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Complete Additivity and
Modal Incompleteness

Wesley H. Holliday* Tadeusz Litak!

Draft of September 29, 2016 (under review)

In this paper, we tell a story about incompleteness in modal logic. The
story weaves together a paper of van Benthem [1979], “Syntactic aspects of
modal incompleteness theorems,” and a longstanding open question: whether
every normal modal logic can be characterized by a class of completely ad-
ditive modal algebras, or as we call them, V-BAOs. Using a first-order re-
formulation of the property of complete additivity, we prove that the modal
logic that starred in van Benthem’s paper resolves the open question in the
negative. In addition, for the case of bimodal logic, we show that there is a
naturally occurring logic that is incomplete with respect to V-BAOs, namely
the provability logic GLB [Japaridze, 1988, Boolos, 1993]. We also show that
even logics that are unsound with respect to such algebras do not have to
be more complex than the classical propositional calculus. On the other
hand, we observe that it is undecidable whether a syntactically defined logic
is V-complete. After these results, we generalize the famed Blok Dichotomy
[Blok, 1978] to degrees of V-incompleteness. In the end, we return to van
Benthem’s theme of syntactic aspects of modal incompleteness.
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1 Introduction

The discovery of Kripke incompleteness, the existence of normal modal logics that are
not sound and complete with respect to any class of Kripke frames, has been called one of
the two forces that gave rise to the “modern era” of modal logic [Blackburn et al., 2001,
p. 44]. In the legendary Lemmon Notes of 1966, it was conjectured that all normal modal
logics are Kripke complete [Lemmon and Scott, 1977, p. 74]. But this was not to be.
Kripke incompleteness was first demonstrated with a bimodal logic [Thomason, 1972],
shortly thereafter with complicated unimodal logics [Fine, 1974, Thomason, 1974a], and
later with simple unimodal logics [van Benthem, 1978, 1979, Boolos and Sambin, 1985].
The significance of these discoveries can be viewed from several angles.

From one angle, they show that Kripke frames are too blunt an instrument to charac-
terize normal modal logics in general. More fine-grained semantic structures are needed.
From another angle, they show that the notion of derivability in a normal modal logic



with a set X of axioms is too weak to capture the notion of Kripke frame consequence, in
the sense where X F ¢ iff every Kripke frame that validates every o € ¥ also validates .
A deep result of Thomason [1975a] showed such weakness to be inevitable: the standard
consequence relation for monadic second-order formulas with a single binary relation
is reducible to the Kripke frame consequence relation for modal formulas.! Since the
former consequence relation is not recursively axiomatizable, neither is the latter.

Both of these angles on Kripke incompleteness lead to closely related questions and
lines of investigation, with slightly differing focus. As we shall see, both of these lines of
investigation will come together nicely in this paper.

1.1 The Semantic Angle

The first angle on Kripke incompleteness—the realization that Kripke frames are not
fine-grained enough for the study of normal modal logics in general—renewed interest in
the algebraic semantics for normal modal logics based on Boolean algebras with operators
(BAOs) [Jénsson and Tarski, 1951, 1952]. A BAO is a Boolean algebra together with one or
more unary? operators ¢ such that for all elements x, y of the algebra, O(zVy) = OzV Oy,
and for the bottom element L of the algebra, ¢ = L. Every normal modal logic is
sound and complete with respect to a BAO, namely, the Lindenbaum-Tarski algebra of
the logic, according to a straightforward definition of when a modal formula is valid
over a BAO. Kripke incompleteness can be better understood in light of the fact that
Kripke frames correspond to BAOs that are complete (C), atomic (A), and completely
additive (V), or CAV-BAOs for short (see §3). A BAO is complete or atomic, respectively,
according to whether its Boolean reduct is complete or atomic in the standard sense,
while it is completely additive iff the following holds:

(V) for any set X of elements, if \/ X exists, then \/{Qz | x € X} exists and
O\ X =\/{0z |z e X},

which in the case of a complete BAO reduces to the distributivity of ¢ over arbitrary
joins. Given the correspondence between Kripke frames and CAV-BAOs, the fact that
a normal modal logic is not the logic of any class of Kripke frames means that it is
not the logic of any class of CAV-BAOs. To put these points in more algebraic terms:
normal modal logics correspond to varieties of BAOs, and Kripke incompleteness is the
phenomenon that not every variety of BAOs can be generated as the smallest variety
containing some class of CAV-BAOs. The last point is underscored by the dramatic Blok
Dichotomy [Blok, 1978]: a variety of BAOs is either uniquely generated by the C.AV-
BAOs it contains (the associated modal logic is strictly Kripke complete) or else there

!To be more specific, Thomason [1975a] showed that such second-order formulas can be translated
into unimodal formulas in such a way that a second-order formula ¢ is a consequence of a set ¥ of
second-order formulas over standard second-order structures iff the translation t(¢) of ¢ is valid in
every Kripke frame that validates {¢(c) | 0 € £} U {6} for a fixed modal formula é.

2J6nsson and Tarski considered operators of higher arity, but we will consider only unary operators.



are continuum-many other varieties of BAOs that contain exactly the same CAV-BAOs
(other modal logics that are valid over exactly the same Kripke frames).

From this algebraic perspective, a series of natural questions arises: what happens
if we drop or weaken one or more of the properties C, A, and V? Do we thereby
obtain distinct notions of completeness for normal modal logics? Can we represent the
resulting BAOs with some kind of frames with richer structure than Kripke frames? Does
incompleteness persist even if we retain only one of the properties C, A, or V7 Does the
analogue of the Blok Dichotomy hold if we drop one or more of C, A, or V?

These questions and the general landscape of sub-Kripkean notions of completeness
from an algebraic perspective were the subject of the PhD research of Litak [2004, 2005a,
2005b, 2008]. As it turns out, none of the following notions of completeness are equivalent
to any of the others: completeness with respect to atomic BAOs (LA-BAOs), complete
BAOs (C-BAOs), BAOs that admit residuals (7-BAOs), atomic and completely additive
BAOs (AV-BAOs), complete and completely additive BAOs (CV-BAOs), and C.AV-BAOs.
A rich hierarchy of different notions of completeness thereby comes into view. As for
the representation question: Dosen [1989] showed that C.A-BAOs are the duals of normal
neighborhood frames; ten Cate and Litak [2007] showed that AV-BAOs are the duals of
discrete general frames; and recently Holliday [2015] has given a dual representation
of CV-BAOs in the framework of possibility semantics. As for the question of whether
incompleteness persists if we retain only one of the properties C, A, or V: Litak [2004]
showed that there are C-incomplete logics, and Venema [2003] showed that there are
A-incomplete logics (by proving the much stronger result that there is a variety of BAOs
all of whose members are atomless). Finally, as for extending the Blok Dichotomy:
Zakharyaschev et al. [2001] noted that it extends to 7-BAOs, Chagrova [1998] showed
that it extends to C.A-BAOs, and Litak [2008] showed that it extends to all C-BAOs
(indeed, even to w-complete BAOs, only requiring countable joins) as well as AV-BAOs.

One piece of the puzzle remained missing for over a decade: are there V-incomplete
logics (Litak 2004, Litak 2005b, Ch. 9, Litak 2008, §7)? Venema [2007, §6.1] also asked
whether there are V-inconsistent logics, i.e., normal modal logics that are not sound
over any V-BAO. In this paper, we answer these questions affirmatively. Our solution
involves a first-order reformulation of the ostensibly second-order condition of complete
additivity, which arose in the context of possibility semantics mentioned above [Holliday,
2015].3 Using this first-order reformulation, we revisit an intriguing Kripke-incomplete
logic of van Benthem [1979] and show that van Benthem’s logic, previously known to be
AV- and T-incomplete, is the missing example of a V-incomplete logic. Furthermore,
it can be easily modified to answer Venema’s question on V-inconsistency. Building on
this example, we extend the Blok Dichotomy to V-incompleteness.

Given these results, the question arises of whether there are “naturally occurring”
V-incomplete logics. In the case of bimodal logic, we answer this question affirmatively.

3 Around the same time that we proved that complete additivity of an operator in a BAO is a V3V first-
order condition, in January 2015, Hajnal Andréka, Zaldn Gyenis, and Istvdn Németi independently
proved that complete additivity of an operator on a poset is preserved under ultraproducts. After
they learned of our result on the first-orderness of complete additivity in BAOs from Steven Givant,
Andréka et al. [2016] extended it from BAOs to arbitrary posets.



We show that the bimodal provability logic GLB [Japaridze, 1988, Boolos, 1993], well
known to be Kripke incomplete and hence CAV-incomplete, is also V-incomplete.

1.2 The Syntactic Angle

Van Benthem’s logic was designed to illuminate the second angle on Kripke incomplete-
ness mentioned above—the weakness of the notion of derivability in a normal modal logic
with axioms—so our story will bring these two angles together. Let ¥ ™" » mean that
 belongs to the smallest normal modal logic that contains the formulas in ¥ as axioms;
so thinking in terms of derivations, not only modus ponens but also necessitation and
uniform substitution may be applied to formulas from 3. Van Benthem observed that
Kripke incompleteness results can be viewed as non-conservativity results with respect
to F™"%. These results show that (i) for some modal formulas o and ¢, {o} ¥™™" ¢, yet
(ii) every Kripke frame that validates o also validates ¢. As is well known, every modal
formula ¢ can be translated into a sentence SO(p) of monadic second-order logic such
that ¢ is valid over a Kripke frame in the sense of Kripke semantics iff SO(yp) is true in
the frame as a standard second-order structure. Thus, (ii) can be rephrased as the fact
that every Kripke frame that makes SO(o) true also makes SO(p) true. Van Benthem
observed that the informal proof of (ii) typically shows that SO(y) is derivable from
SO(o) using some weak system of monadic second-order logic plus an axiom of choice.
In this sense, the second-order system is not conservative with respect to ™", in light
of (i). To better gauge the weakness of F""* van Benthem asked whether there is such
a ¢ and o for which the derivation of SO(p) from SO(o) can be carried out using only
what he considered the weakest reasonable second-order system, dubbed weak second-
order logic. This would be a striking example of the weakness of F"™"" compared to
second-order logic. Van Benthem indeed found such a ¢ and 0. We will call the smallest
normal modal logic containing that o, which does not contain ¢ by (i), the logic vB.
We will show that vB is a V-incomplete logic by showing that every V-BAO that
validates o also validates ¢. At the end of the paper, we will follow a path in the spirit
of van Benthem 1979: how can we strengthen our base logic to derive the formula ¢
from o, and what does this show about the weakness of the base logic? We begin by
reviewing van Benthem’s approach of translation into weak second-order logic. As it
turns out, even weak second-order logic is much more powerful than what one needs
to derive van Benthem’s ¢ from his o and thereby demonstrate non-conservativity with
respect to basic modal logic. We consider two ways of extending the basic modal syntax
for this purpose. One way leads to the nominal calculus? that characterizes consequence
over AV-BAOs. Another way leads to the tense calculus that characterizes consequence
over 7-BAOs. Finally, we find a common core for these weakenings: we show how
the first-order reformulation of complete additivity inspires additional modal inference
rules admissible over V-BAOs that allow us to derive van Benthem’s ¢ from his 0. Of
course, characterizing a consequence relation by means of a (set of) rule(s), in a possibly
extended syntax, is much more than just admissibility: in addition to soundness, one

4The reader should not conflate this use of the word nominal with a more recent one, popular in
theoretical computer science [Pitts, 2013, 2016]. Cf. Footnote 33.



requires a generic completeness result. We will leave as an open question whether the
rules we are proposing yield a syntactic characterization of V-consequence.

1.3 Organization

The paper is organized as follows. In §2, we review the proof that van Benthem’s logic
vB is Kripke incomplete, which we find to be a simple, vivid, and hence pedagogically
useful example of Kripke incompleteness. In §3, we review the algebraic approach to
modal (in)completeness as in Litak 2005b. With this background, we proceed to the
main part of the paper: in §4, we present the first-order reformulation of complete
additivity, and in §5, we use this reformulation to prove that the unimodal logic vB
and the bimodal logic GLB are V-incomplete as above (and that the quasi-normal logic
GLSB is even V-inconsistent in a suitably adjusted sense). In §6, we discuss issues
of decidability and complexity: we show that even V-inconsistent logics do not have
to be more complex than the classical propositional calculus, that the property of V-
completeness is in general undecidable, but that the associated notion of consequence
(unlike Kripke frame consequence) is recursively axiomatizable. In §7, we build on the
example of vB to generalize the Blok Dichotomy to V-incompleteness. In the remaining
sections we discuss the second, syntactic angle presented above: in §8, we give syntactic
proofs in existing derivation systems of the formula witnessing the incompleteness of vB;
and in §9, we discuss extending our base logic with new V-sound rules of inference. We
conclude the paper in §10 with open problems for future research.

2 Kripke Incompleteness

In order to put Kripke incompleteness in context, let us review some basic definitions.

Let £ be the set of formulas of propositional modal logic generated from a set {py, }nen
of propositional variables. We use the usual notation for connectives: —, A, Vv, L, O,
0. A normal modal logic is a set L C L such that: (a) L contains all tautologies of
classical propositional logic; (b) L is closed under modus ponens, i.e., if ¢ € L and
¢ — 1 € L, then ¢» € L; (¢) L is closed under uniform substitution, i.e., if ¢ € L
and v is the result of uniformly substituting formulas for propositional variables in ¢,
then ¢ € L; (d) L is closed under necessitation, i.e., if ¢ € L, then Oy € L; and (e)
O(po — p1) — (Opo — Op1) € L. Let K be the smallest normal modal logic.

The definition of a normal modal logic extends to polymodal languages with multiple
modalities (;, Oo, etc., by requiring (d) and (e) for each [J;. In this section, we focus
on the unimodal language, but polymodal languages will become important in §5.

We assume familiarity with Kripke frames F = (W, R), Kripke models M = (W, R, V'),
and the Kripke semantic definition of when a formula is true at a w € W: M, w F ¢.
We abuse notation and write ‘w € F’ or ‘w € M’ to mean w € W. For convenient
additional notation, given w € W, let R(w) = {v € W | wRv}, and given ¢ € L, let
[e]M = {veW | M,vE ¢}. Aformula ¢ is globally true in a Kripke model M, written
‘ME ¢, iff M,wE ¢ for every w € M; and ¢ is valid over a Kripke frame F = (W, R),
written ‘F F ¢, iff M E ¢ for every model M = (W, R, V) based on F. A formula is



valid over a class F of Kripke frames iff it is valid over every frame in the class. Let
Log(F) be the set of formulas valid over F, which is always a normal modal logic.

Alogic L is Kripke complete if there is a class F of Kripke frames for which L = Log(F).
Otherwise it is Kripke incomplete. For any logic L, we can consider the class of frames
that validate it: Fr(L) = {F | F E ¢ forall ¢ € L}. For a Kripke complete logic,
L = Log(Fr(L)), whereas for a Kripke incomplete logic, L C Log(Fr(L)).

Everything said above was in terms of walidity, but we could also put our discussion
in terms of consequence. To avoid confusion, it is important to distinguish between the
following consequence relations, following van Benthem [1983, p. 37]:

o X Fyry @ iff for every Kripke model M and w € M, if M,w F o for all o € 3,
then M, w E ¢ (local consequence over models).

e ¥ Fp ¢ iff for every Kripke frame F, if F F o for all 0 € ¥, then F F ¢ (global
consequence over frames).

These two notions of consequence are related to two different notions of when ¢ is
derivable from a set ¥ of formulas. Let ¥ F¢ ¢ iff ¢ belongs to the closure of KU X
under modus ponens. Let ¥ Fg"™" ¢ iff ¢ belongs to the smallest normal modal logic
L O X, which is the closure of KU X under modus ponens, necessitation, and uniform
substitution. Our F™* is what van Benthem [1979] denotes by ‘5’ and calls the ‘the
minimal modal logic K’. It would be reasonable to call Fg'"** deriwability from axioms
and to call F¢ derivability from premises, since intuitively necessitation and uniform
substitution should be applicable to logical axioms but not to arbitrary premises.

