set the total
number of reaction to 50 in both cases).

I used a similar method to simulate the estimation of inhibition parameters N;,;50 (the
number of pollen grains causing a 50% failure rate) and r;,, (determining the steepness of
the inhibition curve near Ny,;50). I chose a two-step calibration assay, where the first step
covers a large range in N to approximately locate N;,,50, where the second step focuses on
pollen numbers near that coarse estimate of N;,n50. The logistic dose-response curve was
fitted using the drc package (Ritz and Streibig 2005) in R (script included in Appendix A).

Based on the results for frcq. and fgeq, I could expect that the variability of estimates
of r;n and Ny,ps0 would create potential for a large bias in gzg However, as shown in Table
2.4, the impact of estimation errors decreases as r;,, increases. The larger the value of 7;,,
the closer N must be to Nj,u50 before inhibitory effects become significant. As discussed
previously, I adapted my PCR dilution assay in the presence of inhibition, to limit the
number of pollen grains by reaction to 60% of Nj,u50. When r4,;, is large enough, this limit
is far enough from the center of the inhibition curve that a precise estimate of the steepness
parameter r;,, becomes less critical.
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Since the primary purpose of this section was to illustrate the effects of different types
of PCR error, I have not addressed issues related to selecting and validating an error model.
This is an area where more experimental work is needed: in my review of the literature, I
could not find any systematic study of errors in pollen PCR, despite the growing number of
studies using the technique.

For certain studies, it may also be inappropriate to assume that all samples would fol-
low the same model of PCR assay failure. If any environmental covariate is suspected to
significantly affect amplification success (for example, when the age of pollen varies among
samples), calibration assays should take its effect into account.

2.7 Implications for the design and analysis of PCR
dilution assays on pollen

In many applications of pollen analysis, each unit of sampling (e.g. pollen collected by an
aerial sampler in a day, or by a bee in a single foraging trip) may consist of thousands of
individual grains. When the cost of individual PCR reactions is the main limiting factor,
dilution assays provide a efficient method to estimate the level of presence of a identifiable
genetic type, requiring less experimental effort than single pollen methods. In this section,
I synthesize the results of this chapter and outline how the PCR dilution assay method can
be applied to environmental samples.

Due to the low DNA copy numbers involved in pollen PCR, the possibility of assay failure
cannot be neglected. Careful estimation of the function Pr(—f— | m, Nd) — the probability
of success of a PCR reaction with Ny pollen grains, m of which possess the target marker
— is thus required to minimize bias in interpreting assay results. This may be done by
performing calibration assays on representative samples of known composition. Results of
the previous section provide guidelines in the design of these calibration assays: in particular,
failure occurrences at low pollen numbers (due for example to DNA degradation) and at high
pollen numbers (i.e. inhibition or competition effects) should be studied separately.

Once the error parameters have been established, the next step is to design a PCR
dilution assay that could provide reliable estimates of the target marker frequency (¢) over a
wide range of that parameter. To achieve the required balance of efficiency and robustness,
I proposed a two-step assay design:

e At the first step, R, replicates are performed at each of D dilution levels, which form
a geometric progression from 1 pollen grain per tube to some maximum Np. That
maximum is determined either by the desired detection limit of the assay (i.e. ¢pin) or
by the necessity to avoid PCR inhibition effects. More dilution levels may be necessary
to cover a larger range; my results show that D = 6 is sufficient for a 100-fold range
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(¢min = 0.01). The number of replicates R,, per level can be kept small (1 or 2) with
no loss in efficiency.

e An estimate ngS is inferred from step 1 results, and for the second step, Ry replicates are
performed at the same dilution level, chosen to obtain an average of N = 1/ gg pollen
grains per reaction. The majority of the experimental effort should occur at step 2.
(For example, the best designs with 50 total reactions put at least 3/4 of the effort at
step 2; designs with more total reactions can afford to put an even greater proportion
at step 2.)

When developing the calculations of this chapter, I assumed the replicate pollen tem-
plates at each dilution level would be obtained by one of two sampling methods. What I
termed exact N sampling is not a dilution method per se, since it relies on manually picking
a constant number of pollen grains for each replicate. I referred to the more traditional
dilution method as Poisson sampling: the whole sample is suspended in water and the initial
pollen concentration is determined (for example, using a hemocytometer), then dilutions are
made from this original sample to achieve the required average number of pollen grains per
replicate. When using this method, the experimenter should test the protocol to ensure the
resulting number of pollen grains per replicate follows the Poisson distribution.

While exact N sampling increases the precision of the assay, this effect is more pronounced
at low pollen numbers. Therefore, one option would be to use Poisson sampling only for
dilution levels where N is moderately large, as exact N sampling becomes impractical.
Alternatively, the experimenter may use the dilution method to produce all replicates, but
examine the low N replicates under a microscope prior to PCR, to determine the exact
number of pollen grains in each. Such hybrid sampling schemes, where N is exactly known
for some replicates and follows a Poisson distribution for the others, can be accomodated in
my model by a simple modification of eq. (2.10) or (2.11).

The estimate ¢ can be inferred after each step of the PCR dilution assay using the bias-
corrected maximum likelihood method. The detailed equations and source code for these
calculations are in Appendix A. Since that program calculates the theoretical distribution
of assay outcomes for a given assay design and true value of ¢, it can be used to estimate
dispersal measures (e.g. root mean squared error, confidence intervals) for $.8

Finally, I want to emphasize that the precision and accuracy measures calculated in
this chapter are only valid within the assumptions of the stated model. In particular, the
use of binomial and Poisson probabilities relies on the assumption that each replicate is an
independent subsample from a perfectly mixed initial sample, and the calibration procedure
assumes that an experimenter can obtain some control sample of known genetic composition
that will share the same error model as the samples of unwknown composition.

8While the true ¢ is unknown, I can assume it to be equal to the experimentally found (]B for the purpose
of estimating dispersal measures. In particular, Table 2.1 above shows that the relative root MSE of the
estimate remains constant over a large range of ¢.
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Chapter 3

Floristic mapping through bee pollen

This chapter focuses on the use of bee pollen sampling to obtain information about the
distribution of floral resources. More specifically, I will develop an individual-based model of
bee foraging behavior, with the goal of relating the spatial distribution of a genetic marker —
which could identify a plant taxon or variety — to its level of presence/absence in corbicular
pollen loads.

As mentioned in the introduction, both the honey bee (Apis mellifera) and bumblebees
(Bombus spp.) collect pollen in the corbicula (or pollen baskets) located on their hind legs.
Most published analyses of bee pollen loads are based on morphological pollen identification
methods; the results have been used to estimate foraging distances (Beil et al. 2008) or to
compare vegetation profiles between widely separated locations (Diaz-Losada et al. 1998).

I already discussed some of the advantages of genetic approaches to determine the compo-
sition of a pollen sample: greater phylogenetic resolution (to the species, variety or ecotype
level), less reliance on subjective visual identification, and potential to benefit from advances
in high-throughput single-cell PCR methods. Yet, the use of genetic methods for bee pollen
analysis remains very rare. The only example I could find comes from a large-scale study of
gene flow between oilseed rape (Brassica napus) varieties in the UK. As part of that study,
Ramsay et al. (2003) performed DNA fingerprinting on whole pollen loads collected at a
single hive, to show that different transgenic and non-transgenic oilseed rape varieties were
represented.

Whether they use morphological or genetic identification methods, the studies I consulted
report aggregate data and put little emphasis on the variation between individual pollen
loads. To my knowledge, the work I report here is the first attempt to model the statistics
of bee pollen composition, based on parameters of a floral resouces distribution and a bee
foraging model.

In defining the models below, I refer in particular to honey bees, since they offer the
most practical opportunities for pollen sampling: pollen loads can easily be collected in a
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commercial bee hive, by making foragers pass through a mesh at the hive entrance. There
is also a large existing literature on the foraging behavior of honey bee colonies. However, I
suspect that the model could be extended to other species (such as bumblebees), or adapted
to the analysis of pollen loads from bees caught in the field.

3.1 Response variables

The first step in designing the model is to choose response (output) variables that correspond
to observable quantities, or statistics derived from those basic observed quantities.

After a pollen load is dissolved and mixed, the proportion of pollen grains bearing a given
genetic marker can be determined through either single-pollen methods or a dilution assay
as described in Chapter 2. Therefore, I will use this proportion (p, also termed frequency)
of the genetic marker of interest within a single pollen load as the unit output for my model.

Under this premise, the genetic analysis of V; pollen loads randomly picked from a single
source — for example, from all the pollen loads collected by a single hive trap in an hour —
would result in a data set {p;|i =1,..., N;}.

In addition to the full distribution of the p; (respresented as a histogram), I will focus
on two summary statistics of this distribution: the mean p and the measure of genetic
differentiation Fgr. The latter statistic comes from population genetics, where it is known
as the fixation index and represents the portion of the total genetic variance that is due to
variation between, as opposed to within, populations of a species. Taking each pollen load
as a “population”, Fsr is calculated as:

2
o

For = —2—,
p(1—p)

where 0,2 is the variance of the p;.

The interpretation of p must depend on the specific form of the model, but it can be gen-
erally seen as a weighted average of the marker frequency in the surrounding floral landscape,
with a weight depending on factors such as distance from the hive, bee foraging preferences,
etce.

The choice of Fgr as a response variable relates to a key hypothesis which motivated this
work: namely, that the genetic differentiation between pollen loads is a function of the scale
of spatial genetic structure, relative to the foraging area for a single bee. If plants bearing
the marker of interest are present in homogeneous patches that are large compared with the
area covered in a single foraging bout, I expect highly differentiated pollen loads (p = 0 or
1) and a Fgr close to 1. Conversely, if genetically homogeneous patches are small compared
with the typical bee’s foraging area, bees will collect mixed pollen loads with similar values
of p, and Fsr should approach 0.
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3.2 Modelling approach and key parameters

Both the plant distribution over a landscape as well as the foraging behavior of honey bees
can be described in considerable detail. However, rather than including all factors that
could affect the genetic composition of pollen loads from the outset, I adopt an incremental
approach that starts with simple, perhaps unrealistic, models where both the landscape
and the foraging behavior are described by a few parameters. Starting with high complexity
models would make it difficult to explore the effect of individual parameters. The incremental
approach may also identify features of the outcome, such as summary statistics, that are not
very sensititive to the detailed form of the model used.

All models described below share the following features:

e The composition of each pollen load is determined by simulating a bee foraging bout.
This individual-based modelling approach seems like a natural choice for this problem,
since I am primarily interested in variation in composition between pollen loads.® The
individual-based model also readily predicts the variability associated with a given
sampling effort (number of loads analyzed).

e Each simulated bee visits a sequence of locations in (continuous) 2D-space and collects
pollen from a single plant at each location.

e The probability of presence/absence of the genetic marker in each plant visited is based
on its location in the field.

e The resulting marker frequency in the pollen load (p) is calculated by adding the
contribution of each plant; in particular, if all plants contribute the same amount of
pollen, p is the proportion of plants visited that bear the marker.

Initially, I will assume bees forage in a continuous field of plants and their paths can be
described by either uncorrelated or correlated (directional) random walks. After deriving an
analytical expression for Fis7 under the simplest foraging path — an uncorrelated random walk
with no preferred starting point — I will present results from two different simulation models.
In the first model, the distribution of marked and unmarked plants in the field is defined
by its spatial mean and correlation function, and the probability that each plant along the
bee’s path has the marker is calculated through a method derived from kriging (geostatistical
interpolation). In the second model, plants bearing the marker are confined to geometric
patches of prescribed size and shape, randomly placed within the field of non-marked plants.

At the next step, I will use more realistic descriptions of the landscape, where the floral
sources tapped by the bees are organized in fields of various extent, located at different

Tt could be objected that each bee typically holds two pollen baskets, so it is technically incorrect to treat
all pollen loads collected at the hive as the product of independent bouts. However, it remains a reasonable
assumption if the sample of pollen loads analyzed is a small fraction of those collected by the trap.
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Bee foraging behavior

ns  Number of steps (plants visited) in a foraging bout

ls Length (or RMS length) for a step

fi Frequency of jumps (occasional large steps)

l; Length (or RMS length) for a jump

P Parameter of the wrapped Cauchy distribution; represents the degree of correlation be-
tween successive steps

Psw Maximum probability of switching to a different field (fragmented landscape model)

si  Score of field ¢ (fragmented landscape model)

T;; Transition probability from field i to field j (fragmented landscape model)

Spatial genetic structure

10) Average marker frequency in a field

a Characteristic length of spatial correlations (kriging-based model)
ps  Size of genetic patches (random patch model)

Table 3.1: Main parameters describing the bee foraging model.

positions around the hive. Each field can be a uniform mix of marked and unmarked plants,
or have its own spatial genetic structure. Bees start foraging at one of the fields and may
move to a different field in the middle of a foraging bout. Within fields, their movement is
represented by (correlated) random walks, as in the previous case.

In this chapter, the word field does not refer necessarily to an agricultural field, but to
any discrete floral “island” in the landscape where bees may forage for pollen. In other
studies, this concept might be referred to as a patch. However, here I will only use the word
patch to describe the spatial genetic structure within a field.

In Table 3.1, I introduce some key parameters that will appear in model descriptions.
Their meaning will become clear as specific models are introduced in the following sections.
A RMS (root mean square) length is the square root of the mean squared value of the length.

3.3 Continuous field models

3.3.1 Analytical calculation of Fgr for a simple random walk

For a continuous field, the spatial genetic structure of the marker of interest can be charac-
terized by its average frequency ¢ and a correlation function C(s) defined as:

E[l(x)[(x+ s)] — ¢*

) ==""51=9

(3.1)
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Here, I(x) is an indicator variable equal to 1 if the marker is present in the plant at = (z
here represents a position in 2D rather than just one of its coordinates), or 0 if it is absent.?
The expected value in the numerator is an average over all pairs of points separated by a
distance of s, irrespective of direction.

I assume each bee starts foraging from a random point in the field and follows a simple
random walk with ng steps, a RMS step length equal to [,, and no preferred direction of
movement. [ further assume that the proportion of marked pollen in the bee’s pollen load
is equal to the proportion of marked plants visited. In Appendix B, I show how Fs7 can be
calculated from C/(s) in this particular case, with the following result:

ns—1
1 2 s 0 28 52
For =tz 2= 0 [ o oo (<) o 32

Given a specific form of C(s), eq. (3.2) can be integrated numerically to provide a prediction
of the genetic differentiation between bee pollen loads. While this expression is only strictly
valid under the stated assumptions, it provides a theoretical benchmark for the simulation re-
sults presented below. Furthermore, I will show that different bee movement models produce
results that, once properly re-scaled, bear strong similarity to this theoretical prediction.

3.3.2 Kriging-based model

In the previous section, I describe the spatial distribution of the marker of interest by its aver-
age frequency ¢ and its correlation function C'(s). A spatial distribution that is completely
defined by these two characteristics is termed Gaussian stationary.® Gaussian stationary
random fields can be simulated by a number of methods based on kriging; here I will use
sequential indicator simulation (Goovaerts 1997).

First, I describe how to choose the list of points on the bee’s foraging path. Starting
from the origin (0,0)*, the bee’s path is simulated as a correlated random walk (CRW),
which has been suggested by previous studies of animal foraging behavior (Kareiva and
Shigesada 1983). At each point of the path, two random numbers (u and v) are generated
from a uniform distribution over (0,1); the length Al and turning angle A6 of the next step

are calculated as
Al=1.v—Inu

and

p
s tan (7(v — 0.5)) | .

A = 2 arctan

2I(z) could also take a value of 0.5 for heterozygotes, although I will ignore this case for simplicity.

3The traditional definition of Gaussian stationarity uses the covariance function, which is just the numer-
ator of eq. (3.1).

4The starting point is arbitrary in this particular model, since the kriging-based simulation only requires
the distances between points.
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Figure 3.1: Correlated random walks simulated using different values of p. The number of steps
(ns = 20) and step length [, are the same for all walks.

The process is repeated until ng - 1 steps are taken (the initial point counts as step 1). Using
this algorithm, the squared step length follows a y? distribution with two degrees of freedom,
with a scaling factor to make its RMS value equal to [,. The turning angle follows a wrapped
Cauchy distribution, with the parameter p indicating the tendency of the bee to maintain
its direction (see Fig. 3.1 for an illustration of its effect). When p = 0, the turning angle is
uniformly distributed over (-7, w) and the path is a true (uncorrelated) random walk; when
p = 1, the path is a straight line (Bartumeus et al. 2005).

In testing the model, I will also try slight variations of this base algorithm, such as:

e introducing some variation to ng from one bee to the other;

e having all steps be the same length [,; and

e adding larger steps, or jumps, of RMS length [; and at a frequency f; (i.e. f; =0.11is
a jump every 10 steps).

From the matrix of distances [d; ;] between each pair of points in the bee’s path, it is

possible to compute a ng by n, correlation matrix [C; ;] from the known function C(s).

The program then determines the genotype I of each plant in the path. The first plant
is picked as marked (I = 1) with probability ¢, or unmarked (I = 0) with probability 1 - ¢.
For each successive plant in the path, the probability of having the marker is a function of
the previously simulated values:

Pr(l(zy) =1] = gb—t—i:wl([(a:l) - 9).

The purpose of kriging is to select the weights w; so as to get the best linear unbiased
predictor of I(x). When the global average (here ¢) is known, these weights are the solution
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Figure 3.2: Random fields produced by sequential indicator simulation in gstat, using an expo-
nential correlation function C(s) = exp(—s/a). Each simulation is a 100x100 field with average
marker frequency (black points) ¢ = 0.25.

of the simple kriging equations:

)

01,1 Tt Cir-1 wq Ol,k
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) )

Finally, the marker frequency in the pollen load, p, is taken as equal to the proportion
of marked plants over all plants visited.

I implemented the algorithm described above in a Fortran 90 program, which is included
in Appendix B.

To test this simulation algorithm, I will assume an exponential correlation function:
C(s) = exp(—s/a), where a is a scaling parameter with units of distance. Figure 3.2 presents
examples of random fields generated by that correlation function, using the R package gstat
(Pebesma 2004). I note however that my algorithm does not simulate the whole field, only
its values at the points visited by the bee.

I first consider the effect of @ on the distribution of the marker frequency in individual
pollen loads, setting the average marker frequency ¢ = 0.25 and modelling bee paths as
uncorrelated (p = 0) random walk with ng = 40 steps. I set [, = 1 for all simulations in this
section, with no loss of generality as it amounts to expressing all other distances as multiples
of the RMS bee step length.

