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Abstract
Soil ecological functions are largely determined by the activities of soil microorganisms, which, in turn, are regulated by
relevant interactions between genes and their corresponding pathways. Therefore, the genetic network can theoretically
elucidate the functional organization that supports complex microbial community functions, although this has not been
previously attempted. We generated a genetic correlation network based on 5421 genes derived from metagenomes of forest
soils, identifying 7191 positive and 123 negative correlation relationships. This network consisted of 27 clusters enriched
with sets of genes within specific functions, represented with corresponding cluster hubs. The clusters revealed a hierarchical
architecture, reflecting the functional organization in the soil metagenomes. Positive correlations mapped functional
associations, whereas negative correlations often mapped regulatory processes. The potential functions of uncharacterized
genes were predicted based on the functions of located clusters. The global genetic correlation network highlights the
functional organization in soil metagenomes and provides a resource for predicting gene functions. We anticipate that the
genetic correlation network may be exploited to comprehensively decipher soil microbial community functions.

Introduction

Microorganisms operate at the heart of biological char-
acteristics, biogeochemical processes, and ecology of soils
[1]. However, elucidating the microbial functions that

underpin these properties of soils can be challenging,
primarily due to the numerical abundance of microbes [2]
and their vast taxonomic and functional diversity [3] in
the soil environment, which contains extreme spatial
heterogeneity and complex chemical and biological prop-
erties [4]. A gram of soil contains an average of 109 pro-
karyotic cells, and ~105 distinct prokaryotic genomes [5].
We estimate that the majority of soil microbial genomes
have yet to be sequenced [6], as such we have limited
understanding of the link between soil microbial commu-
nity composition and functionality, which is complicated
by the horizontal gene transfer promiscuity of some bac-
terial lineages [7]. However, metagenomic sequencing
can provide a snapshot of the relative abundance of genes
and genotypes, providing an opportunity to glimpse soil
microbial functional potential [8–11].

Ecosystems are formed by the hierarchical organization
from populations, individuals, pathways, and genes to
communities [12]. All the macroscopic properties such as
community functions are depended on how the microscopic
building blocks (genes, genotypes, and cells) are assembled
and interact [13]. Genetic interactions at the cellular scale
have long been investigated in model organisms, especially
in yeast, for identifying functional relationships between
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genes [14–16], whereby their interactions imply that two
genes share a functional relationship [17]. Studies exploring
these interactions have identified many biological functions,
including functional dependency and redundancy, which
are governed by the interactions between several enzymes,
[18]. Although only ~1000 core genes in the yeast genome
are lethal when mutated, there are around 550,000 synthetic
lethal genetic interaction pairs, including an extreme set of
~10,000 genetic interactions between non-core genes [16].
However, the complexity of genetic interactions in an
assemblage at the community scale has not yet been
evaluated.

Microbial genetics represents a unique platform to
determine whether genetic interaction modeling can be used
to elucidate relevant interactions between genes. Con-
servation of central metabolic functional genes [19] and
high redundancy of functional genes in microbial commu-
nities [20] suggest that genomes of different taxa might
contain similar functional genes. Therefore, metagenomic
datasets can display stable genetic interaction patterns
because similar functional genes from different taxa might
have a similar response to environmental variations. With
metagenomics, genetic interactions cannot be quantified
using the combinatorial construction of mutants but can be
explored using the pairwise correlation coefficient [21, 22].
A matrix of gene-gene pairwise correlations can therefore
be used to systematically predict potential genetic interac-
tions among genetic elements in a database.

Network analysis has facilitated many discoveries in
both systems biology and microbial ecology [23],
providing a platform on which to determine relationships
between data that can predict genetic interactions [15, 16],
protein–protein interactions [24, 25], and metabolic reac-
tions [22, 26]. Network analysis has also been applied to
evaluate microbial community assemblies in soil [27, 28]
and rhizosphere microbiomes [29]. However, network
analysis of soil metagenomic correlation patterns has not
previously been explored.