The relation Fj; is axiomatized by Fg': X Fary ¢ iff X H o, which is equivalent to
there being o1, ...,0, € ¥ such that (o1 A---Aoy) = ¢ € K. By contrast, by the result
of Thomason [1975a] mentioned in §1, Fr is not recursively axiomatizable. We have that
Y ER™ ¢ implies ¥ Fr ¢, but the converse is not guaranteed. The “weakness” of F""*
referred to in §1.2 is the fact that ¥ Fr ¢ does not guarantee X " .

While Fj; seems to capture an intuitive notion of modal consequence, the relation Fr
implicitly prefixes all premises by arbitrary sequences of boxes and universal quantifiers
over propositional variables, so it yields striking consequences like {p} Fr L and {¢} Fr
Op. Thus, it does not enjoy a deduction theorem and one should not think about sets
of formulas closed under Fr as “local theories”. There is, however, a better way to think
about Fr. In modal logic, we are often not interested in the class of all frames, but rather
in some restricted classes of frames, perhaps defined as Fr(X) for some set ¥ C £. We
then want to know what formulas are valid over this class, i.e., whether ¢ € Log(Fr(X)).
This is equivalent to asking whether ¥ Ep . Also note that L is Kripke complete as
above iff for every ¢ € L, L Fr ¢ implies ¢ € L.

Let vB be the smallest normal modal logic containing the axiom

00T — 00O ((@p — p) — p),

which we will call the vB-axiom. Van Benthem [1979] proved that the logic vB is
Kripke incomplete. While vB may at first seem an entirely ad hoc example of a Kripke-
incomplete logic, we will observe a striking connection between the incompleteness of vB



and the incompleteness of an important provability logic in §5.2. In this connection, it
is noteworthy that the vB-axiom is a theorem of the provability logic GL, the smallest
normal modal logic containing the Léb axiom, O(Op — p) — Op. Substituting L for p
in the Lob axiom yields OO T — O, which in the context of provability logic is a modal
version of Godel’s Second Incompleteness Theorem.® Clearly the vB-axiom is derivable
from OOT — L. In the other direction, van Benthem showed that O0T — L is a
Kripke-frame consequence of the vB-axiom. However, he also showed that 0T — L
is not a theorem of vB. Together these facts imply the Kripke-incompleteness of vB.

So that our presentation is somewhat self-contained, we will include van Benthem’s
proof of the Kripke-incompleteness of vB. It should be emphasized that this is one of
the simplest proofs of Kripke incompleteness.® It should also be emphasized that in §5
we will prove a much more general result than the following lemma; but we include a
proof of Lemma 2.1 for later reference in §8.

Lemma 2.1. Any Kripke frame that validates vB also validates 0T — L.

Proof. Let F be a Kripke frame that validates vB. To show that F validates 00T — L,
or equivalently 0T — OO, it suffices to show that if x € F is such that R(xz) # (),
then there is a w € R(z) such that R(w) = (). So consider an x € F such that R(z) # ()
and a y € R(z). Let M be a model based on F with [p]™ = {u € F | u # y}. For
reductio, suppose there is no w € R(x) with R(w) = 0, so M,z E O0T. Then since
F validates vB, we have M,z F O(O(Op — p) — p), which with y € R(z) implies
M,y E Op — p) — p, which with our valuation for p implies M,y ¥ O(Op — p).
Thus, there is a z € R(y) such that M,z F Op but M, z ¥ p. From M, z ¥ p, we have
z = y. Then from z € R(y) and M,z F Op, we have y € R(y) and M,y F Op, so
M,y E p, a contradiction. Hence there is a w € R(z) with R(w) = (), as desired. !

All that remains to show is that 0T — 0L & vB. We can do so by exhibiting a
Kripke model M and showing that every ¢ € vB is globally true in M, while J0T — OJL

SWhen describing the origin of the vB axiom, van Benthem [1979] hints at a quasi-normal logic that
one recognizes as (a subsystem of) Solovay’s system GLS (see, e.g., Boolos 1993, p. 65), another
central formalism in the area of provability logic. The formula under [J in the consequent of vB,
i.e., O(@p — p) — p, is a theorem of GLS, and as shown by a syntactic derivation in van Benthem
1979, this formula alone makes it impossible to characterize GLS in terms of Kripke semantics with
distinguished worlds, which is the standard relational semantics for quasi-normal systems. We will
discuss such provability-related quasi-normal systems in §5.3.

5Tt is not, however, the most natural example of a Kripke incomplete unimodal logic. That honor
goes to the logic of the Henkin sentence O(Op «+» p) — Op (see Boolos and Sambin 1985), which is
also a simplest possible Kripke incomplete unimodal logic in the following sense: it is axiomatized
by a formula with only one propositional variable and modal depth 2. Lewis [1974] showed that all
normal unimodal logics axiomatizable by formulas of modal depth < 1 are Kripke complete. Despite
its charms, the Henkin logic is irrelevant for our puposes in this paper, for a reason that can be
explained using notions introduced in §3: the proof of its Kripke incompleteness does not attack
complete additivity, but rather closure under countable joins/meets, i.e., wC-completeness. This
property is exploited by most incompleteness proofs involving GL and its relatives, like the failure
of strong completeness of GL itself or the Kripke-inconsistency of various tense logics containing GL
(although counterexamples related to the original one by Thomason 1972 clash with full C rather
than its restriction to kC for any fixed cardinality «) [Litak, 2005b].



is not. Since every ¢ € K is globally true in every Kripke model, and the set of formulas
that are globally true in a given Kripke model M is closed under modus ponens and
necessitation, to show that every ¢ € vB is globally true in M, it suffices to show that
every substitution instance of the vB-axiom is globally true in M.

In the literature on Kripke incompleteness, rather than directly exhibiting a model M
as above, authors typically exhibit an appropriate general frame” G = (W, R, W) where
(W, R) is a Kripke frame and W is a family of subsets of W that is closed under union,
complement relative to W, and the operation X +— R71[X] = {w € W | 3z € X: wRx}.
An admissible model based on a general frame G = (W, R, W) is a model (W, R, V) such
that [[p]]M € W for every propositional variable p. An easy induction then shows that
for every ¢ € L, [¢]™ € W. It follows that if a formula 1) is globally true in every
admissible model based on G—in which case ¥ is wvalid over G, written ‘G F 1)’—then
for any particular admissible model M based on G, all substitution instances of v are
globally true in M. Thus, to obtain a model M as in the previous paragraph, it suffices
to exhibit a general frame G over which the vB-axiom is valid, while 0T — O is not.

Another way to motivate going to a general frame here is by the following observation.
Define a consequence relation Fg by I' Fg ¢ iff for every general frame G, if G F o for all
o € X, then G F ¢. Then it can be shown that there is an exact match between Fg and
the derivability relation F"* above: X Fqg ¢ iff ¢ belongs to the smallest normal modal
logic containing .. So to show that JOT — [JL does not belong to vB, we simply show
that vB-axiom ¥ OOT — L, which is again to show that there is a general frame G
over which the vB-axiom is valid, while (00T — [JL is not.

Definition 2.2 (van Benthem frame). The van Benthem frame (see Figure 1) is the
general frame VB = (W, R, W) where:

1. W=NU{oo,00+1};
2. R={{co+1,00),(0c0,00)} U{({c0,n) | n € N} U{{m,n) | m,n € N,m >n};’
3. W={X CW | X is finite and co ¢ X} U{X C W | X is cofinite and co € X}.

Observe that W is closed under union, relative complement, and X + R™1[X].

ﬂ@
LN > 1 > 0
\/

o0o+1 ——>

Figure 1: The van Benthem frame.

We now add the final piece of the argument.

"Readers familiar with the algebraic approach to modal logic will of course note that one can directly
define a modal algebra (BAO) instead. We will introduce modal algebras soon in §3.

8Cresswell [1984] notes that we can leave out {00, o), but the co-reflexive variant will be more conve-
nient in §6.1.



Lemma 2.3. O0T — O(0(Op — p) — p) is valid over VB, while O0T — L is not.
Thus, O0T — OL & vB.

Proof. Consider any admissible model M based on VB. First observe that 0 € [OL]M,
and for all w € W\ {oo + 1}, wRO0, so w & [OOT]M; but co + 1 € [OOT]M, so we have
[O0T]M = {oo + 1}. Thus, we need only show that oo 4+ 1 € [O(0(0p — p) — p)]M,
which is equivalent to co € [O(Cp — p) — p]M. If co € [O(Op — p)]™, then for
every n € N, n € [Op — p]™, whence an obvious induction shows that N C [p]M.
Hence [p]™ is cofinite, so oo € [p]™. This shows that oo € [O(Cp — p) — p]™, which
completes the proof that JOT — O(0(Op — p) — p) is valid over V5.

Finally, observe that oo +1 ¢ [OJ0T — OL]M. o

Putting together Lemmas 2.1 and 2.3, we have the claimed result.
Theorem 2.4 (van Benthem 1979). The logic vB is Kripke incomplete.

Van Benthem’s main point was not that vB is Kripke incomplete,” but that it is a
special example of such incompleteness: it can be used to show that the derivability
relation ™" falls short of capturing not only the consequence relation Fpg itself, but
also syntactically inspired weakenings of Fr. We will return to this in §8.

The main point we wish to make about vB is that it is special in another way: it
provides the long missing example of a V-incomplete logic. To explain what this means
and its context, let us now review the algebraic perspective on modal logic.

3 The Algebraic Approach to Modal (In)completeness

As noted in §1, the discovery of Kripke incompleteness renewed interest in the algebraic
semantics for normal modal logics based on Boolean algebras with operators (BAOS)
[Jonsson and Tarski, 1951, 1952]. An n-ary operator on a Boolean algebra with universe
A is a function f: A™ — A that preserves finite joins in each coordinate (including
the join of the empty set, L); a dual operator preserves finite meets in each coordinate
(including the meet of the empty set, T). A BAO is a Boolean algebra equipped with a
collection of operators. In this paper, we consider only BAOs with unary operators. If
the collection of these operators in a BAO 2 has cardinality s, we call 2 a k-BAO. Per
tradition, we call a 1-BAO a modal algebra (MA).

The language of basic unimodal logic can be interpreted in an MA 2l in the obvious
way: any mapping 6 of propositional variables to elements of 2 extends to a mapping 6
of arbitrary formulas to elements of 2, taking 0(p) = 0(p), 0(—¢) = —0(p), O(¢ V V) =

9Indeed, the very existence of Kripke incomplete logics was not much of a revelation anymore at the
time. We have already mentioned in the opening paragraph of this paper that Kripke incompleteness
was first demonstrated with a bimodal logic [Thomason, 1972] and shortly thereafter with complicated
unimodal logics [Fine, 1974, Thomason, 1974a] located in increasingly specific areas of the lattice
of extensions of K. Van Benthem himself devoted an earlier paper [1978] to simple examples of
incomplete logics. But, more importantly, at that time two crucial results (which are going to be
our main concern in §6.3 and §§7-8) that make explicit the ubiquity and unavoidability of Kripke
incompleteness were already known: Thomason 1975a and Blok 1978.
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0(p) + (), and 0(Op) = f(O(¢)), where —, +, and f are the complement, join, and
operator in 2, respectively. The MA 2 validates a modal formula ¢ (notation: 2 E ¢)
iff every such mapping sends ¢ to the top element T of 2. For a given class X of MAs
(see below for important examples of such classes), we define a consequence relation Fy,
analogous to the global Kripke frame consequence relation Fr from §2:

o YEypiff forevery A€ X, if AFE o for all o € X, then A F .

All of the notions above extend to interpreting a polymodal language with x modal
operators in k-BAOs in the obvious way.

Definition 3.1. Let X be a class of k-BAOs and L a normal modal logic in a language
with k modal operators. We say that L is X'-complete if for all formulas ¢, we have
p e Liff L Ey . Otherwise L is X'-incomplete.

Equivalently, L is X-complete if L is the logic of some class K C X, i.e., L is exactly
the set of formulas validated by all BAOs in K.

Each normal modal logic L is the logic of a BAO: the Lindenbaum-Tarski algebra
of L, whose elements are the equivalence classes of modal formulas under the relation
defined by ¢ ~ ¢ iff ¢ <> ¢ € L, and whose operations are defined in the obvious way:
=[] = [, el + W] = [ V], and fi([¢]) = [Qip]. This general algebraic completeness
theorem via Lindenbaum-Tarski algebras can be seen as a special case of an even more
general approach: since the derivability relation!® H"" associated with a given normal
modal logic L is (Rasiowa) implicative and hence strongly finitely algebraizable, one
obtains a strong completeness theorem for L with respect to algebraic semantics using
the standard machinery of Abstract Algebraic Logic [Rasiowa, 1974, Blok and Pigozzi,
1989, Czelakowski, 2001, Andréka et al., 2001, Font, 2006, Font et al., 2003, 2009]; see
§5.3 and especially Footnote 21 for historical origins of this approach.

Before proceeding further, let us fix notation for dealing with algebras. We use gothic
letters 2, B, €. .. for names of algebras and a, b, c. .. for elements of algebras. Whenever
it is not confusing, we blur the distinction between an algebra and its carrier, writing
statements like ‘a € A’. We also blur the distinction between modal formulas and BAO-
terms, and henceforth we will simply use —, V, and A for the complement, join, and
meet, respectively, in our algebras, trusting that no confusion will arise. In an MA, we
take ¢ to be the operator and [J to be a dual operator, defined by (Ja = —-{0—a. In BAOS,
we may add indices to distinguish between multiple operators, e.g., taking (0) and (1)
to be operators and [0] and [1] to be their duals.

The generic completeness result described above made the algebraic semantics histor-
ically the first to be studied, prior to the invention of Kripke frames (see Goldblatt 2003,
§3; Blackburn et al. 2001, §1.7). However, one can also obtain a generic completeness re-
sult with respect to the general frames introduced in §2.'' This result is implicit already
in the work of Jénsson and Tarski [1951, 1952], who proposed an extension of Stone’s

10The relation F"" is defined by: ¥ F"" ¢ iff ¢ belongs to the closure of L U ¥ under modus ponens
and necessitation. For L = K, Fg'™ is the derivability relation that matches global consequence over
Kripke models: ¥ Enr ¢ iff for every Kripke model M, if M E ¢ for all o € 3, then M F ¢.

1 One does not even need drastically non-constructive set-theoretic principles: general-frame strong
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Representation Theorem from Boolean algebras to BAOs.!? The general frames obtained
via this representation are known as descriptive frames; thus, every normal modal logic
is sound and complete with respect to a class of descriptive frames. Furthermore, for a
large class of modal axioms/equations (especially so-called Sahlqvist axioms and their
various generalizations, see for example Conradie et al. 2006 or Conradie et al. 2014
and references therein), one can in addition observe their persistence in passing from a
descriptive frame to its underlying Kripke frame. This phenomenon is known in the con-
temporary literature as canonicity or d-persistence (Chagrov and Zakharyaschev 1997,
Ch. 10, Blackburn et al. 2001, Ch. 5), but in hindsight the Jénsson-Tarski work can
be seen as its earliest study. In short, algebra combined with duality theory provides a
viable route towards Kripke completeness results for suitably well-behaved logics.'® On
the other hand, as far as weak completeness (which is the main subject of the present
paper) with respect to finite models is concerned, it is not necessary to phrase such
completeness results in algebraic terms,'® or to involve the Stone-Jénsson-Tarski duality
in the proof.?

In the reverse direction, we of course do not need Kripke frames (or any other seman-
tics) as an intermediate step in proving algebraic completeness; the Lindenbaum-Tarski
construction provides a direct route. Nevertheless, Kripke completeness results can be
reformulated and understood from an algebraic point of view: they establish that the

completeness of logics in countably many variables is equivalent to the weak Kénig Lemma even over
RCAo, the weak base theory for reverse mathematic [Simpson, 2009, IV.3.3]. Recall that the weak
Kénig Lemma holds in ZF, or even in the Zermelo set theory (i.e, ZF without replacement). One
needs, of course, more powerful principles to show general-frame strong completeness of logics in
uncountably many propositional variables (see Footnote 12).

