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ABSTRACT

Hursin, Mathieu. PhD, University of California at Berkeley, Delben010. Full
Core, Heterogeneous, Time Dependent Neutron Transport Calculattbrtie 3D Code
DeCART. Major Professors: Tom Downar and Ehud Greenspan.

The current state of the art in reactor physics methods tesasséety, fuel
failure, and operability margins for Design Basis AccidentBAB) for Light Water
Reactors (LWRs) rely upon the coupling of nodal neutronics and one-dimahs
thermal hydraulic system codes. The neutronic calculations usdtisstap approach in
which the assembly homogenized macroscopic cross sections and jparaticeters are
first calculated using a lattice code for the range of cmmdit(temperatures, burnup,
control rod position, etc...) anticipated during the transient. The edcalation is then
performed using the few group cross sections in a core simulator which uset/perof
coarse mesh nodal method. The multi-step approach was identifiechdesjuate for
several applications such as the design of MOX cores and other hgflelgogeneous,
high leakage core designs. Because of the considerable advancespurtingrpower
over the last several years, there has been interest lmfitiadity solutions of the
Boltzmann Transport equation. A practical approach developed for kiglityfisolutions
of the 3D transport equation is the 2D-1D methodology in which the method
characteristics (MOC) is applied to the heterogeneous 2D rptanblem and a lower
order solution is applied to the axial problem which is, generalbremniform. This
approach was implemented in the DeCART code. Recently, baerdeen interest in
extending such approach to the simulations of design basis ascisiechh as control rod
ejection accidents also known as reactivity initiated accid®iss). The current 2D-1D
algorithm available in DeCART only provide 1D axial solution basedhe diffusion
theory whose accuracy deteriorates in case of strong flukegitathat can potentially be
observed during RIA simulations.

The primary ojective of the dissertation is to improve the acgusad range of
applicability of the DeCART code and to investigate its abti@yperform a full core
transient analysis of a realistic RIA.

The specific research accomplishments of this work include:

e The addition of more accurate 2D-1D coupling and transverse leakdigeng
options to avoid the occurrence of negative source terms in the 2D MOC
equations and the subsequent failure of the DeCART calculation and the
improvement of the convergence of the 2D-1D method.

e The implementation of a higher order transport axial solverdbaseNEM-Sn
derivation of the Boltzmann equation.



e Improved handling of thermal hydraulic feedbacks by DeCART duriaugsient
calculations.

e A consistent comparison of the DeCART transient methodology withuttent
multistep approach (PARCS) for a realistic full core RIA.

An efficient direct whole core transport calculation method involviregNEM-
Sn formulation for the axial solution and the MOC for the 2-D rada@ution was
developed. In this solution method, the Sn neutron transport equations wegedvel
within the framework of the Nodal Expansion Method. A RIA analygs performed
and the DeCART results were compared to the current generatidi®fcore analysis
methods represented by the PARCS code. In general there is goalll ayeement in
terms of global information from DeCART and PARCS for the Rlénsidered.
However, the higher fidelity solution in DeCART provides a betpatial resolution that
is expected to improve the accuracy of fuel performance cttmdaand to enable
reducing the margin in several important reactor safety analysis eushtas the RIA.



To my mother for her unwavering support,
And to my father for sharing his passion.
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Introduction

1.1 Motivation

In the design and licensing of light water reactors, it is postulated tihanber of
low-probability accidents will occur and it is required that thacter will be able to
withstand their consequences without affecting the public health dety.s@hose
accidents are called Design Basis Accidents (DBA). Theentistate of the art methods
to assess safety, fuel failure and operability margins fohD&pplicable to existing and
advanced Light Water Reactor (LWR) fuel use coupled nodal necteord thermal
hydraulic system codes. The current generation of LWR corlysesmanethods using
coarse mesh nodal methods employs a multi-steps procedure in thbicdssembly
homogenized macroscopic cross sections and kinetic parametérstar@culated using
a lattice code for the range of conditions (temperatures, burnup, coodrgdosition,
etc...) anticipated during the transient. The core calculation ispixdormed using the
few group cross sections in a core simulator which uses someftgparse mesh nodal
method. The lattice codes typically used for LWR cross segm@meration include
HELIOS (Scandpower 2000) and CASMO-5 (Rhodes 2008) and the nodal codes
typically used for LWR analysis include SIMULATE-3 (Smith 1998 dhe U.S. NRC
core simulator PARCS (Downar, Xu et al. 2006), which is couplech¢otiiermal-
hydraulics codes RELAP5(NRC 2001and TRACE (Odar, Murray et al. 2004) to
provide temperature and density feedbacks. The fuel pin temperatdrepaver
variations during a transient are typically determined through dgpeeof pin power
reconstruction method and resulting pin averaged information is provided Ito fue
performance codes to evaluate fuel behaviour and safety limits. This kipdrofah has
previously been identified as inadequate (Cho 2006) for the design of ddf@X and the
same limitations would be encountered in the analysis of ceéntzavative core designs;
in particular to cores that feature a large heterogeneity in the axictialire

Because of the considerable advances in computing power over ttisevesl
years, there has been interest in high-fidelity solutions of thepled Boltzmann
transport and temperature-fluid field equations. However, the congnahtburden
inherent in 3D transport solutions for practical coupled field appics: still requires the
investigation of innovative solution algorithms to improve its paralélbn and use on
computer clusters. During the last several years, a claslgaitlams was developed
based on “2D-1D” decomposition of the reactor transport problem (Cho 20b@2;Lee
et al. 2002). This was motivated in part by the naturally stroragiasl heterogeneity that
occurs in most power reactor core problems. The 2D-1D algorithm invalwset of
coupled 2-D planar transport and 1-D axial diffusion solutions. Thtkodehas proven
to be adequate for a wide range of steady state LWR applications (Cho al.e208?2).

Recently, there has been interest in taking advantage of advanoceerical
methods, involving neutron transport and Computational Fluid Dynamic (CFD), to
perform high-fidelity simulations of design basis accidentshsas control rod ejection
accidents also known as reactivity initiated accidents (RIA)s&heclude Pressurized
Water Reactor (PWR) rod-ejection and Boiling Water ReacBWR) rod-drop
accidents. In these accidents, energy is deposited in thendelauses rapid heating that

1



may damage the fuel if the power burst is sufficiently eriexggesides being DBAs, the
other advantage of studying RIAs is that they are very shdration (around a second)
and driven by their neutronic behavior. Because of the event's shwmtscale, the
energy remains mostly where it was deposited. Consequently, aratectreatment of
the heat dissipation both in the cladding and the coolant is not needed ito abta
reasonable simulation of the event, allowing to focus the anabysithe neutronic
modeling of the accident while using a simple thermal hydrasgiution to provide
temperature and density feedbacks. The feasibility of suclysaavith high-fidelity
simulations tools like DeCART has been demonstrated by (Hursin 2008).

The DeCART (Deterministic Core Analysis based on Ray mggiVeber, Sofu
et al. 2006) code uses the 2D-1D algorithm. Its development began in 2pai as
International Nuclear Energy Research Initiative (INERI) gebjcollaboration between
Korean Atomic Energy Research Institute (KAERI), Argonneidta Laboratory
(ANL), and Purdue University. The objective was to develop a whole weunéron
transport code capable of direct sub-pin level flux calculation atepayenerating
conditions of a PWR and BWR. Unlike the current generation of nodal ,cD€ART
does not require a priori homogenization or group condensation which limits the giccurac
and fidelity of conventional reactor physics calculations. Thel loegerogeneity at the
sub-pin level is explicitly represented and solved using the Methddhafacteristics
(MOC) which is an effective transport solution method for such higelfyned
heterogeneous problems and is widely used for LWR problems in cdds as
CASMO-5.

The overarching goal of the dissertation is to investigateathibty of the
DeCART code to accurately perform a full core transient aisalylsa realistic RIA.
During preliminary RIA analysis, the accuracy of the DeCARD-1D" formulation
was found to be insufficient for certain aspects of the simulafioerefore, research was
undertaken to improve the 2D-1D formulation, specifically to investigaiee accurate
methods for solution of the axial 1D flux. The next section detdilst are the issues that
had to be resolved in order to accurately model a full core RIA with DeCART.

1.2Issues and Undertakings

1.2.1. Key issues

While the 2D-1D approach to solve the 3D transport equation has not been
thoroughly studied for the widest range of applications, it has workéldfovethe
coupled field solution of the PWR, which is primarily a homogeneouggesphase flow
thermal-hydraulics problem. However, recent applications to thee nedally-
heterogeneous two phase flow BWR have exposed limitations inxtsing 2D-1D
solution algorithm. Recently, the application of the DeCART code tard2D-1D
algorithm to the gas reactor problem has also resulted in sases e which the 3D
solution does not converge. Other convergence issues have been observétevaime
of the axial mesh is reduced.

Another issue of the 2D-1D algorithm is related to the axial @Des. The
presence of heterogeneities in the axial direction (partinfigrted control assembly,



severe void variations, part length fuel rod, axial enrichment zortiog,.¢leads to 3D

solutions of poor accuracy (Cho, Kim et al. 2006). The current 2D-1D ithigor

available in DeCART only provide 1D axial solution based on the diffufieory whose

accuracy deteriorates in case of strong flux gradient, thlee one observed for the
problems listed above.

Besides the improvements to the 2D-1D algorithm that would ingbeatly-state
and transient solutions, another key aspect of the transient solugjonthath was
required in order to model full core transient events. The DeCART transient meinpdol
has been developed and tested (Cho, Kim et al. 2005) only for casesmdm@oscopic
cross sections are given and no thermal hydraulic feedbaekpravided. A proper
model of the coupled fields of neutronic and thermal hydraulic isetktm accurately
analyze any kind of transient event. DeCART needs to be able tehardition of the
fuel temperature, coolant density, etc...during the course of transient dalcsilat

1.2.2. Improvements to DeCART undertaken in this work

In order to perform high fidelity analysis of a transient evéme, following
research was performed and represents the main outcome of theumnanarized in the
present dissertation:

e Addition of an axial 1D solver based on a higher order transport solin@nthe
existing diffusion solver.

e Improvement of the coupling of the 2D and 1D solutions through improved transverse
leakage approximations.

e Addition of an online treatment of the local thermal hydraulic domts during
transient analysis.

The first two improvements are validated against the C5G7 bemkhirewis,
Smith et al. 2001) and the third improvement is tested during thesenafythe full core
RIA; its results are compared to the one of the multi-step methodology.