Here we employed genetic correlation network analysis
using gene abundances from a database of 45 soil meta-
genomes from eastern China (Fig. S1). To better capture
the high functional redundancy of microbial communities
and reduce bias in correlation coefficients induced by
sparse data, we filtered non-core genes occurring in only
few samples and focus on core genes. Heuristic clustering
approaches were employed to examine the intrinsic asso-
ciations between functional groups, and hub genes were
identified for each cluster. Each cluster was found to
represent different potential functionalities, and a hier-
archical structure was observed with different topologies at
different resolutions of functional annotation. Functional
predictions based on genetic interactions were made for
genes of unknown function, which were validated with

structural predictions. This investigation represents a sig-
nificant advance in soil microbiome systems biology.

Materials and methods

Sample collection

We collected three soil samples from a 100 × 100 m2 plot at
each of the 45 sites across five continual vegetation types in
Eastern China (Fig. S1) using a uniform sampling protocol.
Samples were collected at a depth of 0–15 cm, after the
removal of loose debris from the forest floor. Five soil cores
were combined to obtain one soil sample, resulting in three
analytical sample replicates per plot. All soil samples were
transported to the laboratory on ice. Coarse roots and stones
were removed, and a subset of the soil was air-dried for
analysis of edaphic properties. Methods to obtain values for
all measured edaphic variables are described in a previous
study [27].

DNA extraction and sequencing

Upon arrival at the laboratory, DNA was extracted from
fresh soil samples using the MP FastDNA SPIN Kit for soil
(MP Biomedicals, LLC, Ohio, USA) as per manufacturer’s
instructions. Equal concentrations (200 µg) of DNA extract
from the three replicates were combined to form a compo-
site genetic pool representing total DNA for each site. DNA
purity and concentration were determined using a Nano-
Drop spectrophotometer (NanoDrop Technologies Inc.,
Wilmington, DE, USA). Isolated total DNA was stored at
−20 °C for microbial diversity and sequence analyses.
Shotgun sequencing of metagenomic DNA on an Illumina
HiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA)
at the Novogene (Tianjin, China) produced a total of
~1.5 billion paired-end reads (read length= 150 bp). About
93.1% of reads were above Q30. As far as we known, this is
the biggest forest soil metagenome shotgun data set to date.
Sequence data have been deposited in the public National
Center for Biotechnology Information (NCBI) database
under BioProject accession number PRJNA475650.

De novo genomic assembly and annotation

Raw shotgun sequencing reads were preprocessed using
ngsShoRT v2.1 [30] with lqr_5adpt_tera method (Table S7).
Whole genome de novo assemblies for each sample
were performed using IDBA-UD [31] with the following
parameters: -mink 50, -maxk 92, -step 4, -min_contig 500.
Contigs from all samples were combined and reassembled
with minimum 2. The quality of assemblies was evaluated
using MetaQUAST v2.2 [32]. The contigs were assigned to
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known bacterial genomes from RefSeq using CLARK [33].
Paired-end sequencing reads were mapped to assembled
contigs using BWA v0.7.16a [34] to generate read coverage
information for assembled contigs. The mapped read counts
were extracted using SAMtools v1.4 [35]. Open reading
frame prediction and annotation were performed using
Prodigal v2.50 [36]. The resulting protein translations were
assigned by comparisons to Pfam 31.0 [37] using HMMER

3 [38], to KEGG release 84.0 using GhostKOALA [39], and
to Uniprot database using BLASTP (best hit with E < 0.001).
The entities were manually annotated to related GO terms
using quickGO tool [40]. The KO numbers were mapped
on wiring diagrams of a metabolic pathway map using
KEGG mapping (Fig. S8). Except for typical metazoan
pathways (hormones, bile acids), most functions of the
global KEGG map are represented in the forest soil, which
underlines the high functional diversity of soil. The taxo-
nomic classification of contigs was performed with CLARK
(V1.2.4) [33].

Network construction and analysis

A Spearman correlation matrix among genes was calculated
based on the relative abundance of genes in each sample.
To reduce the bias of correlation coefficients induced by
sparse gene matrix, only genes detected in 25 out of
45 samples were used for network construction. The
indirect connections were reduced with the deconvolution
method (α= 1, β= 0.99) [41]. Random matrix theory
(RMT) was used to automatically identify the appropriate
similarity threshold prior to network construction [42]. The
connections in the network represents the positive or
negative correlation values greater than the threshold value
(determined with RMT) and the P values of correlation
(adjusted with false discovery rate method [43]) smaller
than 0.05. Network properties were characterized with the
igraph package [44] and networks were graphed using
Gephi [45]. We defined genes presenting in all samples as
core genes, and genes presenting in 25 to 44 samples as
non-core genes. An Erdős-Rényi network with the same
number of vertices and edges was generated with erdos.
renyi.game function in igraph.