2Continuing the constructive theme of Footnote 11, representation theorems of this kind are more
disputable, as they rely on the Ultrafilter Theorem, or equivalently, the Boolean Prime Ideal Theorem
(BPI). While still not as strong as the unrestricted Axiom of Choice (AC), BPI is definitely non-
constructive and inconsistent even with many interesting extensions of ZF, such as the one obtained
by adding the Aziom of Determinacy (AD) of Mycielski and Steinhaus (see, e.g., Kanamori 2008,
Chapter 6 for an extensive yet accessible discussion of the position of this axiom in modern set theory).
However, one needs BPI to prove general-frame strong completeness for logics with uncountably many
propositional variables. By contrast, BPI is not necessary to prove the strong completeness of such
logics with respect to the general possibility frames of Holliday 2015.

13To conclude on the theme of Footnotes 11 and 12 it might seem that completeness based on canonicity
is rather non-constructive, but with some care it is possible to prove more fine-grained results along
these lines—see Ghilardi and Meloni 1997 and also Suzuki 2010 for details.

14 Think, e.g., of tableaux-style extraction of countermodels from failed proof search in suitable Gentzen-
style calculi. Even the original completeness proofs of Kripke 1959, 1963 were formulated in this way.
The subsequent literature is too rich to discuss here, but see Footnote 15 for some references providing
an algebraic perspective on such techniques.

15Such results are not restricted to d-persistent logics, and even when the logic happens to be canonical,
it may still be desirable to show its finite model property without resorting to infinitary methods
(see Fine 1975, Moss 2007, and Bezhanishvili and Ghilardi 2014; the relationship between such
finitary, normal-form-based approaches, duality theory, and construction of free algebras is discussed
in Ghilardi 1995, Bezhanishvili and Kurz 2007, and Coumans and van Gool 2013). In the context
of canonicity, it is also worth mentioning that there are natural examples of logics that are strongly
Kripke complete without being d-persistent, such as the tense logic of the reals [Wolter, 1996b]; if
one is willing to extend the notions of strong completeness and canonicity to neighborhood frames,
another spectacular example is provided by the McKinsey logic [Surendonk, 2001].
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equational class (variety) of BAOs corresponding to a given modal logic is determined
by its elements with special additional properties. In other words, they show that when
looking for algebraic models refuting a given formula/equation, one can restrict attention
to a well-behaved subclass of algebras.

Let us discuss this in more detail. Recall the standard construction associating with
a given Kripke frame F = (W, R) its dual MA F*, whose universe is (W), whose
Boolean operations are interpreted using the set-theoretic ones, and whose operator is
defined by 0X = R™![X]. This is just a special case of taking the dual of a general
frame G = (W, R, W), where the MA in question is provided by W; in the case of Kripke
frames, W = p(W). As observed already by Jénsson and Tarski [1951, 1952], such an
MA always has the following three special (and mutually independent) properties.

(C) lattice-completeness: given any set X of elements of 2, its join \/ X exists in 2.
This also implies the existence of arbitrary meets.'6

(A) atomicity: any non-bottom element is above an atom, i.e., a minimal non-bottom
element.!”

(V) complete additivity: for any set X of elements, if \/ X exists, then \/{0z | z € X}
exists and

<>\/X=\/{<>x]x€X}.

For complete MAs, complete additivity reduces to distributivity of ¢ over arbitrary joins.
Of course, V can be equivalently stated with /\ replacing \/ and O replacing ¢.

Remark 3.2. As we shift from unimodal to polymodal contexts, C will be the class of
complete BAOs with the appropriate number of operators in the context, and similarly
for A, V, etc. In principle, when we say a polymodal logic is V-complete, we should mean
that it is complete with respect to BAOs in which every operator is completely additive.
But most of the time, complete additivity of all operators occurring is not needed, and
we may wish to be more fine-grained: given a logic L with modalities indexed by natural
numbers, we can say that L is V,-complete if it is X'-complete, as in Definition 3.1, where
X is the class of BAOs in which the n-th operator is completely additive.

As it turns out, the combination of the three properties above is a defining feature
of duals of Kripke frames. One can say even more: the category of Kripke frames with
bounded morphisms is dually equivalent to that of CAV-BAOs with complete morphisms
[Thomason, 1975b]. In particular, taking any Kripke frame/C.AV-BAO, converting it into

5Tn the case of (duals of ) Kripke frames, where every subset is admissible, \/ is simply | J. Nevertheless—
and this is an important point!—it does not have to be the case with general frames whose W is
lattice-complete. In particular, in any descriptive frame associated with an infinite C-BAO, there are
instances of joins and meets not coinciding with unions and intersections.

"In the case of (duals of) Kripke frames, the atoms are obviously singleton sets {x}. Again, for arbitrary
general frames this does not have to be the case, but this time the issue is not as crucial as it was
with joins and meets in Footnote 16: in differentiated general frames, which are in an important
sense the only relevant ones, admissible atoms have to be singleton sets.
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its dual CAV-BAO/Kripke frame, and then going back produces an output isomorphic
to the original input. Therefore, Kripke completeness is just CAV-completeness.

In this way, we are led to the first of the two angles on Kripke incompleteness discussed
in the introduction: the semantic angle. Given that the properties C, A, and V are
independent of each other, will arbitrary combinations of these three lead to distinct
notions of completeness, each more general than Kripke completeness but less general
than algebraic completeness? Or is the propositional modal language too coarse to
care about differences between all or at least some of these semantics? And how about
other notions contained somewhere in between? For example, C can be weakened to
w-completeness (wC), i.e., closure under countable meets and joins. One can then ask
if there are logics that are wC-complete but not C-complete. For another important
example, consider the property T of admissibility of residuals/conjugates. Recall that A
admits conjugates if there is a function p: 2 — 2 such that for every a,b € A, aAOb = |
iff pa Ab = L. Alternatively, we can say that an algebra admits residuals if there is
a function h: 2 — 2 such that for every a,b € 2, a < hb iff da < b. These two
definitions are equivalent, taking ha = —p—a.'® Some well-known facts include 7 C V
(i.e., admissibility of residuals implies complete additivity) and CT = CV (i.e., in the
presence of lattice-completeness, the converse implication also holds). Once again, one
may ask: how does T-completeness relate to all the other completeness notions?

As mentioned in §1, a systematic investigation into these questions has been under-
taken by Litak [2004, 2005a, 2005b, 2008], unifying, expanding, and building on earlier
results by Thomason, Fine, Gerson, van Benthem, Chagrova, Chagrov, Wolter, Za-
kharyaschev, Venema and other researchers. There is no place here to discuss most of
the results in detail, but an executive summary of those most relevant for the present
paper is as follows:

e almost any conceivable combination of the above properties of BAOs leads to a
distinct notion of completeness. In other words, for almost any pair of such com-
binations, there is a logic complete in one sense, but not in the other;

e the Blok Dichotomy (§7), the famous result of Wim Blok showing that Kripke
incompleteness is in a certain mathematical sense the norm rather than an excep-
tion among normal modal logics, generalizes to most of these weaker notions of
completeness;

e many of these notions admit syntactic characterizations in terms of conservativity
of certain types of extensions, e.g., AV-completeness in terms of conservativity of
minimal nominal extensions (§8.2), T-completeness in terms of conservativity of
minimal tense extension (§8.3), or wC-completeness in terms of conservativity of
minimal infinitary extensions with countable conjunctions and disjunctions.

The possibility of V-incompleteness, however, was left completely open, and in fact it
was the sole reason for the “almost any” hedge above (Litak 2004, Litak 2005b, Ch. 9,

8Observe that we do not require that residuals are term-definable. This is the difference between BAOs
admitting residuals and Jipsen’s [1993] residuated BAOs.
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Litak 2008, §7). Discussing this line of research in the Handbook of Modal Logic, Venema
[2007, §6.1] singled out a slightly stronger version of the same question: whether there
are V-inconsistent logics, i.e., normal modal logics that are not sound over any V-BAO.

Why was this question so puzzling? First of all, note that while a free algebra on
infinitely many generators in any variety of BAOs can never be lattice-complete or atomic,
it can be completely additive.!® One can imagine that if V is not inconsistent with
freeness, then there might be a general way of turning any BAO into a completely additive
one without changing the set of valid equations. But there are other ways in which
complete additivity seemed somewhat intangible. Unlike its closest relatives AV and
T, for which van Benthem’s logic vB can be shown to be incomplete, V did not seem
definable in a language with a usable model theory.

Let us make this more precise. There is an obvious first-order correspondence language
for BAOs, whose connectives can be written as V,3, =, &, OR, NOT (to avoid nota-
tional clashes with BAO-terms and modal formulas). For classes of algebras definable in
this language, one can even blur the distinction between the class itself and its defining
formula. A, AV and T are first-order properties, in fact even V3IV-properties. But how
could one define V without using infinitary formulas (of unrestricted cardinality!) or a
powerful second-order language (with full rather than Henkin semantics)?

4 YV as an Elementary Class

Surprisingly, complete additivity is in fact a first-order property. To prove this, it will
be helpful to use some abbreviations for describing relations between elements of a BAO
2. Let lower-case letters range over elements of 2l and define:

a € (b] stands for a# 1l &a<b
Jda € (b].c stands for Jda.a € (b] & «
Va € (bl.a stands for Va.a € (b = a.

Consider a property of BAOs formulated in our correspondence language as follows:
R: Va,b.a NOb# L = Fee (b.Vd € (c.aNOd # L.

The origin of this condition is in the duality theory for classes of BAOs and possibility
frames in Holliday 2015. There the condition is viewed as follows. Given a BAO 2, define
a binary relation Ry on the universe of 2 by: aRyc iff for all d € (¢], a A Od # L. Then
2 satisfies R iff whenever a A Ob # L, there is a ¢ € (b] such that aRyc. Any such BAO
can be turned into a possibility frame with the accessibility relation provided by R and
the validity relation coinciding with that of the original algebra.

We will now prove that R is equivalent to complete additivity.

9For a characterization of when the Lindenbaum-Tarski algebra of a normal modal logic is completely
additive, see Holliday 2015, §7.2. Ghilardi [1995] showed that free algebras in the variety of all BAOs
are T-BAOs (and hence V-BAOs), while Bezhanishvili and Kurz [2007] extended this to all varieties of
BAOs axiomatized by rank-1 formulas. Holliday [2014] added an analogous result for KT, K4, KD4,
and S4 (and reproved it for K, KD, and all extensions of KB).
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Theorem 4.1. R implies V.

Proof. We prove this by contraposition. Assume 2 is not a V-BAO. This means there is
a B C A such that \/ B exists in 2, but there is an a € 2 such that:

(i) forallb e B, 0b< a

(i) OV B £ a.
By (ii), na A O/ B # L, so in order to refute R, it is enough to show that

Ve e (\/B].Eld € (cl.maNd= L.

Pick such a ¢ € (\/ B]. Distributivity laws holding in any Boolean algebra imply that
there must be a b € B such that d :=bAcisnot L, so d € (¢]. But then

Od=0(bAc)<Ob<a
by (i), so ma A Od = L. o
Theorem 4.2. V implies R.
Proof. Again we reason by contraposition. Assume for some a,b € 2 that
aNOb# L &Vee (b.3d € (c.anOd = L. (1)

Consider B :={d € (b] | a A 0d = L}. To refute V it is enough to show that

VB:a

for then a AQO\/ B=aAQb# L, yet for all d € B, a A {d = L, which implies

0\/ B+ \/{0d|de B}.

By definition of B, b is an upper bound of B, so we need only show that it is the least.
Suppose there is an upper bound o of B such that b £ &’. Hence ¢ := b A -’ is not L,
so ¢ € (b]. Then (1) implies there is a d € (c] such that d € B. Therefore d < -/, and
since ¥’ is an upper bound of B, d < b'. But then d = L, contradicting d € (¢]. =

Remark 4.3. It is worth noting in passing that 7 implies R in a more direct way:
where p is the conjugate of ¢, take ¢ := pa A b, so a A Ob # L implies pa A b # 1 and
hence ¢ € (b]; then if d € (¢] were such that a A 0d = L, we would have pa A d = L and
hence d < pa < —d, contradicting d € (¢]. We shall see a derivation of a similar form at
the end of §9.2.

Corollary 4.4. V =R.

Not only does this show that V is a first-order property, but furthermore that it is of
a rather convenient syntactic shape: V3V. Such conditions are particularly convenient
for reformulation as non-standard inference rules, which we will discuss in §9.
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5 V-Incompleteness

Using the equivalence of V and R, we can now prove a result from which all of our
V-incompleteness theorems will derive.

Theorem 5.1. Let 2 be a Boolean algebra, a € 2, and (0) and (1) operators on 2 (not
necessarily primitive) such that

1. (1) is completely additive, and
2. for any x € A, a < [1]([0]([0]z — =) — x).
Then a < [1]L.

Proof. Suppose that a A (1) T # L. Since (1) is completely additive, by Theorem 4.2 we
can apply condition R to (1) with b:= T to obtain:

Je# L.Vde (c.an(l)d# L. (2)

Pick such a ¢ and observe that if ¢ < (0)(c A [0]—¢), then (using this very inequality to
substitute (0)(c A [0]-c¢) for the first occurrence of ¢ on the right-hand side) we get

¢ < {0)(e A [0]=e) < {0)((0)(c A [0]=¢) A [0] =) = L,
a contradiction. Hence, we have that
c¢ A [0]([0]=¢ — —c¢) # L.

Then by taking d in (2) to be ¢ A [0]([0]—¢ — —¢), we have

a A (e [0]([0]e = —¢)) # L,

which contradicts condition 2 in the statement of the theorem. =

The fact that we do not insist on these operators to be primitive allows a lot of
flexibility in instantiating this theorem, as we will witness below in Theorems 5.2, 5.4,
5.6, 7.3, 7.4, and 7.5. Note that working with this more general notion of operator would
in fact allow us to replace a with T in the above statement without loss of generality:
the present statement would follow after replacing [1]x with [1],z := a — [1]z (as this
transformation preserves complete additivity).

5.1 The van Benthem Logic

We are now ready to prove that the logic vB of §2, the smallest normal modal logic
containing 0T — O(0(Op — p) — p), is V-incomplete. To state this result in a more
general form, let us borrow notation from Cresswell [1984]: let ID be the logic of the van
Benthem frame VB from Definition 2.2 (see §6.1 for an explanation of this name).

Theorem 5.2. Any logic between vB and ID is V-incomplete.
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Proof. By Theorem 5.1, taking (1) = (0) = ¢ (and hence [1] = [0] = 0) and a := 00T,
any V-BAO that validates vB is such that OOT < O, so it validates OOT — OL.
However, by Lemma 2.3, 00T — OL ¢ L for any logic L contained in ID. Since vB is
contained in ID by Lemma 2.3, the theorem follows. o

We have now come a long way from the initial Kripke-incompleteness results, i.e.,
CAV-incompleteness results, of the 1970s. It turns out that each of the properties C
[Litak, 2004], A [Venema, 2003], and finally V gives rise to incompleteness by itself.

Next, we will show that there are syntactically consistent bimodal logics that are V-
inconsistent in the sense that they are not even sound with respect to any V-BA0o. This
is not possible in the unimodal case, since by Makinson’s Theorem [Makinson, 1971],
every normal unimodal logic is sound with respect to a Kripke frame—either the single
reflexive point or the single irreflexive point—and hence with respect to a CAV-BAO.

For the V-inconsistency result, consider a bimodal language with modalities [J and [e]
and let vBe be the smallest normal logic in this language containing the vB-axiom for
[0 and the axiom (e)(OOT A QT). In addition, let VBE be the general frame for the
same language that extends VI3 such that the accessibility relation for (e) in VBE is the
universal relation on the frame. Finally, let IDe be the logic of VBE.