1.3 Dissertation Outline

The remaining sections of the present dissertation are desgudestuss in more
detail the improvements needed by DeCART in order to perfomalestic analysis of a
RIA and compare the results to those of the current multi-step methodology.

The first chapter provides general background information on the DeCA&g,
describing its original steady state and transient caloulatiethodology. The second
chapter is dedicated to the improvement of the 2D-1D algorithm and spec#ically
the coupling between the 2D transport solution and 1D diffusion solutiondFigeent
coupling approaches are investigated and applied to a test prolblerafféct in terms of
accuracy and convergence properties is then discussed. The thirer adedptused on
the improvement of the 1D axial solver. A few different potentiless are compared.
The Nodal Expansion Method (NEM) and discrete ordinate (Sn) methathasen to
handle, respectively, the spatial and angular dependence of thearafigyl The
derivation of the NEM-Sn is described as well as its numaklimplementation in
DeCART. The last part of the third chapter is dedicated to titty sif the performance

3



of the NEM-Sn against the diffusion solver for the C5G7 benchmaskigl &mith et al.

2001). The fourth chapter brings together the improvements described ihapeiCone

to three by showing a full core transient calculation for A.Rlhe handling of thermal
hydraulic feedback during transient calculations is presentedagpmach used in the
multi-step methodology is detailed and its limitations shown. Thersupgmethod

(Notari and Garraffo 1987), which allows DeCART to treat bothiapand resonance
self shielding online, briefly presented in chapter two, is usegjty dhe proper local

thermal hydraulic feedback. The calculation flow of a DeCARIdrent calculation with
thermal hydraulic feedbacks is presented. Finally, the DeCAdRUlts are compared
with the current multi-step approach. The final chapter of ther&sn summarizes the
research performed and its main findings.



2. The DeCART Integral Transport Code

The following sections are describing the primary featuree@DieCART code.
An overview of code methodology is presented first. Then the derivatitteed@D-1D
approach for steady-state and transient calculation is providetth@spatial and energy
self-shielding treatment is reviewed.

2.1 Overview

DeCART is a 3-D whole core transport code that is capablenafrgeng sub-pin
level power distributions. This is accomplished by obtaining the mitelgansport
solutions to the heterogeneous reactor problem in which the actadédejeometrical
configuration of fuel components such as the pellet and claddimpi€ity retained.
The cross section data needed for the neutron transport calcul&iobtained directly
from a 47 energy group cross section library. Hence DeCART involvdeena priori
homogenization nor group condensation, which are two of the principations of the
current generation of nodal methods most commonly used for reactor analysis.

2.1.1. 2D-1D Solution Approach

DeCART is based on the 2D-1D algorithm which involves a set of co@pled
planar transport solutions which use the MOC and a 1-D axial idiffs®lution which
uses NEM or Semi-Analytical Nodal Method (SANM) (Fu and Q@6082). The 3-D
problem domain is first divided into several thick planes and the M&@¢€ulation is
performed for each planar problem to determine the neutron fluxies fibe flat source
regions. The cell homogenized cross sections are then obtaineck lypliime weighting
based on the flat source region fluxes and the regional microscaypss sections
evaluated at the local thermal condition. A diffusion solution is oldameeach fuel rod
to determine the local axial flux shape that is used to maddyMOC calculation in
order to take into account axial leakage and produce a 3-D solution.

Global 3-D CMFD Problem Local 2-D MOC Problems
Ray Tracing

¥ Axial Leakage
as Source

Cell Homogenized Cross Sections
& Radial Cell Coupling Coefficients

Different Composition
ndal Axial Flux Shape by and Temperature
mial Expansion (NEM) ¢ell Average Flux

& Axial Leakage

Fig. 2.1. 2D-1D solution based on 2-D MOC and 3{RD formulations



As an effective method to realize a direct whole-core transpalidulation
capability, the planar MOC solution is combined with a 3-D coauesgh finite difference
(CMFD) solution (Smith 1983; Sutton 1989). The basic idea of thmmutation is to
represent the whole core transport problem with a simpler 3-Demnobiing the pin-cell
homogenized cross sections generated adaptively from the 2-D ddldtions. The cell
cross sections are then used in the 3-D CMFD problem which espsethe global
neutron balance. The 3-D CMFD solver becomes the main solver whil@ and
NEM/SANM solvers function merely as the regional flux shape rg¢oe The NEM and
SANM solvers are embedded in the CMFD solver, which permits therggon of the
axial flux shape directly during the CMFD stage of the caloah. No separate, fuel rod
wise, diffusion calculation is necessary. The entire solution potescribed above is
illustrated inFig. 2.1. The planar MOC calculation is considerably more experswe t
the CMFD calculation, as each progression of the MOC solutionresgsiveeping over
tens to hundreds of thousands of rays across the core. Consequently, thea@iriéach
provides an effective acceleration to the transport calculagoafudly converging the
fission source distribution at the coarse mesh level. In addditime multigroup CMFD,
a two energy group CMFD kernel has been implemented to furtheteeste the
DeCART calculation using an effective group rebalance methodologg. thio-level
CMFD scheme reduces the number of MOC iterations for pragirchlems by more
than an order of magnitude (Joo, Cho et al. 2004).

2.1.2. Modular Ray Tracing

DeCART implements a modular ray tracing scheme similandee described in
the literature (Cho 2006) and implemented into codes such as CASMOGHAPLET
(Kosaka and Saji 2000). There are two primary benefits of modalatracing: the
simplification of the geometry calculation and an increasedracyg of calculations with
reflective boundary conditions. In a typical core calculation, tteee hundreds of
millions of ray segments and the length of each of say ) is required. In modular ray
tracing, the positioning of the rays is the same for all moduiéts and the segment
lengths must be determined only for a few types of modules. Theseesray tracing
modules are then arranged in a regular array and the raygtiagerformed by linking
rays from one modular unit to the next. The accuracy of problems refikbctive
boundary conditions is achieved because of the cyclic nature of tip@sdning. That
is, the incoming angular flux for a ray with azimuthal anglés determined from the
outgoing angular flux of a ray of angle that terminates precisely where the original ray
began.

These two features are shown for the case of pin-cell basédlan ray tracing in
Fig 2.2. The ray positioning in each pin-cell is identical araddgi continuous rays that
link to neighboring cells. Thus, the 2x2 pin geometry can be computedldyating the
segment lengths in any one cell. Two reflective rays (dashes) Ifor the anglex are
given as an example.
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Fig. 2.2. Example of 2x2 fuel pin array with celbdular ray tracing

2.2 Resonance Treatment

In DeCART, the subgroup method is used for the resonance treatinant.
sequence of heterogeneous transport calculations is performedhbefhréhe subgroup
method permits the adaptive handling of the spatial and energyhstfisg during the
calculation. The next sections presenting the resonance treaneea brief summary of
the references (Stamm'Ler and Abbate 1983; Scandpower 2000). Even though no
additional work has been done on the resonance treatment in the DeGART a
detailed understanding of the subgroup method is necessary to properly apply
temperature and density changes during transient calculations.

2.2.1. General Treatment

It is very inefficient and time-consuming to use point-wise £ections in the
deterministic transport calculation. Therefore, typically 30 to 7@0ggn@iscretized cross
sections are used in Light Water Reactor calculations, whichpeyeessed from
ENDF/B-VI library using codes such as NJOY. The multi-groupssr section is
calculated by,

_ LE o,(E)o(E)dE _ Lu o, (U)d(u)du
[ _o(E)dE [ oau

Eqg. 2.1

X

where u is the lethargy defined byln (Eo/E), with E)=10 MeV. The accuracy in the
deterministic transport calculation is mainly degemt upon the scalar flu@(u), which
is not knowa priori, and group widthAu, used in Eq. 2.1.



The resonance behavior @f(u) complicates the evaluation of group cross
sections. The fluxg(u), will have dips at and near resonance energiedaltiee strong
absorption in the resonance. These dips depenbeoresonances and the concentration
of the resonance isotopes and on their location.

The resonance integrals from ENDF/B-VI are tabulads function of various
background cross sections and temperatures for etktended applications. The
background cross section can be expressed as $ollow

T, =AX, +E, Eq. 2.2

where is the hydrogen-equivalence factor also calledrinediate resonance factai,

is the potential scattering cross section apds the equivalence cross section. The
equivalence cross section represents a departone & homogeneous geometry: the
equivalent cross section takes into account thapesprobability from the fuel to the

surrounding material (cladding, coolant, etc...), ellhis mainly dependent upon the
geometrical configuration of the fuel pins.

Solving the slowing-down equation at resonancealgflies, and away from
fission sources, using the intermediate resonaiigg gpproximation(Goldstein and
Cohen 1962), leads to the Eq. 2.3:

AZ (U) +Z(u)

=50 2%, (U) + 2, (1)

Eqg. 2.3

A2, can be obtained directly from smooth data in theaty. However, determining the

equivalence cross sectio, considering the geometrical configuration is more
complicated. Before describing how the equivalecoess section is obtained, the
subgroup method is briefly introduced.

2.2.2. The Subgroup Method

The essential is that the numerator and denomiméditBq. 2.1 are approximated
by quadratures in the absorption cross section.

} Subgroup 3
} subgroup 2
} Subgroup 1

1 | > i

« A

E=wa H=wa [L[=wo,

Fig. 2.3. Subgroup data structure



Since the background cross section is constantirwéhgroup, Eq. 2.3 can be
written with microscopic ones as follows:

pU)=—> Eq. 2.4
O-a (U) + O-b

The lethargy dependence of the flux of Eqg. 2.4ngjuely througho,(u). This is
essential for the subgroup method. It allows téa@pthe integration variableby o, and
to approximate the integrals by quadratures,iaccording to the following equations:

1

1 du
A @du= 20 f(E) g ~doy =T o, £q. 25

wheref,=f(oy,) are the integrands at the discrete values,oAAs shown in Fig. 2.3, the
resonance cross section is subdivided wijtls over thes, range and their weightsy).

Therefore the resonance cross section in Eq. 21beaapproximated by the quadrature
set ofgan andwy, as follows:

N
Z a)no-an¢n
—_ n=1
N
z a)n¢n

n=1

Oa

Eqg. 2.6

N and o, are arbitrarily chosen to produce accurate effeatross sections. In DeCART,

the number of subgroups is set to 7. The scalae$lus, correspond to a fixed level of

absorptionoy,,, are unknown and have to be obtained from therdbgg®eous transport

calculations. In DeCART, in order to reduce the hamof heterogeneous transport
calculations, a detour via a parametrization of #desorption level through the

background cross sectien instead of directly using the fluxelg is used.