As expected, the genetic differentiation between pollen loads increases with the scale of
spatial genetic correlation. The increase in Fgp also corresponds to an increased occurence
of genetically uniform (p = 0 or 1) pollen loads (Fig. 3.3). For values of a from 0.25 to
20, the simulation results agreed with the analytical result derived in Appendix B, with an
average deviation of 1%.
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Figure 3.3: Probability mass function (pmf) of the marker frequency in individual pollen loads,

from 1000 simulations using a kriging-based algorithm with exponential correlation C(s) =
exp(—s/a). (¢ = 0.25, ng =40, ls =1 and p = 0)

I evaluated the variability of Fs between simulation runs using this “baseline” set of
parameters (ng = 40, [y = 1 and p = 0). The results (not shown here) suggest that:

e g7 follows an approximately normal distribution;

e 10,000 simulated loads are sufficient to achieve a coefficient of variation of at most
1.5% of the value of Fgr;

e neither the value of Fgp nor its variance are significantly impacted by either having a

fixed step length [, or a variable number of steps (normally distributed around n);
and

e changing the average frequency of the marker (¢) has no impact on Fsp, but does
affect its variance between simulation runs.

In Figure 3.4, Fsr is shown as a function of a for my baseline parameters, as well as

variations obtained by changing n,, adding larger steps (RMS length ;) at a frequency f;,
or increasing p to create correlated random walks. The similarity between the different
curves is made apparent by plotting Fgr against the ratio of a to the RMS distance between

the first and last plants in the path, D, the latter determined through one of the following
equations (see Kareiva and Shigesada 1983 and Wu et al. 2000 for the correlated random
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walk case):

lon/ms — 1 for an uncorrelated RW,
D \/(ns — 1) [(1 = )%+ fil;] for an uncorrelated RW with jumps,

ls\/(nS -1 +35 <(ns —-1) - 1—‘%) for a correlated RW with p < 1.

To verify whether these results are limited to the exponential correlation case, I repeated
the same set of simulations using a different correlation function, one which decreases linearly
from 1 to 0 over a finite distance 2a:

C(s) = 1 — o ?fsﬁ?a,
0 if s > 2a.

Although this new correlation function produces a different Fgz vs. a/D curve, the shape of
this curve is similarly conserved under changes of the bee foraging parameters. In the case
of a simple random walk, the value of Fgr calculated analytically with this new C(s) also
agrees with the simulation output.

These simulations using the kriging-based model show a relationship between the compo-
sition of bee pollen loads (Fsr) and the spatial genetic structure of the field (C(s)) that can
be predicted theoretically. This relationship is consistent for different types of random walks
(one or two step sizes, correlated or uncorrelated), as long as the results are normalized by
the average (specifically, RMS) distance between the first and last plants visited.

The model, however, relies on fairly stringent assumptions regarding the spatial genetic
structure (Gaussian stationarity), which would not apply in most realistic cases. In the
following sections, I will lift these assumptions and simulate bee paths in arbitrary field
configurations.

3.3.3 Random patch model

This model, as the previous one, is based on a random arrangement of marked and unmarked
plants within a single field. In this case, however, a specific 2D field configuration is created
by placing geometrical patches of marked plants within a background of unmarked plants.

If the plant density over the field is assumed to be uniform, then the average frequency ¢
is equal to the proportion of the field area covered by marked patches. For example, within
a 100x100 field, a frequency ¢ = 0.25 can be attained by placing a hundred 5x5 patches, or
twenty-five 10x10 patches. Since larger patches create longer-range genetic correlations, the
patch size in this model plays a similar role as the parameter a used in the previous section.

For a given field configuration, an empirical correlation function can be defined using
eq. (3.1), by taking the average over a large number of randomly-selected pairs of points for
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Figure 3.4: Genetic differentiation between pollen loads simulated by the kriging-based model,
under an exponential correlation function and different parameters of the foraging model. Genetic
differentation (measured as Fsr) is plotted against the correlation length a (top) and the ratio a/D
(bottom), where D is the root mean square distance between the first and last plants visited. For
the baseline case, ng = 40 and p = 0 (¢ = 0.25, I = 1, and 10,000 pollen loads were simulated in

all cases).
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Figure 3.5: Spatial genetic correlation for a 100x100 field with twenty-five 10x10 patches of marked
plants (¢ = 0.25). The correlation function was calculated for 18 values of s, using 100,000 random
pairs of points for each s. The empirical curve is partially fit by a quadratic function (for s < 10)
and compared with the exponential and linear correlation functions (with a = 5).

different values of s. Figure 3.5 shows the correlation function calculated from a 100x100
field with randomly placed 10x10 patches, comparing it to the exponential and linear forms
of C(s) used in the previous section. The empirical curve can be well approximated by a
piecewise quadratic function:

C(s) =

as’ +bs+c if s < s,
0 if s > 5.

I approximate C'(s) to be identically zero beyond a critical distance sy (here s = 10, corre-
sponding to the patch size), even though the empirical correlation becomes slightly negative,
then slightly positive for larger distances.

From this approximate functional form of C(s), I can predict the value of Fgr produced
by a random walk foraging pattern by integrating eq. (3.2) (see Appendix B). Using the same
baseline parameters as in the previous model (¢ = 0.25, ny, = 40, [y = 1 and p = 0), I found
that the predicted and simulated Fsr closely agree for various square and rectangular patch
formats (Table 3.2). The discrepancy was greater for rectangular patches that were placed in
the same orientation (all horizontal or vertical), compared to fields where both orientations
were used in alternance. Since the C(s) function is an average over all directions, it may
not adequately describe a field with strong anisotropy (i.e. having a preferred orientation in
space); however, the observed difference could also be due to a poorer fit of the quadratic
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Patch size Same orientation Alternate orientation
predicted simulation | predicted  simulation
10x10 0.601 0.607 0.597 0.582
12.5x8 0.579 0.567 0.571 0.572
16.6x6 0.552 0.536 0.516 0.515
20x5 0.492 0.455 0.489 0.490
33.3x3 0.463 0.441 0.388 0.374

Table 3.2: Comparison of Fsr values predicted from C(s) and simulation results (10,000 pollen
loads), for a 100x100 field with random rectangular patches (¢ = 0.25). Patches can all be in the
same orientation or alternate between horizontal and vertical. Bees follow an uncorrelated random
walk with ng = 40 and [, = 1.

function to C(s).

In Figure 3.6, I compare the effect of patch size on Fgr for different parametrizations of
the random walk. When each curve is scaled by the RMS distance from start to finish (D),
they are less similar than those obtained in the kriging-based model (Fig. 3.4). Furthermore,
these differences cannot be explained solely by the variability of Fsr between simulation
runs. Based on results from replicate simulations, the relative standard deviation of Fgr is

comparable under the two models, i.e. around 1% for 10,000 simulated pollen loads.

According to these results, the relationship between Fgr and C'(s) observed in the kriging-
based model, where a Gaussian random field was generated from the C(s), is still valid under
the random patch model, where an empirical C(s) arises from the random placement of
genetic patches of fixed geometry. However, the latter model is more sensitive to the exact
parametrization of the foraging path.

The major assumption underlying eq. (3.2) is that every part of the field is equally likely
to be visited a priori. This was the case in the simulations presented so far, since the starting
position and direction for each bee was chosen at random. The effects of a preferred starting
position will be investigated in the next type of models, which incorporate hive-to-field and
field-to-field movements of the bees.

3.4 Fragmented landscape models

The previous sections focused on modelling the statistics of pollen loads gathered by bees
foraging in a single field of uniform density and varying genetic structure. I will now consider
the more realistic case of a hive allocating its foragers between several disjoints fields placed
in a landscape.

We know from observational studies of honey bees that foragers will scout the landscape,
return to the hive and recruit other foragers to the most suitable floral resources, using the
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Figure 3.6: Genetic differentiation between pollen loads simulated by the random patch model
(100x100 field with square patches). Fgr is plotted against the patch side length ps (top) and
the ratio ps/D (bottom) for different parametrizations of the random walk. The baseline case
corresponds to ng = 40 and p = 0 (¢ = 0.25, [; = 1, and 10,000 pollen loads were simulated in all

cases).
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Figure 3.7: Example field layout used to illustrate the bee foraging models in a fragmented land-
scape, adapted with permission from Fig. 2 of Ramsay et al. (2003). Each Brassica napus field is
numbered for reference in the text, and H denotes the bee hive position. Field 1 (hatched in this
figure) was planted with a transgenic variety in the original study.

A

waggle dance (Visscher and Seeley 1982). The allocation of foragers between different fields,
on a given day, is the outcome of this dynamic process. I will model this outcome as a
“score” assigned to each field by the colony, which may depend on the floral species present,
its distance from the hive, the time of year, weather, etc. My algorithm for simulating bee
flights in a fragmented landscape will follow this general outline:

1. Input the landscape description (location, extent and genetic composition of each field;
location of the hive) in the program.

2. Calculate a score for each field.

3. For each simulated bee, pick one of the fields to begin foraging, with probability pro-
portional to the score. The foraging path within a field is modelled as in the previous
sections.

4. (optional) With some probability, a bee may move to a different field while in the
middle of a foraging bout.

Compared with the number of studies pertaining to the allocation of foragers, there is
little information available in the literature to explain why a bee would split its foraging
effort over disjoint fields in a single foraging trip, although it is reasonable to assume that
the distance between fields is one such factor.

To illustrate model outcomes in this section, I will use a landscape layout adapted from
the Ramsay et al. (2003) study previously mentioned. For that field study, the bee hive was
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placed within a few kilometers of seven conventional Brassica napus fields and one transgenic
field. To simplify calculations, I represent each field as a quadrilateral, as shown in Fig. 3.7.

3.4.1 Determination of p and Fyr from single-field statistics

In the case where bees remain in the same field for the duration of a foraging bout, the
distribution of p in pollen loads sampled at the hive is a combination of the different fields’
contributions, weighted by their scores. If, for each of the n; fields, both the expected
statistics (D);, (Fsr); — estimated by one of the single-field models described above — as well
as the score s; are known, the overall mean p is predicted from the law of total expectation:

ny

P =E[E(@|i)] = E[@)] =) () (3.3)
i=1

and the expected Fsr using the law of total variance:
E [0)%] + 0B’
Fsr = —
_ Zzzf1 Si(FST)i(ﬁ)i(l - (]_7)1) + O‘(ﬁ)iQ
P -7 P -7

Note that I use (...]¢) as a shorthand notation for probabilities conditional on the bee
foraging in field ?. Within a given field, if all plants provide on average the same amount
of pollen and have the same a priori probability of being visited®, (p); corresponds to the
field-averaged marker frequency ¢;.

The first term in eq. (3.4) depends on genetic differentiation between pollen loads from
the same field, while the second term reflects the genetic differentiation between fields.®
Without prior information on the distribution of the genetic marker across the landscape,
it may not be possible to determine the relative contribution of these two factors to the
observed Fgr in sampled pollen loads.

To further complicate matters, it is possible that a bee forages in more than one field. I
introduce field-to-field movement in the model by the way of a transition matrix 7', where
each element T;; is the probability that a bee foraging on field ¢ moves to field j at the
next step (7}, is the probability of remaining in field 7). As a first approximation, I assume
that these probabilities are independent of either the position of the bee in the field, or the
number of flowers previously visited. The simulated foraging path thus constitutes a Markov
chain with n; states (each of the fields) and discrete time steps.”

5The same assumptions appear in the single-field models above.

6To calculate Fig7 between fields in the population genetics sense, the contribution of each field should
be weighted by its population, instead of the score s;.

7 A Markov chain is a random process where the probability of being in some state at time ¢ only depends
on the state of the process at time ¢t — 1. See Levin et al. (2009) for a recent presentation of the theory of
Markov processes.
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Assuming that field-to-field movement can be approximated as a Markov process, the
probability of foraging in field ¢ after k steps can be calculated from the score vector s (the
probabilities of starting in each field) and the k™ power of the transition matrix:

nf

Pr (Z at step ]{?) = Z Sj(Tk)jﬂ'. (35)

=1

For a bee visiting a total of ng plants in a foraging bout, the expected number of plants
visited in field i (n;) is just the sum of the probability (3.5) from step 0 (start of foraging)

to ng-1:
ns—1 Nf

Elni] =) ) s(T"); (3.6)

k=0 j=1

I illustrate this result for the landscape presented in Fig. 3.7, using inverse distance
functions for both the scores and transition probabilities:
v if i £ j
dim b 1_ZZi1Ti,k ifi=j5"
ki
In the equations above, d; g is the shortest distance from the hive to field ¢; d;; is the
distance from field i to j, measured between their centroids; C is a normalization constant
to make the s; sum to 1; and C} is set so that the probability of a bee switching fields is
at most pg, (i.e. min{7;;} =1 — psw). As ps, increases, there are less disparities between
the contributions of each field to the total pollen collected (Fig. 3.8). This can be explained
by the fact that the inverse distance weights produce a symmetric transition matrix, i.e.
T;; = T}, and that the limiting behavior of such a Markov chain (when the number of steps

l?j
becomes large enough) is to visit all states with the same probability (Levin et al. 2009).

(3.7)

The expected number of visits in each field can also serve to calculate the expected overall
mean P from the single-field means (7;):

ny

p=BEp|n))] = - > (@Bl 33

S =1

Determining the exact distribution of p in bee pollen loads within this model poses a
greater challenge, as it would require the enumeration of all possible sequences of n, steps
taken in ny fields. In Appendix B, I derive the expected value of Fgr in the specific case
where all plants in one of the fields (ix), and only those plants, have the marker:

1 ns—2 ns—1

For = b i) 2o 2o S T~ 2| (3.9)

k=0 I=k+1 Lj=1

This corresponds to the scenario depicted in Fig. 3.7, where only field 1 is planted with a
transgenic variety.
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Figure 3.8: Average fraction of plant visits in each field (n;/ns) as a function of the maximum
probability of switching fields (psy,), for the landscape configuration shown in Fig. 3.7. Field scores
and transition probabilities are based on inverse distance weighing (eq. 3.7) and ngs = 100.

3.4.2 Simulation results under specific landscape scenarios

The central problem of this chapter is to relate the composition of pollen loads collected at
a bee hive to properties of the distribution of plants surrounding the hive. In a fragmented
landscape model, pollen loads from different fields are aggregated and the overall statistics
(P, Fsr) do not have a simple, unique link to some property of the spatial genetic structure.
However, if I can formulate specific hypotheses about this spatial genetic structure or foraging
behavior, I can simulate the distribution of p in bee pollen loads predicted by these competing
hypotheses and compare them with the observed bee pollen composition.

Using the landscape depicted in Fig. 3.7 from the Ramsay et al. study, I will compare
the distribution of p in different scenarios that could result in a mixture of transgenic and
conventional Brassica napus pollen in bee pollen loads. Before making these comparisons, I
must specify the some parameters of the simulation method.

I model the movement of bees within a field as a correlated random walk, as in the
continuous field case. Typical stand densities for commercial canola fields range from 30 to
140 plants/m? (May et al. 1994). These densities correspond to an average plant spacing of
0.08 to 0.18m, which I will consider as the lower bound for the average step size [,. I could
not find a good estimate for the number of plants visited (n,) by honey bees in a canola field;
however, Cresswell et al. (2002) estimated that bumblebees foraging on canola visit 100 to
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500 inflorescences per bout. For my simulations, I chose a value at the low end of that range
(ns = 100) along with a relatively large step size (I = 1m, corresponding to 5-10 times the
typical plant spacing). Due to the lack of data on which to base p, the degree of correlation
of the random walk, I will use both p = 0 (uncorrelated walk) and p = 0.7 (highly-correlated
walk).

I consider field 1 to be completely transgenic (¢ = 1) and fields 3 to 8 to be completely
conventional (¢ = 0) in all simluations. Transgenic plants may either be absent from field 2,
in which case the only source of mixed pollen loads will be movement of bees between field
1 and the other fields, or it may be present at a low frequency, which I set at ¢ = 0.1. In
the latter case, transgenic plants are either spread uniformly across the field or in randomly-
placed square patches of side length p,. The main reason I do not consider a lower value of
¢ is to get a sufficient amount of marked pollen in the results. Even the smallest field in the
landscape (field 2) contains a few million plants based on its surface area (&~ 55,000 m?), so
individual bees sample less than 0.01% of the field on each trip.

After the bee selects a field where it begins foraging (with probability based on the field
score), the starting point within the field is either randomly selected in that field (random
start method), or set to the point closest to the hive (closest point method). As in the
previous section, I use inverse-distance weights for field scores and transition probabilities
(eq. 3.7). However, I measure field-to-field distances d;; from the current position of the
bee in field i to the closest point in field j; the normalization constant C} is still computed
only once, based on the distances measured between field centroids. Transitions probabilities
thus change based on the position of the bee in the field, a departure from the Markov chain
assumption.

The main effect of the closest point method is to confine most bee paths to one sector of
each field; as such, it would affect the composition of bee pollen loads if one or more fields
are not genetically uniform. In theory, it could also affect field-to-field movement, since
the transition probabilities depend on the bee’s specific position in the field: however, my
simulation results for uniform fields (one transgenic and seven conventional ones) show that
the choosing one method or the other has very little effect on Fgr in that case (Fig. 3.9).
In fact, even the Fsr values predicted by the Markov chain model (eq. 3.9), using transition
probabilities based on the distance between field centroids, remain close to the simulation
results that are based on the specific bee position. This is especially true if field-to-field
movements are rare events (i.e. less than 1 in 100 foraging steps). Although I expected the
choice of method to have a greater effect when the transgenic field has closer neighbors (e.g.
field 7 compared to field 1) and thus more frequent transitions, Fig. 3.9 shows the opposite
pattern.

I can now turn back to the original problem of whether or not the distribution of p in
mixed pollen loads is indicative of the cause of this mixture. More specifically, I will consider
the two following scenarios: (1) bees do not switch fields while foraging, but transgenic plants
are present in field 2 (with ¢ = 0.1); or (2) transgenic plants are confined to field 1, but bees
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Figure 3.9: Genetic differentiation (Fsr) of bee pollen loads simulated for the landscape of Fig. 3.7,
where only one of the fields is planted with a transgenic variety and bees can switch fields with
a maximum probability of pg, (ns = 100, s = 1m, and 10,000 pollen loads are simulated in all
cases). Bees either start foraging at a random point in the first field, or at the point closest to the
hive. Fgr curves calculated from a Markov chain model (eq. 3.9) are included for comparison.
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Figure 3.10: Distribution of the marker frequency p in 1,000 bee pollen loads simulated for the
landscape shown in Fig. 3.7, under two different scenarios: (1) field 2 is a uniform mixture of plants
with and without the marker (¢2 = 0.1); or (2) bees have some probability of switching fields after
each step (psw = 0.01). In both scenarios, marked plants form the totality of field 1 (¢; = 1) and
are absent from fields 3 to 8. Pollen loads with a p of 0 or 1 (approx. 870 in each scenario) are not
shown in this figure.

can switch fields where foraging (with pg, = 0.01).