Theorem 5.3.
1. Any logic extending vBe (in particular IDe) is V-inconsistent, yet vBe is consistent.

2. Any logic extended by IDe (in particular vBe) is A-consistent, and IDe is A-
complete.

Note that we will prove more powerful results in Theorem 6.1 and Corollary 6.2.

Proof. For the V-inconsistency of extensions of vBe, by the proof of Theorem 5.2, every
V-BAO that validates the vB-axiom for (J is such that OO TAQT = L, so (e)(JOTAOT) =
L. For the consistency of vBe, observe that VBE validates vBe.

For part 2, observe that the BAO underlying VBE is atomic. -

The logic vB was introduced by van Benthem to prove a point about modal incom-
pleteness, which we have pushed all the way to V-incompleteness. Theorem 5.2 raises
the question: are there also “naturally occurring” examples of V-incomplete logics?

As soon as we have at least two modal operators at our disposal, the answer turns out
to be an emphatic “yes”.

5.2 The Provability Logic GLB

To motivate the main logic of this section, we recall that formulas of propositional modal
logic can be translated into sentences of Peano Arithmetic (PA) as follows: map each
atomic p, to a sentence of arithmetic, send the modal [J to the arithmetized provability
predicate Bew of PA, and make the translation commute with the Boolean connectives in
the obvious way. Solovay [1976] famously showed that the modal logic GL, the smallest
normal modal logic containing the Lob axiom O(Op — p) — Op is arithmetically sound

18



and complete: a modal formula ¢ is a theorem of GL iff for every mapping of atomic
sentences p, to sentences of arithmetic, the induced arithmetic translation of ¢ is a
theorem of PA. Thus, GL captures the logic of the provability predicate of PA.

Japaridze [1988] introduced a polymodal extension of GL, the bimodal version of which
we will treat here. Let us interpret a bimodal language with operators [0] and [1] in the
language of PA by sending [0] to the provability predicate Bew of PA as before and
sending [1] to a predicate wBew encoding provability from PA with one application of the
w-rule. A sentence o of arithmetic is provable in PA with one application of the w-rule
if for some formula (), PA proves Vxp(x) — o and proves ¢(n) for every numeral n.
The bimodal system that captures the combined logic of provability and w-provability
in PA is the smallest normal bimodal logic containing the following axioms:

(i) [n]([n]p — p) — [n]p for n =0, 1;
(ii) [0]p — [1]p;
(iit) (0)p — [1](0)p.

Japaridze [1988] proved that this logic, now known as GLB [Boolos, 1993], is arithmeti-
cally sound and complete in the sense analogous to that of GL above.

While GL is Kripke complete [Segerberg, 1971], GLB is Kripke incomplete (Japaridze
1988, see also Boolos 1993, p. 194). To see this, recall that over Kripke frames, the Lob
axiom (i) for [n] corresponds to the associated accessibility relation R,, being transitive
and Noetherian (conversely well-founded); axiom (ii), which we can equivalently take in
the diamond form (1)q — (0)q, corresponds to the property that zR;y implies xRyy;
and axiom (iii) corresponds to the property that if zRoy and xR1y, then y' Roy.

Such a combination of axioms, however, makes R; an empty relation. Suppose there
are x,y for which xR1y in some Kripke frame for GLB. Hence xRgy by the property
corresponding to axiom (ii). Then using xRyy, 2Ry, and the property corresponding
to axiom (iii), we obtain yRoy, which contradicts the Noetherianity of Ry given by the
Lob axiom for [0] (note that the argument does not use the Léb axiom for [1]). But
Japaridze’s arithmetical soundness theorem for GLB shows that [1].L is not a theorem of
GLB (a semantic argument can be extracted from Theorem 5.5 below). Thus, [1]L is a
non-theorem of GLB that is valid in all Kripke frames for GLB.

Viewed algebraically, Japaridze’s Kripke-incompleteness result shows that GLB is
CAV-incomplete. Once again, it is natural to ask whether the incompleteness persists if
we drop one or more of the properties C, A, and V. Beklemishev et al. [2010] show that
GLB is complete with respect to a class of topological spaces, which implies that it is C.A-
complete. In light of this result, it is a natural question whether the CAV-incompleteness
of GLB is due to the interaction of V with the other properties or whether it is due to the
property V by itself. Using the equivalence of ¥V and R from §4, we are able to answer
this question and show that V by itself is to blame.

Theorem 5.4. The logic GLB is V-incomplete.

Proof. First, for any BAO 2 validating GLB and any = € 2, we have
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because

(L)([0]([0]z — =) A ) (1)([0]x A —z) by the Léb axiom for [0]

[0]z A
[0]z A (0)—z by axiom (ii) of GLB
[0]z A [1]{0)—x by axiom (iii) of GLB

IAIA A IATA
=

Thus, if 2 is a V-BAO, then we can apply Theorem 5.1 with a := T to obtain T < [1].L.
Yet as noted above, [1]L ¢ GLB. o

Note that this proof uses the complete additivity only of the [1] operator, so it shows
that GLB is in fact Vi-incomplete in the sense of Remark 3.2. Similar remarks apply to
later results involving variants of GLB, though we will not mention this again.

We can get still more mileage out of this result by following the pattern of Theorem
5.3 to obtain another example answering the V-inconsistency question of Venema [2007,
§6.1], this time with something closer to a “natural” logic. As in the case of vB, the
problematic formula derivable over V-BAOs for GLB is variable free. Therefore, let us
define GLBe as the smallest normal modal logic in the language with three modalities
[0],[1] and [e] containing the GLB axioms for [0] and [1] as above as well as the axiom
(€)(1)T. The semantics for GLB based on the GLB-spaces of Beklemishev et al. [2010]
can be extended to a semantics for this trimodal language that shows the consistency
of GLBe. Explaining this semantics would take us too far afield here,?’ so we omit the
details and refer the interested reader to Beklemishev et al. 2010, Beklemishev 2011.
Putting together the consistency of GLBe and Theorem 5.4, we obtain the following;:

Theorem 5.5. The logic GLBe is consistent (and even sound with respect to the ordinal
version of the topological GLB-semantics of Beklemishev et al. 2010, Beklemishev 2011)
but V-inconsistent.

One may hope to find not only a good topological interpretation, but also a good
arithmetical interpretation of (e) that would make (e)(1)T valid. This would make
GLBe a natural example of V-inconsistency among normal logics. As things stand now,
we have at least an extraordinarily natural example of V-incompleteness in Theorem 5.4.
And for V-inconsistency, we can do better than GLBe in the quasi-normal realm of §5.3.

20 A comment for readers familiar with this line of work: recall that this semantics for GLB is defined in
terms of spaces with two suitably related scattered topologies and diamonds interpreted by the derived
set operator rather than Kuratowski’s closure operator. Ordinals provide particularly important
instances of GLB-spaces, with [0] interpreted by the order topology and [1] by the club topology.
By extending this semantics to interpret GLBe, we simply mean adding an arbitrary third topology
interpreting [e]. For the proof of Theorem 5.5, just the trivial topology on any « > X, would do.
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5.3 V-Inconsistency of GLSB

If one is willing to broaden somewhat the setup of the present paper, a very natural
example of V-inconsistency can be found among modal logics without the necessitation
rule. In analogy with §2, given a normal modal logic L 2 K, we can define ¥ H"" ¢ to
mean that ¢ belongs to the closure of LUY under modus ponens and uniform substitution.
A set of formulas closed under =" is called a quasi-normal logic over L or simply a quasi-
normal L-logic. If L = K, we simply use the name quasi-normal logic. These notions
transfer without any changes to the polymodal setting.

Algebraic semantics for these quasi-normal logics has been well-investigated. One
can find a standard presentation in, e.g., Chagrov and Zakharyaschev 1997, Ch. 7; an
early exhaustive discussion is provided by Blok and Kohler [1983], who indicate that
the basic notion of a filtered modal algebra is a special case of the notion of a matriz
that dates back to the pre-war work of the Warsaw school.?! As discussed by Jansana
[2006], non-normal modal logics were an important inspiration for Blok’s later work on
Abstract Algebraic Logic, and more generally, such logics have been a major source of
examples and applications in the area (see Blok and Pigozzi 1989, Andréka et al. 2001,
Czelakowski 2001, Font 2006, Font et al. 2003, 2009).

Instead of reproducing the whole apparatus here, let us just recall what is most relevant
for our purposes. In this section, we are only interested in quasi-normal logics where
each box operator obeys the Lob axiom. BAOs in which each dual operator validates the
Lob axiom are called diagonalizable BAOs.

Let 2 be a BAO. Recall that a non-empty subset F' C 2l is called a filter if

o for any a,be A, a,be Fiffanbe F.

F is proper if F # 2(. A maximal proper filter is called an wultrafiiter.

Let L be a quasi-normal Lob logic, i.e., a quasi-normal, polymodal logic such that for
any (n) in the signature, the unimodal restriction of L to (n) is an extension of GL. We
say that a pair (U, F') is a matriz for L if

e 2l is a diagonalizable BAO and F' is a filter on it, and
e for any ¢ € L and any valuation 6 on 2, 6(¢) € F.

It is a standard fact (see the references above) that every quasi-normal Lob logic L is
sound and complete with respect to its class of matrices.
We can apply our terminology for BAOs to matrices as well: (2, F') is a C-, A-, V-matrix
if A is a C-, A-, V-BAO. A matrix is degenerate if F' is not proper, i.e., if FF = 2.
Quasi-normal modal logics arise naturally in the context of provability logic. Say that
a formula ¢ of the language of GLB is always true if for every mapping of atomic formulas

21« A well-known result, going back to the twenties, states that, under some reasonable assumptions, any
logic can be characterized as the set of formulas satisfied by a matrix (S, F'), where S is an algebra
of the appropriate type, and F' a subset of the domain of X ....” In this opening quote, Blok and
Kohler [1983, p. 941] were presumably referring here to Lukasiewicz and Tarski [1930]. The exact
references and more history can be found, e.g., in Font et al. 2003, §1.2.
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to sentences of arithmetic, the induced arithmetic translation of ¢ is true in the standard
model of arithmetic. Then we may ask for a bimodal logic L such that ¢ € L iff ¢ is
always true. Clearly L must be an extension of GLB that is closed under modus ponens
and uniform substitution and contains the axioms [n]p — p. But then L cannot be closed
under necessitation, since that would give us [0]([0]L — L) as a theorem, which is not
an always true formula by Gédel’s Second Incompleteness Theorem. The desired logic
L is the logic GLSB [Boolos, 1993], which can be defined as the quasi-normal GLB-logic
obtained by F""-closing under [1]p — p. Japaridze [1988] proved that GLSB is exactly
the logic of the always true sentences about provability and w-provability. As it turns
out, this logic also provides a quasi-normal example of V-inconsistency.

Theorem 5.6. There exists no non-degenerate V-matrix for GLSB.

Proof. Assume (2, F) is a V-matrix for GLSB. Then F' has to contain all instances of
[1]¢ — ¢, so in particular [1] L — 1 = (1)T. But as observed in the proof of Theorem
5.4, (1)T = L holds in any V-BAO validating GLB, so the matrix is degenerate. -

Remark 5.7. One may wonder if we could obtain such a result in the unimodal setting.
While it would be possible to obtain examples of V-inconsistent quasi-normal unimodal
logics using, e.g., vB again, the natural candidate in one’s mind is probably GLS [Boolos,
1993], the logic of always true sentences about plain provability in PA. It is well known
that this logic does not allow any Kripke semantics with distinguished worlds, and van
Benthem [1979, §2.4] explicitly suggests that a related second-order derivation inspired
the axiom of vB. Interestingly, GLS allows V-matrices and even C.AV-matrices. The
real reason why the logic is problematic for the distinguished worlds semantics is that
matrices associated with this semantics can only use principal filters. One can show that
each such matrix for GLS (not even necessarily a V-matrix) must be degenerate.

6 Decidability and Complexity

Nontrivial completeness notions such as the ones studied in this paper raise questions
about their relationship to decidability. Are there decidable logics, perhaps even of low
complexity, that fail to be complete in the given sense? Is it decidable whether a logic
is complete in this sense? Finally, is the associated notion of consequence recursively
axiomatizable, i.e., does it allow some decidable notion of proof?

Well-developed metatheory of modal logics leads us to the conclusion that for V-
completeness, the answers to these questions are, respectively, yes, no, and yes. In this
section, we discuss these answers in more detail.

6.1 Decidable V-Incomplete Logics

The results of §5 show that V-incomplete logics can easily be decidable. The existence
of Kripke-incomplete yet decidable logics is not a new observation; an early result of this
kind was due to Cresswell [1984], who showed that the logic of the frame VB is Kripke-
incomplete but decidable—hence the name ‘ID’ for this logic. It follows by Theorem
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5.2 that ID is an example of a decidable V-incomplete logic. (It is an open question,
suggested to us by Johan van Benthem, whether vB itself is decidable.) Theorem 5.4
provides another example, since GLB is known to be decidable [Boolos, 1993, p. 206].
This example is again perhaps more spectacular, given the motivation for GLB.

These examples raise follow-up questions. First, one may ask for an example of a
decidable V-inconsistent logic. Second, one may ask for bounds on the computational
complexity of V-incomplete/inconsistent logics.

On the question of complexity, Cresswell’s [1984] decidability proof for ID uses an
embedding into Rabin’s [1969] S2S, which is much too powerful to provide a meaningful
complexity bound. One can normally do much better. For a rather striking example,
Litak and Wolter [2005] show that all tense logics of linear time flows that are either
finitely axiomatizable or (}-irreducible are coNP-complete. This class contains many
wC-inconsistent logics, i.e., logics that are not sound with respect to any non-degenerate
BAO closed under countable joins. And yet, it turns out that their complexity is no worse
than that of the classical propositional calculus. Similarly, it is possible to show that ID
is coNP-complete (see Corollary 6.2). In fact, however, one can prove a stronger result
that at the same time answers the first of the above questions: even V-inconsistent logics
do not have to be more complex than the Boolean calculus itself.

Theorem 6.1. IDe, the logic of the general frame VBE introduced in §5.1, is coNP-
complete and V-inconsistent. Furthermore, in ZF 4+ BPI (i.e., assuming the Boolean
Prime Ideal Theorem) it can be shown to be C.A-complete.

Proof sketch. V-inconsistency was already stated in Theorem 5.3.1. For the complexity
claim, the crucial part of the proof is analogous to Lemma 4.3(a) in Litak and Wolter
2005. In more detail, for any m € w define the m-collapse VBE,,, of VBE as the substruc-
ture induced by {00 + 1,00} U {m,...,0}. For a formula ¢, let [(p) be the cardinality
of nsub(p): the single-negation-closed set of subformulas of ¢. The crucial observation
is that the satisfiability of ¢ in VBE is equivalent to its satisfiability in the I(y)-collapse
under a -good valuation, i.e., one such that for any x € nsub(¢), if x holds at oo, then
it also holds at some n < [(p). This is shown as follows:

o If ¢ is satisfied in VBE by a valuation V, then for each x € nsub(¢) satisfied in
[0, 0], one picks the maximal?? point in this interval where x holds (note this is
never co!). One then defines a morphism from VBE;(,) to VBE such that all these
maximal points are in the codomain, which yields a valuation in VBE;(, via the
inverse image. By definition, the obtained valuation is -good, and one can show
inductively that satisfiability of formulas in nsub(y) is preserved and reflected.

e Conversely, given a good valuation in VBE;,), one takes this collapse as a sub-
structure of VBE (identifying corresponding “infinity points” and points with cor-
responding natural indices) and extends the valuation to the whole of VBE by

22Note this is the only difference with respect to Litak and Wolter 2005, where one needed to pick both
maximal and minimal elements (and thus duplicate the size of the model) due to the presence of
past modalities. Our simplified proof has the flavour of the selection-of-points argument for GL.3.
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copying the values of all propositional variables from oo to all remaining natural
numbers. Preservation and reflection of satisfiability of formulas in nsub(y) is
ensured by the p-goodness of the valuation.