Clusters were unfolded using the heuristic method
at various resolution values [46]. The nodes with the
highest connection numbers (ranging from 16 to 60) in

Fig. 1 A network of genetic correlation relationships. a A global
genetic correlation network encompassing all core and non-core genes
was constructed from the genetic correlation matrix. Gene pairs with
Spearman coefficients > 0.818 were connected and graphed using a
force-directed layout algorithm. Genes with high correlation coeffi-
cients map were proximal to each other, whereas genes with low
correlation coefficients were positioned further apart. The clusters
in the global network were detected with a multi-level aggregation
method. Twenty-seven dominant clusters are represented with differ-
ent colors. b A genetic correlation subnetwork for core genes, which
dominated in 24 clusters. c A genetic correlation subnetwork for non-
core genes, which dominated in three clusters. d Connection frequency
within and between clusters. Tile size reflects the connections fre-
quency observed for a given pair of clusters in the global genetic
correlation network. Tiles on the diagonal represent the frequency of
connections among genes belonging to the same cluster. Tiles off the
diagonal represent the frequency of connections between different
clusters
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each cluster were defined as hub nodes, and the other
nodes were defined as peripheral nodes. The connectivity
of nodes was determined based on their within-cluster
connectivity and between cluster connectivity. The con-
nectivity was used to classify the nodes based on the
topological roles they play in the network. The nodes
without between cluster connectivity were intra-cluster
nodes; the nodes with between cluster connectivity were
inter-cluster nodes.

The hierarchical structure of clusters was identified based
on the combination pattern of clusters at resolution 1–15.
The parent nodes in the hierarchical tree represents the
parent clusters combined from sibling clusters of lower
resolution levels. The connectivity between clusters was
defined as the total connection number between all the
nodes from different clusters. Given that the degree is non-
normally distributed, the negative connection numbers were
compared with the Wilcoxon rank sum test. To validate
the predicted functions for genes with domains of unknown
functions (DUF), the structure of protein domains in DUF
genes were modeled by homology modeling with SWISS-
MODEL.

Results

A global genetic correlation network in
metagenomes of pristine forest soils

A genetic correlation network was constructed from a
Spearman’s Rank correlation coefficient matrix of the
relative abundance of 5421 genes annotated from the
45 soil metagenomes. Genetic correlation connections
linked 2641 gene nodes through 7314 connections, corre-
sponding to 7191 positive and 123 negative correlations
(Fig. 1a). By comparing the binomial degree distribution
in randomly linked Erdős-Renyi networks with the same
numbers of nodes and edges, the power-law degree dis-
tribution (Fig. S2) and non-random distribution of negative
correlations (Fig. 1a–c) suggests that the derived network
is non-random and scale-free (R2= 0.83 in log-log scale).
The subnetwork for core genes (genes found in all of the
45 metagenomes) comprised 1635 nodes and 4135 con-
nections (Fig. 1b), whereas the subnetwork for non-core
genes comprised 826 nodes and 1,374 connections
(Fig. 1c). In total, 1805 connections occurred between
core and non-core genes. Although the network density
values were similar in the subnetworks for core and non-
core genes, the clustering coefficient of the core gene
subnetwork (Fig. 1b) was twofold greater than that of the
subnetwork for non-core genes (Fig. 1c) (Table S1). The
diameter of the core gene subnetwork was larger than in
the global network (Table S1).

A heuristic method was used to detect the network
clusters, in which the genes displayed similar connection
profiles. We detected 27 dominant clusters, which contained
1704 intensity wired nodes. The remaining 757 nodes,
which did not belong to these clusters, were treated as
loose wired nodes. Among the 27 clusters in the global
genetic correlation network, 24 clusters were dominated
by core genes (Fig. 1b) and three clusters were dominated
by non-core genes (Fig. 1c). The connection intensity in
the 23 clusters, localized at the periphery of the network
layout (cluster 1–23), was greater than in the four clusters
localized at the center (Fig. 1a). The majority of connections
associated with the 27 clusters were intra-cluster connec-
tions that linked nodes from the same clusters (Fig. 1d,
on-diagonal). The inter-cluster connections that link dif-
ferent clusters were mainly found in clusters 24–26 (Fig. 1d,
off-diagonal).