If field 2 is a homogeneous mixture of marked and unmarked plants (i.e. no genetic
patches) under the first scenario, then the resulting distribution of p is visibly different from
that obtained under the second scenario (Fig. 3.10). That difference is also apparent when p
are Fgp are calculated from the mixed pollen loads in each distribution. A uniform mixture
in field 2 results in values of p clustered around ¢ (P(izeqy = 0.10, Fsr(mizea) = 0.01); whereas
for rare occurences of field-to-field movement, there is a broad, nearly uniform distribution
centered near p = 0.5 (ﬁ( ) = 0.45, For(mized) = 0.33).

mized

The difference becomes less clear when field 2 has a coarse-scale spatial genetic structure,
simulated here as randomly-placed square patches. Figure 3.11 shows how four statistics of
p (the overall p and Fsr, as well as their values among mixed pollen loads only) vary with
the patch size ps, for both uncorrelated and correlated (p = 0.7) bee foraging paths. Since
only about 13% of bees forage in field 2, changing the scale of genetic patches in that field
has very little impact on the overall Fgr, which remains close to 1 as all the other fields have
a ¢ of 0 or 1. Larger patches result in less mixed pollen loads, but also in higher values of p
and Fsr for these mixed loads, closely matching those produced by field-to-field movement
(e.g. for 30x30m patches, D = 0.44 and Fsp(migeay = 0.33).

mixed)
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Figure 3.11: Statistics of the distribution of p in bee pollen loads simulated for the landscape of
Fig. 3.7, with transgenic plants forming 10% of field 2 and arranged in randomly-placed square
patches of side length ps. Bees start foraging at a random point in the field and do not switch fields
during a bout (ns = 100, s = 1m, and 10,000 pollen loads are simulated in all cases).
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3.5 Applications and limitations of this model

The primary objective of this chapter was to introduce a theoretical framework for the genetic
analysis of bee pollen loads, one that could explain the composition of these pollen loads in
terms of simple models of bee foraging and plant spatial genetic structure. In the most basic
cases — when bees forage in a single, continous field, showing no preference for certain field
regions or genetic types — I found that the genetic differentiation of pollen loads (measured
by Fgr) is a direct indicator of the typical length of genetic correlations, relative to the
typical distance covered by a foraging bee. For more realistic field conditions, Fgr results
from the combined effect of within-field genetic structure, between-field differentiation and
between-field movement.

At the present, there is a lack of experimental data that could be used to test this
modelling approach. Although there exist multiple studies of bee pollen composition in the
literature, I could not find any that report results for individual pollen loads, rather than
the aggregate composition of the whole sample. The recent development of single-pollen
DNA amplification methods may facilitate more detailed analyses of bee pollen. Based on
my simulation results, there is much information to be gained by looking not just at the
average genetic composition of pollen loads, but also at the variation between them.

In this last section, I revisit some of the key assumptions underlying my bee foraging
model, and discuss how these assumptions impact the applicability of the model to field
situations. I also bring forward some ideas to broaden the scope of the model, particularly
along the dimension of time.

3.5.1 Intra-species or inter-species mapping

In principle, genetic markers can be used to distinguish pollen at any taxonomic level. In
practice, I believe the method discussed here would be most useful for characterizing the
abundance and spatial distribution of closely related species, or ecotypes/varieties within a
single species. Species that can be easily differentiated by visual observation probably can
be mapped without recourse to molecular methods. Furthermore, it is unlikely that a single
parametrization of the model could adequately describe bee foraging in distantly related
taxa.

For simplicity, I assumed that all visited plants made the same contribution to the bee’s
pollen load. There is certainly some stochastic variation in the quantity of pollen collected by
flower that is unaccounted for in my simulation results. However, since hundreds of flowers
are typically visited in a single foraging bout (Pouvreau 2004; Lotjnant et al. 2012), these
fluctuations should be dampened at the pollen load level.

A more fundamental assumption of the model is that bee foraging behavior is independent
of the spatial genetic structure, i.e. the relative positions of plants that have or don’t have
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the marker of interest. While honey bees are considered a generalist pollinator species,
studies have shown that individual foragers tend to visit a single species. This behavior,
termed flower constancy, cannot be explained solely by differences in rewards (pollen/nectar)
between species or spatial clustering, although it is strongly linked to differences in flower
color or morphology (Hill et al. 1997; Chittka et al. 1999). It is possible, therefore, that bees
remain indifferent to a specific genetic marker that differentiates plants within a species or
closely-related species, as long as the genotype does not affect flower morphology or rewards.
Even in that case, the genotype may indirectly impact foraging behavior if, for example, it
affects flowering time. I elaborate on this point later, when I discuss more broadly how to
add the temporal dimension to the model.

3.5.2 Incorporating variation in plant density

Although my model treats foraging as a series of discrete steps representing a bee visiting
individual plants, each field in the landscape is modelled as a uniform plant cover. The
continuum approximation seems appropriate, as it would be unncessarily tedious to simulate
spatial coordinates for individual plants; however, even within a continuum representation,
it would be possible to incorporate some variation of plant density within a field.

In the single field simulations above, I set the parameter [; (representing the average
distance between successive plants on the foraging path) to unity, which means that all
distances are represented in “bee step” units. Therefore, the results of these simulations do
not apply only in the case of fields with uniform plant density, but more generally, to any
case where the foraging step length scales with the plant spacing in the field. This latter
assumption is supported by empirical observations: for example, Levin and Kerster (1969)
found that for multiple plant species, the average bee step between successive plants is a
linear relationship of the average plant spacing. Using plant spacing as the natural unit
of length means that the spatial coordinate system is “stretched” in low density areas and
“compressed” in high density areas. This is not a problem as long as all other distances in
the model (the distance correlation function C(s), field and patch sizes, etc.) are defined
consistenly with that choice of natural units.

3.5.3 Inferring bee foraging behavior in field trials

I developed this model with the goal of inferring an unknown spatial genetic structure using
known properties of the bee foraging behavior. The same modelling approach can be used to
infer bee foraging behavior from pollen loads collected in a field with known spatial genetic
structure. For example, to reproduce one of the simulated designs used here, square patches
of some cultivar A could be planted in a larger field of a genetically distinct cultivar B.
This type of field design is already being used to study the scale of gene flow in agricultural
crops. Given the uncertainty about many aspects of the foraging behavior model, testing and
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parametrizing the model in controlled field trials would be an important first step, before it
can be applied to more natural systems.

3.5.4 Accounting for time

Throughout this chapter, I have implicitly assumed that parameters of bee foraging behavior
and the spatial distribution of plants are fixed properties of the system, ignoring both their
seasonal and year-to-year variation.

In describing the effect of foraging behavior and spatial genetic structure on the composi-
tion of bee pollen loads, I also did not specify over which time period the pollen load sample
should be collected. Is there any sampling period over which the static assumptions of this
model would hold? Choosing a short sampling period (e.g. one day) ensures that all pollen
loads were collected in the same floral landscape, but may result in a poor spatial coverage,
since the honey bee colony only exploits a small portion of the surrounding resources on any
given day (Visscher and Seeley 1982). Pollen loads sampled over the whole season or year
would be more representative of the floral landscape, but their analysis requires a model
that explicitly accounts for phenological variation: the probability that different plants are
visited in the same bout would not only depend on their spatial separation, but also on a
possible temporal separation between their flowering times.

Studying the level of daily and seasonal fluctuations in bee pollen loads is not only useful
to determine the adequate sampling period for a “snapshot” of floral resources, it could also
serve to detect trends in pollen data over multiple years by filtering out these fluctuations.
Such long-term changes in floral resources may be due for example to population expansion or
decline, land-use changes in managed landscapes, or phenological changes driven by climate.
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Chapter 4

Invasive species mapping from aerial
pollen counts and field observation
data: the case of common ragweed in
France

As T discussed in Chapter 1, fossil pollen analysis is an essential tool for inferring long-term
vegetation changes at the local, regional or continental scales. Yet there are few examples
of the use of contemporary pollen records, specifically those from aerial samplers, to better
understand the dynamics of extant plant populations.

Allergy risk assessment remains the main application of airborne pollen and spore mon-
itoring. As a result, the list of taxa monitored by aerobiological stations reflect the major
allergenic pollen types!, while modelling efforts focus on the spatial interpolation of pollen
concentrations between stations (e.g. Alba et al. 2006; DellaValle et al. 2012) and the short-
term forecasting of these concentrations (Aznarte et al. 2007; Efstathiou et al. 2011).

The limited time extent and poor spatial coverage of airborne pollen records, combined
with their high level of stochastic noise, contribute to the difficulty of detecting demographic
patterns. Even if volumetric pollen samplers were invented in the 1950s (Hirst 1952), the
creation and expansion of pollen monitoring networks, such as the European Aeroallergen
Network (Nilsson 1988), mostly occured in the last 30 years. Pollen stations are typically
located in major cities and separated by tens to hundreds of kilometers.

Despite these limitations, aerobiological samples may be useful in monitoring invasive
plants, fungal pathogens and other fast-changing biological populations with airborne propag-
ules. A fixed air sampler effectively pools information about propagule sources in its vicinity.

! Typically, pollen concentrations are reported for many tree genera but comparatively fewer herbaceous
species. For example, most grasses are lumped into a generic Poaceae category.
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With the development of high-throughput, automated methods of genetic identification, the
analysis of air samples could become a faster, cheaper alternative to field surveys.

In this chapter, I use a hierarchical Bayesian model to describe the density distribution
of common ragweed (Ambrosia artemisiifolia) in France during the last decade, based on
measured airborne pollen concentrations for that period as well as the estimation of the
plant’s current range from a 2011 survey. This specific case was chosen due to ragweed’s
status as a major invasive weed in Europe, its known expansion in south-eastern France over
the last 30 years, and the public availability of pollen data from 61 stations in metropolitan
France. A hierarchical modelling framework is particularly well-suited to the task of relating
an underlying space-time process (the dispersal and growth of the ragweed population) to
the two different sets of measurements.

After a brief review of the chosen modelling approach and the current state of knowledge
on the distribution and spread of A. artemisiifolia in Europe, I describe the specific datasets
used and perform a preliminary analysis of the space-time variation in the pollen data. Based
on the results of this analysis, I formulate a hierarchical model and estimate its parameters
in the JAGS software; distribution maps of A. artemisiifolia over time are produced from the
fitted model. Finally, I use a cross-validation technique to evaluate the model’s performance
in predicting pollen counts. The results not only demonstrate the potential and limits of
existing pollen records for monitoring an invasive plant, but also provide information on how
much additional sampling would be required for better predictions.

4.1 Hierarchical Bayesian models and their ecological
applications

The hierarchical Bayesian modelling approach in ecology stems from two key advances:

e the use of Bayesian networks to express complex systems in terms of simple conditional
probability relationships; and

e the development of Markov chain Monte-Carlo (MCMC) methods, specifically Gibbs
sampling, to compute an approximate marginal probability density for any parameter
in a Bayesian network.

Bayesian networks are graphs where nodes represent observed or unobserved variables
and links represent probabilistic relationships between these variables. They were originally
introduced by Judea Pearl (1985) as a tool to represent related hypotheses and study how
new information on a specific variable affects the probability (or degree of belief, in a Bayesian
interpretation) of other hypotheses in the network. In many applications, these networks are
referred to as hierarchical Bayesian models due to their multilevel structure: the parameters
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Figure 4.1: Example of a Bayesian network in the context of population dynamics. The observed
count N is Poisson distributed with respect to the true population P and a detection probability
¢. The population follows a logistic growth equation with Gaussian noise of magnitude o. The
logistic parameters r and K depend on time-varying environmental variables e; to e3. Only part
of the network is shown, relating the populations at time ¢ and t + 1.

used to explain data at one level of the model are themselves modelled at the level below as
a function of other parameters or measured quantities.?

For example, consider the modelling of a population time series by a logistic equation
with growth rate r and carrying capacity K: AP/At = rP(1 — P/K). A linear regression
of (AP/At)/P against P could be used to estimate r and K, assuming that the noise
term (representing stochastic fluctuations or measurement errors) is normally distributed
and independent of P. However, if the number of individuals observed each year is only
a small fraction of the true population, and if the parameters » and K depend on a set of
measured environmental variables, the single-level regression can be replaced by the following
hierarchical model:

e The observed number of individuals at time ¢, N(t) follows a Poisson distribution, with
a mean depending on both the population P(¢) and a probability of detection ¢.

e The population P(t) depends on its previous year’s value P(t — 1), the growth rate r(t)
and the carrying capacity K (t) through the logistic growth equation, with the addition
of a random Gaussian fluctuation (mean 0, standard deviation o).

e The parameters r(t) and K(t) are related to environmental variables (say e;(t), es(t)
and e3(t)) through a linear regression.

I illustrate part of the corresponding Bayesian network in Fig. 4.1.

2Hierarchical models are not limited to Bayesian networks and also include, for example, multilevel linear
regression and generalized linear models (see Gelman and Hill 2007 for a comprehensive overview).
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A fundamental property of Bayesian network is that the joint probability distribution of
all nodes is a simple product of conditional probabilities (Pearl 1985):

Pr (X1, Xs,..., X,) = [[Pr (Xi | par(X3)). (4.1)

=1

In the preceding equation, par(X) is the set of X’s parents. For nodes with no parents (e.g.
o in 4.1), the conditional distribution is replaced with a prior distribution.

Let D denote the set of observed (“data”) nodes and H denote the remaining (“hidden”)
set of nodes; the objective is to estimate H from the data. Using Bayes’ theorem, the poste-
rior distribution of H (given the data) is proportional to the product of the likelihood of the
data (given H) and the prior distribution of H: Pr(H | D) oc Pr(D | H) Pr(H).*> Although
both terms on the right side can be determined from (4.1), finding the proportionality factor
involves an integral over all possible joint values of the nodes in H, which cannot be directly
computed in most cases. The purpose of Markov chain Monte Carlo (MCMC) methods is to
draw a representative sample from the posterior distribution without determining the exact
form of that distribution.

The common principle of all MCMC techniques is to generate a random sequence of
values for a random variable, where the choice of each value in the sequence depends on
the previous one (hence the Markov chain) and on partial knowledge of the underlying
probability distribution. The Gibbs sampling algorithm (Geman and Geman 1984; Gelfand
and Smith 1990) is particularly useful for Bayesian networks as it relies on the knowledge
of conditional probabilities. Let Xi(j) denote the value of node i after the j™ iteration
of the algorithm. Starting from a set of initial values {Xl(o),XQ(O), . ,X,SO)}, the Gibbs
sampler goes through each unobserved node and picks a new value from its full conditional
distribution (i.e. given the current values of all other nodes, including the observed ones):
Pr(x® | (X xP, prxV | {x, x9 . x?}) and so forth. With enough
iterations of the algorithm, the sequence of values generated for a node will converge to its
true posterior distribution.

In a Bayesian network, the full conditional distribution of a node X only depends on its
parents par(X), its children child(X) and their parents (Lunn et al. 2000):

Pr (X | all other nodes)  Pr (X | par(X)) H Pr (Y | par(Y)).
Yechild(X)

The proportionality factor in this equation can be determined if the right-hand side corre-
ponds to a known probability density (e.g. it is composed of a single term or the product of
two conjugate distributions). Otherwise, it may be evaluated with other MCMC algorithms
such as Metropolis-Hastings (Metropolis et al. 1953) or slice sampling (Neal 2003), which
only require knowledge of the distribution up to a constant factor.

3In this context, the distribution of a set refers to the joint distribution of all nodes in the set.
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The estimation of posterior distributions for Bayesian networks using Gibbs sampling has
been automated in software packages such as WinBUGS (Lunn et al. 2000), OpenBUGS and
JAGS (Plummer 2003). Given the model description and data, these programs automatically
select appropriate sampling methods for each node.

In ecology, hierarchical Bayesian models have been particularly useful in the study of
spatial and spatio-temporal pattern including biological invasions. Based on data from the
North American Breeding Bird Survey over a 35-year period, Wikle (2003) modelled the
spread of house finches in the eastern US as a diffusion process (with the diffusion coeffi-
cient varying in space) combined with exponential growth and random fluctuations in time.
The survey bird counts were assumed to be Poisson distributed with a mean depending on
the population value at the specific location and time. Hooten and Wikle (2005) used an
extended version of this model to explain the spread of European collared-dove in the same
area, by adding a carrying capacity parameter and the effect of human population as a co-
variate. When dealing with presence/absence information rather than counts, the (hidden)
population variable can be linked to the binary observation data using a logistic function, as
was done by Zheng and Aukema (2010) to model mountain pine beetle outbreaks in British
Columbia.

Other applications of this approach in ecology include the inference of tree fecundity
parameters from tree size data and seed samples (Clark et al. 2004); the modelling of species
distributions as a function of climate and habitat parameters (Gelfand and al. 2006); and

the prediction soil properties at a regional scale from small plot measurements (Kaye et al.
2008).

There are few precedents for the use of hierarchical models to relate pollen counts to
vegetation at a large scale. Paciorek and McLachlan (2009) use the pollen composition
of 23 sediment cores to infer the historical prevalence of 9 tree species in a 192x192km
area of New England. First, they fit a model relating the proportion of each pollen type
to the proportion of trees of the corresponding species, using tree census data from two
different periods (contemporary and colonial). That model accounts for differences in pollen
production between species and includes both short-distance (within the same 12x12km grid
square) and long-distance dispersal, the latter determined by a Gaussian spread kernel. The
fitted parameters of that model are then used to interpolate the prevalence of each species
in the intermediary time periods for which no tree data is available. They assume spatial
correlations between tree species in nearby cells, but do not model any temporal process.

The study I present in this chapter differs from that of Paciorek and McLachlan (2009)
in several ways. I focus on the aerial pollen data for a single species during a short (10
year) contemporary time period. Rather than assuming a static spatial correlation model at
each point in time, I use a dynamic space-time process (diffusion-growth) similar to Wikle
(2003). Although I do include some knowledge of the distribution of the plant based on
observations in the field, this presence data is less informative than a tree survey using
systematic sampling.
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4.2 Current knowledge of the distribution of common
ragweed in Europe

From its native range in North America, common ragweed was introduced in Europe over a
century ago. Using herbarium records, Chauvel et al. (2006) retraced its history in France,
concluding that its current distribution is the result of multiple introduction events. This
is consistent with the genetic analysis of Genton et al. (2005), which shows that French
ragweed populations are descended from several distinct North American populations.