The proof of the complexity claim is finished in the same way as for Theorem 2.1(ii) in
Litak and Wolter 2005: given any ¢, we simply guess a valuation in the [(p)-collapse,
whose size is bounded by I(¢)+3, i.e., polynomial in . Checking its ¢-goodness and the
satisfaction of ¢ itself under this valuation can be done in polynomial time. And coNP-
hardness does not require much justification: |De contains the propositional calculus.

Finally, regarding C.A-completeness, assuming the existence of ultrafilters (e.g., as a
corollary of the Axiom of Choice): one can follow Wolter [1993, §4.6] and Litak [2005a,
§4.4] and modify VBE = (W, R,W) to VBE = (W, R,W’), where W’ is obtained by
fixing a non-principal ultrafilter U over N and setting

W={XCW|XNN¢gUand oo g X}U{XCW |XNNeU and oo € X}.

All that one needs to finish the proof is to show that VBE and VBE' satisfy the same
formulas, and this can be done by extending the equivalence proved by the two bullet
points above to the following equivalence: ¢ is satisfiable in VBE iff ¢ is satisfiable in
VBEj(,) under a p-good valuation iff ¢ is satisfiable in VBE'. -

Corollary 6.2. ID, the unimodal logic investigated in Cresswell 1984, is coNP-complete
and V-incomplete. Furthermore, in ZF 4+ BPI (i.e., assuming the Boolean Prime Ideal
Theorem) it can be shown to be C.A-complete.

Proof. This is a straightforward corollary of Theorems 5.2 and 6.1. The C.A-completeness
claim follows from the fact that the unimodal fragment of IDe is exactly ID; it can also be
shown directly as in the proof of Theorem 6.1 (just neglecting the universal modality). -

This improvement on Cresswell 1984 shows why using methods as powerful as em-
bedding into Rabin’s [1969] S2S to show decidability should be regarded as either the
first step or the last resort. More tailored methods can yield dramatically improved
complexity bounds and as a bonus help to establish en route additional completeness
results. Furthermore, “tailored” should not be taken to mean “applicable to a single
isolated system”. These points are illustrated, again, by tense logics of linear time flows.
The methods used in the general complexity result of Litak and Wolter [2005] were de-
veloped in the course of an earlier thorough investigation of the lattice of these logics by
Wolter [1996a,b].2? As pointed out in Litak 2005a, Chapter 8, these methods also allow
us to show AT-completeness of all such logics and to find an example of a logic that is
xC-complete for any cardinal s, yet C-inconsistent.?* As in Theorem 6.1 and Corollary
6.2, fine-grained investigation of complexity and completeness seem to go hand in hand.

ZTFor another study of this lattice, see Kowalski [1998].

#Wolter and Zakharyaschev [2006, §§6.2 & 7] present the results of Wolter [1996a,b] and Litak and
Wolter [2005] as examples that the Big Programme or globalist’s dream, whose general failure we
mention in §6.3 below, may fare better in restricted lattices of logics.
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Remark 6.3. We could take a cue from the tense example and generalize the results in
this section to a broader class of V-incomplete logics. For example, Wolter [1993, §4.3]
defines a whole chain of similar logics. However, doing so would require a somewhat
better motivation for classes of logics obtained in this way.2> We thus suggest just one
modification: the point co 4+ 1 in the frame VBE and the antecedent IOT in the vB-
axiom are of little use in the bimodal case. As explicitly discussed by van Benthem
[1979], these contraptions were only used to get things working in the normal unimodal
setting. Thus, if we give up the goal of staying as close as possible to van Benthem
[1979] and Cresswell [1984], then we could modify VBE and IDe accordingly: removing
oo + 1, interpreting (e) by W x {oo} rather than the universal relation, and noting that
[e](O(0p — p) — p) and (e) T happen to be valid in the resulting general frame. The
proof of V-inconsistency would then just be a direct application of Theorem 5.1. We
leave adapting Theorem 6.1 to this example as an exercise for the reader.

To close the discussion of complexity, let us note that GLB, our other flagship example
of V-incompleteness, is PSPACE-complete, as is the case with many other provability
logics: on the one hand, the one-variable fragment of GL alone is PSPACE-complete
[Chagrov and Rybakov, 2003, Svejdar, 2003], and on the other hand even the polymodal
extension GLP of GLB with w-many modalities remains in PSPACE [Shapirovsky, 2008].

6.2 Undecidability of V-Completeness

A more general question is whether the property of V-completeness itself is decidable.
Recall that Thomason [1982] showed that it is undecidable whether a given (finite set of)
axiom(s) axiomatizes a Kripke-complete logic. Further results along these lines can be
found in, e.g., Kracht and Wolter 1999 or Chagrov and Zakharyaschev 1997. Refinements
include the discussion of decidability of Kripke completeness in smaller lattices of logics.
In particular, Chagrov [1990] (see also Chagrov and Zakharyaschev 1997, Theorem 17.19)
shows that Kripke completeness is undecidable over GL.

Adopting Thomason’s technique to show the undecidability of V-completeness for
polymodal logics in general is straightforward; as discussed by Kracht and Wolter [1999],
all that one really needs to show is its reflection under fusions.?®

In fact, as highlighted by Kracht and Wolter [1999, p. 137], Thomason’s methodology
is of sweeping generality and one could even call it a modal variant of Rice’s Theorem.?”
Let us isolate this result. Recall that the fusion L1 ® Ly of two normal logics Ly and Lp
formulated in disjoint modal signatures is obtained by taking the sum of their theorems
and closing it under the axioms and rules of multimodal K in the combined signature.

ZWolter [1993] was investigating the fine structure and properties of the lattice of subframe logics, a
subject beyond our interest here.

26We refer the reader to, e.g., Kracht and Wolter 1991 for more on preservation and reflection of
properties of modal logics by fusions.

2"Recall that Rice’s Theorem [1953] states that every nontrivial property of recursively aziomatizable
languages is undecidable [Hopcroft et al., 2003, Theorem 9.11]. Note that Chagrov and Zakharyaschev
[1993] take a somewhat different perspective on the relationship of Rice’s Theorem to modal logic,
focusing mostly on unimodal systems.
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This notion is extended to arbitrary logics with possibly overlapping signatures by trivial
renaming of operators to ensure disjointness. We say that a property of multimodal
normal logics P is

o reflected by fusions if Ly € P and Ly, € P whenever L1 ® Ly € P,

e finitely nontrivial if the inconsistent logic in every signature has P but there is at
least one finitely axiomatizable L ¢ P.

Theorem 6.4 (Thomason [1982], Kracht and Wolter [1999]). Any finitely nontrivial
property of multimodal logics that is reflected by fusions is undecidable for normal
modal logics with at least three operators.

Proof. The proof boils down to Thomason’s [1982] result that it is undecidable whether
a formula with at least two modal operators axiomatizes a consistent normal logic. -

For the next statement, recall the notion of a (modal) reduct of a BAO. Assume that
2l is a BAO for the signature where the set of operators extending Boolean operations is
St = {0;}ies. Consider any subset J C I. Clearly, 2 can be modified to a BAO 2/ whose
set of operators extending Boolean operations is Sy = {{J; };c s, simply by forgetting the
interpretations of operators with indices in I — J. Such an 2’ is a (modal) reduct of .
Consider a property X of BAOs. If for any 2 € X and any J C I, we have 27 € X, we
say X is preserved by modal reducts. It is not a high bar to clear; in fact, it would be
hard to come up with a natural property not preserved by reducts.

Corollary 6.5. Let X be any property of BAOs that is preserved by modal reducts. If
the property of X-completeness is finitely nontrivial, then it is undecidable for normal
modal logics with at least three operators.

Proof. Preservation of X by modal reducts implies that the associated notion of com-
pleteness is reflected by fusions. o

Clearly the property V of complete additivity is preserved by modal reducts, and
V-completeness is finitely nontrivial, so we have the following;:

Corollary 6.6. V-completeness is undecidable for normal modal logics with at least
three operators (recall Remark 3.2).

This by itself would not imply that V-completeness is undecidable for unimodal logics;
at least not without an additional observation. As discussed by Thomason [1982] and
Kracht and Wolter [1999], to obtain such a corollary, one needs to establish that the
property in question transfers under simulations such as those presented by Thomason
[1974Db,c] and Kracht and Wolter [1999]. This is indeed the case for the property V. The
details of the argument are analogous to those of the proof of Theorem 2.51 in Holliday
2015, which is dealing with CV rather than V; lattice-completeness plays no role in the
argument. Thus, we finally arrive at:
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Corollary 6.7. V-completeness is undecidable for any class of normal unimodal logics
containing the Thomason-simulation logic Sim(3) [Kracht, 1999, §6.8] (also denoted by
Sim(3,1) in Kracht and Wolter 1999, §9).

The question of the decidability of V-completeness in more restricted lattices of logics
is much less trivial. We have no evidence of the existence of V-incomplete logics in the
lattice of extensions of unimodal K4, much less GL. Thus, it might be that this property
is decidable for such logics in a degenerate sense, which would provide a rather dramatic
contrast with Chagrov 1990.

6.3 Recursive Axiomatizability of V-Consequence

Results such as Theorem 6.4 show the ultimate unfeasibility of what Wolter and Za-
kharyaschev [2006] call the Big Programme or globalist’s dream and claim to be an
implicit motivation for much of the early work in modal logic. An earlier blow to this
program was delivered by Thomason’s [1975a] reduction of monadic second-order conse-
quence to modal Kripke-frame consequence. To borrow a phrase from Blackburn et al.
[2001], this result showed that no strengthening of our deductive apparatus can elimi-
nate frame incompleteness. It is not just that C.AV-consequence fails to be recursively
axiomatizable and hence does not allow any decidable notion of proof; it is beyond the
entire arithmetical hierarchy.

We have seen (and will see even better in §7) that many negative results regarding
Kripke completeness hold as well for V-completeness, just as they turned out to hold for
other algebraically-inspired weak notions of completeness [Litak, 2005a,b, 2008]. How-
ever, there is also an important contrast: while the class CAV is not a first-order definable
class of BAOs, we have seen that V, like A, AV, and T, is first-order definable, which
gives us the following positive result in contrast to C.A)V-consequence.

Corollary 6.8. The consequence relation Fy over V-BAOs is recursively axiomatizable.

The difference, of course, boils down to the strong completeness of first-order logic.
The desired recursive axiomatization of the consequence relation and a decidable notion
of proof is provided by using the obvious translation of the modal language into the
algebraic correspondence language provided in the course of the algebraization process.?®

This, to be sure, is a suboptimal argument. One would like to avoid stepping so far
outside the ordinary modal syntax, especially since deductions in the first-order metalan-
guage for BAOs can involve sentences with arbitrary nesting of quantifiers. Indeed, one
can do better for many FO-definable properties of BAOs, especially those definable by
V3IV-sentences like AV (see §8.2), T (see §8.3) or A (see Litak 2006). The general theme
of finding better “internalizations” of consequence relations is the leitmotif of §§8-9,
with §9 entirely devoted to V-consequence. For more material on the “internalization”
process, we also refer the reader to Holliday and Litak 2016.

28 Obviously, this argument goes well beyond logics with the classical propositional base [Rasiowa, 1974,
Blok and Pigozzi, 1989, Andréka et al., 2001, Font, 2006, Font et al., 2003, 2009].
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7 The Blok Dichotomy

We recalled in §6.3 that Thomason’s [1975a] reduction of monadic second-order logic to
modal Kripke-frame consequence was one of the two biggest blows the 1970s delivered
to what Wolter and Zakharyaschev [2006] call the Big Programme or globalist’s dream of
the 1960s. The other one was delivered by Blok [1978], with what has come to be called
the Blok Dichotomy. An analysis of sub-Kripkean completeness notions shows that these
two results have nothing whatsoever to do which each other: the Blok Dichotomy can
still obtain even where no Thomason-style result holds. In this section, we will show
that V-completeness and V-consequence is perhaps the most dramatic case in point.?’

7.1 Blok Dichotomy for Kripke Incompleteness

Our goal is to prove the Blok Dichotomy for V-incompleteness. In order to explain what
this means, we need to review some basic notions.

Fine [1974] defined the degree of Kripke incompleteness of a normal modal logic L to
be the cardinality of the set of normal modal logics L’ such that L and L’ are valid over
exactly the same class of Kripke frames. Only one of the logics L’ in that set can be
Kripke complete, namely Log(Fr(L)). If L is Kripke incomplete, then its degree of Kripke
incompleteness is > 2, since L and Log(Fr(L)) are distinct logics valid over exactly the
same Kripke frames. In this case Log(Fr(L)) is a Kripke complete logic with degree of
incompleteness > 2. By contrast, the logic K, which is the logic of the class of all frames,
has degree of incompleteness 1. Such logics are said to be strictly Kripke complete.

Earlier Kripke incompleteness results showed that there are normal modal logics with
degree of Kripke incompleteness > 2, and Fine noted that a normal modal logic with
degree of incompleteness 280 could be produced. Fine then asked what cardinalities may
be degrees of Kripke incompleteness and whether there are any strictly complete normal
modal logics other than K.

Blok [1978] provided an exact and surprising answer to these questions: the only
strictly complete normal modal logics can be characterized in terms of their occupying
a special position in the lattice of all normal modal logics; and all other normal modal
logics have degree of incompleteness 28, i.e., each one of them shares the same class of
Kripke frames with 2% Kripke-incomplete logics.

To say what the special position of the strictly complete logics is, we recall that the
set of all normal modal logics, ordered by inclusion, forms a complete distributive lattice
IL: the meet of a family of logics is their intersection; the join of a family of logics is the
smallest normal modal logic that includes each logic in the family (which might strictly
extend the union of the family); the bottom element of L is K; and the top element
is the set £ of all formulas. In this lattice L, a pair (L1, Ls2) of normal modal logics is
called a splitting pair iff for every logic L in L, either L C Ly or Ls C L, but not both,
ie, Lo € Ly. Thus, (L, Lo) splits L into two disjoint parts. Note that if (Lj,Ly) is a
splitting pair, then either member of the pair determines the other uniquely. A logic Lo

Previously known examples included AV (Litak 2005a, 2008) and 7~ (Zakharyaschev et al. 2001, Litak
2005a, 2008), i.e., subclasses of V, and wC (Litak 2005a, 2008), which is not an FO-definable property.
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is a splitting of L iff there is a logic Ly in L such that (L;, L) is a splitting pair. For Lo
to be a splitting is equivalent to it being completely join-irreducible in the usual sense
of lattice theory: L cannot be obtained as the join of a family of logics all of which
are distinct from L. Finally, a logic is a join-splitting of LL iff it is a join of a family of
splittings, or equivalently, of completely join-irreducible logics.

Two important facts about splitting logics were established by Blok en route to his
main result. We will also need them below and hence we single out these two facts
as a separate lemma. Recall that a normal modal logic L is finitely approximable iff
there is a class F of finite Kripke frames such that L = Log(F), which can be shown to be
equivalent to L having the familiar finite model property (see Chagrov and Zakharyaschev
1997, Thm. 8.47).

Lemma 7.1 (Blok 1978).
1. All join-splittings are finitely approximable;

2. If a finite Kripke frame F is cycle free, then Log(F) splits the lattice of normal
modal logics: there is an Lg such that (Log(F),Ls) is a splitting pair.

Blok’s [1978] main result can now be stated precisely as follows.