2.2.3. Determination of the Equivalence Cross Section

Due to the weak lethargy dependence of the equigaleross sections, the
background cross section is itself lethargy depended can be expressed as follow:

Gb(u) = o, (U) — Ga(U)(I)(U)
6, (U) +0,(u) 1-¢(u)

M heterogeneous transport calculations are perfonmtn different absorption leveby,,
m=1,..,M). In DeCART, M is set to 4. Practically DeCART, the fixed source
heterogeneous calculations are performed for e#d@dreht plane, assuming no axial
leakage and a homogeneous temperature:

o(u) =

Eq. 2.7

Q- V0, (F)+Z5 (Do, (D) =4—17th(?3) Eq. 2.8

where ‘g’ is an energy group and ‘n’ the angle. $barce in is obtained by

Qg = AgZ g Eg. 2.9



The removal cross section is calculated by
Ly =No,,+4,Z, Eqg. 2.10

The transport calculations provide, for a givenoapson levelom, a scalar fluxg,. Using
Eq. 2.7, the background cross section is deternbydte Eq. 2.11:

Za Om
Zbg (Gmg) = 9( g)(I)g Eq 2.11

1-¢,
And the equivalence cross section for a given gibsor level, easily follows as:
Z:eg(o-mg):E:bg(o-mg)_/’z’gz:pg m=l,..,|\/| Eq 212

2.2.4. Determination of the effective macroscopic resopazross section.

By combining Eq. 2.4 and Eq. 2.6, the effective nmscopic resonance cross
section can be obtained by Eq. 2.13 provided timatcorresponding background cross
sectionaypy, t0 oanis known:

(¢}
bn
ZWnGan
_n

G,y tO
G, = an____bn Eq. 2.13
c
1_an¢
n cSan-’_cbn

Since the subgroup data,'s are given, the correspondiag, s are obtained by
linear interpolation irn (o) reducing the number of transport calculationsdederom
7 by resonance energy group to 4 by energy group.

The last step of the determination of resonancectg¥e cross section is to
generate the region-wise macroscopic cross sesfiich takes into account both spatial
and energy self shielding. The macroscopic crostoseis computed in the Eq. 2.14,
assuming that the equivalence cross section is know

ZW Zanzbn
n
T, =10 Zan ;an Eq. 2.14
1_ZW _ “an
" Z:an + an

n

with
Zan = No-an

Eq. 2.15
2, =No,, = /1N0'p + Ze(aan)

The resonance treatment presented above assunmeauhiyhane resonant isotope
was present in each spatial region. If more tham isatope is present, the interactions
between the resonances of the different isotoped t@be resolved to properly predict
energy and spatial self-shielding. In the subgnmgthod, only two cases are considered
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and correspond to the extreme limits of no or &wérlap between the resonances. The
details on how to handle the interaction betweetoges are beyond the scope of the
dissertation and can be found in (Stamm’Ler andafbh983).

Read the required data
AiGip < Cros: section librar
subgroup data
(Wn, Gam Gty Om)

v

Macroscopic cross section fo
transport calculation

= 7\42p, Zr(Gm)

v

Fixed source Transport
calculation at resonance

- scalar flux ¢,)

\ 4

Table for the equivalence crog
section

- Ze(om)

7]

v
Assumez, 9=0.0

dal
ve
Calculate the effective
resonance cross section
Gia , VOif

v
Updates;, MY

v
Check the convergent

v

End

Fig. 2.4. DeCART flow chart for resonance calculati

2.2.5. Calculation sequence for resonance treatment

The resonance calculation module begins with rgathie smooth cross section
and the subgroup data from the library as showrign2.4. Fixed source heterogeneous
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transport calculation is performed to obtain thalacflux according to the 4 levels of
absorption cross sections. The calculated scalaedl are converted into the equivalence
cross sections, and those are tabularized as émsctif the absorption cross section. To
consider the influence of the absorption crossi@edtom the other resonance nuclides,
the iteration process is required. Iteration precexludes the assumption of zero
absorption cross section from other nuclides at lleginning and the resonance
absorption cross sections are updated until thetrspas are converged.

The end result of the resonance calculation moduéelibrary of effective cross
sections tabulated as functions of the absorp&wal land temperature. During the actual
neutron transport module of DeCART, the local macopic cross sections for a given
flat source region is evaluated using the Eq. 2.14.

Now that the handling of spatial and energy seklding has been understood,
the macroscopic cross sections are determinedhenttansport calculation itself can be
performed.

2.3 Steady State Methodology

2.3.1. The 2-D Method of Characteristics.

The formulation begins with the 3-D steady-statdtBoann transport equation
for the solution of the angular flux distributioerpunit volume, solid angle and energy
o(r Q,E):

Q-Vo(r,Q,E)+2(r,E)o(r Q,E)= or ., F Eq. 2.16
where the source term consists of fission and esoadt events:

1 x(r.E)
ir Ko

+[(dEf daZ(r@ 5@ ES Be(r @ 'E)

q(r,Q,E)= j dEVE, (r, E)¢(r, E)

Eq. 2.17

In DeCART, the scattering source is assumed tasb&apic in the lab system, so Eg.
2.17 can be simplified:

I’QE.[

q(r,Q,E)= #(r, E')dE'+4iJ'ZS’EQE(r,E')¢(r,E')dE' Eq.2.18
4 0

e 0

and the scalar flux(r,E) is given by:
4(r.E)=[, o(r.Q,E)d0 Eq. 2.19

The 3-D Boltzmann equation is integrated axiallgtoa plane of thickness. The result
is:
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. 0 . .0
singd cosx—+ Sird Sime— |@(r
( OX ayj(D( 9 F)

Eq. 2.20
+Z(r ,E)@(r,,Q,E)=&fr, Q,E),

wherer, is the position vector in 2-0y is the azimuthal angle, artidis the polar angle.
The over-bar indicates axial integration; for im&t®, the 2-D averaged angular flux is
given by:

o(r,,Q,E)=— j (r,Q,E)d Eq.2.21

and the effective source term is given by:
&r..Q,E)=1(r,.Q,E)- L(r, 2,F Eq. 2.22

The axial leakage is given by:

L (r Q, E) H ((DT(I' Q, E) (DB(r ,Q,E)) Eq. 2.23

pA

L, was obtained directly from the integration in Eql6 and was moved to the
right-hand side. In the expression fof ¢t and g are the angular fluxes from the top
and bottom surfaces of the plane amtod. One of the major approximations of the
2D-1D methodology resides in the evaluatiomefandesg. If these fluxes were obtained
from the solution of the 3-D Boltzmann equatiorertithere would be no approximation
in Eg. 2.20. However, in DeCART, these angular déspare approximated from the axial
1-D diffusion based solution. Currently, the axaalgular flux distribution is obtained by
a double-k approximation, which basically assumes an isotrepial leakage. The axial
leakage is then expressed as a function of incomimtyoutgoing partial currents at the
top and bottom surfaces of the considered plane:

(J;' ,out Jng,in) for,uZ 0
K (0 (1, 2,E) =y (r, 2,E))={ ™" Eq. 2.24
hz(j;'“ jgot) foru<0
T
wherej " andjT'n are the partial outgoing and incoming currentthattop surface, and
jB°" and j®™" are the corresponding values at the bottom surfibe effect of this

approximation will be the focus of a detailed invgegtion in this thesis.

The next step is to rewrite the 2-D position vectaas the sum of two vectors: an
arbitrary starting vector;o and the componemt projection of the transport angle onto
the planeQ;. That is,r. =r,o + L2, wheres is the distance traveled frory to r; along
the Q; direction. This yields a differential equationtire single variabls, for which an

analytic solution is given by:
by
= eX;E—(_—E)Sﬂ Eq. 2.25

é(rr Q2 E) = é(rr,o Q. E) ex;{— is(isz + %;er’)E) singd
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The evaluation of Eq. 2.25 is performed on a discspatial mesh where the
multigroup cross sections are uniform and the sodrstribution is flat.

oy, 6,)

/

Flat zource

region #

Fig. 2.5. Ray Tracing through a discrete region

Rays are traced across these flat source regiong ahrious directions given by
Q=(Xx,6y). For a given direction, there are several paraligk that pass through a
particular flat source region. Consider thiéflat source region as depicted in Fig. 2.5.
Suppose that th&" ray segment is of orientatiaf® «,6,) and lies in regiom. This
segment has length," and is considered to have a width equal to thespacingg.
Suppose that the problem domain is discretized Mhftat source regiond, azimuthal
angles,M polar angles an& energy groups. The expression for the outgoingulan

flux, (p|,m,_k°“t'g'” at the region boundary can be written in termshefincoming angular
flux oimk 9" as:
. Ensﬂ %'n Znsn
out,g,n ing,n gk gk
= exp ——— |[+—/——| I- exp ——— Eq. 2.26
Amic = Prmie p{ sin@m] DI sing,, q

The ray segmerk makes a contribution to the angular flux in thadaf width
Ar and lengths " shown in Fig. 2.5. The average angular flux iis thénd is obtained by
integrating Eq. 2.25 over the track length

in,g,k out, g, n n
—gn _ Pmk ~Pimk +G}?{
Imk — n.n : n
ISk /sing,, I

Eq. 2.27

There are several ray segments that contributeetangular flux in region. The
angular flux in the region is given as a summatiboontributions from all rays segments
lying in regionn :

—qg, |
Z DS AR
—g,n __ ken
pon =k Eq. 2.28
D SiAx

ken

14



The segment length" is adjusted so that the denominator of Eq. 2.2ialkscthe
physical region volume/,. The scalar flux is obtained by integrating EqR&with
respect to angle:

gy = Z sz WS Eq. 2.29
m |

wherew, andw; are weights for the polar and azimuthal anglegyeetvely.

2.3.2. 1-D axial diffusion solvers

The 1-D diffusion equation for energy grogis:
d’¢,(2)
9 dzz

Qg is the total source, including fission, scattergmd radial transverse leakage. The
latter quantity is determined by the 2-D MOC cahtidn. DeCART has 2 available nodal
methods to solve the Eq. 2.30.