A thorough review and synthesis of the distribution of Ambrosia artemisiifolia in the
European Union was performed by Bullock et al. (2012). They combined national survey
data to produce maps of the known range of common ragweed, up to a 10x10km grid scale.
Although their maps do not include information about the density of the plant across its
range, a separate map of airborne pollen concentrations suggest higher densities in eastern
Europe (Hungary, Ukraine) as well as parts of France and Italy. They also discuss the
primary long-distance dispersal vectors for ragweed seeds, both natural (primarily water
as the seeds are not adapted for wind transport) and human (agricultural machinery, soil
transport, contamination of seed imports).

Recent studies aimed at explaining the spread of ragweed combine species distribution
modelling — based on climatic and habitat suitability — and dynamic dispersal on a grid.
In the model of Smolik et al. (2010), the probability of ragweed spreading to a new grid
cell depends on both its suitability and the distance from the nearest infested cell. They
fit the model using the observed distribution of the plant in Austria for 1990 and 2005. At
the European scale, Bullock et al. (2012) develop a more complex metapopulation model
that includes the probability of extinction from a cell, re-emergence from the seed bank and
long-distance dispersal, the latter roughly estimated as being proportional to the volume
of agricultural imports from other European countries and the US. For dispersal between
neighbor cells, both studies assume that the dispersal distances follow a Gaussian kernel and
estimate the standard deviation of that kernel to be around 20 km.

Based on measurements of ragweed pollen away from a small experiment field, Raynor
et al. (1970) determined that the integrated concentration of airborne pollen at plant height
decreased by 80% in the first 100m from the source. Even if only a small fraction of the total
pollen output is transported over long distances, this phenomenon is essential to explain the
presence of airborne pollen in regions where A. artemisiifolia is absent. Using the particle
trajectory simulator HYSPLIT, Zemmer et al. (2012) estimated the geographic distribution
of sources for Ambrosia pollen sampled in Istanbul during a month; their results suggest that
a significant proportion originated in Ukraine. Similarly, Zink et al. (2012) found that up to
20% up the Ambrosia pollen collected during a few days in Germany came from Hungary.
Building on the distribution maps produced by Bullock et al. (2012), Prank et al. (2013)
simulated pollen concentrations for a whole season in Europe. Their results support the idea
that long-distance dispersal may lead to rare episodes of high Ambrosia pollen counts in
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any region, although the total counts for a season remain well correlated with local ragweed
presence.

4.3 Description of data sources

4.3.1 Distribution of Ambrosia artemaisiifolia in France

As part of their report: “Assessing and controlling the spread and the effects of common
ragweed in Europe”, Bullock et al. (2012) synthesized current knowledge of the distribution
of A. artemisiifolia in the European Union with maps showing areas of known ragweed
presence in a 10x10km grid. Their data for France was collected in a 2011 survey performed
by regional botanical conservatories (Petermann 2011). As the report does not describe the
sampling methodology and acknowledges differences in sampling efforts between and within
regions, these records are a form of presence-only data; in particular, they are not indicative
of the relative abundance of ragweed populations at different locations.

Besides A. artemisiifolia, two other Ambrosia species (A. psilostachya and A. trifida)
have been observed in Europe, primarily in England, Belgium, Netherlands and Northern
Germany (Bullock et al. 2012). Since both have been very rarely observed in France, I
neglect them in the analysis below and assume that Ambrosia airborne pollen counts are
representative of the distribution of common ragweed exclusively.

4.3.2 Airborne pollen records

The French Réseau national de surveillance aérobiologique (RNSA) collects and publishes
daily pollen concentrations for 21 taxa, as measured by Hirst pollen traps. In this study, I
used Ambrosia pollen data for a 12-year period (2000-2011) during which the RNSA network
grew from 39 to 61 pollen stations.*

For each station-year pair, I calculated the annual pollen index (API) — the sum of daily
pollen concentrations over the year — for Ambrosia and the total API for all pollen types. If
each pollen trap was operational for the whole season, the API would be a good indicator
of yearly fluctuations and trends; however, many of the time series suffer from missing data.
These gaps in the daily pollen record can be a few weeks long and are due to various causes,
such as broken samplers being sent for repair or the absence of the sole person charged with
operating the sampler (Cassagne 2008).

4The RNSA database is published at http://www.pollens.fr.

72



4.3.3 Selection of model area

Based on both the plant survey and pollen data, I chose to limit the scope of my model
to a 520x520km area from central to southeastern France, which encompasses the main
concentrations of ragweed along the Rhone and Loire valleys and most pollen stations where
significant quantities of Ambrosia pollen were sampled (Fig. 4.2). I did not use the records
from three stations within that area: Périgueux and Tours, which had a week or more of
missing data for every Ambrosia season; and Briancon, which perhaps due to its high-altitude
location receives very little Ambrosia pollen. All of the 29 remaining stations® in the selected
area had an average APT of at least 20 grains/m? for Ambrosia, compared with only 5 of the
29 stations located outside that area.

Out of the possible 348 station-year pairs (29 stations over 12 years), 290 have daily pollen
records. To avoid underestimation of the Ambrosia API due to missing data, I removed 33
records that had over 15 missing days in August and September — corresponding to the main
ragweed pollen season — and kept a separate list of 51 records with 7 to 14 missing days
during the same months to be included for now but possibly excluded later in the analysis.
Here I define a missing day as one where no pollen was observed for any taxon, even if it is
not strictly impossible for a working sampler to receive zero pollen grains in a day during
high pollen season.

4.4 Preliminary analysis

To inform the design of a space-time hierarchical model in the next section, I separately
analyze the temporal variation of the API for fixed locations and the spatial variation of
the mean API between stations. All calculations in this section were performed in R (R
Development Core Team 2008).

4.4.1 Annual pollen index variation by station

Since the API values are strictly positive and their overall distribution is right-skewed, 1 first
model them as being lognormally distributed at each station:

log API,; = log j1s + €54, (4.2)

where API,, is the measured API for station s on year ¢, ps is a station-specific mean
and the €, are normal i.i.d. (independent and identically distributed) residuals. A plot of
the fitted residuals against the standard normal quantiles (Fig. 4.3) supports the lognormal

5Agen, Aix-en-Provence, Angouléme, Annemasse, Annecy, Aurillac, Avignon, Besancon, Bourg-en-Bresse,
Bourges, Castres, Chalon-sur-Sa6ne, Chambéry, Clermont-Ferrand, Dijon, Gap, Grenoble, Lyon, Marseille,
Montlugon, Montpellier, Nevers, Nimes, Poitiers, Roussillon, St-Etienne, Toulon, Toulouse, Vichy.
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Figure 4.2: Map of France showing the Ambrosia artemisiifolia presence data from Bullock et
al. (2012) (10x10km grey squares), the point locations of RNSA pollen stations and the 40x40km
prediction grid (dashed lines) used in this model. The map was produced in ArcGIS using a
Lambert azimuthal equal-area projection.
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Residual quantiles

Standard normal quantiles

Figure 4.3: Quantile-quantile plot for the residuals of the lognormal regression model (4.2) fitted
to Ambrosia annual pollen index (API) data.

hypothesis: of the 257 residuals, only the 14 most negative ones lie under their expected
values. This discrepancy cannot be explained solely by missing data, as only 5 of the 14
outliers were part of 51 worst records included (those with 7 to 14 missing days during the
ragweed pollen season).

The model above assumes that the mean pollen levels are stationary over time. Nei-
ther the addition of a global temporal trend (i.e. using the year as a linear predictor) nor
the inclusion of station-year interaction terms (representing local trends) significantly im-
proves its explanatory power, as determined by analysis of variance (ANOVA) and Akaike’s
information criterion (AIC). However, a model incorporating the year as a factor:

log AP, = log j1s + ap + €54

yields a small but significant (p = 0.0002 in ANOVA) increase in explanatory power over
(4.2), with the adjusted coefficient of determination (R?) increasing from 0.85 to 0.87 and
the AIC decreasing from 396 to 376. This suggests than in addition to stochastic fluctuations
at each station, pollen concentrations might increase or decrease across the study area from
year to year; at this point, it is not possible to determine whether this variation stems from
changes in the ragweed population, or other factors (e.g. number of rainy days) affecting
pollen production and transport.

I also looked for the existence of temporal trends in the API recorded at individual
stations. Due to the small number of points in each regression, I determined the significance
of the trends using a permutation test, as implemented in the ImPerm R package (Wheeler
2010). The resulting p-value represents the probability that a trend of that magnitude be
obtained for a random permutation of the points in the time series. Of the 24 stations with
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Figure 4.4: Absolute difference in mean log API between pollen stations as a function of their sep-
aration distance. Distances are based on the Lambert azimuthal equal-area projected coordinates
(Fig. 4.2).

at least 6 yearly pollen records, only 2 had p-values under 0.05 (p = 0.009 for Annecy, p =
0.046 for Nevers), not a very significant result when accounting for the multiple tests.

These results are not necessarily incompatible with the hypothesis that ragweed popula-
tions are growing and spreading in France. It is possible that 12 years of data are insufficient
to detect a trend above the stochastic fluctuations in the annual pollen index. Areas where
the plant is spreading may also not be adequately sampled by any of the pollen stations.

4.4.2 Spatial variation in mean API

Having shown that the log-transformed API are approximately normally distributed around
a station-specific mean, I now focus on the variation of the mean log API in space.

As I discussed in the introduction to this chapter, geostatistical approaches such as krig-
ing have previously been used to interpolate the long-term pollen counts between monitoring
stations. Kriging methods model the random field as a Gaussian stationary process, defined
by a global mean and a spatial covariance function. In the present exemple, kriging assump-
tions would imply that stations closer to each other would record more similar pollen counts.
However, a plot of the difference in mean log API as function of the distance between pollen
stations (Fig. 4.4) does not reveal any such pattern.
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If common ragweed was introduced in France through multiple events, as suggested by
recent genetic evidence (Genton et al. 2005), and has spread locally except for rare occur-
rences of long-distance dispersal, then the absence of a large-scale covariance structure in the
spatial distribution of the plant is not surprising. For this reason, in my hierarchical model
for Ambrosia pollen counts presented in the next section, the underlying plant density does
not follow a spatial covariance function. Instead, the spread of plants to nearby cells (local
diffusion) creates short-scale spatial correlations over time.

4.5 Hierarchical model specification

The purpose of this modelling effort is to represent the distribution and spread of Ambrosia
artemisiifolia in central and south-east France based on pollen counts and presence observa-
tions. To this end, I divide the 520x520km model area in a 13x13 prediction grid of 40x40km
cells (Fig. 4.2). I chose this grid scale based on both the spatial resolution of the pollen
dataset — with the exception of Aix-en-Provence and Marseille, all pairs of stations are sep-
arated by over 30km — and computation time limitations. To limit the effect of boundary
conditions on predicted densities in the area of interest, I add a 40km (1 cell) buffer on each
side to create a 15x15 grid.

In this section, I describe the four main components of my hierarchical Bayesian model:
e a dynamic space-time model to describe how the density of A. artemisiifolia plants in
each cell evolves from year to year;

e a model to relate the Ambrosia API measured at each station to the density of plants
in nearby cells;

e a model to relate the presence data (in 10x10km cells) from the 2011 survey to the
plant density (in 40x40km cells); and

e prior distributions for the model parameters and the initial plant density values.

I use the following conventional notation to describe probability relationships: X | Y ~
N(u(Y),0?) signifies that conditional on the value of Y, X follows a normal distribution
with a mean of p (which depends on Y) and a variance of o?. A uniform distribution
over the interval (a,b) is noted as U(a, b), whereas a binomial distribution with n trials and
probability of success p is noted as B(n, p)
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4.5.1 Plant population dynamics

Let p;;; denote the relative density® of ragweed on year ¢ for the grid cell in column i,
row j (i,7 € {1,...,15}). Following Wikle (2003), I model the time evolution of p using a

diffusion-growth process:
op Pp 0%
L o e T 4.3
ot (3x2 - 0y? o, (4:3)
where « is the growth rate (which may be negative) and ¢ is the diffusion coefficient. The
discretization of eq. (4.3) using a 1 year temporal step and a 1 cell spatial step results in:

prij=1—=404+a)p_1,;+ 0 (pr—1,i-1; + Pr—1,i+1, + Pr—1,ij—1 + Pt—1j+1) - (4.4)

For cells along the boundary, (4.4) is modified so that diffusion does not occur across
grid edges. For example:

pra1=(1—=20+a)pi—111+0(pt—121+ pt-112); and
pra; =1 =30 +a)pi—11; + 6 (pr-125 + Pr—1,1,j-1 + Pr—1,1,j+1) -

This condition is equivalent to assuming that the ragweed density is the same on both sides
of the boundary (i.e. its derivative is zero). One alternative, assuming that the density itself
is zero outside the boundary, would be in contradiction with the presence data.”

This simple diffusion-growth model is not meant to accurately represent the mechanisms
underlying the spread of A. artemisiifolia. For example, the actual growth and diffusion
rates should vary within the study area due to differences in habitats, potential to spread
via roads and rivers, etc. Although I will consider variations of the model such as a time-
varying «, the relatively coarse scale of the pollen data limits the number of parameters than
can be added without overfitting.

4.5.2 From plant density to pollen index

Based on the preliminary analysis results (section 4.4 above), I choose a lognormal distribu-
tion for the annual pollen index:

log AP | pts,0.0p ~ N (log prz, %) (4.5)

The variance o, is a global parameter in the model, while the mean p,, depends on the
relative plant density around station s on year t.

SNote that expressing the model in terms of absolute instead of relative densities would require the
independent determination of a proportionality constant between plant density and pollen production.

7Although not shown on Fig. 4.2, the known range of ragweed extends across the eastern border into
Switzerland (Bullock et al. 2012).
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Since most of the Ambrosia pollen comes from local sources, I model p,; as a weighted
mean of the density for the grid cell where station s is located (ig,js) and its 8 nearest

neighbors:
is+1  js+1

st = Z Z Ws 5,5 Ptij- (4.6)
i=ia—1 j=js—1
The wy; ; are calculated from a dispersal kernel k evaluated at the distance between the
location of station s and the center of cell (7,7):

W — k(xs — i, ys — ¥iy)
$%J is+1 js+1 ’
Zi:z’sfl j=js—1 k(zs — T4, ys — Yij)

where the denominator ensures the sum of weights is 1. I will use two different forms for &,
a Gaussian kernel:
22 4 y2)

2a2

k(z,y) = exp (—

and an exponential one:

)
k(x,y) = exp (_%ﬂ) :

Both forms are specified by a single parameter a, which represents the scale of dispersal
and shares the units of x,y (in this case, kilometers). Estimating a along with the other
parameters in the full hierarchical model would greatly increase the volume of calculations at
each iteration of the MCMC algorithm. For this reason, I pre-compute the weights w; ; ; for
a given a and include these weights as constants in the hierarchical model. I then estimate
the parameter by performing separate model runs for different values of a and comparing
their fit using the deviance information criterion (DIC).

4.5.3 Incorporating presence data

Pollen counts alone may not be sufficient to infer plant density across the model area: there
are much less pollen stations (29) than cells in the prediction grid (169), and parts of the grid
— such as most of the Massif Central around Aurillac — are poorly covered by the monitoring
network. To use the additional information provided by the common ragweed presence data,
I relate this binary dataset to the underlying plant density through a logistic regression
model.

Since the presence data is defined on a 10x10km grid, each prediction grid cell contains
are ng, = 16 subcells in which ragweed was either observed or not observed. I assume that
probability ¢; ; of detecting the plant in a subcell of cell (,7) is a logistic function of the
log plant density in that cell, for the year when the survey was realized (here t,,s = 12,
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corresponding to 2011):

1
14 exp (= b(10g pry,i5 —€))

¢i,j - (47)
The parameter ¢ is the midpoint of the logistic curve (corresponding to ¢ = 0.5) while b
determines the steepness of the curve around its midpoint.

Under this assumption, the number of subcells in cell (i, j) where ragweed was observed
(n; ;) follows a binomial distribution:

Nij | @i ~ B(Nsup, @i j)- (4.8)

Although the logistic model does not account for the variation in plant density or sampling
effort between subcells, it might still constitute the best option without any additional
information on that variation. Furthermore, if the presence data is a poorer predictor of
plant density than the pollen data, then the latter will automatically have more influence on
posterior estimates of plant density in the hierarchical model.

4.5.4 Prior distributions

To complete the hierarchical model specification, I define uniform prior distributions for
the five global parameters and for the logarithm of the plant density at ¢t = 1 (the year
2000): o, ~ U(0,2); o ~ U(—0.2,0.2); 6 ~ U(0,0.2); b ~ U(0,10); ¢ ~ U(0,10); and
lOg Pi,ig ™~ Z/{(—5, 10)

I set a broad range for each prior, based on physical restrictions and the results of the
preliminary analysis of the dataset. In particular, o and ¢ are limited to 0.2 in magnitude
to ensure that the term (14« —49) in eq. (4.4) is non-negative. The priors for log p; ; ; and
c are wider than the range of observed log API values (1.5 to 9). The standard deviation of
the lognormal API distribution (o,) should be close to 0.5, based on the quantile-quantile
plot in Fig. 4.3.

These priors can be reviewed following initial model runs, for example if the posterior
distribution of any parameter approaches the limits of the prior, indicating that the hypoth-
esized range may be too narrow.

The full model is summarized by a network diagram in Fig. 4.5.

4.5.5 Model variations

To determine how different components of the hierarchical model affect both the parameter
estimates and model fit, I introduce a few variants of the full model:
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Figure 4.5: Bayesian network for the ragweed dispersal model. The density of the plant in each grid
cell (p,i ;) evolves according to a diffusion-growth model with parameters o and 6. The measured
annual pollen index (API) at each station is distributed lognormally, with a mean pg; depending
on the value of p in nearby cells. The gridded presence data (n; ;) for the year 2011 (¢t = 12) is
related to p through a logistic regression with parameters b and c.
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e In the static model, the plant density p is constant in time so that eq. (4.4) is replaced
with py;; = pi—1,,,. By contrast, dynamic versions of the model have a time-varying

p-

e Instead of a constant growth rate a, I consider a version with no growth (« set at
0) and another one where « varies by year. This is motivated by the the preliminary
analysis of Ambrosia pollen concentrations, which did not show evidence for a constant
increase or decrease over time.

e The “pollen only” model ignores the presence data to infer p from the pollen dataset
alone.