Theorem 7.2 (Blok Dichotomy for Kripke frames). If a consistent normal modal logic
is a join-splitting, then it is strictly Kripke complete; otherwise it has degree of Kripke
incompleteness 280,

Proof. Apart from the original proof by Blok [1978], one can consult numerous more re-
cent references, in particular Chagrov and Zakharyaschev 1997, Chagrova 1998, Kracht
1999, Zakharyaschev et al. 2001, Litak 2005b, Rautenberg et al. 2006, Wolter and Za-
kharyaschev 2006, Litak 2008. o

Given the duality between Kripke frames and CAV-BAOs, Theorem 7.2 can be equiva-
lently stated in terms of degrees of CAV-incompleteness. Below we will extend Theorem
7.2 to degrees of V-incompleteness, thereby showing that neither of the properties C or
A of the duals of Kripke frames are necessary for the Blok Dichotomy.

7.2 Maximal Consistent Logics

The degree of V-incompleteness of a normal modal logic L is the cardinality of the set of
normal modal logics L’ such that L and L" are valid over exactly the same V-BAOs.

Following the pattern of the proofs quoted in the proof of Theorem 7.2, before we
generalize the theorem itself, we consider two special cases and then use proofs of these
special cases in the proof of the main theorem. Recall that by Makinson’s Theorem
[1971], the two maximal consistent unimodal normal logics are Triv (the logic of the
reflexive point) and Ver (the logic of the irreflexive point).

Theorem 7.3. The degree of V-incompleteness of Ver is continuum.
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I as I ag
T P

Figure 2: The frame VB for I = {2,4,5,...}.

All the details of the proof can be lifted directly from Litak 2008, §8, modulo corrected
typos in that proof, adjusted notation, and V replacing T, AV, or the sum theoreof. For
the sake of completeness, we reproduce the argument here.

Proof. Fix an arbitrary I C w — {0,1}. For ¢ > 1, define
.. {al} lf 7 ¢ I,
“T\ {andi} if el

Now let VBr := (Wr, Rr,Fr), where (see Figure 2):

o W;:={b}u{c}uU kLEJ ai®;

o Rr:={(c.0)fU({b} x U ax®)U U (a* x %) U{{a1,a0)} U {{a1, ) };

kew k>1>1
e [F; consists of finite sets that do not contain b and their complements.

Let vBy denote the logic of VB, i.e., the set of all modal formulas valid over VB;. We
will prove that

e distinct I C w produce distinct vBj, but

e all of these logics share the same class of V-BAOs with Ver.

First, let us define the following sequences of formulas, which will provide names of
points of VBy:

ao(p) == p
ai(p) = Oao(p) AT*ap(p)
arya(p) = Oars1(p) ADP=agi1(p) A Oar(p)
a; = o;(01L)
1(p) = O*au(p) A =0ai(p)
c = ~(0OL).
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Moreover, for arbitrary ¢, let Qa1 := O(¢ a1 — ¢). Note that this is a normal
modality, with its dual Qa1 = O(G a1 A ¢). Recall that ¢ is ¢ V Oy and its dual
operator is [y 1= ¢ A Qep.

For arbitrary I C w — {0,1}, k € w, and an arbitrary valuation V on VB;, we have
that V(ai) = ax® and V(c) = {c}. Hence, for arbitrary i € w,

VBrEO(a; = p) vVO(a; = —p) iff &1,

and thus vB; =vB; iff I = J.
Second, define

€ = aqgV O%aq
¢ = ; — O;
= ¢— 00 (Omp — p) = p).
Let A be the conjunction of these three formulas. Now notice that:
e For arbitrary I Cw —{0,1}, VBr E .
e For arbitrary 2 € ¥V with A F A, 2L F qo.

The first of these claims follows from the definitions of VB; and ag, a1 and ¢, so the
second is all we need to finish the proof. Assume for reductio that in a V-BAO where A
holds, we have that ag # T. Observe that a; # L by € and hence ¢ # L by (; and by
definition, ¢ < {¢%a;. But by picking a := ¢, [0] := a1, and [1] := O in Theorem 5.1, we
also get that ¢ < L. Thus,

c<OLAQY <OLAOT =1,
a contradiction. =

Theorem 7.4. The degree of V-incompleteness of Triv is continuum.

Proof. This time, we cannot use variable-free formulas. However, the rest of the proof
will be remarkably similar to that of Theorem 7.3, including the use of a family of frames
{VB$}1cw, the only modification compared to {VB;}1c,, being that ag is now taken to be
reflexive. In fact, the proof is entirely analogous to that of Chagrov and Zakharyaschev
1997, Example 10.58, with the only minor differences stemming from a slightly more
economical way we chose to define our frame (as in Litak 2008).

Note that if a formula

((p) == 'p A O —p
is satisfied at some point of V37 under some valuation V', then

a1(p) == (0P p A &3-p) v (O E° —p A &3p)

is satisfied at a; and nowhere else under the same valuation V. Formulas {a;(p)}i>1
and ~y(p) can now be taken verbatim from the proof of Theorem 7.3 and characterize
corresponding points under V. Hence, for arbitrary ¢ € w,
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VBj E((p) = (P(ailp) = q) VP (i(p) = ~q))  iff i g1,

and thus vB7 = vBS iff I = J.
Now take A° to be the conjunction of

¢ = ((p) = 0%(p)

n° = 7(p) = O0a1(Barg = q) = q),

note its validity over arbitrary vB7, and use Theorem 5.1 to finish the proof in exactly
the same way as we did in Theorem 7.3. =

7.3 Blok Dichotomy for V-Incompleteness
We can now finally state and prove the general result for degrees of V-incompleteness.

Theorem 7.5. If a consistent normal modal logic L is not a join-splitting of the lattice
of normal modal logics, then L has degree of V-incompleteness 280,

One could argue that there is no need to provide all the details of the proof. While
Blok’s original construction was unsuitable for generalizations to most classes of algebras
containing CAY (see Dziobiak 1978 and in particular Litak 2005b, 2008 for a detailed
discussion), a strategy proposed by Chagrov and Zakharyaschev in the 1990’s and fol-
lowed by most of the “recent references” quoted in lieu of the proof of Theorem 7.2 is
much more flexible. In particular, Chagrov and Zakharyaschev [1997], Zakharyaschev
et al. [2001], Litak [2005b], Rautenberg et al. [2006], Wolter and Zakharyaschev [2006]
and Litak [2008] show how to use vB and VB in proofs of the Blok Dichotomy and its
generalizations to notions like AV- and T -completeness. Apart from using the more gen-
eral argument of §5, there is no significant conceptual difference in the present version.
However, we still include a full proof to make the paper self-contained and to clarify how
Theorem 5.1 is used. In fact, we believe our presentation of the proof has some merits in
terms of clarity, accessibility, and polish, at least compared to earlier papers by Litak.

Proof. Assume L is not a join-splitting and L’ is the greatest join-splitting contained in
L, i.e., the join of all such join-splittings. By Lemma 7.1.1, L’ is finitely approximable.
Then since L’ C L, there is a finite Kripke frame F = (W, R) for L’ that refutes some
@ € L. Furthermore, there are several assumptions we can make about F:

(mings) We can choose F to be rooted (i.e., there exists r € W such that every point can
be reached from r via the transitive closure of R) and such that every proper
generated subframe of F is a frame for L, by using standard preservation results
and the finiteness of F. In particular, ¢ is valid over any proper generated
subframe of F.

(mince) In addition, using Lemma 7.1.2, we can assume that F contains a cycle, i.e., for
some k and some wyg,...,wi_1 € W, we have woRw R ... Rwi_1Rwy. We can
obviously choose the cycle {w;};<; to be minimal. In particular, either k = 1
(i.e., the cycle is of the form {wp}) or k > 1 and {w;};< contains no proper
subcycles, so all points are irreflexive.
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(single) Finally, by Makinson’s Theorem [1971], we also know that L is contained in
either Triv or Ver.

We are going to reuse the techniques and frames used in the proof of Theorem 7.3
or Theorem 7.4, depending on the subcase of (single) that holds. But first, we need
to transform F a little bit using the above assumptions, in particular (mincc). Let W'
be W with the elements of {w;};<; multiplied [ := md(y) + 1 times, where md is the
modal degree of a formula—the maximal number of nesting modalities. In other words,
{w;}i<r is replaced by {w? }i<k j<i. Note that w; can be identified with w?; formally, we
can define an embedding

£(w) = {w? it w = w; for some i < k

w  otherwise,

but it is convenient to suppress the embedding in the notation. We can also define an
auxiliary surjective function f in the reverse direction:

w; ifw:wlj for some ¢ < k,j <1,

f(w) == .
w  otherwise.

Clearly, for any w € F, f(f'(w)) = w. The accessibility relation on the extended frame

is defined as follows: for every u,v € W', uR'v if either

e v is not in the cycle and f(u)Rf(v), or
e v is not in the cycle and for some i < k, v = w) and f(u)Rf(v), or

o for some j <1,i<k—1,u=w] and v=w)],,, or

e for some j <, u = wi_l and v = w(()jﬂ)m()d L
These definitions force that f is a bounded morphism, i.e., F is a bounded morphic
image of F' := (W', R') via f.3° This, in turn, implies that

(*) for any valuation V in F, any w € F, and any ¢, w € V(¢) iff w € V'(¢),

where V'(p) := f~1[V’(p)] for every variable p. Moreover, using (mincc) we can show
that (*) holds for those 1’s that are subformulas of ¢ even if (F', V') is replaced by any
model based on a frame G := (U, S) that contains F’ as a (not necessarily generated)
subframe in such a way that for every v € F' with v # wf;ll and for every u € U with
vSu, we have u € F'. In the words of Chagrov and Zakharyaschev [1997] (adjusted
to our notation), we can hook some other model on wf;ll and points in F will not feel
its presence by means of ¢’s subformulas. Our goal in expanding the cycle beyond the
modal depth of ¢ was precisely to guarantee this “insensitivity”.

Finally, let us set t := |W'| + 1.

30Note that f’ is not a bounded morphism: F is not a generated subframe of F.
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Figure 3: Frame F} (or Fj, depending on reflexivity of e).

In order to proceed with the proof, we split (single) into two cases, depending whether
or not L is contained in the logic of the single irreflexive point.

Case (single®): L C Ver. Fix I C w —{0,1}. Define F} := (W}, R}, F}), depicted in
Figure 3, as follows:

Wi = W'U{d,...,d}U{e} UW; - {ao},
where W’ is defined as above and W} and ag are as defined in the proof of Theorem 7.3,

R} :=R'U (R NW; —{ag})U
{(di+1,di) tico U
{(do, )} U {(do, )} U{(do,e)} U
{(w;, 2}, do)} U {(ar, dy)},

and [, consists of the sets of the form X UY, where X is an admissible subset of the
frame VB; defined in Theorem 7.3 and Y is a finite or cofinite subset of W; — W;.

We begin by defining an auxiliary sequence of formulas, which will help to name points
from {dy,...,do}:

do(p) == Op
div1(p) = Odi(p) A =di(p) A /\ =64 (p)

Note that for ¢ < ¢, d; may also happen to be true somewhere in F’'. However, the

denotations of d; and d; have to be disjoint whenever ¢ # j. By the assumption on ¢, d;
cannot be true anywhere in F’. It is easy to verify that it cannot hold anywhere inside
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the Wi — {aop} part either, so d; is the only point in F} where d; holds (the valuation is
irrelevant, as this is a variable-free formula).

Now recall the definitions of formulas {«;(p)}ic., and vy(p) from the proof of Theorem
7.3. We can reuse them to redefine variable-free names for points from the W — {ao}
part as

0= ai(dy) and ci=(dy).

Define Ly := {¢p € L | 7 E ¢}. Fix a fresh ¢ not occurring in ¢, and recall that ¢ can
be refuted at r. Since for any ¢ > 1,

O((ai A O™ =) — q) v O((a; A O™ =) — —q)

belongs to Ly iff ¢ € I, we have a continuum of distinct logics. We now want to show
that whenever 2 € V validates Lj, it also validates L. Assume otherwise, i.e., that there
is a ¢ € L such that 2 ¥ ¢. By (single®), we have that 1) € Ver. Hence, 1 cannot be
refuted at e. Furthermore, by the construction of 77, the point dy and hence any other
point in the frame can be reached from any point refuting ¥. Let [ be a sufficiently large
number; note that, say, 2 - t + 4 would do. Also, reuse the definition

Oa1p :=0(0a1 — ¢)

from the proof of Theorem 7.3. Again, fix a fresh p not occurring in 1. Then the
following formulas are theorems of L;:

- — Ol c A Ol=y);
(cA <>l—|¢) — O(0a1(Oaip — p) = p)).

The proof can now be completed using Theorem 5.1 in the same way as we did in
Theorem 7.3.

Case (single®): L Z Ver, i.e., D C L C Triv. The only difference in the definition of F7
is the use of R} := R} U {(e,e)}. Now, just like in the proof of Theorem 7.4, we cannot
use variable-free formulas to name points. We begin by recalling the “large enough” [
(say, 2 -t +4) from the previous case and letting g, r be fresh for ¢. Define

do(q) = (9'=gA 0T q)V (0lgA 0T ~q)
diti(q) = Odi(q) A ~di(g) A\ ~0d;(q).
J<t

Now reuse the same «; and v as above to define

ai(q) == ai(di(q)) and c(q) :=(di(q)),

and just as in the proof of Theorem 7.4, note that if
¢(q) == 0'q A &'~

is satisfied in an admissible model M based on F7, then a;(q) does the job of a unique
name, i.c., if [C(q)[* # 0, then [ai(q)]™ = {a;}.
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Define Ly := {¢ € L | 7 F ¢}. Since for any i > 1,
¢(a) = ' ((as(g) A O'=p) = 1) vV T ((a5(@) A O'=p) = )

belongs to Ly iff ¢ € I, we have a continuum of distinct logics.

Again, we want to show that whenever 21 € V validates Ly, it also validates L. Assume
otherwise, i.e., that there is a ¥ € L such that 2 ¥ ¢; using reasoning analogous to
that in the (single®) case we get that 1) € Triv. Let var(y) be the collection of all free
variables in . The following formula holds in F7:

=\ ).

g€var(y)

(Assume it does not. Then there exists an admissible valuation refuting 1 such that
the denotations of variables in v(1)) are either empty or equal to W}. But then this
countermodel for 9 can be collapsed to a single reflexive point, a contradiction). Fix a
fresh p and define

Ofe = 0(0ai(q) — ¢).

Then the following formulas are theorems of L;:

A\ @)= 00w\ (Clg) Aelg);

gevar(y) gevar(y)
0"~ A¢(g) A elg) = D(OL, (OLp = p) — ).

The proof can now be completed using Theorem 5.1 in the same way as we did in
Theorem 7.4. —

7.4 The Polymodal Case

We stated and proved the Blok Dichotomy for unimodal logics, but this was only for
technical and notational convenience. It is possible to adjust the proof to the polymodal
setting by following Litak 2008, even though Makinson’s Theorem [1971] does not hold
in the signature with more than one modality. As discussed in Litak 2008, §3, one needs
to use the Minimal Variety Theorem instead, which generalizes Makinson’s result. We
refer the reader to Litak 2008 for all the details.

7.5 Degrees of Relative Incompleteness

An intriguing if somewhat esoteric question is to investigate degrees of relative in-
completeness: given classes K1 and Ko of BAOs, let us say that the degree of K-
incompleteness relative to Ko of a normal modal logic L is the cardinality of the set
of logics L’ such that L' is Ks-complete and L and L’ are valid over exactly the same
K1-BAOs. To motivate such comparisons, recall that many of the algebraic completeness
notions have frame-theoretic equivalents: C.A-completeness is equivalent to complete-
ness with respect to normal neighborhood frames as in Dosen 1989; AV-completeness is
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equivalent to completeness with respect to discrete frames as in ten Cate and Litak 2007;
CV-completeness is equivalent to completeness with respect to full possibility frames as
in Holliday 2015; and V-completeness is equivalent to completeness with respect to prin-
cipal possibility frames as in Holliday 2015. Degrees of relative incompleteness can be
seen as providing a measure of how fine-grained these alternative modal semantics are
relative to each other and to Kripke semantics.