Functional relationships associated within clusters were
resolved in greater detail by extracting clusters from the
global network and visualizing them in groups (Fig. 2).
Genes related to similar functions tended to co-associate
in the same clusters. The core gene subnetwork (Fig. 1b)
comprised clusters related to protein and nucleic acid
metabolic processes, nutrient utilization, immunity, oxida-
tion/reduction, and catalytic processes (Fig. 2a–d), whereas
the non-core gene subnetwork comprised clusters enriched
for genes related to the stress response, immunity, and
membrane structure (Fig. 2d). Different clusters were
associated with various taxonomic profiles (Fig. S4).
Although the cluster number per genus was not linearly
correlated with the abundance of genera (Fig. S5A), the
abundances of the generalists (cluster per genus ≥ 20) were
significantly higher than the abundances of the specialists
(cluster per genus ≤ 5, Tukey-HSD, P= 0.05) and the
moderate general genus (6 ≥ cluster per genus ≥ 19, Tukey-
HSD, P= 0.04) (Fig. S5B). In the generalist enriched
phylum Firmicutes and specialist enriched phylum
Bacteroidetes (Fig. S5C), the genus Capnocytophaga
only contributed to the transport process (cluster 10) and
nucleic acid metabolic process (cluster 23), and the genus
Rhodothermus only contributed to the nitrogen metabolic
process (cluster 9), transport process (cluster 11), catalytic
activity process (cluster 12), and immunity process
(cluster 26) (Fig. S4).

The environmental factors that significantly influenced
both the profiles of genera (Fig. S6A) and genes (Fig. S6B)
of soil communities, including longitude, latitude, tem-
perature, precipitation, and dissolved Fe and Al, possessed
the greatest number of links to genes (Fig. S7). Longitude,
latitude, temperature, precipitation, and soil pH influenced
similar gene sets and most of these genes were not corre-
lated with other genes and hence were not involved in the
genetic network (Fig. S6). Available K, soil C/N ratio, and
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Fig. 2 Clusters in the genetic correlation network. a Genes localized
within the cluster 1–8. b Genes localized within the cluster 9–15. c

Genes localized within the cluster 16–23. d Genes localized within the
cluster 24–27
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dissolved Al and Fe influenced the largest number of genes
involved in the genetic correlation network (Table S3).
Although total and dissolved nitrogen correlated with a
small number of genes, their connections were specifically
linked with cluster 9, which was annotated as the gene
cluster for nitrogen utilization. The links for the humic acid/
fulvic acid ratio were specifically connected with cluster 20,
which was annotated as the gene cluster for transport
processes.

Cluster hubs of the genetic correlation network

In total, we identified 59 cluster hub genes (those that
possessed the greatest number of connections in each
cluster) from the 27 dominant clusters (Fig. 3a). We mea-
sured the intra-cluster and inter-cluster connections of genes
based on the within and between cluster edge numbers. An
inter-cluster gene involved in diverse functions was
expected to possess connections between clusters (between
cluster edge number > 0), and intra-cluster genes were
expected to connect with nodes within the same cluster
(between cluster edge number= 0). We identified 22 hub
genes as inter-cluster genes and 37 hub genes as intra-
cluster genes (Fig. 3a). Among these hub genes, 48 were
core genes and 11 were non-core genes (Fig. S3). The core
hub genes were mainly localized in the clusters dominated
with core genes (cluster 1–23), whereas the non-core hub
genes were mainly localized in the clusters dominated with
non-core genes (cluster 24–27). Similarly, the intra-cluster
hub genes were mainly found in clusters dominated with
core genes, and the inter-cluster hub genes were mainly
localized in the clusters dominated with non-core genes
(Fig. 3b). The intra-cluster hub genes were densely