-D

+2,,4,(2)=Q,(2) Eq. 2.30

2.3.2.1. Nodal Expansion Method (NEM)

In DeCART, NEM is derived for the 1-node problenfeTmain approximation of
NEM is that the solution of Eq. 2.30 can be repnesa:by a % order polynomial:

4
pu)=> ¢ f(u) Eq.2.31
i=0

The derivation of the NEM expression then involgetecting an appropriate set
of basis functionsf(u) where u=zhz, and then determining the coefficients of the
polynomial. DeCART uses a set of orthogonal polyrasndefined on the interval [0,1]
as the basis functions. The basis are the polyrspiaposed by (Finnemann, Bennewitz
et al. 1977).

There are 5 unknowns per spatial meghto be determined, so 5 constraints are
needed:

e Current continuity at each face of the considereghm

e Neutron balance equation (Eg. 2.30)

e 2 weighted residual balance equations which araimdd by in multiplying the
neutron balance equation fand integrating it over [0,1].

The resulting set of equations relates the nodeageeflux ¢, with the partial
currents at the top and bottom surfaces of the ,naglevell as the first and second flux

moments#® and#® defined as follow:

7= [p(u) T (u) du Eq. 2.32

After the 5 unknowns have determined, the outgoing partial curretits aurface of
a spatial mesh can be expressed as follow:
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- o o — Eq.
JzT’k =T1szT’k+T2szBk+T3k¢ k+T4${d<+T5$/2d :

2.33
where
Th = 1-9608; T = —-164, Tk = 205,
' (1+ 405, x1+ 2443, )’ ’ (1+ 405, X]”L 240, )’ i [1+ 405, j | Eq. 2.34
q. 2.

ko 8B qe__ OB
* T w248) ° ([1+40p,)

In this expressiorj, is a partial current in the axial direction foraipl meshk,
the £ superscripts imply incoming or outgoing catrand thel andB superscripts refer
to the top and bottom of the mesh, respectivelye @herage flux isp*, the first and

second flux moments ar#® andf®, and the ratio of the diffusion coefficient to thede
size is denotegh.

2.3.2.2.  Semi Analytical Nodal Method (SANM)

The semi analytic nodal method is also derivedafgingle spatial mesh starting
from Eq. 2.30. However, instead of assuming thalf arder polynomial can satisfy the
solution, it is assumed that only the source tefricp 2.30 is represented by 4 drder
polynomial.

Qu)= > qPR(u) Eq. 2.35

I

4
i=0

In the typical SANM formulation, the polynomial is$s composed of the 5 first
Legendre polynomials ang-2z/h:z.

Eg. 2.30 can then be solved analytically to prowtu following expression for
the scalar flux:

4 (h, [T, h, [T,
¢(u):iOa,.R(u)+a55|n>{7\/%uj+aﬁcosv[2\/;uj Eq. 2.36

The hyperbolic functions arise from the homogenoars of the solution, and the
linear combination of Legendre polynomials représéine particular part of the solution
to the Eq. 2.30. The rest of the steps in derivimg final expression for the SANM
solution are similar to those required by NEM. Aldiional step is required in which the
hyperbolic part of the solution is projected on tegendre Polynomial basis in order to
properly compute the source tefiz) The details of NEM and SANM implementations
in DeCART are beyond the scope of the dissertdiidncan be found in (Joo, Cho et al.
2004; Thomas 2006).

2.3.3. 3-D Global Solution Strategy

As mentioned previously, a 3-D solution is obtair®dcoupling a set of 2-D
MOC planar problems to a set of 1-D fuel rod wigéudion problem. The coupling is
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through transverse leakage which modify respegtittleé source terms of the Eq. 2.16
and Eqg. 2.30. However, because transverse leakpgesents a weak coupling between
the 2-D and 1-D solutions; and because of the coatipnal cost of every MOC sweep, a
CMFD approach was implemented to provide an effecticceleration to the transport
calculation. Even though the CMFD framework is needed to obtain a 3-D solution
and can be turned off completely, its fast conveggbroperties makes it an important
piece of the DeCART methodology.

The 3-D CMFD kernel in DeCART is formulated as adaloneutron balance
equation shown below for a homogenized nod&he coarse mesh node in DeCART is
understood to be an axial slice of a pin cell asashin Fig. 2.1 with the node average
scalar flux,¢ , being the solution to the CMFD linear systemaiiaions.

Niag N7
A+ Y ITK AN = ST Eq. 2.37
s=1 s=1

In Eqg. 2.37,3™°and J)*° are the surface average currents in the radiakara

rad

directions, respectively, normal to node surfaegth areaA. The symbolsy™, " and
S™ represent the node average flux, removal crossose@nd source which includes
fission and scattering. Finally, is the node volume an?, and N" are the number of
neighboringhodes in the radial and axial directions.

The node averaged termskd]. 2.37are all obtained through flux-volume weighted

homogenization techniques using the higher order solution provided bg-EheviOC
solution. The expression for the surface averaged radial net currenesnsagiv

Jms :_5m,3(¢_|(m)_am)_[’jm!s(al(m)+¢7m) Eqg. 2.38

rad

where ¢ ™is the node averaged scalar flux for theode and(z?'(m) Is the node averaged

scalar flux of the node neighboring nogeon thes side. 3%° and D™* are the radial
coupling coefficients which represent the coeffitidor the normal finite difference
approximation and a higher-order current correctamtor, respectivelyl%'s Is taken as

the conventional definition of the diffusion coeféint, whereasD™*® can only be

determined by the MOC solution. Note that the isman of the higher order current
correction factor allows for the CMFD solution taaetly reproduce the 2-D MOC
transport solution.

Just as the radial currents were provided by adnighder 2-D solution, the axial
currents are also provided by the 1-D solution dfigher order nodal method (NEM,
SANM) used for the axial direction. As shown in 233, the response matrix for NEM
and SANM may be formulated to provide the axialrent directly. The result of this
formulation is that the final equations for the 1sBlvers can be imbedded directly into
the CMFD kernel by substitution into Eq. 2.37 aedd to the following formulation:
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hiz(DDy[ﬂh_sz(DD)}ﬁ
s=1

z s=1 z

Eq. 2.39

§I,k _hi(Tlm_’_sz_lXj—T,m_i_ jZ—B,m)_ 2:]—5 sz

z
Z Z

(sz and T." are defined in the Eqg. 2.32 and Eq. 2.34 aboveeWthe formulation of the

Eq. 2.39 is used, no separate solution of for thed fod wise 1-D axial problem is
required, only the set of 2-D planar MOC equatians the global solution of the Eq.
2.39 are needed to get a 3-D flux solution.

2.3.4. Known Issues of original 2D/1D formulation

Recently, the DeCART code and the 2D-1D algorithavehbeen applied to
problems where neutron streaming plays a major Bxdene examples of such problems
are gas cooled reactor applications, the analysislanss Of Coolant Accident (LOCA)
where severe voiding occurs or the modeling of higld region in a BWR modeling
have resulted in some cases (Thomas 2006) in wh&B-D solution does not converge.
Other convergence issues have been observed wheaizehof the axial mesh is reduced.
The DeCART convergence issues reveal that the B&sitD algorithm, although highly
successful on most problems, requires investigatifam robustness of convergence.
Those investigations are presented in Chapter 3.

Another issue of the 2D-1D algorithm is relatedthe axial 1-D solver. The
presence of heterogeneity in the axial directiamchsas partially inserted control
assemblies, severe void variations, part lengthrhgs, and axial enrichment zoning can
lead to 3-D solutions of poor accuracy (Cho, Kimakt 2006). The current 2D-1D
algorithm available in DeCART only provides 1-D axsolution based on the diffusion
theory whose accuracy deteriorates in cases ofhgtflox gradients such as the ones
observed for the problems listed above. The additiba transport based solver is the
subject of Chapter 4.

2.4 Transient Methodology

This section briefly describes the main featuretheftransient implementation in
DeCART. It is a summary of (Cho, Kim et al. 200Ggas included in the dissertation as
a starting point for the development of a transimethodology able to include thermal
hydraulic feedbacks.

The analysis of the time dependent neutron tramspquires the coupled solution
of a few equations, the time dependent Boltzmarumaigon as well as the temporal
variation of the neutron precursor’s populatiory, peatial mesh. Given the roles of the
CMFD and MOC steady-state solvers described irsdution 2.3 above, the planar 2-D
MOC solution as well as the CMFD formulation can ééended readily to solve the
time-dependent Boltzmann equation. It is possildentake most of the transient
calculations be carried out by the CMFD calculatoignlimiting the MOC calculation to
update the intra-cell regional flux shapes andréital cell coupling coefficients. Since
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the intra-cell flux shape would not vary much uslésere is a significant change in the
material composition of the cell itself or its nielgprs.

The time discretization is performed for the timependent 3-D CMFD neutron
balance equation to formulate a transient fixed@problem (TFSP). The 3-D TFSP is
solved with the embedded nodal method (NEM or SANfd$ed axial solution kernel
which takes care of the axial variation of the fluithin the large axial node. If
requested, the MOC calculation is performed onlgmvthere are significant changes in
the local composition at the current time step.sTihtermittent MOC calculation based
on the monitoring of the composition change is mefé to as the conditional MOC
update. As much as CMFD wasn't required to perfeteady state calculation, it is the
cornerstone of the DeCART transient solver.

2.4.1. Governing eguations

Three families of equations are solved by DeCARTimdutransient analysis: the
diffusion equation which is solved by the CMFD nuththe time dependent transport
equation solved by the MOC method and the equatiessribing the evolution of the
precursor’'s concentration solved to compute theayg®l neutron source. All three
equations are described in the following sections.

The discretized time dependent neutron diffusiomaéiqn for the spatial mesh
and the energy groupis:

1 d¢g1 _ 1 my. .m Sm & Zm -m
V_mT_Zpg( _/B )'// +ng d +z s,g<7g‘¢g""
g g'=1l

99 Eq. 2.40
1 m+ m- m M
_[ Z Ik (‘]gu _‘]gu )+ng¢gJ
u=x,y,z

where

18 —m
v =k_zudgk2f,g'¢g'

eff g'=1

. Eq. 2.41
Sy =2 ALY
k=1

w"represents the total fission sour&, the delayed neutron source a@d' is
the precursork concentrationK represents the number of precursors aidis its
associated decay time constaﬂg:,i is the surface average current along directicat

the positive and negative side surfaces of the modefined by the CMFD relation, the
Eqg. 2.38.G represents the number of energy groups. The gethathe discretization and
solution of the transient equations are given enftllowing sections.