In fact, techniques used here (and in earlier references) allow us to investigate some of
these degrees of relative incompleteness. Let us briefly sketch the form of such proofs,
leaving details as exercises for interested readers. In the presence of relatively strong
consequences of the Axiom of Choice such as BPI, we can use the same trick as in the
proofs of Theorem 6.1 and Corollary 6.2 (and in Wolter 1993, §4.6 or in Litak 2005a,
§4.4) to transfer sequences of frames VB (proof of Theorem 7.3) and VBS (proof of
Theorem 7.4) into (general-frame duals of) neighborhood frames. In this way, we can
show that for Triv and Ver, their degree of V-incompleteness relative to CA is equal
to continuum. Pushing matters further, we can similarly transform the sequences F7
and F7 used in the proof of Theorem 7.5 to show that a similar result obtains for any
neighborhood-complete L. It is somewhat more problematic to generalize this reasoning
to logics that are not necessarily neighborhood-complete: one would need to use L¢A,
the CA-closure of L (the smallest neighborhood-complete logic containing L), and adjust
the definition of L7 to {1 € L¢A | FrEyY}or{ye LCA | F7 E 1}, depending on whether
(single®) or (single®) holds. There seems to be, however, no guarantee that LA will be
sound over the same class of V-BAOs as L. So the strongest form of the V-Dichotomy
relative to CA that we can show at present would be restricted to those L for which such
a conservativity condition holds—in particular, neighborhood-complete ones.

In the reverse direction, we can show similar results about degrees of wC-incompleteness
relative to, e.g., AV (duals of discrete frames) using techniques from Litak 2008. The key
observation is that the general frames used in the proofs of corresponding variants of the
Blok Dichotomy use all finite and cofinite sets as the collection of admissible sets; that
is, they are (duals of) AV-BAOs. Again, one can state a wC-Dichotomy relative to AV
restricted to those L for which a corresponding AV-conservativity condition holds: their
minimal hybrid or minimal nominal extension (see §8.2 below and Litak 2006) is sound
with respect to the same class of wC-BAOs. In particular, this covers all AV-complete
logics, i.e., those whose minimal hybrid /nominal extension is conservative.

8 Strengthening the Inference System

In this and the next section, we return to the theme of van Benthem 1979: turning
semantic incompleteness results into syntactic non-conservativity results. In van Ben-
them’s example, the formula (00T — L is not derivable from the vB-axiom according
to the derivability relation F"* of §2, or equivalently, it does not belong to the normal
modal logic vB, but the derivation is possible in relatively weak extensions of the logic.
We can already see this abstractly: as observed in §6.3, there exists a derivability rela-
tion with a decidable notion of proof that exactly matches V-consequence, so by §5.1,
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OO0T — 0L is derivable from the vB-axiom in this sense. However, we would like to
see non-conservativity in more concretely-given logics. As it turns out, there are several
well-motivated extensions that can be used for this purpose.

In the present section, we discuss derivations in existing calculi. The first of these,
weak second-order logic, was proposed in van Benthem’s [1979] paper. This move to
weak second-order logic is illuminating, but for our purposes it would be nice not to
switch from the modal language to an altogether difference syntax. Fortunately, the
desired derivations are possible in much weaker calculi that are well known in the modal
community, namely, a basic nominal calculus in §8.2 and the tense calculus in §8.3. For
us, the importance of these calculi comes from the fact that they characterize consequence
over classes of algebras narrower than the class of V-BAOs: AV-BAOs in the nominal case
and T-BAOs in the tense case.

8.1 Weak Second-Order Logic

We begin with the extension van Benthem considered: weak second-order logic. As
suggested in §1, the idea is to translate formulas ¢ of the modal language into formulas
SO(yp) of the monadic second-order language with a single binary relation symbol—and
then deduce SO(OOT — OL1) from SO(vB-axiom) in some second-order calculus, guided
by the informal proof that every Kripke frame that validates vB validates 0T — L
(Lemma 2.1). For a ¢ containing propositional variables pi, ..., p,, SO(yp) is defined as
VP ... VP VxST,(¢) where the standard translation ST,(yp) of ¢ is defined recursively
as usual, with the key clauses ST, (p;) = Pix and ST,(0Op) = Vy(Rzy — STy(¢)) where
y is a fresh variable. What van Benthem calls ‘weak second-order logic’ is the deductive
system for the monadic second-order language that extends a complete axiomatic system
for first-order logic with the following axioms for the monadic second-order quantifier:

o VP(p — 1) = (VP — YPY);
e ¢ — VPyp where P does not occur free in ¢;

o VYPyp — @[/ P] where 1 is a first-order formula having some free variable z such
that o[1p/ P] is the result of replacing subformulas of the form Pu by 1[u/x], subject
to the usual qualifications about free and bound variables.

To see that SO(OOT — O.1) is derivable from SO(vB-axiom) in this weak second-order
logic, first observe that SO(vB-axiom) = SO(O0T — O(O(p — p) — p)) is

VP(Vz(Rzy — 32(Ryz A T)) —
Vy(Rzy — (Vz(Ryz — (Vu(Rzu — Pu) — Pz)) — Py))).

Using the third of the second-order axioms, we can remove the VP and substitute v # y
for Pv, for each variable v, to obtain:

Va(Rxy — J2(RyzAT)) —
Vy(ny — (Vz(Ryz — (Vu(Rzu —Su#y) = z# y)) —y # y))
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Then it is straightforward to derive SO(OOT — L), which is equivalent to
Va(Vy(Rxy — 3zRyz) — Yy—Rxy),

by a formalized version of the proof of Lemma 2.1. Thus, although the modal relation
F™ of §2 is too weak to derive OOT — L from the vB-axiom, the weakest reasonable
system of second-order logic is enough to do so under translation.

As van Benthem [1978] observed, the relation b, of derivability in weak second-order
logic axiomatizes a natural notion of semantic consequence. Interpret the second-order
language with a binary relation symbol in general frames G = (W, R, W) where (W, R)
is a Kripke frame and W C (W) is closed under first-order definability: given any
formula ¢ of the second-order language whose free individual variables are =, x1,. .., z,
whose free predicate variables are Xy, ..., X,,, and which does not contain any second-
order quantifiers, if wy,...,w, € W and Ay,..., 4, € W, then {w €¢ W | G F
plw,wi, ..., wy, A1,..., Ap]} € W. Define the consequence relation Fs by: ¥ Fyso
iff for all general frames G as above and all variables assignments f mapping individual
variables to elements of W and predicate variables to elements of W, if G F o[f] for
every o € 3, then G F ¢[f]. Then one can show the following.

Proposition 8.1. X k5 ¢ iff 3 Eyso .

Thus, like V-consequence (recall §6.3), the relation s, is recursively axiomatizable.

It is noteworthy that the BAOs underlying the general frames for weak second-order
logic above are AT-BAOs. The A part is obvious, since W must contain all singleton
subsets of W by the requirement of closure under definability. For the 7 part, where
the BAO operator ¢ is given by 0A = R71[A] for A € W, its residual h is given by
hA = {w € W | R"Y(w) C A}. This is clearly definable as above, and it is easy
to see that for any A,B € W, we have QA C B iff A C hB. This shows that the
underlying BAO is a T-BAO and hence a V-BAO. Thus, if we have modal formulas o
and ¢ such that every 7-BAO that validates o also validates ¢, then we will also have
SO(0) Fuso SO(¢) and hence SO(0) Fyso SO(p) by Proposition 8.1. In light of this
fact, the T-incompleteness of the logic vB provides an explanation of van Benthem’s
result that 4, is not conservative over Fg'"* for modal formulas.

8.2 Minimal Nominal Extension

Let H be a propositional modal language with two types of atomic formulas: proposi-
tional variables p, q, r, ..., and nominals 1, j, k, . ... In the intended Kripke semantics,
the difference between propositional variables and nominals is that nominals must be
evaluated as singleton sets instead of arbitrary subsets.3!

A nominal modal logic is a set L of formulas of the language H that satisfies the con-
ditions of a normal modal logic (with uniform substitution of formulas for propositional
variables, but not for nominals) and the following:

31As in Footnote 4, we remind the reader not to conflate this use of the word nominal with a more
recent one, popular in theoretical computer science [Pitts, 2013, 2016] (cf. Footnote 33).
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(a) L is closed under uniform substitution of nominals for nominals;

(b) for every n € N and nominal i, OS"(i — ¢) V OS"(i — —¢) € L, where 05" :=
e AOp A - ANy

(c) if ¢(—i) € L for all nominals 4, then ¢(L) € L,

where [ is any necessity form, defined as follows. Fixing a symbol # not occurring in
formulas of H, the set of necessity forms is the smallest set containing # such that for all
necessity forms £(#) and ¢ € H, both(¢ — £(#)) and 0I(#) are also necessity forms.??
In the statement of condition (c), ¢(¢) is the formula of H obtained by substituting ¢
for # in ¢(#). The condition (c) is the COV rule of Gargov and Goranko 1993.

Let the minimal nominal extension L.n of a normal unimodal logic L be the smallest
nominal modal logic that includes L. Ten Cate and Litak [2007] showed that conserva-
tivity of L.n over L is equivalent to L being the logic of some class of discrete general
frames—general frames in which every singleton subset is admissible—and that discrete
frames are duals of AV-BAOs, which yields the following.

Proposition 8.2 (Ten Cate and Litak). A normal modal logic L is AV-complete iff L.n
is a conservative extension of L.

Since the logic vB is V-incomplete and hence AV-incomplete, it follows from Proposi-
tion 8.2 that its minimal nominal extension vB.n is not a conservative extension. Indeed,
it is easy to show that JOT — L belongs to vB.n. First observe that by condition (b)
above, the smallest nominal modal logic contains ¢ — (i — i) and hence

(i — 0@ — 01)).

Then as an instance of the vB-axiom with the conditional in the consequent contraposed,
we have
O0T — 0@ — O>i AO—i)) € vB.n.

Using the normality of [, the two formulas above yield:

O0T — O-i € vB.n,
whence (0T — 1 € vB.n by the COV rule.

8.3 Minimal Tense Extension

The minimal tense extension L.t of a normal unimodal logic L is the smallest normal
bimodal logic including L and the axioms p — 00 'p and p — O~ 10p, where O~ ! and
O~! are the new pair of modal operators.

The following analogue of Proposition 8.2 for T-BAOs is easy to see, given that the
Lindenbaum-Tarski algebra of L.t is always a T-BAO.

32The leading occurrence of (1 in the (¢(#) clause and in all necessity forms built using (4(#) will be
called a principal one. This will matter when considering polymodal generalizations, e.g., in §9.2.

40



Proposition 8.3. A normal modal logic L is T-complete iff L.t is a conservative exten-
sion of L.

Since the logic vB is V-incomplete and hence T-incomplete, it follows from Proposition
8.3 that its minimal tense extension vB.t is not a conservative extension. That a tense
extension may fail to be conservative is fascinating (see Wolter 1993, §5.4; Kracht and
Wolter 1997, §3.3; Goldblatt 2001, p. 170), especially when one looks at a concrete
derivation. We will sketch such a derivation, using the metatheorem for all tense logics
that 0 and O~ ! are residuals, so ¢ — ¢ is a theorem iff $~1¢ — 1) is a theorem.
Where x := OO0 T, we have the following theorems of vB.t:

0. OO0T — O(O(O-x — —x) — —x) instance of vB-axiom
00T —» 00~ 'OOT  instance of tense axiom

[

OO0T — Ox  from 1 by definition of x

00T — O-0(0-x = —x)) from 0 and 2 by normal modal reasoning
O~'O0T — -0O(0-x — —x) from 3 by residuation

x — —0O(0-x — —x) from 4 by definition of y

x = O(x Ad-x) rewriting 5

x = O(O(x AO-x) AO=-x) from 6 by normal modal reasoning

x — L from 7 by normal modal reasoning

© ® N o ot W N

O~'00T — L from 8 by definition of y
10. OOT — OL  from 9 by residuation.

But O0T — 01 ¢ vB by Lemma 2.3, so vB.t is not a conservative extension.

9 Toward a Syntactic Characterization of VV-Consequence

In §8, we saw how existing calculi and rules characterizing consequence over narrower
classes of algebras allow us to show the incompleteness of vB. In this section, we are going
to discuss new extensions of the deductive apparatus that are sound for V-consequence
and also allow us to prove the incompleteness of vB and GLB. Our rule(s) are inspired
by the reformulation of complete additivity as condition R in §4. In particular, it will
be convenient to work with the following obviously equivalent version of R.

Lemma 9.1. The condition R is equivalent to: for all a,b € 2, if for all ¢ € A such
that b < c < T, thereis a d € A such that ¢ < d < T and a < Ud, then a < [b.

This if...then has the feel of an inference rule that we could try to write in a modal
language. We will start by showing how this can be done in a rather expressive modal
language. Then we will show how limited versions of the inference rule, still sufficient
to prove the incompleteness of vB and GLB, can be formulated in less expressive modal
languages, finally achieving rule(s) expressible in the plain modal syntax.
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9.1 Extended Languages

The first language we will consider is the language Lo of Global Quantificational
Modalities [Holliday and Litak, 2016], given by the following grammar:

o, u=p| oA | Op | [Vple | [Bp]e.

Before we give a formal semantics, or even some intuition for these quantificational
modalities, let us introduce the other language we are concerned with in this subsection:
L(A), the extension of the basic unimodal language with the universal modality A. The
dual of A, the existential modality E, is defined as usual by Ep := -A—-p. For a normal
unimodal logic L, let L.A be the smallest bimodal logic—with operators [J and A—that
extends L with the S5 axioms for A and the axiom Ap — [p. Note that L.A is always a
conservative extension of L: a modal algebra validating L becomes an algebra validating
L.A with the interpretation §(Ap) as T if 6(¢) = T and L otherwise.

Let us now return to Lgga. The intended semantics for [Vp] is the same as for
VpAp. The intended semantics for [Ip]y is the same as for IpAg (note that we are using
the universal modality here as well, not its dual!). In a BAO, we have the following
interpretations:

B(vple) = T if 0'(¢) = T for all ¢ that differ from 6 at most at p
b= 1 otherwise

(Bly) = T if @'(¢) = T for some @' that differs from 6 at most at p
P = 1 otherwise. '

Laoum is clearly more expressive than £(A): the universal modality A can be defined
by Ag := [Vpl]e where p does not occur in ¢. But just like L(A), Lgom can still
be interpreted in any algebra. This distinguishes Lggn from typical modal languages
involving propositional quantifies: such quantifiers are normally interpreted using infinite
operations, which poses problems in the absence of lattice-completeness. For more on
Lagum, its semantics, axiomatization, and expressive power, see Holliday and Litak 2016.

The version of R in Lemma 9.1 can be directly translated into a sentence of Lagar:

Vp][3q] ((A(B = p) NE=p) = (Alp — ¢) AE~g A A(a — Tg))) — Ala — Op).

In order to arrive at a principle expressible in £(A), let us first weaken the above axiom
to a rule:

[¥p)[3q] ((A(B — p) ANE=p) = (Alp = q) AE=g A Ala — Tg)))
a— 0Op '

While the rule is easy to understanding semantically, it is not very convenient to work
with in deductions. One would need to use contraposition with almost every conceivable
implication. So there is another version of the rule, where E and — do not occur, yielding
something more interesting from a constructive point of view:
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vp][3q] (A(B — p) = (ApV (A(p — q) A (Ag — Ap) AA(a — Og))))
a— Op ’

A natural strategy to obtain a corresponding rule in pure L£(A) is to use suitable
freshness assumptions, which we will write using nominal-logic-like notation? [Pitts,
2013, 2016], with ‘p#«, 5’ (p is for fresh for «, [3) meaning that p does not occur in «, :

(A(B = p) NE=p) = (A(p = x(p)) A E-x(p) AA(a = Ox(p))  p#a. B (Vinf)
a— 0g '

By writing ‘x(p)’, we are only stressing that p can occur in y (unlike in « or ), not

that it must. Let us show that V-inf preserves validity over any V-BAO.