4.6 Model fitting and validation methods

[ estimated posterior distributions from the model using JAGS (Just Another Gibbs Sampler)
and the rjags package in R (Plummer 2003). Each model run included two MCMC chains
initialized using different values sampled from the parameters’ prior distributions. After a
number of burn-in steps performed in adaptive mode (a function in JAGS that optimizes
the sampling algorithm), I verified convergence of the two chains using the diagnostic test
of Gelman and Rubin (1992). For each parameter to be estimated, the test compares its
variance within each MCMC chain (W) to the variance between the chains’ mean estimates
(B) and outputs a potential scale reduction factor. If this factor is close to 1, then B
is small relative to W, indicating that the multiple chains have converged to a common
posterior distribution.

To compare the fit of different model specifications, JAGS can calculate their deviance
information criterion (DIC) from the output of multiple MCMC chains. The DIC was
proposed by Spiegelhalter et al. (2002) as a means to estimate the predictive power of
hierarchical models. It is defined as the sum of the mean deviance (D, a quantity proportional
to the negative log-likelihood of the data) and the effective number of parameters (pp). While
a lower D indicates that the model maximizes the likelihood of the observed data, pp serves
to penalize more complex models that may overfit the specific data observed and thus lose
some ability to predict new data.

After selecting a best model based on DIC estimates, I use a cross-validation technique to
evaluate how well that model can predict pollen concentrations between monitoring stations.
For each of the 29 stations, I run the model without the data from that station and compare
the resulting estimate of log us (the mean log API) to its estimate for the full dataset,
including station s. I also compare the cross-validation estimates of my model to those
obtained by ordinary kriging (spatial interpolation) of the observed log API, as performed
by the Geostatistical Analyst extension in ArcGIS.
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4.7 Results

Unless stated otherwise, all posterior estimates and DIC values reported here are based
on 10,000 iterations of two MCMC chains. I started each model run with 10,000 burn-
in adaptive steps; this was sufficient to reach a Gelman-Rubin potential scale reduction
factor of under 1.01 for all parameters, indicating good convergence. The resulting posterior
parameter distributions also seem close to normal, although the distribution of ¢ is slightly
asymmetric (Fig. 4.6).

These posterior parameter distributions are not completely independent. Specifically, I
found a moderate positive correlation (R?* ~ 0.3) between §, the diffusion coefficient and
b, the steepness of the logistic curve describing the probability of detecting ragweed as a
function of plant density. Here is one potential explanation for this correlation, as well as
the observation that b estimates are lower for the static model (Table 4.1) in which ¢ is
effectively zero. The effect of diffusion is to equalize plant densities across the grid: with a
narrower range of plant densities, explaining the same range of presence/absence probabilities
requires a logistic curve with a steeper slope.

As I mentioned at the model specification stage, the mean API at each station is modelled
as a linear combination of the plant densities in neighboring cells (eq. 4.6), where the weights
are pre-computed based on some dispersal kernel. To choose a type of kernel (Gaussian or
exponential) and an appropriate value of the dispersal scale parameter a, I perform separate
MCMC simulations for each model and compare their DIC. I also compare the fit of my
dynamic model to a static model where the plant density is constant in time (Table 4.1).
For the static models, the best pollen dispersal kernel (lowest DIC) is Gaussian with a=10km.
The DIC for dynamic models depends less on the value of a, but is significantly lower than
under the static case due to the difference in pp.® Based on these results, I use a Gaussian
kernel with ¢ = 10km from this point on.

None of the models in Table 4.1 include a growth rate a. When this parameter is added to
the dynamic model, its posterior estimate is slightly negative and includes 0 (mean -0.04, s.d.
0.02). When « is allowed to vary from year to year, none of the estimates were significantly
different from zero (means from -0.12 to 0.11, s.d. from 0.07 to 0.1). Furthermore, adding
a does not significantly alter the other parameter estimates or lower the DIC: therefore, I
consider it to be superfluous for this particular model.

Separately, I verified that removing the 51 records with between 7 and 14 missing days in
the Ambrosia pollen season did not improve the model fit; therefore, I included these records
in all results presented here.

The units of the diffusion coefficient § are (grid cells)?/year. To compare its value to the
spread parameters in Bullock et al. (2012) and Smolik et al. (2010), I use the well-known

81 believe dynamic models have less free parameters because the plant densities in different cells are linked
over time through the diffusion process.
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Figure 4.6: Posterior distributions for the parameters of the ragweed dispersal model, using a
Gaussian kernel with @ = 10km for pollen dispersal. Each distribution is based on 20,000 total
iterations (10,000 each of two parallel MCMC chains).
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Model Posterior means (s.d.) Relative fit

S/D  Kernel o b c D pp DIC
S G5km | 051 (0 03) 0.85 (0.07) 5.2 (0.1) | 1112 180 1292
S G-10km | 0.52 (0.03) 0.85 (0.07) 5.0 (0.1) | 1108 174 1282
S G-20km | 0.56 (0.03) 0.86 (0.08) 4.7 (0.1) | 1195 204 1399
S E-5km | 0.53 (0.03) 0.86 (0.07) 4.9 (0.1) | 1149 163 1312
S E-10km | 0.54 (0.03) 0. 84 (0.07)  47(0.1) | 1184 176 1360
D  G-5km | 0.59 (0.03) 0.033 (0.004) 1(0.2) 5.34 (0.07) | 1121 104 1225
D G-10km | 0.60 (0.03) 0.034 (0.004) 2.2 (0.2) 5.32 (0.07) | 1125 106 1231
D  G-20km | 0.65 (0.03) 0.042 (0.004) 2(0.2) 527(0.06) | 1147 86 1233

Table 4.1: Comparison of posterior parameter estimates and relative fit — as measured by the
deviance information criterion (DIC) — for static (S) and dynamic (D) models of the ragweed
distribution with different pollen dispersal kernels (e.g. G-10km is a Gaussian kernel with a=10km;
E denotes an exponential kernel). Results are calculated from 10,000 iterations of two parallel
MCMC chains.

result that diffusion from a point source for a time ¢ causes a Gaussian spread with a standard
deviation o = v/2dt. For a t of one year, the estimated range of 0.25-0.45 for § (Fig. 4.6)
corresponds to a o of 0.22-0.3 cells, or 9-12 km.

The next set of figures show the posterior means and standard deviations of log p on the
13x13 prediction grid, for both the static model (Fig. 4.7) and four years of the dynamic
model (Figs. 4.8 —4.9). While both models use the presence data to supplement the measured
pollen concentrations, the static model cannot really interpolate p in areas with poor pollen
station coverage, as indicated by the very low mean estimates of p and their high standard
deviations. The estimates for the first year (2000) of the dynamic model show similar
problems: this may be due to the lack of data at the time (only 11 out of 29 pollen stations
reporting), which when combined with a broad uniform prior may lead to a very dispersed
posterior distribution.

For a “pollen only” model (not shown here), the dynamic estimates of p in 2011 do not
significantly differ from the static estimates. The posterior estimate of § in that case also
approaches zero (mean 0.003, s.d. 0.001). This suggests that the smoothing of the density
field observed in Fig. 4.8 requires both a dynamic diffusion model and the incorporation of
presence data.

In the cross-validation test, I removed one station at a time from the model and recorded
the mean log API (log p) predicted for 2011 at that station. Averaging over the 29 stations,
I obtained a mean error (difference between the predicted log p and the observed log API
in 2011) of -0.007 and a root mean square (RMS) error of 0.86; the latter corresponds to an
over- or underestimation of the observed API (not log) by a factor of 2.4, which may seem
high. However, this value should be compared to the year-to-year fluctuations in pollen index
that occur even if we know the station mean: the scale of this fluctuations corresponds to o,
in my model and was estimated at around 0.6 (or a factor of 1.8). As a further comparison, I
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Figure 4.7: Posterior distribution (mean and standard deviation) of log p over the 13x13 prediction
grid, under a static model with a Gaussian kernel (a = 10km) for pollen dispersal. The location
and abbreviated name of each pollen station are indicated. Results are calculated from 10,000

iterations of two parallel MCMC chains.
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Figure 4.8: Posterior mean of log p over the 13x13 prediction grid at four different times, under a
dynamic model with a Gaussian kernel (¢ = 10km) for pollen dispersal. The locations indicated on
each map represent the pollen stations in operation during that year. Results are calculated from
10,000 iterations of two parallel MCMC chains.
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Figure 4.9: Posterior standard deviation of log p over the 13x13 prediction grid at four different
times, under a dynamic model with a Gaussian kernel (a = 10km) for pollen dispersal. The locations
indicated on each map represent the pollen stations in operation during that year. Results are
calculated from 10,000 iterations of two parallel MCMC chains.
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also fit an ordinary kriging model to the 2011 log API values in ArcGIS. Its cross-validation
mean error (0.095) and RMS error (1.038) were both higher than those calculated under my
model.

4.8 Discussion

In this chapter, I implemented a hierarchical modelling approach to create maps of the
relative density of a known invasive weed, by combining records from sparse pollen stations
and binary presence data from field surveys.

The parameter estimates for the dynamic model do not indicate significant growth or
decline of the ragweed population in France over the last decade, but support some degree of
diffusion — movement from the most densely populated areas to the least densely populated
areas. The estimated range of 0 in my model corresponds to a Gaussian dispersal kernel
with a standard deviation of 9-12 km, which is similar to the 13 km estimate obtained by
Smolik et al. (2010) when fitting a simple diffusion of ragweed presence in Austria.

Is it unlikely that diffusion occurs uniformly across space, so my global estimate of §
probably underestimates the real diffusion coefficient by “averaging in” regions where no
diffusion occurs. When combining a diffusion process with a species distribution model
describing the suitability of different habitats to ragweed, both Smolik et al. (2010) and
Bullock et al. (2012) obtained higher standard deviations (20-25km) for the dispersal kernel.
However, species distribution modelling also shows that the potential distribution of ragweed
in Europe extends far past its current range (Bullock et al. 2012; Chapman et al. 2013); this
would suggest that the spread of the plant is limited by dispersal opportunities rather than
climatic constraints or lack of suitable habitats. Future modelling efforts could focus on
varying the diffusion coefficient in space based on known vectors of dispersal such as rivers
and major transportation networks for agricultural products.

Besides diffusion, other processes could explain the equalization of ragweed density across
its range. For example, there may be more control measures taken to remove the weed in
the most severely affected areas.

Part of the observed spatial smoothing of plant density over time (Fig. 4.8) may also
be an artifact of the model specification. Due to the low spatial resolution of the pollen
data, the presence information is necessary to produce a smooth density estimate, but it
only available for 2011. Therefore, its influence will decrease the further the model goes
back in time. Furthermore, the lesser amount of pollen data in 2000 and the uniform prior
distribution on p contribute to the irregularity of the estimated density field for that year.
This effect would be reduced if the plant presence data were available for a second year,
preferably close to the beginning of the time series.

To integrate the binary presence data from a 2011 survey into my model, I assumed that
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the probability of detection depended only on the ragweed density in each area, without
accounting for the fact that not all areas were equally well surveyed. This unequal sampling
effort may explain why, for example, the presence data suggests a concentration of ragweed
around Paris (Fig. 4.2) even though the annual pollen index recorded there, as in the rest of
northern France, was quite low. Despite these shortcomings of the ragweed presence records,
the additional information they provide compensates for the large distance between pollen
stations, and cross-validation results show that my model can predict 2011 pollen counts
better than a spatial interpolation of the pollen data.

In theory, the hierarchical modelling approach could be used to fit the pollen monitoring
data to a complex model of plant population dynamics and dispersal. In the case studied
here, the spatial resolution of the data is rather coarse compared with the scale at which
the relevant biological and physical processes occur. With a denser network of monitor-
ing stations, it could be feasible to infer the distribution of an invasive plant from pollen
records alone. Even in that case, micro-climatic effects related to the specific placement of
pollen stations (sampler height, surrounding topography, urban/rural areas, etc.) need to
be examined to avoid local biases.

90



Chapter 5

Conclusion

A broad focus of this dissertation is the use of pollen analysis to infer characteristics of plant
populations. My research was motivated by the ongoing development of high-throughput
methods for the genetic identification of pollen grains; I chose to discuss not only the possibil-
ities offered by existing data and methods, but also those that could result from an increase
in the volume and phylogenetic resolution of pollen data. As I discuss below, another objec-
tive of this work was to apply new data-model integration techniques to the study of pollen
data.

In Chapter 2, I described a dilution-PCR assay to estimate the proportion of a pollen
sample bearing a specific genetic marker. The assay design aims to minimize the error in the
final estimate — including both sampling error and DNA amplification failure — for a given
number of PCR reactions. If the cost of each PCR determination is constant, this method
is more efficient that testing single-pollen grains. However, as single-pollen PCR methods
evolve and both their error rate and the cost per reaction decrease, the same statistical
methods I used can help identify the point at which single-pollen approaches become more
efficient than dilution assays.

The bee foraging model presented in Chapter 3 constitutes an example of the additional
information that could be gathered from a more fine-grained analysis of pollen samples.
While most studies of bee pollen composition focus on the aggregate representation of pollen
types at the hive level, I have shown that the genetic differentiation between pollen loads
provides information about the scale of the spatial genetic structure of floral resources,
relative to the length of bee foraging paths. To test and parametrize this model, I would
need to analyze pollen loads from bees foraging in a field with known spatial genetic structure.

The capacity to perform high-throughput pollen analysis would provide even more ben-
efits at the biogeographic scale. One of the main challenges to the inference of vegetation
based on pollen data is the poor spatial resolution of existing sampling networks. The Am-
brosia pollen data I used in Chapter 4 represents a best case scenario, since Ambrosia is
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one of a few widely monitored allergenic pollen taxa and the 61 pollen stations in France
provide a comparatively good spatial coverage.! Yet, these records cannot capture biologi-
cal processes occurring at the scale of less than a few kilometers. High-throughput genetic
methods would allow researchers to monitor the spread of a greater range of invasive plant
species; the same methods applied to fungal spores could be used to monitor plant diseases.

In Chapter 1, I discussed the range of models for pollen dispersal and noted a divide
between empirical approaches, based on fitting parametric functions to observed dispersal
curves, and mechanistic approaches, based on modelling the postulated physical and biolog-
ical processes affecting dispersal. Recent advances in ecological modelling aim to bridge this
gap by relating multi-layered, process-based models to dispersal data.

Individual-based models simulate individual dispersal events from a population and cal-
culate summary statistics over multiple simulations to compare with the observed dispersal
patterns. Gilioli et al. (2013) used this approach when fitting a model of the spread of
chestnut gall wasp in Europe, with the summary statistic being the area colonized by the
wasp over time. The individual-based model I developed in Chapter 3 predicts the genetic
differentiation between bee pollen loads from individual simulations of foraging paths.

Since the work of Wikle (2003), hierarchical Bayesian models have become increasingly
popular in dispersal ecology, as they allow the direct estimation of multiple parameters
in a multi-layered model combining different sources of data. In Chapter 4, I studied the
application of this type of model to infer the spread of an invasive weed from pollen data. For
models describing dynamic space-time processes, an alternative to the hierarchical Bayesian
approach is to use data assimilation methods such as the Kalman filter (Cressie and Wikle
2002). Although commonly used in hydrology and atmospheric science, data assimilation
techniques are still rarely applied to ecological problems.

'For example, the American National Allergy Bureau has 85 stations in the contiguous United States, an
area over 14 times the size of metropolitan France.
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Appendix A

Equations and source code
implementing the limited dilution
assay model

This appendix derives the equations and presents the Fortran and R code used to perform
calculations under the limited dilution assay model presented in Chapter 2.

A.1 Derivation of the corrected score function

First I re-introduce the score function for a limited dilution assay (2.4):

[ K ~ Ra—kq | dpa
U<¢)‘;[pd<¢> = pa(@)] do” (A1)

where d is the number of dilution levels, R, is the number of replicates (i.e. PCR tubes) at
level d, ky is the number of positives recorded out of R, replicates, and py is the probability
of getting a positive result at level d. This probability of success is a function of ¢, the
(unknown) frequency of pollen bearing the marker of interest.

Since the root of this function will be a biased estimate of ¢, I will use the bias-corrected
score function, U*:

R S R | B
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Evaluating U* requires the first two derivatives of U:

ko Ra—ka \ &pa [ ka Ri—ks \ (dpa)’
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Since both derivatives are linear functions of the observed values k,, their expectations
can be calculated simply by replacing kg with E(k;) = pa(¢)Ra:

(A.4)
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and
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The final term needed is the derivative of (A.5):
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Substituting (A.5) to (A.7) into (A.2), I obtain a succinct expression for the bias correc-
tion to U:
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When p, is a strictly increasing, concave function of ¢, the correction term in (A.8) is
negative, which is consistent with the finding that the uncorrected score function would
produce an overestimate of ¢ (see Fig. 2.1).

As discussed in Chapter 2, py(¢) takes the following form when the number of pollen
grains per sample (Ny) follows a Poisson distribution with mean \;:

Nmax )\deef)\d Ng Nd N
nio)= > MLEE S (T)er - e V). (A9
Ng=0 A —
Its first two derivatives, which enter the calculation of the corrected score function, are:
N,
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If the number of pollen grains in each reaction, Ny, is exactly known, then the previous
three equations are simply modified by removing the first sum and the Poisson probability
term.

(A.11)

A.2 Calculation of dilution assay properties in Fortran

I have appended below the Fortran 90 program I wrote to calculate the distribution of ¢?,
depending on the true value of ¢ and the dilution assay design (R; and Ny or A4 for each of
the d levels).

I decided to use Brent’s algorithm from Press et al. (1996) to find the root of the corrected
score function, instead of the Newton-Raphson method. While the latter converges at a faster
rate in some cases, it requires evaluating the function’s derivative, which in this case adds
a significant computational cost: the correction term for the derivative of U* has six sum
terms compared with the two sums in (A.8). When testing both algorithms, I found Brent’s
method to produce faster results.

Even with a stable root finding function, a problem can occur at values of ¢ close to 1,
when the derivative of py approaches zero. Machine roundoff errors can result in the wrong
sign determination for the derivative of pg, and thus for the score function (A.1) itself.
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Since under the assumptions of my model, p; is a strictly increasing function of ¢, I
decided to set a very small positive number as the lower bound for its derivative. Because
this lower bound is arbitrary, I do not apply the bias correction in this case; the result is
that some outcomes with ¢ very close to 1 will be classified as non-informative (though no
more than would be if I did not include a bias correction at all). Classifying an outcome as
non-informative is still preferrable to obtaining a nonsense estimate due to a roundoff sign
error.