2.4.1.1. Time discretization

The theta method is used to discretize the timwakgre term in the Eq. 2.40:
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—mn —mn-1

¢g’ _¢g’ -1
TP gR™ 4 (1-H)R™ Eq. 2.42
Vg At R+ E=OR,

n

with n represents the time indeXR;""denoting the RHS of Eq. 2.42 at time step
Typically, the crank Nicholson scheme is uséel(5).

2.4.1.2. Delayed Neutron Source Approximation

The evolution of a given precursor concentratiothwime is governed by:

d m
;:tk =B - ACM Eq. 2.43

B¢ is the fraction of delayed neutron produced byprsork. The first term on the right

hand side (RHS) represents the source term byofisgi"defined in Eq. 2.41 and the
second term the loss term by beta decay.

It was shown in (Keepin, Wimmett et al. 1957) tité$ not required to keep track
all of the neutron precursors (about 40 elementiywce delayed neutron with different
decay constants), and that just six representgireeursors are needed to properly
capture the delayed neutrons effect. Consequesgiyen equations need to be solved per
spatial mesh. To further reduce the computationabldn, a second order precursor
integration technique (Downar, Xu et al. 2006)ssdiwhich is an approximate technique
to avoid the time differencing of the precursor &pn. The precursor’'s concentrations
and their contribution to the delayed neutron sewae evaluated using a second order
approximation of the time variation of the fiss®ource during the current time step.

The delayed neutron source can then be expresdeliicas
K n K ~
Sén,n — zlkclin,n—le—ﬂkmn + z ZﬂlinQE’lIV/ml :Sdm,n—l_'_a)m,nwm,n Eq. 2.44
k=1 l1=n-2 k=1

where

1—
QE{:# K +1+ K [1— 2 j — Ky
ﬂ'kAtn—l Ve ﬂ“kAtn—l

Q) =1- 2 + 1= [ 2 —1J
k
(r+D4A . y(r+DAAL  \ AAL

- K n-1 K
Sdm’n_l = Z’fk/lkclin’n_l + Z Zﬁlingkm'llﬂm'l
k=1

1=n-2 k=1

Eq. 2.45

K
m,n m~ m,n
@ :zﬂk Qy
k=1

and the following constants;, =e** andy = At o,
n-1
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By an additional storage of the node-wise fissionree over the past 2 time
steps, it is possible to avoid the solution ofgkistem of 6 coupled differential equations.

2.4.1.3. Multi-group CMFD transient fixed source formulation

By inserting Eq. 2.42 and Eqg. 2.44 into Eq. 2.4@, TFSP for the CMFD can be
written as follow:

1 1 —m,n
> _J;‘L‘)+(z:‘; +Mj¢g = (59 0= B™) + 15g0™
g n

u=x,y,z

&m,n—l Eq. 2.46
g amn-1 m,n-1
+Zzsg< g7y &/mm +ngsd +®R9

g n

9==9

The RHS of Eq. 2.46 represents the fixed sourcgpatial mesim. The source
term consists of five terms: the usual fission aodttering source terms as well as three
transient specific terms, the previous flux terhe tlelayed neutron source term, and the
residual term. The residual term representing mhigalance at the previous time should
be evaluated to establish the fixed source probkmvided that the previous time step
scalar fluxes, delayed neutron source and residaralsstored, it is possible to use the
steady-state CMFD solver with a modified sourcentey perform transient calculation.

2.4.1.4. MOC transient fixed source formulation

In the framework of the 2D-1D methodology, the tiahependent form of the
planar transport equation, obtained by axial iraégn of the 3D time dependent
Boltzmann equation can be written as follow for lang, spatial meshm and energy

groupg:
109" 1
v, ot 4r

g

h

pA

m -m Hy
(Zpg(l ﬂ )l// +ng8 +zzsg<g gj ((DTg _¢Bg)
Eq. 2.47
8¢Wm a¢w,m m wm
—| sin@@) cosxr) —— +sin(@) sin(a) —— Y +Zg0y

Eqg. 2.47 is the discretized, time-dependent versioBq. 2.20.p™ and S;"' have

the same definition that in section 2.4.1.3. Udimg temporal discretization discussed in
section 2.4.1.1, a TFSP for the planar Boltzmanragqgn is obtained:

w,m,n

i a¢) i i 8¢W'm'” m 1 w,m,n
sin(®) cos@)#+sm(49)sm(a)fT+(ztg + J% —

6\/ At
1 m,n
"'E(}(”g A= B"W ™ + 24 S +ZZSQ< Py j Eq. 2.48
w,m,n w,m,n (oévmﬂ - 1 amn-1 m,n-1
h (¢Tg ~ Py )t N At Eldgsd' +®Rg'

z g=/"n
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Here the residual term represents the imbalancgeleet neutron production and
loss in directionw in a spatial mesh regiam. In principle, Eq. 2.48 can be solved by
MOC as long as the RHS is exactly known for eaah $burce region. However, there
are several practical difficulties in solving Eq4& as is. First of all, the total cross
section is augmented by the l-ovetwvterm. This augmentation changes the ray
attenuation characteristics in the MOC solutiortsiall the exponential terms have to be
evaluated with the augmented cross section. Segosdice the angular flux of the
previous step appears on the RHS, all the angllarshould be stored at every flat
source region which would cause a significant iaseein the memory. In order to avoid
these problems, an approximate solution approaappsed. The 1-overAt term of the
current time step is first moved to the RHS so thatleft hand side becomes identical to
the steady-state form. The angular dependenceeol-thver-wt term is then neglected
by treating this term isotropic. This approximatimould have negligible impact since
the isotropy assumption is applied to the diffeeet@rm not to the angular flux itself.
Furthermore the angular dependence of the residual is neglected. Eq. 2.48 now
becomes:

w,m,n w,m,n

+sin(@)sin(x)

m_wmn _

sin(@) cosg) + 20y

1 m,n m,n m,n
o {Zpg(l BW ™+ xagS +Zzsg<g g J Eq. 2.49

g'=
1 gm,n—l gm,n
ﬂ w,m,n w,m,n [} - g ~mn—1 m,n-1
| 4 7. S +OR”

hz (¢T g Q)B,g ) A ngtn Idg d Rg

Once the delayed neutron source and the residat tare given for each flat
source region, Eq. 2.49 can be solved using tlaelgtstate MOC solver with only a few
additions of source terms. However, the residuah teannot be determined readily for
each flat source region because the shape of ttiacsuof a flat source region is
irregular. Thus a further approximation is introdddo use the cell based residual term
which is determined for the multi-group CMFD TFS3MRe final equation becomes:

w,m,n w,m,n

+sin@)sin(x)

m_wmn _

Ztg (Dg

sin(@) cosg)

1 m,n m,n m,n
4_[ng(1 ﬂ )W +ngS +zzsg<g g' j Eq. 2.50

g'=

—mn-1 —mn

/u w,m,n w,m,n 1 ¢g _¢g
mn), =9 79

h helors-ei) ar| A

~ —m,n-1
+ 2SI +ORg

pA

The bar above designates parameters obtained fr@mualti-group CMFD.
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2.4.2. Calculation flow

The calculation flow of a DeCART transient calcidatis shown in Fig. 2.6. The
transient calculation is driven by the CMFD TFSRvaeo At each time step, the new
multi-group (MG) constants are determined usingitik@-cell flux shapes and regional
microscopic cross sections from the last MOC temtsipdate.

New time step

A 4

\ 4

Determination of the new MG
constants

A 4

Significant changes in MG yes
constants? \ 4
Perform transient MOC
no ¢ update

Evaluation of the TFSP

A

A 4

Solution of the transient MG
CMFD system

A 4

Determination of the new
delayed neutron source

Fig. 2.6. DeCART flow chart for transient calcudati

One of the user’s options for the transient catoutais a threshold value in the
MG cross section change. If, for a given spatiasimehe change is bigger than the
threshold value, a MOC transient calculation idqgrened to generate the intra-cell flux
shapes and regional microscopic cross sectiorectifty the new local conditions in the
reactor. Otherwise the TFSP CMFD calculation car@gand the next step scalar fluxes
are computed by the CMFD solver. Finally, the nealaged neutron source is updated
before the start a new time step.

2.4.3. Kinetics parameters

In the TFSP equations, i.e. in Eq. 2.46 and Eq7,2tHree kinetics parameters
appear: the total delayed neutron fraction, groitgewneutron velocity, and delayed
neutron emission spectra. The delayed neutronidrasthich has a strong isotopic
dependence is obtained directly from the multi-grawss section library. The delayed
neutron fraction of an isotope is constant andisaffected by the reactor condition such
as the fuel temperature. However, for a mixturefisgionable isotopes the average
delayed neutron fraction becomes condition depéndieis obtained by isotopic fission
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source weighting. Specifically, for a given spatiashm, the mesh averaged delayed
neutron for precursor grols obtained by:

Zzﬂk(zvo_gl ij|¢ml}/

A=
zz(zvo_mljl\lml }/m,i

| represents the total number of flat source regemnodal mesim andJ the number of
isotopes in a given flat source region. Note alsat the temperature dependence is

carried by the microscopic nu-fission cross secﬁxjgﬁ' of isotopej and groupg at flat
source regiom of cellm.

Eq. 2.51

The neutron velocity data are not available from ¢loss section library. Instead
it is inferred from the microscopic group crosstwecof B-10 which is a nearly perfect
1-over-v absorber. The reciprocal velocity is ot by:

1 o041

—=—= Eq. 2.52

V, 0,V

where o, andv, B-10 the absorption cross section and velocithe@troom temperature,
namely 3837 barns and 220,000 cm/sec, respectively.

Since the group cross section depends on the tamperof the medium, the
reciprocal neutron velocity obtained by Eq. 2.52@ uniform across the domain and
each cell is assigned its own reciprocal velocitye above formula cannot be applied to
high energy groups since the energy dependence isnger 1-over-v. For the energy
groups beyond 0.1 MeV, the velocity is determingdtdking the midpoint lethargy
instead of the B-10 absorption cross section.

The delayed neutron emission spectrum is muchrstifea the prompt fission
spectrum and it is dependent on the precursor gasughown (Ott and Neuhold 1985).
However, the precursor group dependence is nedlest®eCART by using only one
spectrum which is averaged over all the delayedroes.