connected with the genes within the corresponding clusters
(Fig. 3b) and associated with the functions of the corre-
sponding clusters (Table S2). For example, (i) the intra-
cluster hub genes RadC, Hydrolase, and Pro-kuma-activ,
encoding a domain of hydrolase, were the hubs for
clusters associated with oxidation-reduction processes or
catalytic activities; (ii) the membrane protein gene MgtC
was the hub for the cluster associated with transport pro-
cess; (iii) the binding protein gene SHOCT was the hub
for the cluster associated with metal cluster binding;
and (iv) the polyphosphate kinase gene (Ppx) was the hub
for the cluster associated with phosphate metabolism
(Table S2). In contrast, the inter-cluster hub genes provi-
ded clues for the association between clusters (Fig. 3b).
For example, the binding protein genes HTH_18 and
PrlF_antitoxin served as articulation among clusters for
transport processes (cluster 20), nucleic acid metabolism
(cluster 21 and 23), and intracellular parts (cluster 22). The
outer membrane protein gene OmpH articulated between
the cluster for transport processes (cluster 10), nitrogen
utilization (cluster 9), and catalytic processes (cluster 11)
(Fig. 3b).

Hierarchy of the clusters in the genetic correlation
network

To explore functional relationships between clusters, we
detected the hierarchical structure of the clusters by tuning
the resolution values (R) of the cluster detecting method
from 1 to 15 (Fig. 4). The 27 clusters described above were
detected by setting R as 1 (Fig. 4). At a relatively low-
resolution level (R= 5), several sibling clusters collapsed
into parent clusters with the same or closely associated

Fig. 3 The hierarchy of clusters
in the global genetic correlation
network at different resolution
(R) of modularity. Lower
resolution detects smaller
communities and higher than 1.0
larger ones. Distinct sibling
clusters resolved at one
resolution level of the
hierarchical level combined
together at a higher level to
generate a larger parent cluster,
which indicates closely related
functions among its sibling
clusters
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functions, such as cluster 1 (iron-sulfur cluster binding) and
6 (catalytic activity), cluster 9 (nitrogen utilization process)
and 10 (ion transport process), cluster 7 (translation) and 17
(development process), cluster 15 and 16 (phosphorus
metabolic process), and cluster 26 and 27 (membrane parts).
At resolution level R= 9, we found two larger parent
clusters, in which the sibling clusters did not have
closely associated functions, but were from the same cell

compartments. For example, one of these two parent clus-
ters combined with sibling clusters for membrane parts
(cluster 14, 22, 26, and 27) and associated functions such
as transport processes (cluster 15 and 16); but another
parent cluster combined with sibling clusters for intracel-
lular functions such as nucleic acid metabolic processes
(cluster 4 and 21) and oxidation-reduction processes (cluster
7). At a high-resolution level (R= 13), those two large

Fig. 4 Highly connected hub
genes in the genetic correlation
network. a The within and
between cluster connection
numbers of nodes in the 27
dominant clusters and loose
connected nodes. Hub genes
wereare the network nodes that
possessed the highest connection
numbers in each of 27 dominant
clusters. The hub genes were
identified either as inter-cluster
hub genes with connections
between clusters (yellow) or
intra-cluster hub genes without
connections between clusters
(blue). The point positions were
adjusted by jittering to prevent
overlap. b The connections of
intra-cluster (blue) and inter-
cluster (yellow) hub genes in the
global genetic correlation
network
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parent clusters were further combined into one parent
cluster together with clusters for metal transport and binding
processes (cluster 1 and 20). At this hierarchical level, the
clusters for protein metabolic processes (cluster 2), xeno-
biotic degradation (cluster 18), and nitrogen utilization

processes (cluster 9) were still independent from the large
parent cluster. The cluster for nitrogen utilization processes
was closely associated with the cluster enriched in ion
channel proteins (cluster 10), catalytic activity (cluster 11),
and oxidation-reduction (cluster 12).