MODULE mod_pollen
USE nrtype ! Module from Numerical Recipes
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: FILENUM = 99
INTEGER(I4B), PARAMETER :: NMAX = 200 ! Max value for either np or n_rep in PROGRAM pollenPCR
INTEGER(I4B), PARAMETER :: NDMAX = 20 ! Max value for nd in PROGRAM pollenPCR
INTEGER(I4B), PARAMETER :: NSAMP = 100 ! How many samples from parameter estimate distribution
REAL(DP), PARAMETER :: LOW = 0.001_dp, HIGH = 0.999_dp ! phi_est must be between LOW and HIGH
REAL(DP), PARAMETER :: EPS = 1.0D-6 ! Absolute accuracy required for root finding function
REAL(DP), PARAMETER :: ALPHA = 1.0D-3 ! Outcomes with probability < alpha / #outcomes are ignored
LOGICAL, PARAMETER :: POISSON = .false. ! If true, np follows a Poisson distr.; if false, np is constant
LOGICAL, PARAMETER :: TWO_STEP = .true. ! Two-step or one-step design
REAL(DP), DIMENSION(O:NMAX, O:NMAX) :: bin_coef ! Array to pre-compute binomial coefficients (n k)
REAL(DP), DIMENSION(O:NMAX, O:NMAX/2) :: pois_dist ! Array to pre-compute Poisson distribution P(k,lambda)
REAL(DP), DIMENSION(O:NMAX, O:NMAX) :: p_pos, p_pos_e
! p_pos(m,n) [P(+Im,N_d) in text] is the probability of a positive PCR
! when m grains out of n have the marker
! p_pos_e is the estimate of p_pos (for inference)
INTEGER(I4B) :: nd ! [D in text] Number of dilution levels
INTEGER(I4B), DIMENSION(1:NDMAX) :: n_rep, mean_np, n_pos
! [Respectively R_d, N_d and k_d in text] Number of replicates, number of grains per replicate
! and number of positive amplifications by dilution level
LOGICAL :: is_inferring ! if is_inferring, parameter estimates are used instead of true values

REAL(DP):: phi_min ! Min possible value for "real" phi (i.e. limit of detection)

REAL(DP) :: fpos_t, freac_t, fdeg_t, rinh_t, ninh_t ! True parameters of error model

REAL(DP) :: fpos_e, freac_e, fdeg_e, rinh_e, ninh_e ! Estimated parameters of error model
END MODULE mod_pollen

PROGRAM pollenPCR

USE nrtype; USE mod_pollen

IMPLICIT NONE

INTERFACE
SUBROUTINE pol2s_sim(phi,avg_phi,var_phi,p_info)
USE nrtype; USE nr; USE mod_pollen
IMPLICIT NONE
REAL(DP), INTENT(IN) :: phi
REAL(DP), INTENT(OUT) :: avg_phi, var_phi, p_info
END SUBROUTINE pol2s_sim

SUBROUTINE array_init

USE nrtype; USE mod_pollen

IMPLICIT NONE

END SUBROUTINE array_init
END INTERFACE

INTEGER(I4B) :: i
REAL(DP) :: phi, avg, var, pinf
REAL(DP), DIMENSION(1:NSAMP) :: fp_val, fr_val, fd_val, r_val, n_val

! Input error parameters form file

open(unit=FILENUM, file=’err_param.txt’, action=’read’)
do i = 1,NSAMP
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read (FILENUM,*) fp_val(i), fr_val(i), fd_val(i), r_val(i), n_val(i)
end do
close (FILENUM)

open(unit=FILENUM, file=’pollenPCR.csv’, action=’write’)

! Initialize phi, two-step assay parameters and true error parameters
phi = 0.02

nd = 6

n_rep(l:nd) = 2

n_rep(nd+1) 38

fpos_t = 0.05
freac_t = 0.1

fdeg_t = 0.2
rinh_ t = 1.0
ninh_t = 40

! Pre-compute bin_coef, pois_dist and p_pos tables
call array_init

do i = 1, NSAMP
fpos_e = fp_val(i)
freac_e = fr_val(i)
fdeg_e = fd_val(i)
rinh_e = r_val(i)
ninh_e = n_val(i)
phi_min = 1.0_dp / (0.6_dp*real(ninh_e, DP))
call array_init
call pol2s_sim(phi,avg,var,pinf)
write (FILENUM, *) real(fpos_e,SP), real(freac_e,SP), real(fdeg_e,sp), &
real(rinh_e,SP), real(ninh_e,SP), real(avg,SP), real(var,SP), real(pinf,SP)

end do
close (FILENUM)

END PROGRAM pollenPCR

SUBROUTINE pol2s_sim(phi,avg_phi,var_phi,p_info)
USE nrtype; USE nr; USE mod_pollen ! Module nr includes zbrent function from Numerical Recipes
IMPLICIT NONE
INTERFACE
FUNCTION func(x)
USE nrtype; USE mod_pollen
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x
REAL(DP) :: func
END FUNCTION func

SUBROUTINE calc_p(phi,lambda,p,d_p,d2_p)
USE nrtype; USE mod_pollen
IMPLICIT NONE
REAL(DP), INTENT(IN) :: phi
INTEGER(I4B), INTENT(IN) :: lambda
REAL(DP), INTENT(OUT) :: p, d_p, d2_p
END SUBROUTINE calc_p

END INTERFACE

REAL(DP), INTENT(IN) :: phi

REAL(DP), INTENT(OUT) :: avg_phi, var_phi, p_info

INTEGER(I4B) :: d, i, n_outcomes

LOGICAL :: done

REAL(DP) :: phi_est, p_outcome, p_stepl, a ! a is geometric progression factor
REAL(DP) :: dip, d2p, dl_left, dl_right

REAL(DP), DIMENSION(1:NDMAX) :: p_succ
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Calculates the max. likelihood estimate of phi (the marker frequency),
its variance and the probability of an informative assay
for a two-step dilution PCR experiment:
Step 1 - logarithmic progression with nd levels for mean_np(d),
n_rep(d) is the number of replicates at level d
Step 2 - all replicates at same level, chosen from result of step 1
(only if TWO_STEP = TRUE)

! Dilution levels follow a geometric progression (mean_np goes from 1 to 1/phi_min)
a = (1.0_dp / phi_min)**(1.0_dp / (nd - 1))
dod=1, nd
mean_np(d) = nint(a**(d-1))
end do

n_pos(l:nd) = 0
n_outcomes = product(n_rep(1:nd) + 1) ! Number of possible Step 1 outcomes

avg_phi = 0.0_dp
var_phi 0.0_dp
p_info = 0.0_dp

! Calculate probability of individual PCR success for given value of phi at each dilution level
! (d1p and d2p are placeholders)
is_inferring = .false.
dod=1, nd
call calc_p(phi, mean_np(d), p_succ(d), dip, d2p)
end do
is_inferring = .true.

! Loop over Step 1 outcomes
done = .false.
do while (.not. done)

p_outcome = 1.0_dp

dod=1, nd
! Deal with p(+) = 0 and 1 separately (to avoid 0°0 errors)

if ( p_succ(d) == 0.0_dp .and. n_pos(d) == 0 .or. &
p_succ(d) == 1.0_dp .and. n_pos(d) == n_rep(d) ) cycle

if ( p_succ(d) == 0.0_dp .and. n_pos(d) > 0 .or. &
p_succ(d) == 1.0_dp .and. n_pos(d) < n_rep(d) ) then
p_outcome = 0.0_dp
exit

end if

p_outcome = p_outcome * bin_coef(n_rep(d), n_pos(d)) * p_succ(d)**n_pos(d) &
* (1.0_dp - p_succ(d))**(n_rep(d) - n_pos(d))
end do

! Calculate the estimate of phi if this outcome passes the min. probability threshold
if ( p_outcome > ALPHA / n_outcomes ) then
! If the score function (log-likelihood derivative) is positive for at phi = LOW
! and negative at phi = HIGH, then there is a root between LOW and HIGH, find it
dl_left = func(LOW)
dl_right = func(HIGH)
if (dl_left < 0) then
phi_est = 0.0_dp
else if (dl_right > 0) then
phi_est = 1.0_dp
else
phi_est = zbrent(func, LOW, HIGH, EPS)

if (TWO_STEP) then
! Step 2 design (add a new dilution level)
p_stepl = p_outcome
nd = nd + 1
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mean_np(nd) = nint(1.0_dp / max(phi_est, phi_min))

is_inferring = .false.
call calc_p(phi, mean_np(nd), p_succ(nd), dip, d2p)
is_inferring = .true.

! Cycle through Step 2 outcomes, find phi_est as above
do i = 0, n_rep(nd)
n_pos(nd) = i
if ( p_succ(d) == 0.0_dp .and. n_pos(d) > O .or. &
p_succ(d) == 1.0_dp .and. n_pos(d) < n_rep(d) ) cycle
if ( p_succ(d) > 0.0_dp .and. p_succ(d) < 1.0_dp ) then
p_outcome = p_stepl * bin_coef(n_rep(nd), n_pos(nd)) &
* p_succ(nd)**n_pos(nd) * (1.0_dp - p_succ(nd))**(n_rep(nd) - n_pos(nd))
end if
dl_left = func(LOW)
dl_right = func(HIGH)
if (dl_left < 0) then
phi_est = 0.0_dp
else if (dl_right > 0) then
phi_est = 1.0_dp
else
phi_est = zbrent(func, LOW, HIGH, EPS)
! Update global stats
p_info = p_info + p_outcome
avg_phi = avg_phi + p_outcome * phi_est
var_phi = var_phi + p_outcome * phi_est**2
end if
end do
nd = nd - 1
end if

end if
end if

! Cycle to next Step 1 outcome (test every combination of n_pos(d) for the nd dilution levels)
d=1
do while ( d < nd .and. n_pos(d) == n_rep(d) )
n_pos(d) = 0
d=d+1
end do
if ( n_pos(d) == n_rep(d) ) then
done = .true.
else
n_pos(d) = n_pos(d) + 1
end if

end do

! Calculate average and variance
avg_phi = avg_phi / p_info
var_phi = var_phi / p_info - avg_phi**2

END SUBROUTINE pol2s_sim

FUNCTION func(x)

USE nrtype; USE mod_pollen

IMPLICIT NONE

INTERFACE
SUBROUTINE calc_p(phi,lambda,p,d_p,d2_p)
USE nrtype; USE mod_pollen
IMPLICIT NONE
REAL(DP), INTENT(IN) :: phi
INTEGER(I4B), INTENT(IN) :: lambda
REAL(DP), INTENT(OUT) :: p, d_p, d2_p
END SUBROUTINE calc_p
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END INTERFACE

REAL(DP), INTENT(IN) :: x

REAL(DP) :: func

REAL(DP), PARAMETER :: TINY = 1.0D-12
INTEGER(I4B) :: d

REAL(DP) :: pval, pderiv, p2deriv
REAL(DP) :: f_mult

REAL(DP) :: suml, sum2, cmult

! Given a marker frequency (here x) and the observed data ( n_pos(i,..,nd) ),
! this subroutine returns the bias-corrected score function (return value func)

! for use in the Numerical Recipes zbrent function.

! Uses calc_p to calculate the prob. of success of a single reaction (and its derivatives)

func = 0.0_dp
suml = 0.0_dp
sum2 = 0.0_dp

dod=1, nd
call calc_p(x, mean_np(d), pval, pderiv, p2deriv)
! Keep pval at least TINY away from O or 1 to prevent division by zero
if (pval < TINY) pval = TINY
if (pval > 1.0_dp - TINY) pval = 1.0_dp - TINY
! Keep pderiv > TINY to avoid sign-changing roundoff error
if (pderiv < TINY) pderiv = TINY

f_mult = real(n_pos(d),DP)/pval - real(n_rep(d) - n_pos(d), DP)/(1.0_dp - pval)
func = func + pderiv * f_mult

! Quantities used to calculate bias correction
if (pderiv > TINY) then
cmult = real(n_rep(d),DP) / (pval * (1.0_dp - pval))
suml = suml + cmult * pderiv * p2deriv
sum2 = sum2 + cmult * pderiv*2
end if
end do

! Apply bias correction
if (pderiv > TINY) then

func = func + suml / (2.0_dp * sum2)
end if

END FUNCTION func

SUBROUTINE calc_p(phi,lambda,p,d_p,d2_p)
USE nrtype; USE mod_pollen
IMPLICIT NONE
REAL(DP), INTENT(IN) :: phi
INTEGER(I4B), INTENT(IN) :: lambda
REAL(DP), INTENT(OUT) :: p, d_p, d2_p
INTEGER(I4B) :: k, np
REAL(DP) :: pval, pderiv, p2deriv
REAL(DP) :: partial_p, p_bin, dp_bin, d2p_bin, dp_mult, d2p_mult

! Calculate the probability of success p(phi) as well as its first two derivatives (d_p, d2_p)
pval = 0.0_dp

pderiv = 0.0_dp

p2deriv = 0.0_dp

if (POISSON) then

do np = 0, min(2*lambda+3, NMAX)
p_bin = 0.0_dp
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dp_bin = 0.0_dp
d2p_bin = 0.0_dp
do k = 0, np
if (is_inferring) then
partial_p = bin_coef(np,k) * phix*k * (1.0_dp - phi)**(np - k) * p_pos_e(k,np)

else
partial_p = bin_coef(np,k) * phi*xk * (1.0_dp - phi)**(np - k) * p_pos(k,np)
end if
dp_mult = real(k,DP)/phi - real(np - k, DP)/(1.0_dp - phi)
d2p_mult = - real(k,DP)/phi**2 - real(np - k, DP)/(1.0_dp - phi)**2

p_bin = p_bin + partial_p
dp_bin = dp_bin + partial_p * dp_mult
d2p_bin = d2p_bin + partial_p * ( dp_mult**2 + d2p_mult )
end do
pval = pval + pois_dist(np,lambda) * p_bin
pderiv = pderiv + pois_dist(np,lambda) * dp_bin
p2deriv = p2deriv + pois_dist(np,lambda) * d2p_bin
end do

else

np = lambda
do k = 0, np
if (is_inferring) then
partial_p = bin_coef(np,k) * phi**k * (1.0_dp - phi)*x(np - k) * p_pos_e(k,np)

else
partial_p = bin_coef(np,k) * phi**k * (1.0_dp - phi)**(np - k) * p_pos(k,np)
end if
dp_mult = real(k,DP)/phi - real(np - k, DP)/(1.0_dp - phi)
d2p_mult = - real(k,DP)/phi**2 - real(np - k, DP)/(1.0_dp - phi)=**2

pval = pval + partial_p

pderiv = pderiv + partial_p * dp_mult

p2deriv = p2deriv + partial_p * ( dp_mult**2 + d2p_mult )
end do

end if

p = pval
d_p = pderiv
d2_p = p2deriv

END SUBROUTINE calc_p

SUBROUTINE array_init
USE nrtype; USE mod_pollen
IMPLICIT NONE
INTEGER(I4B) :: k, m, n, kmax, lambda

! Compute and store all binomial coefficients (n k) with n and k up to NMAX
bin_coef(0,0) = 1
bin_coef (1,0) 1
bin_coef(1,1) =1

do n = 2, NMAX
if (mod(n,2) == 0) then

kmax = n/2
else

kmax = (n-1)/2
end if
bin_coef(n,0) = 1
bin_coef(n,n) =1

do k = 1, kmax
bin_coef(n,k) =
bin_coef (n,n-k)
end do

bin_coef(n-1,k-1) + bin_coef(n-1,k)
= bin_coef (n,k)

111



end do

! If needed, compute and store the Poisson probabilities (k;lambda) up to lambda = NMAX/2
if (POISSON) then
do lambda = 1, NMAX/2
pois_dist(0,lambda) = exp(-REAL(lambda,DP))
do k = 1, NMAX
pois_dist(k,lambda) = pois_dist(k-1,lambda) * REAL(lambda,DP) / REAL(k,DP)
end do
end do
end if

! Set the probability of a positive PCR result, given n total grains of which m have the marker
! p_pos is the true value, p_pos_e is the estimated value for inference
do n = 0, NMAX

dom=0,n

if (m == 0) then
p_pos(m,n) = fpos_t
p_pos_e(m,n) = fpos_e
else
p_pos(m,n) = (1.0_dp - freac_t) * (1.0_dp - fdeg_t**m) &
/ (1.0_dp + exp(rinh_t*(n-ninh_t)))
p_pos_e(m,n) = (1.0_dp - freac_e) * (1.0_dp - fdeg_t**m) &
/ (1.0_dp + exp(rinh_e*(n-ninh_e)))
end if

end do
end do

END SUBROUTINE array_init

A.3 Error parameter estimation in R

To determine how the uncertainty about PCR false negative parameters (faeg, freac, Tink
and Nj,ns0) affects the inference of ¢ in Chapter 2, I assumed these error parameters were
estimated by a calibration assay performed on samples with ¢ = 1. Given true values of
the error parameters, the R scripts below generate samples of parameter estimates from
the calibration assay; these samples are then taken as input in the Fortran program above.
I used R for this part of the program to take advantage of its built-in functions for joint
parameter estimation, as well as the drc package (Ritz and Streibig 2005) for estimation of
dose-response curves.