The decay constantd, of the six precursor groups are fixed and they were

obtained from the specification of a PWR controtl rejection benchmark problem
(Finnemann and Bauer 1994). The decay constantbeaverridden by the user input
though.

2.4.4. Limitations

The final form of Eqg. 2.46 and Eq. 2.47 for DeCARa&nsient calculations has
been validated by comparing the DeCART solutionhwhie VARIANT-K transport
solution for several transient benchmark proble@iso( Kim et al. 2005). However, all
calculations were performed with a fixed set of rnacopic cross sections. The transient
analyses were triggered by changing the macrosapgs sections of a given region.
Typically, when a control rod was withdrawn, th@ss sections of the rodded region
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changed from the set corresponding to a controtodtle set corresponding to water. As
it was described in the section 2.4.2, MOC TFSEBdraggered when local changes in the
local composition of the reactor were detectedctitvaly, with provided macroscopic
cross sections sets, as it was the case for tloalaabns reported in (Cho, Kim et al.
2005), the MOC TFSP happened when a region hagass sections set modified by
control rod movement for example. Furthermore, éhealculations did not involve any
kind of thermal hydraulic feedbacks.

In order to perform realistic transient calculatoat the core level, without
relying on a multi-step approach where a library naficroscopic cross sections is
generated for the wide range of thermal hydraulit laurnup conditions encountered in a
reactor during the transient, DeCART's transienthudology needs to be modified. The
modifications should allow the code to handle clesngn local thermal hydraulic
conditions (fuel temperature, water density, etc...).
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3. Improvement of the 2D/1D coupling

The goal of this part of the dissertation is to ioye the 2D-1D methodology and
more specifically the coupling between the MOC spklnd the 1-D axial solver.

3.1Investigation of the potential issues with the eatr2D-1D coupling

In the 2D-1D methodology, the axial integrationtieé 3-D Boltzmann equation
leads to (for convenience of the notation, the gngroup indexg has been omitted.):

. o . : 0 2 z
[Sln(ﬁw) cos@n,)— + Sln(HW)SIn(aW)ayJ(DW (%, y)+ Zg00 (x,y)

Eqg. 3.1
QUY) gz (y, )
A
where
h,
ou(xy)= j X,Y,2
Z 0
)= (e, )- (. 2)
‘ Eq. 3.2

l G G
:—Zlvzf,g. +Zzsg< e (%)
-

eff =1
h,

Falxy)=0[,(xy, 2z

A close look at the Eq. 3.1 shows that a poteftiah negative source term exists
for 2 distinct sets of conditions:

e When the axial leakage is much larger than theraeigource term, typical for low
density region where neutron streaming occurs tarely encountered in LWR but
can happen under accident conditions such as LOCA.

e When the axial mesh size becomes small. Numericdllgm may arise when the

transverse leakage term becomes large due% itkependence.

When the source term of the MOC equation becomestive, the DeCART
calculation usually does not recover and divergdihough the low density conditions
are not likely to be encountered during most pecattiransient analysis, fine axial mesh
are needed to ensure an accurate scalar flux @olutspecially for cases where axial
heterogeneities are present. In those cases, anéish is required for low order methods
such as diffusion theory to properly capture the fjradient.
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In order to illustrate the limits of the current -AD methodology described
above, a simple problem, yet representative of P¥@Rditions, was developed and
performed with DeCART.

3.1.1. Test Case Description

The test case geometry is shown in Fig. 3.1 ancta@ss sections are based on the
C5G7 benchmark specifications (Lewis, Smith e2@01).

The model consists of 5 pins, and a reflective blamy condition is imposed at
the boundary surfaces except for the top surfacereva vacuum boundary condition is
imposed. Four pins, pins 1, 2, 4 and 5, are fug pnd pin 3 is a non-fuel pin. The fuel
pin has a slab shape. The demonstrative modehitasito a slab geometry model except
for the additional reflector region above which t#feeuum boundary condition applies.
The equivalent fuel radius was determined to pwesére fuel volume from a circular
pellet. The non-fuel pin of pin number 3 is addedmnalyze the heterogeneity effect of a
water hole or the control rod. The total heightled geometry is 56.7 cm including the
39.8 cm of fuel region and 18.9 cm of reflectorioag The fuel region is initially divided
in 2 meshes of 18.9 cm size and the reflector regioepresented by 1 axial mesh.

1.26 cm
1.26 cm < >
— i 18.9 cm
]
Pt B 1
o 37.8cm
/ T y
RS b 18.9 cm
ERE B 2
R b vy
X
y

Pin 1, 2, 4 and 5: Fuel Pin
Pin 3: Fuel Pin or Guide Tube or Control Rod carfoaeled

Fig. 3.1. 5-pin test problem geometry
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In order to illustrate the short comings of thereat 2D-1D methodology in
DeCART, 2 sets of calculations are performed: Ohere the axial mesh is gradually
reduced to less than a centimeter to assess theergemce properties of the 2D-1D
algorithm in the limit of a small mesh size andeaad calculation where the coolant
density is reduced from 100% to 1% of its normadueao represent high leakage, low
density conditions.

3.1.2. Results and Discussion

3.1.2.1. Reduced Mesh Size Case

The model described above is used with the pinpaced by water hole. The
axial mesh is refined by subdividing the initiabpl discretization (3 planes) evenly, see
Table 3.1.

Table 3.1. Effective multiplication coefficient fearious axial mesh sizes of the reduced mesicsige

Number of Ax_ial Mesh K
Planes Size [cm] eff

3 18.90 1.25810
6 9.45 1.25960
9 6.30 1.25970
12 4.73 1.25970
15 3.78 1.25970
18 3.15 1.25980
21 2.70 1.25980
24 2.36 1.25980
27 2.10 1.25980
30 1.89 1.25980
33 1.72 1.25980
36 1.58 1.25980
39 1.45 1.25980
42 1.35 1.25980
45 1.26 1.25980

Contrary to what was expected from the previoususision, even when the axial
mesh becomes small, about the size of the radiahpte26cm, the DeCART solution
does not diverge. It is also important to note ithportance of refining the mesh. The
predicted effective multiplication coefficient did initial case differs by 140 pcm (per
cent milli-k) compared to the case where the akir@ction is refined as much as possible
(1.26 cm). 140 pcm represents a non trivial difiess especially considering that the
problem, a water hole surrounded by fuel rodsletively “easy”; there is no significant
axial heterogeneity.
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3.1.2.2. Low Density Case

The model described above was used with the piep&aced by fuel rod. The
coolant density is reduced from 100% to 1% andhttial mesh is refined by subdividing
the initial spatial discretization (3 planes) eyersee Fig. 3.1. The calculation does not
converge when the axial mesh is reduced below 20¢hen the axial leakage is much
larger than the neutron source term, usually fav kensity regions where neutron
streaming occurs, the MOC source term become megadiading to the divergence of
the solution. In Fig. 3.2, the scalar flux calcathfor energy group 3 is shown for the top
of core near the fuel/water interface. The quagishown in Fig 3.2. are expressed in
neutrons per cfrbut are not normalized. As indicated, the entigian corresponding to
the axial water reflector has a negative flux. Teéason can be understood by a closer
look to the two RHS source terms of Eq. 3.1. Asnsh&ig. 3.2.c) and Fig. 3.2.d), since
the leakage term is much larger than the usuacederm, the overall MOC source term
(shown in Fig. 3.2.b)) becomes negative and result®n-physical negative MOC scalar
fluxes and consequently divergence of the 2D-1Drélgn.

. -1.23 . -15

I _1.0= I -1a

ol
~Juninid

a) MOC Scalar Flux b) Total MOC Source

- -

Iw I-19

c) Fission, Scattering Source d¢akage Source

Fig. 3.2. Epithermal energy group results for ttap near the top of core
The objectives of the investigations on the 2D-bDpling are:

e Improve the accuracy of the 2D-1D coupling whilaneing the same axial solver.
¢ Resolve the occurrence of negative source terrgmneutron leakage regions.
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Table 3.2. Effective multiplication coefficient fearious axial mesh sizes of the low density case
Axial Mesh

Number of Planes Size Keft
3 18.90 0.51019
6 9.45 Divergence

The next section describes how these goals werewachin this work.

3.2 Formulation of the new 2D/1D coupling approaches

The 2-D planar transport equation was presentedeabo the Eg. 3.1 and is
solved together with the associated 1-D axial difin equation:

_D%Z(Z)WLZr(ﬁXY(Z):Q—LXY(z) Eq. 3.3
where
#° @)= [ [otxy.2)oey
y
1% 27 COSaI(qu(xr Y Z)— CDW(XI Y Z))dy Eq. 3.4
TLXY(Z):ZI -4 yIxf dadu
N ° +SinaJ.((pW(X, Yy, 2)-p"(x ¥, z)ldx

X

The main challenge of the 2D-1D methodology israpprly determine the term
TLZ(x, y)of Eq. 3.2 using information coming from the 1-D dffon solution. Currently,

TL%(x, y) is evaluated using the Bpproximation:

ﬂ(jT,out _ jB,in)for 1, >0
%({ﬂw(x, Y, ZT)—qow(x, y, z° ))z Z:Z e Eq. 3.5
; E(J - )for H, <0

z

wherej"°"'andj™" are the partial outgoing and incoming currentthattop surface, and

j®°" andj®™ are the corresponding values at the bottom surfeteey are computed by

solving the Eq. 3.4.
Two alternate formulations to the Eq. 3.5 are psagion the following sections.

3.2.1. Isotropic Leakage Coupling

In this approximation, the axial leakage is assutodzk isotropic:

127

— 1 ,
TLu(x, y)zzf [TL(x y)dadu Eq. 3.6

-10
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Note: TLZ(x, y) represents the true axial leakage and(x,y) its approximation, in the
directionw defined by an azimuthal angteand a polar angle.