Fig. 5 Negative correlation connections in the genetic correlation
network. a Positions of negative correlation connections. b Distribu-
tion of negative correlation connections. c The abundances of core and
non-core genes linked with negative correlation connections. d The
abundance of negative correlation connections between non-core
genes (n-n), between non-core and core genes (n-e), and between core

genes (e-e). e The genetic functional classification of the genes linked
with negative correlation connections. f The subnetwork of negative
correlation network. The color of nodes shows the functional classi-
fication. The size of nodes shows the number of negative correlation
connections

Genetic correlation network prediction of forest soil microbial functional organization 2499



Fig. 6 Predicting functions of genes encoding domain of unknown
functions (DUF). a The distribution of DUFgenes. b Identifying the

intra-cluster DUF genes. c The position and neighbors of intra-cluster
DUF genes in the global genetic correlation network

2500 B. Ma et al.



Negative correlation connections in the genetic
correlation network

Negative correlation connections mainly linked genes in
cluster 25–27 (Fig. 5a) and connected genes between dif-
ferent clusters (Fig. 5b). Most of the nodes with negative
connections were non-core genes (Fig. 5c), half of the ne-
gative connections were between core and non-core genes,
and only 5 negative connections were between core genes
(Fig. 5d). Excluding 29 genes with unknown functions, the
proteins encoded by the gene associating with negative
connections were mainly functional for catalytic activities,
metabolic processes, membrane proteins, developmental
processes, and transport processes (Fig. 5e). The genes
encoding the non-core genes, Rick_17kDa_Anti,
Fe_hyd_lg_C, and Ribosomal_S6e, possessed significantly
more negative connections than other genes (Wilcoxon rank
sum test, P < 0.001) (Fig. 5f, Table S4). The genes linked
by negative connections were generally from distinct
functional classes (Fig. 5f).

Predicting unknown gene functions

The global correlation network consisted of 573 DUF
genes, most of which were loosely connected nodes or
belonged to the articulating clusters (Fig. 6a). We identified
12 potentially function-specific DUF genes, which pos-
sessed large within cluster edge numbers but no between
cluster edges (Fig. 6b). All of these genes were localized in
intensively connected clusters (Fig. 6c). This association
with clusters of known function allowed for reasonable
predictions of the functional potential of the 12 DUF genes
(Fig. 6c, Table S5). Seven of these predictions were suc-
cessfully validated by structural homology modeling with
SWISS-MODEL (Table S6). DUF1343 and DUF554 in
cluster 2, localized in the vicinity of the peptidase genes
(Peptidase_S41, Peptidase_U32_c, and Peptidase M41)
and ferritin genes (Fer24 and Fer4_10) potentially played
roles in protein metabolism processes (Fig. 6c). Homology
modeling results show that DUF1343 contains domains
with homology to orotate phosphoribosyl-transferase and
precorrin-6A reductase, which play important roles in pro-
tein metabolism (Table S6). DUF2969 and DUF436 in
cluster 15, were localized in the vicinity of transferase genes
Carboxyl_trans, CTP_transf_like, and Glyco_tranf_2_5,
which were potentially associated with transferase activity
(Fig. 6c). DUF2969 contained domains with homology to
glucuronidase, threonylcarbamoyl-transferase, and ligand
binding protein, which are all closely associated with
transferase activity (Table S6). DUF1802, DUF2076, and
DUF4239 were in cluster 13 localized with the haloacid
dehalogenase-like hydrolase gene Hydrolase and the phe-
nylacetic acid catabolic protein gene PaaA_PaaC, with

potential roles in the metabolism of organic substances
(Fig. 6c). DUF1802 contains domains with a homology
to DNA ligase and endonuclease, which are involved in
repairing DNA damage caused by phenylacetic acid
(Table S6). DUF2076 contains a domain with homology
to a microphthalmia associated transcription factor, which
regulates metabolism processes in mitochondria (Table S6).
DUF4329 contains a domain with homology to bestrophin,
a chloride channel protein, and hence is associated with
haloacid dehalogenation (Table S6). DUF2834 in cluster 19
has potential functions in glycosyl compound metabolism,
since it is closely connected with genes for glycosyl
hydrolase (Glyco_hydro_15), transferase (Glyco_trans_1_2
and Glyco_trans_4_4), and binding (Glycolipid_bind).
DUF2834 contains domains with homology to membrane
protein arginine antiporters and epidermal growth factor
receptors (Table S6). Given that glycosyl compounds are
essential components of cell membranes, membrane protein
is expected to be closely associated with glycosyl com-
pound metabolism. DUF3324 in cluster 21 is localized in
the vicinity of the ribosomal protein genes Ribosomal_L11
and Ribosomal_L19, the transcriptional regulator genes
Rrf2 and PC4, suggesting a potential role of DUF3324 in
the transcription process. DUF3324 contains a domain
with homology to a chaperone that has been reported to
regulate transcription factor RUNX1 (Table S6). DUF1504
in cluster 3, localized in the vicinity of oxidase genes
Caa2_CtaG and DAO_C, dehydrogenase gene Pro_dh,
and transferase gene GST_C, were potentially involved
in the oxidation-reduction process. DUF808, in cluster 12,
was closely connected with oxidase gene Cu-oxidase
and Glyoxal_oxid_N and ferredoxin gene 2Fe-
2S_thioredx, were potentially associated with oxidation-
reduction processes. DUF3948 in cluster 17 was closely
connected with genes for the reproduction process, such
as the SpoVG gene for sporulation and the Spore_GerAC
gene for spore germination, which play potential roles in
development.