### R Script 1 ###
# Finds max. likelihood estimate of error parameters f_reac and f_deg
# using limited dilution assays with all-positive samples

# Min. anx max. parameter values (avoid errors at O and 1)
low <- 0.001
high <- 0.999

# Assay parameters: r(d) replicates with n(d) grains each at dilution level d
nsamp <- 100

n <- c(1,2,4,8)

r <- ¢(30,10,6,4)
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=1 - f_reac
f_deg

a_t <- 0.8 # a
b_t <- 0.5 # b
sim_res <- function(r, n) {

rbinom( nsamp, r, a_t * (1 - b_t"n) )
}

n_pos <- mapply(sim_res, r, n)

get_est <- function(x) {
k <- x

fbin <- function(x) {

a <- x[1]

b <- x[2]

p<-ax (1-">bn)

-sum(k * log(p) + (r - k) * log(l - p))
}

res <- optim(c(0.5,0.5), fbin, method = "L-BFGS-B", lower = rep(low,2), upper
res$par

}

par_est <- apply(n_pos, 1, get_est)

# Output (f_reac,f_deg) samples

outfile <- "err_param.txt"
samples <- cbind(1 - par_est[1,],par_est[2,])
write.table(samples,row.names=F,col.names=F,file=outfile)

### R Script 2 ###

# Finds max. likelihood estimate of error parameters r_inh and N_inh50
# using limited dilution assays with all-positive samples

# Load dose-response curve package
library(drc)

# Assay parameters: r(d) replicates with n(d) grains each at dilution level d
nsamp <- 100

nl <- c(5,15,25,35,45,55,65,75,85,95)

rl <- rep(3,10)

r2 <- rep(5,7)

r12 <- c(r1,r2)

n_inh <- 40
r_inh <- 1.0
a<-1.0

sim_res <- function(r, n) {

rbinom( nsamp, r, a/(l+exp(r_inh*(n-n_inh))) )
}

n_pos <- mapply(sim_res, ril, nil)

nsamp <- 1

get_est <- function(x) {

# Get step 1 estimate of n_inh

lreg <- drm(x/r1”nl, weights=rl, type="binomial", logDose=exp(1l),
fct=LL2.3(fixed=c(NA,a,NA), names=c("r_e","a_e","n_e")) )

n_est <- round(coef (lreg) [2])

# Draw step 2 outcome

n2 <- c(n_est-4, n_est-2, n_est-1, n_est, n_est+1l, n_est+2, n_est+4)
n_pos2 <- mapply(sim_res, r2, n2)

# Combine results of both steps for estimation

n12 <- c(n1,n2)

n_posl2 <- c(x, n_pos2)
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lreg <- drm(n_pos12/r127n12, weights=r12, type="binomial", logDose=exp(1),
fct=LL2.3(fixed=c(NA,a,NA), names=c("r_e","a_e","n_e")) )

coef (1reg)

}

par_est <- apply(n_pos, 1, get_est)

outfile <- "err_param.txt"

inh_vals <- cbind(par_est[1,],par_est[2,])
write.table(inh_vals,row.names=F,col.names=F,file=outfile)
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Appendix B

Equation derivations and source code
for the bee foraging model

B.1 Calculation of Fs; from C(s) under a random walk

Here I derive an analytical expression for the expected genetic differentiation (Fgr) between
bee pollen loads collected under the most simple scenario from Chapter 3:

e cach bee begins foraging at a random position within a continuous field of plants and
performs a random walk with ng steps of RMS (root mean square) length I;

e the marker of interest is present at an average frequency ¢ and follows a spatial corre-
lation function C'(s) (see eq. 3.1); and

e the marker frequency in the pollen load is equal to the fraction of marked plants among
those visited.

If x; is the position of the plant visited at step ¢, the last assumption can be expressed

as:

p= L3 1), (B.1)

Ng 4
=1
Inserting this expression in the definition of Fsr, I get:
PP g i Bl ()] - ¢
p(1-p) o(1—¢)
Note that p = ¢ follows from the first assumption above, which results in all plants having
the same chance of being visited. The last equation is equivalent to:

Fer (B.2)

ns Ns

L NS [E[I(z)I(x)] — 9?1
FST_W;Z{ o1 0) }—n—SQZZ% o

i=1 j=1
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where Cj; is the correlation in marker presence between plants 7 and j on the bee’s path.
Noting that C;; = 1 and C;; = C};, I re-express (B.3) as:

ns—1 ng

Z >y (B.4)

=1 j=i1+1

For =

Since I assume knowledge of C'(s), the correlation in marker presence between two points
separated by a distance s, I can calculate C;; by taking the expected value of C(s) over the
distribution of S;;, the distance between the i*" and ;™ plants visited:

Cij = /OO C(S) Pr (SU = S)dS. (B5)

In the case of a simple random walk, displacements in x and y are normally distributed
at each step: AX ~ N(O, %ZSQ) and AY ~ N(O, %ZSQ). As a result, the displacement in each
direction between steps i and j (with j > ) is distributed as N (0, 3(j — i){,”), which means
that S;; follows a Rayleigh distribution:

2s s
Pr (S =s) = m exp (—m) : (B.6)

Combining egs. (B.4) to (B.6), I obtain:

ns—1 nsg 2
Fgr = TAe exp (—8—) ds, (B.7)

i=1 j=i+1

which by setting k = j — ¢ simplifies to:

52 Z / (S)% exp (— kiQ) ds. (B.8)

I append below the results of integrating eq. (B.8) for several forms of C(s) that will be
used in Chapter 3.

Fer =
Ng

Exponential correlation:

C(s) = exp <—§>

. vkl Kl L ot Vil
— ex — er
2a P 42 2a
ntegrals were calculated using the Wolfram Mathematica online integrator (integrals.wolfram.com). In
all equations, erf(x) refers to the Gaussian error function.

1 2
Fop = — + QZ(HS—/{:)

N N
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Linear correlation:

1—2 ifs<2
C(s):{ o if s < 2aq,

0 if s > 2a.
ns—1
1 2 5 vkl 2a
Fop = — s—k)|1— f
ST N, + n52 ;(n ) [ 4a er <\/Els>]

Quadratic correlation:

C(s) = as® +bs+c %fsgso,
0 if s > sq.

FST:n%*nizf(”s‘k) [H(l_exp( kzj» ok Fl erf(fo )]

k=1

B.2 Derivation of equation 3.9

In this section, I derive an expression for Fsr in a fragmented landscape model with ng
fields, where field ix is filled with marked plants (¢ = 1) and all other fields are filled with
unmarked plants (¢ = 0). Field-to-field movement is modelled as a Markov process: the
probability of a bee starting to forage in field j is s;, while the probability of moving to field
J after visiting a plant in field ¢ is 7; ;. As previously, I assume that the marker frequency
in a bee pollen load, p, corresponds to the fraction of plants visited that bear the marker of
interest.

First, I express Fgr in terms of correlations between successive steps on the bee’s path
(see egs. B.3 and B.4 above):

ng—2 ns—1

Z Z )]_732, (B.9)

k=0 l=k+1

For =

S

where P can be calculated from eq. (3.8). Note that the first plant visited is indexed by 0
(instead of 1) here, to match the notation for Markov chains.

Since I(x) is an indicator function, the product I(z;)I(x;) is equal to 1 if both the k"
and [*" plants have the marker and 0 otherwise. Therefore, its expected value corresponds
to the probability that both plants are located in field ix:

E[I(zy)I(x;)] = Pr (ix at step k AND ix at step 1), (B.10)
or using conditional probabilities:

E[I(2x)I(x;)] = Pr (ix at step k) Pr (ix at step [ | ix at step k). (B.11)
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Both terms in eq. (B.11) can be calculated from the vector of initial probabilities s and

the powers of the transition matrix 7"
f
E[I(z) I (z)] = (D s;(T") e | (T F)inin

Inserting this result into (B.9) completes the derivation:

1 ns—2 ns—1

FST = n_5+ Z Z Zsj Tk)]z*(Tl k)z* %

k=0 I=k+1 Lj=1

B.3 Bee foraging simulations in Fortran

(B.12)

—p?|. (B.13)

In this section, I present the Fortran 90 source code used to generate the simulation results
of Chapter 3. There are three different programs appended below, but they all share the
following subroutines for producing the steps of correlated or uncorrelated random walks.

SUBROUTINE ucw_step(dx,dy)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(OUT) :: dx, dy
REAL(DP) :: u, v, s

! Generate a step (dx,dy) of random direction and unit average length
! uses the polar version of the Box-Muller transformation
! (R"2 = dx"2 + dy~2 is distributed khi~2(0.5)/2)

do
call random_number (u)
call random_number (v)
u=2.0_dp *xu-1.0_dp
v =2.0_dp *x v - 1.0_dp
S = Wwk*2 + vk*x2
if (s > 0.0_dp .and. s < 1.0_dp) exit

end do

s = sqrt(-log(s)/s)

dx = u * s

dy = v * s

END SUBROUTINE ucw_step

SUBROUTINE crw_step(rho,dl,dtheta)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: rho
REAL(DP), INTENT(QUT) :: dl, dtheta
REAL(DP) :: u, v

! Generates a step (length dl, turning angle dtheta) of a

! correlated random walk, with d1°2 ~ khi~2(2)/2 (average of 1)
! and rho is the parameter of the wrapped Cauchy distribution

!
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call random_number (u)

call random_number (v)

dl = sqrt(-log(u))

dtheta = 2.0_dp * atan( (1.0_dp-rho)/(1.0_dp+rho) * tan(PI_D*(v - 0.5_dp)) )

END SUBROUTINE crw_step

The first program (below) implements the kriging-based model, where bees forage in a
continuous field characterized by a spatial genetic correlation function. To solve the matrix
equations and obtain the kriging weights, I used the Cholesky decomposition algorithm from
Press et al. (1996).

PROGRAM bee_krig
USE nrtype
IMPLICIT NONE

INTEGER(I4B), PARAMETER :: FILENUM = 99

INTEGER(I4B), PARAMETER :: NSIM = 10000 ! Number of simulated flights
INTEGER(I4B), PARAMETER :: NMAX = 100 ! Max value for ns (steps per flight)
LOGICAL, PARAMETER :: CRW = .false. ! Is the random walk correlated?

INTEGER(I4B) :: ns, fj ! ns: number of steps in random walk, fj: jump frequency
INTEGER(I4B) :: i, j
REAL(DP) :: rnd, pr, fst, mean
REAL(DP) :: p, 1ls, 1j ! Average marker frequency (p); step length (1s) and jump length (1j) in random walk
REAL(DP) :: a ! Length parameter in correlation function
INTEGER(I4B), DIMENSION(1:NMAX) :: m ! Marker presence(l) or absence(0) at each sampling point
REAL(DP), DIMENSION(1:NMAX) :: x, y, theta ! Coords. and incoming angle of each point in random walk
REAL(DP), DIMENSION(1:NMAX, 1:NMAX) :: cor_m ! Correlation matrix between points (i,j) (upper triangular)
REAL(DP), DIMENSION(1:NMAX, 1:NMAX) :: weights ! Matrix of kriging weights:
! the column weights(:,j) is the vector of weights at step j
REAL(DP), DIMENSION(1:NSIM) :: p_sim ! Frequency of maker in each simulated load

! Calculates the frequency distribution of a genetic marker in bee pollen loads

! taken from a spatially correlated plant population.

! p is the average frequency of the marker, and the spatial correlation function is

! included in the subroutine calc_weights.

! Bee flights (number of points and distances between them) are modelled in subroutine sim_flight.

ns = 40

£fj = 10 ! Jump frequency
1s = 1.0_dp

1j = 1.0_dp ! Jump length
p = 0.25_dp

cor_m = 0.0_dp

a = 1.0_dp

call random_seed
open(unit=FILENUM, file=’beesim.csv’, action=’write’)

do i = 1, NSIM

call sim_flight ! Obtain correlation matrix
call calc_weights ! Compute kriging weight matrix
! First plant is (+) with probability p

call random_number (rnd)

if (rnd < p) then

m(1) =1
else

m(l) =0
end if
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do j =1, ns-1
! Calculate probability of (+) by kriging
pr = sum(weights(1:j,j)*real(m(1:3j),DP)) + (1.0_dp - sum(weights(1:j,j)))*p
call random_number (rnd)
if (rnd < pr) then
m(j+1) =
else
m(j+1) =
end if
end do

p_sim(i) = sum(m(1l:ns))/real(ns,DP)
write (FILENUM,*) p_sim(i)

end do

mean = sum(p_sim(1:NSIM))/NSIM

fst = (sum(p_sim(1:NSIM)#**2)/NSIM - mean**2) / (mean*(1.0_dp - mean))
write(*,*) fst

close (FILENUM)

CONTAINS

SUBROUTINE sim_flight

USE nrtype

IMPLICIT NONE

INTERFACE
FUNCTION corr(d)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: d
REAL(DP) :: corr
END FUNCTION corr

SUBROUTINE ucw_step(dx,dy)

USE nrtype

IMPLICIT NONE

REAL(DP), INTENT(OUT) :: dx, dy
END SUBROUTINE ucw_step

SUBROUTINE crw_step(rho,dl,dtheta)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: rho
REAL(DP), INTENT(OUT) :: dl, dtheta
END SUBROUTINE crw_step

END INTERFACE

INTEGER(I4B) :: i, j
REAL(DP) :: dx, dy, dl, dtheta, rho, rnd

x(1) = 0.0_dp
y(1) = 0.0_dp
theta(1) = 0.0_dp

rho = 0.7_dp
cor_m(1,1) = 1.0_dp

do j =2, ns

if (CRW) then
! Generate a correlated random walk step (unit average length)
call crw_step(rho,dl,dtheta)
theta(j) = theta(j-1) + dtheta
! Bring theta back in (-pi, pi) if necessary
if (abs(theta(j)) > PI_D) theta(j) = theta(j) - sign(TWOPI_D, theta(j))
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x(j) = x(j-1) + 1s * dl * cos(theta(j))
y(j) = y(G-1) + 1s * dl * sin(theta(j))
else
! Generate an uncorrelated random walk step (unit average length)
call ucw_step(dx,dy)
! Every fj steps, take a jump (1j)
call random_number (rnd)
if ( mod(j,fj) == 0 ) then
x(j) = x(j-1) + 1j = dx
y(§) = y(G-1) + 1j * dy
else
x(j) = x(j-1) + 1s * dx

y(3) = y(3-1) + 1s * dy
end if
end if
doi=1, j
cor_m(i,j) = corr(sqrt((x(i)-x(§))**2 + (y()-y(3))**2))
end do
end do

END SUBROUTINE sim_flight

FUNCTION corr(d)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: d
REAL(DP) :: corr

! Exponential correlation function
corr = exp(-d/a)

! Linear
! corr = max( 1.0_dp - d4/(2.0_dp*a), 0.0_dp )

END FUNCTION corr

SUBROUTINE calc_weights

USE nrtype; USE nr ! Module nr includes the Cholesky decomposition functions from Numerical Recipes
IMPLICIT NONE

INTEGER(I4B) :: j
REAL(DP), DIMENSION(1:NMAX) :: b, diag

! The vector of weights after j steps, w = weights(1:j,j) is the solution of
!' A ¥ w =D, where A = cor_m(1:j,1:j) and b(i) = cor_m(i,j+1).
! Since cor_m is symmetric, we can use Cholesky decomposition.

weights(1,1) = cor_m(1,2)
do j = 2, ns-1

b(1:3j) = cor_m(1:j,j+1)

call choldc(cor_m(1:j,1:j),diag(1:3))

call cholsl(cor_m(1:j,1:j),diag(1:3),b(1:j),weights(1:j,3))
end do

END SUBROUTINE calc_weights

END PROGRAM bee_krig

The next program implements the random patch model, where bees forage in continuous
field with rectangular patches of marked plants.
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PROGRAM bee_patch

USE nrtype

IMPLICIT NONE

INTERFACE
SUBROUTINE ucw_step(dx,dy)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(OUT) :: dx, dy
END SUBROUTINE ucw_step

SUBROUTINE crw_step(rho,dl,dtheta)

USE nrtype

IMPLICIT NONE

REAL(DP), INTENT(IN) :: rho

REAL(DP), INTENT(OUT) :: dl, dtheta

END SUBROUTINE crw_step
END INTERFACE
INTEGER(I4B), PARAMETER :: NMAX = 1000, NPAIRS = 100000, NSIM = 10000, NSMAX = 100
INTEGER(I4B), PARAMETER :: FILENUM = 99
LOGICAL, PARAMETER :: CRW = .true. ! True: correlated random walk, false: uncorrelated
LOGICAL, PARAMETER :: ALTERN = .true. ! Alternates patch orientation (horizontal/vertical) if true

INTEGER(I4B) :: i, j, k, np, ns, fj, total

! np: number of patches, ns: number of steps in random walk, fj: jump frequency
REAL(DP) :: mean, var, corr, fst
REAL(DP) :: fs, pxs, pys ! Field side (fs x fs), patch side (pxs x pys)
REAL(DP) :: x1, y1, x2, y2 ! Coords for random points
REAL(DP) :: 1s, 1j, rho ! Parameters for bee flights
REAL(DP) :: xb, yb, theta, xtry, ytry, theta_try, dx, dy, dl, dtheta ! Coords for bee flights
REAL(DP), DIMENSION(1:NMAX) :: xp, yp ! (x,y) Position for left-hand corner of each patch
REAL(DP), DIMENSION(1:NSIM) :: p_sim
INTEGER (I4B), DIMENSION(O:NSMAX) :: nm_hist ! Histogram of nm (number of marked plants visited)
REAL(DP), DIMENSION(18) :: dval = (/ 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, &

6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0 /)
! Values of d to calculate empirical correlation

ns = 40
fj = 10
1s = 1.0_dp
1j = 1.0_dp

do k = 0, ns
nm_hist(k) = 0
end do

! Global mean and variance for marker presence
mean = REAL(np,DP) * pxs * pys / fs**2
var = mean*(1.0_dp - mean)

! Set up random field

call random_seed

doi=1, np

if (ALTERN .and. mod(i,2) == 0) then ! switch rectangle orientation for even patches
pick_xy: do
call random_number (xp(i))
call random_number (yp(i))
xp(i) = xp(i) * (fs - pys)
yp(i) = yp(i) * (fs - pxs)
do j =1, i-1
if (overlap(i,j)) cycle pick_xy

end do
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exit pick_xy
end do pick_xy
else
pick_xy: do
call random_number (xp(i))
call random_number (yp(i))
xp(i) = xp(i) * (fs - pxs)
yp(i) = yp(i) * (fs - pys)
do j =1, i-1
if (overlap(i,j)) cycle pick_xy
end do
exit pick_xy
end do pick_xy
end if
end do

! For each distance in dval, calculate correlation from random NPAIRS
open(unit=FILENUM, file=’fieldcorr.csv’, action=’write’)
do i = 1, size(dval)
corr = 0.0_dp
do j = 1, NPAIRS
call random_number (x1)
call random_number (y1)
x1 = x1 * fs
yl =yl * fs
do
call random_number (theta)
theta = theta * 2.0_dp * PI
x2 = x1 + dval(i) * cos(theta)
y2 = y1 + dval(i) * sin(theta)
if ( x2 > 0.0 .and. x2 < fs &
.and. y2 > 0.0 .and. y2 < fs ) exit
end do
corr = corr + value(xl,yl) * value(x2,y2)
end do
corr = (corr/real (NPAIRS,DP) - mean**2)/var
write (FILENUM,*) dval(i), corr
end do
close (FILENUM)

! Simulate NSIM bee flights in field
do i = 1, NSIM

call random_number (xb)

call random_number (yb)

call random_number (theta)

xb = xb * fs

yb = yb * fs

theta = theta * TWOPI_D - PI_D

total = value(xb,yb) ! Total tracks the # of marked plants visited
do j = 2, ns

if (CRW) then
call crw_step(rho, dl, dtheta)
theta_try = theta + dtheta
if (abs(theta_try) > PI_D) then ! Bring theta back in (-pi, pi) if necessary
theta_try = theta_try - sign(TWOPI_D, theta_try)
end if
xtry = xb + 1s * dl * cos(theta_try)
ytry = yb + 1s * dl * sin(theta_try)
! If CRW step goes outside field, try uncorrelated random walk
if ( xtry < 0.0 .or. xtry > fs &
.or. ytry < 0.0 .or. ytry > fs ) then
do
call ucw_step(dx, dy)
xtry = xb + 1s * dx
ytry = yb + 1s * dy
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if ( xtry > 0.0 .and. xtry < fs &
.and. ytry > 0.0 .and. ytry < fs ) exit
end do
end if
xb = xtry
yb = ytry
theta = theta_try
total = total + value(xb,yb)
else
do
call ucw_step(dx, dy)