Using the Eq. 3.2,

T (0 y)= 22" (x .2 )~ 0"(x .2°) Eq. 3.7

z

By inserting Eq. 3.6 into the previous equatiomatomes:

127z

TLW(x y —_”/'IW x Y,z ))dady——jjﬂw x Y,z ))dad,u Eg. 3.8

—lO Z -10 Z

By definition of the net neutron current,

127z

x Y,2) J.I\;\)/(a,y x y, )dad,u Eg. 3.9

-10

Projecting along the direction leads to the needed quantity:
1

J¥(2)= f(x y, 2)f = I

1

J.,uw((pw(x, Y, Z))dad,u Eq. 3.10
0

Finally:

TLu(x,y)= ;Lh (39(z7)-37(°)) Eq. 3.11

3.2.2. P; coupling

In this approximation, the angular flux on top dadtom of the considered spatial
mesh is assumed to have a linear dependence & ang|

?"(x,y,2)~ %(If(x, Y, z)+ g\ﬁ(a, W% y.2) Eq. 3.12

Integrating (ﬁw(x, Y, z) over the top and bottom faces of a consideredl amesh, it
becomes:

1¢(>< y.2")-¢lx.y.2°)
h 2 \;\)/(0! #) (‘S)(X’y,ZT)_S)(X’y’ZB))

By projecting the net currert along the directiorz, and integrating ovex andy, it
comes:

TL: (%, y) = TLu(x,y) =2

Eq. 3.13

TL(xy)= 220 (2)- 97 (2°)+ 30, (37(2')- 3 (2°)) q. 3.14

A
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Both formulations of Eq. 3.11 and Eq. 3.14 werelengented into DeCART as
new user’'s options for the 2D-1D transverse leakamepling to replace the original
formulation of Eq. 3.5. Because of its consistemgth the diffusion theory (both are
based on aPapproximation of the angular flux) the formulatiohEq. 3.14 is expected
to give the best results in terms of accuracy. iBo&opic leakage formulation of Eq.
3.11 represents a step down in terms of accuramparced to the Dfapproximation
because it assumes a completely isotropic leakagtead of a half-space isotropic
leakage in the Dfapproximation. However, since the Eq. 3.11 prodube same axial
transverse leakage for symmetric polar angles iggpect to théx,y) plane, it is possible
to solve the MOC formulation only for half the pokngles, reducing the computational
cost of the calculation.

If the formulation of Eq. 3.14 is expected to impgdhe accuracy of the 2D-1D
methodology, and the formulation of Eq. 3.11 isextpd to reduce its cost, neither of
them does solve the potential occurrence of negdMi@C source term as discussed in
section 3.1. The next section details a potentigbfthe problem by proposing a splitting
of the transverse leakage term between the Lefttbaae (LHS) and RHS of Eq. 3.1.

3.3 Transverse Leakage Splitting Formulation

The principal idea of the transverse leakage sgifiormulation is to separate the
quantity TL% (x, y) between the LHS and RHS of Eq. 3.1. By moving p&fL? (x,y) on

the LHS, Eqg. 3.1 can be reformulated as:

\/1—ﬂm(cosm)%+sin(aw)a%j¢§(x,y)+(2tg+2Lg i(x)

= %—TL@(X, Y)+ 2,0 (% Y)

Eq. 3.15

Where Z  is an angle independent “leakage” cross sections, @2 (x,y) some

approximation of the angular flux. To simplify thetations, the leakage term in the LHS
of Eq. 3.16 is referred as)'. The goal is to avoid cases wheTe’(x,y) is bigger

Qx.y)

than4—’ causing negative MOC sources, or cases where thified removal term,
74
(Ztg +Z ) becomes itself negative.

Before going any further, the reason why, must be angle independent needs to

be clarified. As described in Chapter II, the macapic cross sections in DeCART are
evaluated during the calculation given a local flakape and thermal hydraulic
conditions. They are computed before the inner rfagt of the MOC algorithm, i.e.
before the sweeping through every segment of enagipn for each angle. Having angle
dependent macroscopic cross sections would redfugie evaluation during the MOC
inner most loop which would undesirably increasedbst of the calculation.

The next sections describe how to properly cho@igeand oZ(x,y). Three
different splitting are considered. A partial cuntresplitting using a formulation of
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TL%(x,y) based on Eqg. 3.11 is discussed first. Then &isgliélso related to the isotropic
formulation offL%(x,y), see Eq. 3.11, is presented. Finally a splittiaged on the
formulation of Eq. 3.14, foLZ(x, y) is the last to be considered.

3.3.1. Partial Current Splitting

For this approach, the starting point is the igmtroleakage formulation
forTLz(x,y), EQ. 3.11. Expressing the net curreht'(z) as function of its associated
partial currents leads to:

JXY(ZT): jTout _jTin Eq. 3.16

-T,out

J
By inserting Eq. 3.16 into Eq. 3.11, it becomes:

T,in

andj ' are the partial outgoing and incoming currenthatop surface.

T_L\fv(x, y):ﬁ(jtout_ jT,in + jB,out_ J-B,in) Eq. 317

A

ThenX  andg?(x,y) can be defined as follow:

%, :W:!-y)hz(jnout_i_ jB,out) E
, g.3.18
72 () -0 )
4
With the choices of Eq. 3.18, the RHS of Eq. 3.@6dmes:
%—T%(x, Y)+ 00 (% y)=%+4—;(i“m +i%") Eq. 3.19
This quantity will always be positive, being thersaf positive quantities.
The LHS of Eq. 3.16 is also modified:
LXY 4 (Ztg +2, (%, Y)
Eg. 3.20

1 . .
— LXY z T,out B,out zZ ’
X +[ ot oy (7o + | )Jcow(x y)

This approach has been implemented in the ANL oprrei DeCART to analyze
gas cooled reactors. It is reported in (Pointeg &eal. 2009) to have good convergence
properties.

3.3.2. Isotropic Leakage Splitting

Similarly to section 3.3.1, the starting point tbe isotropic leakage splitting is
Eq. 3.11.Z  and ¢/ (x, y) are chosen as follow:

33



=maf ot 07 )96 )o)

$*(x.y)
4z

The logic behind the choice ofX 6 is that if the quantity

Eqg. 3.21
Pa (X, y)=

;zﬁz(;)h(‘] ()~ 3%(z®)) is positive, the axial leakage contribution is atage

X, yn,

potentially causing the MOC source term to becaselfinegative. By transferring it to
the LHS, the added removal term is positive enguttiat both removal and source terms
are positive.

3.3.3. P, Splitting

For this approach, the starting point is thetRnsverse leakage formulation
forTL% (x,y),Eq. 3.14. It is possible to define an angle depenhtkakage cross section,

w .
=

ng _Z/JW )(¢XY(ZT )_¢XY(ZB)+3’um.(\] XY(ZT)_JXY(ZB)))

) 2hZ¢W (X’ y’ /’lW

27 Eqg. 3.22
a6y, 11)= [0 (%Y, ., )dax
0
Consequently, the choice &f (x, y)is:
B~ ) 3 () )
AR Eq. 3.23

- 1_
Po(xy)= o o0 (%Y, 1,)
JT

One of the issues of the Bplitting is the determination @f?(x, y, «, ), which is

the azimuthally integrated, polar dependent angdilla: It is easily determined during
the 2-D MOC calculation but requires additional noeynstorage, hence a higher
computational cost.

The other issue is the angular dependencg pf As stated at the beginning of

this section, having a angular dependent crosgoseebuld require the evaluation of the
removal term in the inner most loop of the MOC spvediich is not desirable in terms of
computational cost. Similar to what was shown Bi3.an angular independent splitting
is chosen:

TL (X, X y
27 lﬁ” y /”O Eq. 3.24

=Mma
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So the angular directiorw, for which the MOC source term, including axial
transverse leakage, is the most negative, is seleemd the leakage cross section is
defined as:

A Q)

s = Eq. 3.25
" hor (X Y., )
whereTL;, (x,y) is defined as follow:
TL, (xy)=max(TL(x y)0) Eq. 3.26

¥, Is now angular independent and it is applied tawrgular directionsv, even

though it was determined from the direction, For the directiomw, the complete axial
transverse leakage is moved to the LHS. The othrectibns corresponding to other
polar direction, the source term is given by:

X! z z z
%ﬁy) ~TL, (% y)=TL, (x,y)-TL,(xy) Eq. 3.27
Since the direction has been chosen for its maxiraxial transverse leakage, the
quantity TL;, (x,y)-TL, (x,y) is positive. The potential for negative source is

eliminated.

3.3.1. Approximation involved in transverse leakage Spht

Because of ¢Z(X,y)=I(pvzv(x,y)dw in the partial current splitting, and

ar

PL(xy)= I PL(x, Y, 1, ), for the R transverse leakage splitting, the overall neutron
27

balance of the considered spatial mesh is preseH@dever, depending on which side

of the equation the transverse leakage is applirel,approximation made to the 3-D

transport equation is different. When the additideakage cross sectian, ; is added to

the LHS, its angular dependence is proportiondhéangular dependence @f (x, y).

Added on the RHS, the contribution to the sourcm tis isotropic. The approximation
introduced by transverse leakage splitting is shimnieg. 3.28:

TL, (%, y)=Lpi(x, y)+ L, +¢ Eqg. 3.28

where L,pZ(x, y) is the contribution to the LHS»lthe contribution to the RHS amdhe

error term. The transverse leakage term has the sader of magnitude than a net
current gradient.

For the partial current splitting,
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TL, ()= —¢Z(X%y)hz (i + et o (x, Y)+4—jhz(i”” +i) e Eq. 3.29

The transverse leakage term has the order of muagnivf the sum of partial
currents divided by the mesh size, which in theapproximation have the order of
magnitude of a scalar flux. In the limit of a fineesh, the sum of partial currents goes to
a finite quantity while the denominator goes toozéris formulation will produce poor
results in the limit of small mesh size.

For the R transverse leakage splitting and isotropic trarse/eeakage, L1 and L2
are chosen to have the same order of magnitude ttlennitial transverse leakage,
limiting the amount of error introduced by the saarse leakage approximation.

3.4 Results

3.4.1. Foreword about CMFD and convergence

The convergence analysis of the CMFD method hawsrstiGho, Lee et al. 2003;
Lee, Downar et al. 2004; Lee, Lee et al. 2004) thmter certain conditions, especially
for small mesh size, the CMFD is not stable. Sitiee primary purpose of the work
summarized here is to improve the 2D-1D algorittelf, the CMFD acceleration has
been turned off. Any occurrence of divergence éntbolely due to the breakdown of the
2D-1D methodology.

During the course of a given calculation, the DeTAgbnvergence can break
down in two different manners. The first one is\aetgence, where the residual increases
exponentially and eventually causes the calculaboiail. This failure mode is recorded
as “D.V.” for divergence in the result’s table. Thecond one is a non convergence,
where the residual stops decreasing agd dscillates between two values until the
maximum number of outer iterations is reached. Tdilare mode is recorded as “N.C.”
for non convergence in the result’s table.