Discussion

We analyzed the connectivity pattern in a genetic correla-
tion network based on the 45 forest soil metagenomes and
identified 27 clusters of enriched genes associated with
various functions. Compartmentalizing clusters at different
resolutions revealed a hierarchical structure of cluster
organization. Cluster hubs could reflect both functionality
and topological features of corresponding clusters. Negative
correlation connections mainly wired genes from articulat-
ing clusters. Moreover, the genetic correlation network can
be used to predict previously unknown genetic functions
from the functions of adjacent genes.

Genetic correlation network prediction of forest soil microbial functional organization 2501



The clusters in our genetic correlation network formed a
hierarchic structure as observed in genetic interaction net-
works from yeast to human [16, 47, 48]. Consistent with the
function hierarchy of the genetic interaction network in
yeast cells [16], parent clusters were enriched with sibling
clusters with closely associated functions at low modularity
resolutions, but enriched with sets of sibling clusters from
the same subcellular compartments at greater resolutions.
This finding suggests that the properties of genetic inter-
actions at the cellular scale could be extrapolated to the
community scale. The hierarchical structure of network
cluster associations provides an insight into the relation-
ships among functional clusters in the metagenomes. The
genetic interactions occurring between clusters are con-
served at a lower level than the interactions within clusters
[49]. This suggests that the selective pressure for main-
taining interactions within a single cluster is much greater
than between clusters [49]. The connections between clus-
ters found in the present study might represent evolutionary
conserved genetic interactions between clusters and could
be essential for deciphering functional organization in soil
metagenomes.

An important property associated with the genetic cor-
relation network is the intensely connected clusters in the
network. Distinct topological features suggest different
functionality between densely connected clusters dominated
by core genes and articulating clusters dominated by non-
core genes in the genetic correlation network. A previous
study showed that the topological features of the core gene
subnetwork are distinct from those of the non-core gene
subnetwork in yeast cells [16]. Less between cluster con-
nections for densely connected clusters suggest that some
clusters contain genes enriched in particular conditions.
Despite the high diversity of taxonomic groups and func-
tional profiles for various microorganisms in soils, the
conservation of genes for fundamental biological processes
has been observed across different taxa [50]. Accordingly,
those conserved core genes associating with a specific
function, such as nucleic acid and energy metabolic pro-
cesses, are expected to be intensely connected within the
clusters, with a high degree of functional independence
[47]. Conversely, the articulating clusters interacting with a
large number of core clusters, such as membrane transport
and secretion, confirm that these processes are important for
mediating cross-cluster connections [51]. The shorter dia-
meter of the global network, when compared with the core
gene subnetwork, also suggests that non-core genes gen-
erally complement the connection among clusters. Although
non-core genes are not necessarily essential for cellular
function, they could enhance the flexibility and efficiency of
networks by providing functional pathway redundancy [52].
Since the essentiality of a gene is environment-dependent
[53], non-core genes may also include genes which are

essential in particular environments. Whereas many
microbial functions and their associated genetic interactions
are still unclear, the clusters identified from the genetic
correlation network provide an alternative approach for
exploring genes potentially involved in corresponding soil
microbial community functions. However, the links
between genetic correlation network inference from gene
co-occurrence do not necessarily represent genetic interac-
tions or regulations due to false positives and indirect
connections [54]. Although we determined cut-off thresh-
olds using the RMT method and reduced indirect connec-
tions with a deconvolution method, the links determined in
the genetic correlation network still need to be treated with
caution.