! Every fj steps, take a jump (1j)
if (mod(j,fj) == 0) then
xtry = xb + dx * 1j
ytry = yb + dy * 1j
else
Xxtry
ytry
end if
if ( xtry > 0.0 .and. xtry < fs &
.and. ytry > 0.0 .and. ytry < fs ) exit
end do
xb = xtry
yb = ytry
total = total + value(xb,yb)
end if
end do
nm_hist(total) = nm_hist(total) + 1
p_sim(i) = REAL(total,DP) / ns
end do

xb + dx * 1s
yb + dy * 1s

! Output mean marker frequency and FST to screen, histogram of nm to file
mean = sum(p_sim(1:NSIM))/NSIM
fst = (sum(p_sim(1:NSIM)#**2)/NSIM - mean**2) / (mean*(1.0_dp - mean))
write(*,*) mean, fst
open(unit=FILENUM, file=’fieldsim.csv’, action=’write’)
do k = 0, ns
write (FILENUM,*) k, nm_hist (k)
end do
close (FILENUM)

CONTAINS

FUNCTION overlap(i,j)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: i, j
LOGICAL :: overlap

! Check if rectangles i and j overlap
! If ALTERN, even-numbered rectangles have pxs and pys switched

overlap = .TRUE.
if (ALTERN) then
if ( mod(i,2) == .and. mod(j,2) == 1 ) then
if ( xp(i) + pxs < xp(j) .or. xp(j) + pxs < xp(i) &
.or. yp(i) + pys < yp(j) .or. yp(j) + pys < yp(i) ) overlap = .FALSE.
else if ( mod(i,2) == .and. mod(j,2) == 1 ) then
if ¢ xp(i) + pys < xp(j) .or. xp(j) + pxs < xp(i) &
.or. yp(i) + pxs < yp(j) .or. yp(j) + pys < yp(i) ) overlap = .FALSE.
else if ( mod(i,2) == .and. mod(j,2) == 0 ) then
if ( xp(i) + pxs < xp(j) .or. xp(j) + pys < xp(i) &
.or. yp(i) + pys < yp(j) .or. yp(j) + pxs < yp(i) ) overlap

.FALSE.
else
if ( xp(i) + pys < xp(j) .or. xp(j) + pys < xp(i) &
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.or. yp(i) + pxs < yp(j) .or. yp(j) + pxs < yp(i) ) overlap = .FALSE.
end if
else
if ( xp(i) + pys < xp(j) .or. xp(j) + pys < xp(i) &
.or. yp(i) + pxs < yp(j) .or. yp(j) + pxs < yp(i) ) overlap = .FALSE.
end if

END FUNCTION overlap

FUNCTION value(xc,yc)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: xc, yc
INTEGER(I4B) :: value, i

! Returns the value (0 or 1) at point (xc,yc)
! If ALTERN, even-numbered rectangles have pxs and pys switched
value = 0
doi=1, np
if (ALTERN .and. mod(i,2) == 0) then
if ( xc > xp(i) .and. xc < xp(i) + pys &
.and. yc > yp(i) .and. yc < yp(i) + pxs ) then
value = 1
exit
end if
else
if ( xc > xp(i) .and. xc < xp(i) + pxs &
.and. yc > yp(i) .and. yc < yp(i) + pys ) then
value = 1
exit
end if
end if
end do

END FUNCTION value

END PROGRAM bee_patch

Finally, the program below is used to simulate bee foraging in the fragmented landscape
of section 3.4.2.

PROGRAM bee_landscape
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NFMAX = 10, NPMAX = 200, NSMAX = 500, NSIM = 10000
INTEGER(I4B), PARAMETER :: FILENUM = 99
LOGICAL, PARAMETER :: RAND_START = .true. ! Whether or not bees start at random point in field
! if .false., they start at the point closest to hive

INTEGER(I4B) :: nf, np, ns ! nf: # of fields, np: # of patches (field 2), ns: # of steps in walk
REAL(DP) :: x1, yl ! dimensions of landscape
REAL(DP) :: xh, yh ! (x,y) coordinates of the hive
REAL(DP) :: pxs, pys ! patch size
REAL(DP) :: p_sw ! probability to switch field within a foraging bout
REAL(DP) :: pmult ! Multiplier used to normalize probabilities of field switching
INTEGER(I4B), DIMENSION(1:NSIM) :: nm ! number of marked plants visited by each simulated bee
INTEGER(I4B), DIMENSION(O:NSMAX) :: freq_nm ! Frequency of paths with nm marked plants
REAL(DP), DIMENSION(1:NFMAX) :: phi_f ! marker frequency for each field
REAL(DP), DIMENSION(1:NFMAX) :: score, cumul_sc ! score of each field and cumulative score
REAL(DP), DIMENSION(1:NFMAX,1:5) :: xf, yf ! (x,y) coordinates of the 4 points in each field
! point 5 is a repeat of point 1 for geometric functions
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REAL(DP), DIMENSION(1:NPMAX) :: xp, yp ! (x,y) position for upper-left corner of each patch

INTEGER(I4B) :: i
REAL(DP) :: mean, var, fst, mean_m, var_m, fst_m
! ’_m’ statistics are calculated over mixed pollen loads only (i.e. excluding p=0 and p=1)

open(unit=FILENUM, file=’fieldsim_struct.csv’, action=’write’)

ns = 100

p_sw = 0.0_dp
call init_field
call sim_bees

! Qutput histogram of nm and statistics
mean = 0.0_dp
var = 0.0_dp
do i =1, ns-1
freq_nm(i) = count(om(:) == i)
mean = mean + freq_nm(i) * i
var = var + freq_nm(i) * i*x2

end do
freq_nm(0) = count(am(:) == 0)
freq_nm(ns) = count(am(:) == ns)

mean_m = mean / (sum(freq_nm(1l:ns-1)) * ns)
var_m = var / (sum(freq_nm(1l:ns-1)) * ns**2) - mean_m**2
fst_m = var_.m / (mean_m * (1.0_dp - mean_m))

mean = mean + freq_nm(ns) * ns

var = var + freq_nm(ns) * ns*2
mean = mean / (NSIM * ns)

var = var / (NSIM * ns**2) - meanx*2
fst = var / (mean * (1.0_dp - mean))

write(*,*) mean, fst
write(*,*) mean_m, fst_m
do i = 0, ns
write(FILENUM,*) i, freq_nm(i)
end do
close (FILENUM)

CONTAINS

FUNCTION dist(x1,y1,x2,y2)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x1, y1, x2, y2
REAL(DP) :: dist

! Distance between (x1,yl1) and (x2,y2)
dist = sqrt((x2-x1)**2 + (y2-y1)*x2)

END FUNCTION dist

FUNCTION in_field(x,y,1i)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x, y
INTEGER(I4B), INTENT(IN) :: i
LOGICAL :: in_field
INTEGER(I4B) :: j

! Checks if point (x,y) is in field i

in_field = .false.
do j =1, 4
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if ( ( ((yf(i,j) <=1y) .and. (y < yf(i,j+1))) &
cor. ((yf(i,j+1) <= y) .and. (y < y£(i,j))) ) &
cand. (x < xf(4,3) + (@G, j+0)-x£(1,j))*(y - y£(i,3))/(y£(i,j+1)-y£(i,3)) ) ) then
in_field = .not. in_field
end if
end do

END FUNCTION in_field

FUNCTION dist_to_field(x,y,i)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x, y
INTEGER(I4B), INTENT(IN) :: i
REAL(DP) :: dist_to_field
INTEGER(I4B) :: j
REAL(DP) :: t, d, xproj, yproj

! Calculates the shortest distance between (x,y) and field i
! (assuming the point is outside the field)

dist_to_field = xl*yl ! Initialize to some large value
! Calculate distance from point to each segment, keep smallest value
do j=1, 4
t = (x - xf@,7))*(xE3E,§+1) - x£(1,3)) + (y - yE(@, i) *(yEE, j+1) - yE(E,5)) &
/ C(x£(1,3+1) - x£(1,j))**2 + (y£(i,j+1) - y£(i,j))**2 )
if (t <= 0) then
d = dist(x,y,xf(i,j),yf(i,3))
else if (t >= 1) then
d = dist(x,y,xf(i,j+1),yf(i,j+1))
else
xproj = xf(i,j) + tx(xf(i,j+1) - x£(i,3))
yproj = yf(i,j) + tx(yf(i,j+1) - y£(i,3iN
d = dist(x,y,xproj,yproj)
end if
dist_to_field = min(dist_to_field, d)
end do

END FUNCTION dist_to_field

SUBROUTINE closest_point(x,y,i,xc,yc,theta)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x, y
INTEGER(I4B), INTENT(IN) :: i
REAL(DP), INTENT(OUT) :: xc, yc, theta
INTEGER(I4B) :: j
REAL(DP) :: t, d, dmin, xproj, yproj

! Finds the point (xc,yc) in field i that is closest to (x,y)
! assuming (x,y) is outside the field
! theta is the angle between (x,y) and (xc,yc)

dmin = x1*yl ! Initialize to some large value
! Finds the segment closest to (x,y), pick projection on that segment or one of the two ends
do j =1, 4
to= (x - x£(1,)xGE3E,j+1) - x£(1,3)) + (y - yE(,3))*(yE(L,j+1) - yE(i,5)) &
/ C(x£(4,j+1) - x£(4,j))**2 + (yf(i,j+1) - yf(i,j))**x2 )
if (t <= 0) then
xproj = xf(i,j)
yproj = yf(i,3j)
else if (t >= 1) then
xproj = xf(i,j+1)
yproj = yf(i,j+1)
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else
xproj = xf(i,j) + tx(xf(i,j+1) - x£f(i,3))
yproj = yf(i,j) + tx(yf(i,j+1) - y£f(i,j))
end if

d = dist(x,y,xproj,yproj)
if (d < dmin) then

dmin = d

XC = Xproj

yc = yproj
end if

end do
theta = atan2(yc - y, xc - x)

END SUBROUTINE closest_point

FUNCTION overlap(i,j)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: i, j
LOGICAL :: overlap

! Check if rectangles i and j overlap
if ( xp(i) + pxs < xp(j) .or. xp(j) + pxs < xp(i) &
.or. yp(i) + pys < yp(j) .or. yp(j) + pys < yp(i) ) then
overlap = .FALSE.
else
overlap = .TRUE.
end if

END FUNCTION overlap

FUNCTION value(xc,yc)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: xc, yc
INTEGER(I4B) :: value, i

! Returns the value (0 or 1) at point (xc,yc), for field 2 only

value = 0
doi=1, np
if ( xc > xp(i) .and. xc < xp(i) + pxs &
.and. yc > yp(i) .and. yc < yp(i) + pys ) then
value = 1
exit
end if
end do

END FUNCTION value

SUBROUTINE init_field
USE nrtype
IMPLICIT NONE
INTEGER(I4B) :: i, j
REAL(DP), DIMENSION(1:NFMAX) :: xc, yc ! centroid coords. for each field
REAL(DP), DIMENSION(1:NFMAX,1:NFMAX) :: trans, ctrans ! transition probability of moving
! from field i to field j, and cumulative probability

! Ramsay (2003) field setup

nf = 8
x1 =240 ; yl = 180
xh = 108 ; yh = 108

128



= (/ 103, 104, 112, 125, 103 /) ; yf(1,:) = (/ 78, 63, 63, 87, 78 /)

) )

xf(2,:) = (/ 160, 162, 168, 155, 160 /) ; yf(2,:) = (/ 87, 87, 102, 102, 87 /)
xf(3,:) = (/ 118, 133, 120, 111, 118 /) ; yf(3,:) = (/ 140, 153, 162, 155, 140 /)
xf(4,:) = (/ 89, 72, 77, 58, 59 /) ; yf(4,:) = (/ 101, 104, 136, 135, 101 /)
xf(5,:) = (/ 42, 63, 64, 44, 42 /) ; yf(5,:) = (/ 142, 139, 158, 158, 142 /)
x£(6,:) = (/ 7, 4, 24, 26, 7 /) ; yf(6,:) = (/ 117, 127, 133, 120, 117 /)
xf(7,:) = (/ 14, 31, 30, 14, 14 /) ; y£(7,:) = (/ 135, 138, 149, 144, 135 /)
xf(8,:) = (/ 1, 11, 9, 1, 1/); yf(8,:) = (/ 156, 158, 175, 176, 156 /)
phi_£(1:8) = (/ 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

! Place patches in field 2
np = 180
pxs = 0.25_dp
pys = 0.25_dp
call random_seed
do i =1, np
pick_xy: do
call random_number (xp(i))
call random_number (yp(i))
xp(i) = xp(i) * (13.0_dp - pxs) + 155.0_dp
yp(i) = yp(i) * (15.0_dp - pys) + 87.0_dp
if (.not. in_field(xp(i),yp(i),2)) cycle pick_xy
do j =1, i-1
if (overlap(i,j)) cycle pick_xy
end do
exit pick_xy
end do pick_xy
end do

! Score proportional to inverse distance from hive
score(1) = 1.0_dp / dist_to_field(xh,yh,1)
cumul_sc(1) = score(1)
do i = 2,nf
score(i) = 1.0_dp / dist_to_field(xh,yh,i)
cumul_sc(i) = cumul_sc(i-1) + score(i)
end do
score(1:nf) = score(1l:nf) / cumul_sc(nf)
cumul_sc(1l:nf) = cumul_sc(l:nf) / cumul_sc(nf)

! Transition probability between fields prop. to inverse dist. between centroids
! However, will be recomputed during simulations based on exact position of bee and closest point
do i =1, nf
trans(i,i) = 0.0_dp
xc(i) = sum(xf(i,1:4))/4
yc(i) = sum(yf(i,1:4))/4
do j =1, i-1
trans(i,j) = 1.0_dp / dist(xc(i),yc(i),xc(j),yc(j))
trans(j,i) = trans(i,j)
end do
end do

pmult = 1.0_dp / maxval( sum(trans(l:nf,1:nf), dim=2) )
trans(l:nf,1:nf) = trans(l:nf,1:nf) * pmult
do i =1, nf

ctrans(i,1) = trans(i,1)

do j = 2, nf

ctrans(i,j) = ctrans(i,j-1) + trans(i,j)

end do

end do

END SUBROUTINE init_field

SUBROUTINE sim_bees
USE nrtype
IMPLICIT NONE
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INTERFACE
SUBROUTINE ucw_step(dx,dy)

USE

nrtype

IMPLICIT NONE
REAL(DP), INTENT(OUT) :: dx, dy

END

SUBROUTINE ucw_step

SUBROUTINE crw_step(rho,dl,dtheta)

USE

nrtype

IMPLICIT NONE
REAL(DP), INTENT(IN) :: rho
REAL(DP), INTENT(OUT) :: dl, dtheta

END SUBROUTINE crw_step
END INTERFACE
INTEGER(I4B) :: i, j, k, cur_f ! cur_f is current field
REAL(DP) :: rnd, rnd2
REAL(DP) :: rxl, rx2, ryl, ry2 ! (x,y) coordinates of a rectangle surrounding field
REAL(DP) :: xb, yb, theta ! current coords. and orientation of bee
REAL(DP) :: 1s ! step length
REAL(DP) :: rho, dl, dtheta, dx, dy ! CRW and UCW variables
REAL(DP) :: x_try, y_try, theta_try ! Attempted next (x,y,theta) step
REAL(DP), DIMENSION(1:NFMAX) :: trans, ctrans ! transition prob. of moving to field i, and cumulative

call random_seed

do i = 1, NSIM

! Pick first field
call random_number (rnd)
do k = 1, nf

end

if (

else

end

! Fo
rho

if (rnd <= cumul_sc(k)) then
cur_f = k
exit

end if

do

RAND_START) then

! Pick bee starting point within field
rx1 = minval(xf(cur_f,1:4))
rx2 = maxval (xf(cur_f,1:4))
ryl = minval(yf(cur_f,1:4))
ry2 = maxval(yf(cur_f,1:4))
do
call random_number (xb)
call random_number (yb)
xb = xb * (rx2 - rxl) + rxi
= yb * (ry2 - ryl) + ryl
if ( in_field(xb, yb, cur_f) ) exit
end do
! Pick random theta in (-PI, PI)
call random_number (theta)
theta = theta * TWOPI_D - PI_D

! Start at closest point
call closest_point(xh, yh, cur_f, xb, yb, theta)
if

rage ns steps
= 0.7_dp

1s = 0.05_dp

nm (i

do j =

) =0
1, ns
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! Take step
call crw_step(rho, dl, dtheta)
theta_try = theta + dtheta
if (abs(theta_try) > PI_D) then ! Bring theta back in (-pi, pi) if necessary
theta_try = theta_try - sign(TWOPI_D, theta_try)
end if
x_try = xb + 1s * dl * cos(theta_try)
y_try = yb + 1s * dl * sin(theta_try)
! If CRW step goes outside field, try uncorrelated random walk
if ( .not. in_field(x_try, y_try, cur_f) ) then
do
call ucw_step(dx, dy)
X_try = xb + 1s * dx
y_try = yb + 1s * dy
if ( in_field(x_try, y_try, cur_f) ) exit

end do
end if
xb = x_try
yb = y_try

theta = theta_try

! Find plant genotype
if (cur_f == 2) then
mm(i) = nm(i) + value(xb,yb)
else
call random_number (rnd)
if (rnd <= phi_f(cur_f)) nm(i) = om(i) + 1
end if

! Field change
call random_number (rnd)
if (rnd <= p_sw) then
! Recalculate trans based on current position of bee
do k = 1, nf
if (k .ne. cur_f) then
call closest_point(xb, yb, k, x_try, y_try, theta_try)
trans(k) = pmult / dist(xb, yb, x_try, y_try)
end if
end do
trans(cur_f) = 0.0_dp
ctrans(1) = trans(1)
do k = 2, nf
ctrans(k) = ctrans(k-1) + trans(k)
end do

! Pick new field
call random_number (rnd2)
do k = 1, nf
if (rnd2 <= ctrans(k)) then
cur_f = k
call closest_point(xb, yb, k, x_try, y_try, theta_try)

xb = x_try

yb = y_try

theta = theta_try
exit

end if
end do
end if
end do
end do

END SUBROUTINE sim_bees

END PROGRAM bee_landscape
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