Proposition 9.2. The inference rule V-inf preserves validity over any V-BAO.

Proof. Given a V-BAO 2, suppose 2 validates the premise of the rule, and consider any
valuation 6 for 2. We claim that §(a — [J8) = T. Take any ¢ € 2 such that 6(8) < ¢ <
T. Let 6" be the valuation that differs from 6 at most at p such that 6(p) = ¢. Since p
does not occur in 3, é(ﬁ) = é’(ﬂ), SO é’(ﬁ) < ¢ < T. Then by the assumption that the
premise of the rule is valid, we have ¢ < @(x(p)) < T and 6 () < 0'(0x(p)) = 06 (x(p)).
Let d := 6(x(p)). Since p does not occur in a, §'(a) = f() < Od. So we have shown
that for any ¢ € A such that §(8) < ¢ < T, there is a d € A such that ¢ < d < T and
() < Od. Then by the reformulation of R in Lemma 9.1, (a) < 00(8) = 6(0B), so

O(a — OpB) = T, as claimed. Thus, the conclusion of the rule is valid over 2. o

Proposition 9.2 shows that if a normal modal logic L is V-complete, then the minimal
normal extension of L.A that is closed under the rule V-inf is a conservative extension
of L. By contraposition, to show the failure of V-completeness, it suffices to show the
failure of conservativity.

As above, we have two subtly differing syntactic variants. The statement of V-inf
above is the semantically convenient version of the rule, whereas deductively (and con-
structively) one may have some preference for

A(B —p) = (ApV (A(p = x(p)) A (Ax(p) = Ap) AA(a = Ox(p)))) p#o,f
a—0p '

33 As our anecdotal evidence confirms occurrences of misunderstandings on this front, a small digression
may help to dispel any potential confusion: this use of the word nominal has little to do with hybrid
logic. Historically, hybrid logicians used the term nominal earlier: while Gabbay and Pitts [1999]
discovered that mathematics underlying, e.g., pre-war work on permutation models for set theory
with atoms is applicable to reasoning about syntax with binders, the term itself, as far as we know,
was used for the first time in this context by Pitts [2003]. Gabbay et al. 2011, Example 3.6 is one of
the few places where an algebraic treatment of a restricted fragment of a powerful hybrid language
(Boolean connectives plus the downarrow binder |) is related to “nominal algebras” in this sense.
And even this occasional coincidence goes only so far: it is enough to include modal operators in the
signature to make the standard hybrid | and the operator u discussed in that paper come apart.
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However, the premise of this variant still does not look particularly appealing. In fact,
for our purposes we can use a simpler special instance:

p—x()  Ax(p) = Ap  a— DOx(p) p#a'

V-
a— L (V-spec)

If the premises of V-spec are valid over a BAO 2, then the premise of V-inf is also valid
over 2 with 8 := 1; so if % is a V-BAO, then the conclusion o — [J_L is valid over 2.
Let us use V-spec to derive OOT — 0L from the vB-axiom

00T — 00O (([@p — p) — p).

We take o := OOT and choose x(p) := O(Op — p) — p. Our rule says that to derive
a — 01, we need to show that the following three formulas are theorems of vB.A:

(a) p— (Op — p) — p) (b) A(O(Op — p) — p) — Ap (c) vB.

Premise (c) is an axiom. Premise (a) is a theorem of K and thus a fortiori of vB.A.
Premise (b) is a theorem of K.A. Its derivation is the only place where we use axioms
for the universal modality. For we have

Fka A(OOp — p) — p) = A(0p — p),
which with the theorem Aq — Allq gives us
Fk.a A(O(Ep = p) = p) = AD(Op — p),
which with the axiom A(q — r) — (Ag — Ar) yields the desired
Fka A(O(Op — p) — p) — Ap.

We can go even further: there is a still more special instance of our rule, which does
not use the universal modality at all and yet is sufficient both for the vB deduction above
and for the GLB incompleteness result.

9.2 Pure Modal Syntax

To eliminate the universal modality from V-spec, we can replace Ax(p) — Ap by any
stronger formula, i.e., any formula whose validity over a BAO implies that of Ax(p) — Ap;
the resulting rule will still be V-sound. As we now want a rule that will work for GLB as
well, let us formulate it in a polymodal syntax. The first rule V-mod that we present is
an instance of a V-sound rule scheme V,-mod that we will see at the end of this section;
however, we do not need full generality to cover vB and GLB at the same time.

Recall that [;a := a A O;a. Our example of a V-sound rule without the universal
modality is:

p—x(p) Oixtp) »p a—0Ox(p) p#a.

(V-mod)
o — DjJ_
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In the unimodal case, take ¢ = j. This yields a purely unimodal rule that preserves
validity over any V-BAO and suffices to carry out van Benthem’s deduction. We leave
adjusting the deduction from §9.1 so that V-mod replaces V-spec as an exercise.

It seems more interesting to note that V-mod can be used to translate the algebraic
reasoning in the proof of Theorem 5.4 for GLB, in order to derive [1] L. Let i := 0, j := 1,
and a := T, so the conclusion of V-mod becomes [1]L. As in the derivation for vB in
§9.1, set x(p) := [0]([0]p — p) — p. Then since o := T, the third premise of V-mod
becomes

[1]([0]([0]p = p) — p),

which is a bimodal version of the vB-axiom. Let us show that this is indeed a theorem
of GLB. First, note the well-known fact that FgLg [1]([0]p — p) (In order to derive this,
start with Fgig [1](0)—p V (1)[0]p by excluded middle, which implies Fgg [1](0)—p V [0]p
and then Fgg [1](0)—p V [1]p by axioms (iii) and (ii) of GLB, which in turn implies
Feug [1]((0)—=p V p).) Then we have:

p —p) — [0]p Lob axiom
([0]p — p) — [0]p) by Necessitation
p— p) from above

= = =

([0]p — p) — p) from previous two steps using normality of [1].

Turning to the first and second premises of V-mod, as in the case of vB, these can
be shown to be theorems of unimodal K, i.e., in the language with [0] only. As the
K-theoremhood of the second premise may be less immediate to see, let us sketch this
derivation (returning to the unimodal syntax). We want to show

Fk D(E0p = p) = p) = p.
First, one can easily derive
Fk (A(Ep = p) = p) = (Bp = p).
By normality, this also yields
Fk O(O@Ep = p) = p) = O(p — p).
Now it is enough to recall the definition of [J to obtain
F B(O(Cp — p) = p) = (OO = p) A (O(0p — p) = p))

and finish the derivation. Thus, we have shown that all three premises of V-mod are
theorems of GLB. So V-mod allows us to derive the V-consequence [1] L of GLB.

Since V-mod is V-sound and hence T-sound, it is admissible in tense logics (recall
§8.3). We will conclude this section by showing syntactically that V-mod is admissible
in tense logics with two future box modalities [J; and OJ; (which may be the same) as in
the statement of V-mod. Substitute Dj_l—'a for p in the premises of V-mod. Then we
deduce the conclusion of V-mod as follows:
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1. Elix(Dj_l—\a) — Dj_l—'a second premise of V-mod

2. O; 0 X(Dj_l—'a) — -« from 1 by residuation

3. a— Djﬂ(x(Dj_lﬂa) A Dix(Dj_l—\a)) from 2 by contraposition, definition of [
4. o — Djx(Dj_l—\a) third premise of V-mod

5. a— 0;0;~x(0; '=a) from 3 and 4

6. O;la — X(Dj_l—\oz) from 4 by residuation

7. —x (07!

; —a) — <>j_1a contrapositive of first premise of V-mod

8. ﬂx(Dj_lﬂa) — 1 from 6 and 7
9. Qiﬂx(Dj_l—\oz) — 1L  from 8
10. o« = 0O;1L  from 5 and 9.

The rule V-mod seems too specialized to cherish hopes that it might yield the ultimate
syntactic characterization of V-completeness via its conservativity. At least, however, its
conservativity over the set of theorems of a given modal logic is a necessary condition for
the V-completeness of the logic. Moreover, as mentioned above, it can be significantly
generalized. Let 0(#),01(#),...,¢n(#) be necessity forms as defined in §8.2, suitably
adjusted to the polymodal language. Furthermore, assume ¢(#) does not involve p. In
the polymodal setting, we require that if only some of the diamonds are completely
additive, then only the corresponding boxes can occur in ¢(#) in principal positions

(recall Footnote 32). Consider the following rule scheme:3*

p—x()  hLx@) = —=ix) —-p  Lx(p) p#f.

(Vp-mod)

To see V-mod as an instance of Vy-mod, set {1(#) := #, lo(#) := 0;#, and {(#) = o —
0;#. To justify V,-mod as a corollary of V-spec in the same way as we justified V-mod
at the beginning of this subsection, note that Fx A Ap — ¢;(p) and that the assumption
that V-boxes appear principally in ¢(#) turns it into a term-definable V-box.

We leave the question of whether conservativity of a rule scheme like Vy-mod can
provide a necessary-and-sufficient characterization of V-completeness for future work.

34For the second premise, recall that implication associates to the right.
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10 Conclusions and Future Work

We have shown the existence of V-incomplete logics (in the unimodal signature) and V-
inconsistent logics (in a polymodal signature), thus answering a long-standing open ques-
tion (Litak 2004, Litak 2005b, Ch. 9, Venema 2007, §6.1, Litak 2008, §7). These results
contrast with the fact that for many natural logics, even their countably generated free
algebra can be completely additive (cf. Footnote 19). Moreover, the examples involved
turn out to be surprisingly natural. One of them is the logic vB designed by van Benthem
[1979] to extract the syntactic essence of incompleteness results. Still more strikingly,
another example is provided by the bimodal provability logic GLB [Japaridze, 1988,
Boolos, 1993, Beklemishev et al., 2010, Beklemishev, 2011]. These V-incompleteness
results essentially relied on a reformulation of V as a first-order V3V-property inspired
by the work of the first author on modal possibility frames, which also allows a concrete
description of categories dual to categories of V-BAOs [Holliday, 2015].

The vB axiom and the general frame used by van Benthem [1979] have often been
reused in proofs of the Blok Dichotomy for various generalizations of Kripke completeness
[Chagrov and Zakharyaschev, 1997, Zakharyaschev et al., 2001, Litak, 2005b, Rautenberg
et al., 2006, Wolter and Zakharyaschev, 2006, Litak, 2008]. We have shown that this
strategy extends smoothly to degrees of V-incompleteness.

We were also able to follow a less frequented path opened up by van Benthem [1979]
and investigate syntactic aspects of incompleteness proofs. Apart from several extended
modal formalisms in which to internalize incompleteness arguments, from the nominal
and tense formalisms to Lo (Global Quantificational Modalities, investigated further
in Holliday and Litak 2016), we have presented a single, surprisingly simple non-standard
rule V-mod in a pure modal language (generalizing further to a rule scheme Vy-mod),
which is admissible over V-BAOs and can be used to show the V-incompleteness of both
the van Benthem logic and GLB.

These results raise a number of further questions. First, we still need to provide a
definite characterization of V-completeness in terms of conservativity of suitable minimal
extensions, similar to those available in the earlier literature for AV-completeness or 7T -
completeness (nominal and tense extensions, respectively), preferably in a language not
involving quantifiers or global quantificational modalities.

Second, while we are very satisfied with GLB as a natural example of V-incompleteness,
we would like to see an equally striking case of V-inconsistency. Recall that one of our
present examples of V-inconsistency is GLBe, which can be naturally interpreted using
ordinal semantics of polymodal provability logics [Beklemishev et al., 2010, Beklemishev,
2011]. Can this logic or an extension thereof be given a good provability interpretation?
Or is there another route to explore?

Third, while we believe that the syntactic “internalization” of incompleteness proofs
we proposed—i.e., investigating relevant derivations in (extended) modal formalisms—
is a fruitful and natural perspective, it could and perhaps should be complemented
with an approach more directly following that of van Benthem [1979]. Recall that
van Benthem proposed using weak second-order logic as the ambient formalism. In
our setting, this would amount to characterizing V-, AV-, T-consequence and their
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relatives by allowing very limited instances of the axioms of weak second-order logic
(e.g., involving equalities, relational atoms with variables permuted, etc.) plus possibly
some additional axioms/rules. Matching this with the “internalized” approach above
would lead to a fine-grained perspective on (extended) correspondence theory.

Fourth, when briefly discussing the subject of degress of relative incompleteness in §7.5,
we recalled the fact that many of the algebraic completeness notions have frame-theoretic
equivalents, involving normal neighborhood frames [DoSen, 1989], discrete frames [ten
Cate and Litak, 2007], or possibility frames [Holliday, 2015]. Are there other ways of
systematically comparing these semantics and their associated completeness notions,
superior to studying degrees of relative incompleteness?®

Fifth, we would like to mention two problems brought up by participants of ToLo V
in Thilisi, where this work was presented in June 2016. Do there exist natural prop-
erties of BAOs yielding notions of completeness properly intermediate between V- and
T-completeness? And is there a topological way of deriving the first-order characteriza-
tion of complete additivity for operators on arbitrary posets in Andréka et al. 2016?36

Finally, our present success should be an encouragement to revisit other open problems
regarding sub-Kripkean completeness posed by Litak [2004; 2005b, Ch. 9; 2008, §7] and
others. For example, given the importance of transitive modal logics—normal extensions
of K4—it is natural to ask what incompleteness phenomena arise for these logics. We
still have no indication of the existence of any A7 -incomplete transitive unimodal logics.
It might even be the case that van Benthem’s [1979] weak second-order consequence is
conservative for them. There is also no indication that the Blok Dichotomy will gener-
alize to degrees of A-incompleteness. In fact, as discussed by Venema [2007] and Litak
[2008], a strong result by Buszkowski [1986, 2004] implying .A-completeness of logics
axiomatizable by modally guarded axioms suggests that examples of A-incompleteness
are few and far between (note that the axiom of vB is modally guarded). Most impor-
tantly, we still seem to have very few (if any) general results regarding sub-Kripkean

350n a side note, coalgebraic logic (see Cirstea et al. 2011, Schroder and Pattinson 2010, Kurz and Rosicky
2012 for references) provides a generalization of Kripke semantics in a direction orthogonal to that of
possibility frames: instead of keeping V and dropping A, one is keeping C.A and does not insist on V.
If this seems to suggest a strong relationship between coalgebraic logic and neighborhood semantics,
this is not a coincidence, especially in the predicate lifting approach [Schroder and Pattinson, 2010,
Lem. and Def. 14]. A result of Schréder [2008, Thm. 31] shows that complete additivity of the
associated modal operator is only available for those variants of coalgebraic semantics which collapse
to a special case of Kripkeanity. This by itself does not lead to “natural” examples of coalgebraic
logics where mild rules like our V-mod are inadmissible; coalgebraic logicians focus almost exclusively
on base logics for coalgebraic “structures” (pairs consisting of a functor and a predicate lifting). These
base logics are axiomatized by formulas of rank 1 [Schroder and Pattinson, 2010, Kurz and Rosicky,
2012] and hence the issue of incompleteness simply does not arise. However, in extended formalisms
like the recently proposed Coalgebraic Predicate Logic (CPL, Litak et al. 2012, 2013), one can write
sentences capturing complete additivity of a modality and show completeness for theories obtained
this way. These sentences essentially involve equality in the same way as capturing A) requires
nominals or the difference modality [Litak, 2006]. Can we use the syntactic investigations of §9 to
formulate completeness results for Kripkean instances of CPL in an equality-free language?

36We thank Mamuka Jibladze for the first problem and Sam van Gool for the second. In the latter case,
we also appreciate email discussions with Mai Gehrke and Marcel Erné. A detailed discussion would
take us too far afield, but at the moment there seems to be no obvious answers to these questions.
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completeness for non-classical logics with a non-Boolean propositional base. Even the
famous Kuznetsov problem [Kuznetsov, 1975] regarding topological completeness of su-
perintuitionistic logics remains open more than four decades after its formulation. We
hope to see progress on these problems in the years ahead.
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