The functions of clusters could be also validated with the
cluster hub genes, which have been proposed to be keystone
nodes due to their important roles in network topology [25].
The hubs in intra-cluster clusters were mainly wired with
genes within clusters, representing the intra-cluster feature
of these clusters. Hubs in articulating clusters were mainly
identified as inter-cluster nodes, representing the mediation
functions of these clusters. These inter-cluster nodes, wired
different functional clusters, are therefore essential for
understanding the functional organization in the genetic
correlation network. Hub genes with more connections
would be less exposed to the mutations associated with
adaptive evolution than peripheral genes with less connec-
tions in the genetic interaction network. Accordingly, the
hubs could provide an overview of the network and could
indicate the potential functions of the corresponding
clusters.

It is notable that the environmental factors closely
associated with the genes in genetic correlation networks,
including the available K, C/N ratio, and dissolved Fe and
Al, were different from the environmental drivers for the
soil microbial community reported in previous studies, such
as temperature [55] and soil pH [56]. This suggests that the
underlying mechanism for genetic interaction patterns is
distinct from that for microbial community assembly. Iron
plays important roles in a wide range of gene regulatory
processes [57]. The dissolved Fe concentration is also
important for the variation in topology of microbial co-
occurrence networks [27]. Metabolite analyses have
revealed that K+ deficiency affects the metabolic state of
bacterial cells by impairing oxidative phosphorylation [58].
The C/N ratio of the cell is also essential for regulating
metabolism in microbial cells [59]. The associations for
total and available nitrogen were all linked with genes in the
nitrogen processes cluster, suggesting that links predicted
between environmental factors and genes are meaningful.

Positive connections in the genetic correlation network
generally indicate functional sharing and association, while
negative connections generally reflect regulatory and
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suppression interactions [60]. The genes wired by negative
connections were mainly non-core genes in articulating
clusters, and were generally from different functional clas-
ses and network clusters. Therefore, we speculate that
negative connections were potentially regulatory interac-
tions between functional clusters rather than suppression
interactions, which generally appears between genes with
functional redundancy. For instance, Rick_17kDa_Anti gene
encoding an antigen protein [61]; Fe_hyd_lg_C gene
encoding a ferredoxin catalyzes a range of redox reactions
[62]; Ribosomal_S6 encoding ribosomal protein S6 is
involved in regulating translation [63]. Although only small
numbers were observed, negative connections could
potentially be useful in manipulating soil microbial com-
munity functions by controlling those interactions.

A large number of genes with unknown functions exist in
global databases [8]. Similar to networks from yeast [16],
the genetic correlation network can predict the unknown
functions of genes, when these genes display highly intra-
cluster connection features. The connection density of the
genetic correlation network was much lower than in the
genetic interaction network of yeast cells [16]. This could
be interpreted as suggesting that evolutionary conserved
genetic interactions across a wide range of species are
present in the genetic correlation network. Accordingly, the
functional predictions made in this study could be valuable
for gene function annotation regardless of phylogenetic
distance. However, these predictions were more accurate
when the DUF genes were located in core gene clusters and
had only intra-cluster edges. Moreover, the network
focusing on the core genes better captures the high func-
tional redundancy of the microbial community.

In summary, the genetic correlation network in the pre-
sent study provides insight into the functional organization
of forest soil communities. Coherent sets of positive and
negative genetic correlation connections wired both within
and between these clusters revealed a hierarchical structure
similar to the organization of the genetic network at cellular
scale. This finding suggests that the functions of microbial
communities could be organized based on the regulations at
cellular scale, which has been extensively investigated with
systems biology. Distinct topological features of intensively
connected clusters and articulating clusters indicated
different functional associations. Cluster hub genes that
manifested the functions and the wiring features of corre-
sponding clusters could be employed as indicators for a
network skeleton. We also presented a novel approach for
predicting genes and domains of unknown function in
metagenomes. We anticipate that the connection pattern of
the genetic correlation network could elucidate the func-
tional organization for soil metagenomes and may be
exploited to systematically predict microbial community
functions.
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