3.4.2. Mesh refinement problems

The 2 new coupling approaches and their associated splitting are applied to
the problem described in section 3.1.1 to evaltia¢# effect on the convergence and
accuracy of the DeCART solution. Pin 3 is replatiest by a water hole, then by a
partially inserted control rod. Finally, the congence issue described in section 3.1.2.2
is investigated by looking at a problem where thatew density in the water hole is
reduced from 100% to 1%.

For each of the 3 problems, 6 DeCART calculatioesracorded; each of them
represents the original 2D-1D DeCART coupling ahd thew approaches described
above. Each option is described in the Table 3@ne

3.4.2.1. Water Hole case

For this case, the pin 3 of the problem descrilvedeiction 3.1.1 is made of a
water hole. For each of the 6 coupling options,akial mesh is refined by subdividing
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equally the initial geometry. Initially, there a3eplanes of 21.42cm thickness each. Each
plane is subdivided in 2 equal size subdivision®im the next problem.

A reference solution is obtained by running DeCAdrilthe equivalent 2D model
using only the MOC solver. The transport solutidostamed is used as a reference to
compare with each of the 2D-1D calculations.

Table 3.3. 2D-1D coupling options summary

Option Index Description
0 Partial current splitting (section3.3.1)
la Isotropic Leakage, splitting (section 3.2.1 argi2)
1b Isotropic Leakage, no splitting (section 3.2.1)
2 DPO coupling, no splitting (original DeCART)
3a P1 coupling, splitting (section 3.2.2 and 3.3.3
3b P1 coupling, no splitting (section 3.2.2)

For each DeCART run, the effective multiplicatiooefficient ks is recorded.
The results for the water hole case are summanz&dble 3.4 and Fig. 3.3. In the Fig.
3.3, all the curves besides option 0 are locatetbprof each other. Instead of showing
the actual effective multiplication coefficientsafile 3.4 presents the difference with the
reference k expressed in terms of pcm. The definitions of @omd relative pinpower
difference are given in the equations Eq. 3.30&md3.31 below:

k2o-1P
pcm= [ T(ZD —1}105 Eq. 3.30
eff
2D-1D

The effective multiplication coefficients represeat measure of the global
differences between calculations. In order to haveetter understanding of the local
differences, the averaged power generated by faetlper initial axial mesh is also
recorded and compared between calculations. I"D&@ART model, there are 2 axial
slice, see section 3.1.1. Their local power congpariis summarized in Table 3.5 and
Table 3.6.

The original coupling of DeCART, option 2, convesgaonotonically toward its
asymptotic solution when the axial mesh is refiridce the CMFD has been turned off,
the convergence issues observed in the literaturenfiall mesh size do not appear.

Similarly, the potential convergence problem, eflato a negative MOC source
in the case of strong axial leakage, is not obsemethe Water Hole case. As far as
accuracy is concerned, the spatial convergencea®th towards ad equal to 1.2614.
The difference of about 130 pcm with respect toréierence solution is rather small but
expected because the reference solution is obtéyedpure transport solution, whereas
the 2D-1D method is based on a mix of diffusion &maehsport theories. The relatively
good agreement was expected given the weak axiaidgeneities of the Water Hole
problem. The pinpower predictions, shown in Tabedhd Table 3.6 show that besides
the case of partial current splitting, all methocsnverge to the same pinpower
distribution.
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Table 3.4. Convergence behavior gf for the water hole geometry

DeCART 2D Referencek 1.2614
Pcm Difference with respect to 2k
Number of Ax_lal Mesh 0 1a 1b 2 3a 3b
Planes Size [cm]

3 18.90 -248 -260 -262 -261 -259 -259
6 9.45 -121 -143 -143 -143 -142 -142
9 6.30 -104 -134 -134 -134 -132 -132
12 4.73 -94 -132 -133 -132 -131 -131
15 3.78 -87 -131 -131 -131 -130 -130
18 3.15 -81 -130 -130 -130 -129 -129
21 2.70 -51 -129 -130 -129 -128 -128
24 2.36 112 -127 -128 -127 -126 -126
27 2.10 -800 -128 -129 -128 -128 -128
30 1.89 -859 -128 -128 -128 -128 -128
33 1.72 N.C -128 -129 -128 -128 -128
36 1.58 N.C -128 -128 -128 -127 -127
39 1.45 N.C -127 -128 -127 -126 -126
42 1.35 N.C -128 -128 -128 -127 -127
45 1.26 N.C -128 -128 -128 -126 -126

1.264

1.262

1.26

1.258 e =l ()

1.256 § == 1a

1.254 g == 1b

4 1.252 2
1.25 =¥e=3a
: A A A : A A A A : A A A A : A A A A ¥ 1.248 * 3b
20.00 15.00 10.00 5.00 0.00

Mesh Size [cm]

Fig. 3.3. Convergence Behavior gfkor water hole geometry
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The difference with the reference solution is l#sst 0.4% for the finest spatial
mesh for the lower fuel region, where the erroali®ut 0.7% for the upper mesh. The
agreement is better in the lower part of the pnobbecause the leakage plays a lesser
role, making the diffusion solution in the axiatedition less of a liability. In the vicinity
of the axial water reflector, i.e. in the upperlftegion, the neutron leakage plays a more
important role, and causes the 2D-1D methodologyédict less accurate results.

Except for the partial current coupling, the otlw@upling methods all have
similar convergence and accuracy properties. THiegoaverge to eigenvalue around
1.2614 in a conventional manner: when the spatiakhmis refined, the solution
converges to a constanizk The small discrepancies in terms of eigenvalusenizd
from isotropic leakage to Ro P, come from the different approximations appliedte
transverse leakage term as described in the s&&cend 3.3.

Table 3.5. Relative pinpower difference with the RBCART reference for the lower fuel region for the
Water Hole case

% Relative pinpower difference for lower fuel regio

Number of Planes A;;;L '\[/(I;’:r‘?]h 0 la 1b 2 3a 3b
3 18.90 0.81 0.98 0.98 0.98 0.90 0.90
6 9.45 0.29 0.55 0.55 0.54 0.51 0.51
9 6.30 0.09 0.43 0.43 0.43 0.40 0.40
12 4.73 0.06 0.42 0.42 0.42 0.4p 0.42
15 3.78 0.18 0.39 0.41 0.39 0.39 0.39
18 3.15 0.29 0.40 0.40 0.40 0.38 0.38
21 2.70 0.36 0.38 0.38 0.38 0.36 0.36
24 2.36 0.47 0.40 0.40 0.40 0.36 0.36
27 2.10 0.51 0.39 0.39 0.39 0.39 0.39
30 1.89 0.38 0.37 0.38 0.37 0.3/7 0.37
33 1.72 N.C 0.38 0.38 0.37 0.3 0.35
36 1.58 N.C 0.37 0.37 0.37 0.36 0.35
39 1.45 N.C 0.36 0.38 0.36 0.3 0.35
42 1.35 N.C 0.36 0.37 0.36 0.36 0.35
45 1.26 N.C 0.37 0.38 0.37 0.36 0.35

For this first test problem, there were no beneditsising the transverse leakage
splitting techniques recently implemented in DeCAS8iice no convergence issues are
observed even for very small mesh size of 1.26Tdms finding was expected since the
Water Hole case is not driven by neutron leakagevever, it allows us to confirm that
the 2D-1D methodology has no convergence issuegfoular PWR problems even if the
axial mesh is refined to about the size of thealadiesh.

For the Water Hole problem, the benefits of theendly implemented treatment
of the transverse leakage at the planar interfaamely the isotropic leakage and P
coupling, are not visible. For relatively homogeaeproblem, all the available coupling
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return the same answer, both in terms of global landl information, i.e. effective
multiplication coefficients and fuel rod power. Thwin benefit of using the isotropic
leakage coupling instead of the &®upling is the same level of accuracy in terrkegfis
reached while considering half of the polar direes, reducing the computing cost of the
calculation.

The worst 2D-1D coupling option, both in terms ohgergence and accuracy is
the partial current splitting option, since no cerged solution is obtained for an axial
mesh of less than 1.8 cm. For the converged sokijtibie accuracy is questionable since
no spatial convergence seems to be observgdkdeps increasing without reaching a
plateau as it is observed for the other methodss ehavior can be explained by the
limitations already formulated in section 3.3.1 aibthe partial current splitting. The
better convergence properties and the accuracgssbath come from an artificially
increased removal and source terms in Eq. 3.15.pan#&al currents are always a much
bigger quantity than the net currents, which makestransferring of partial currents
from one side to the other, not a physically cdregproach as already discussed in 3.3.1.

Table 3.6. Relative pinpower difference with the RBCART reference for the upper fuel region for the
Water Hole case

% Relative pinpower difference for lower fuel regio

Number of Planes Aé(ilfel} I\[/(I:ers]h 0 la 1b 2 3a 3b
3 18.90 0.81 0.98 0.98 0.98 0.90 0.90
6 9.45 0.29 0.55 0.55 0.54 0.5 0.51
9 6.30 0.09 0.43 0.43 0.43 0.4Dp 0.40
12 4.73 0.06 0.42 0.42 0.42 0.42 0.42
15 3.78 0.18 0.39 0.41] 0.39 0.39 0.39
18 3.15 0.29 0.40 0.4(Q 0.40 0.38 0.38
21 2.70 0.36 0.38 0.38 0.38 0.36 0.36
24 2.36 0.47 0.40 0.4(Q 0.40 0.36 0.36
27 2.10 0.51 0.39 0.39 0.39 0.39 0.39
30 1.89 0.38 0.37 0.38 0.37 0.37 0.37
33 1.72 N.C 0.38 0.38, 0.37 0.36 0.35
36 1.58 N.C 0.37 0.37 0.37 0.36 0.35
39 1.45 N.C 0.36 0.38, 0.36 0.36 0.35
42 1.35 N.C 0.36 0.37 0.36 0.36 0.35
45 1.26 N.C 0.37 0.38 0.37 0.36 0.35

3.4.2.2. Control Rod case

For this case, the pin 3 of the problem descrilvedeiction 3.1.1 is made of a
partially inserted control rod. The control rodnserted from the top surface to 18.9 cm
from the bottom of the problem geometry. The typégalculation performed are the
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same as in section 3.4.2.1 above. The resulthéwater hole case are summarized in
Fig. 3.4 and Table 3.7, Table 3.8 and Table 3.9.

The original coupling of DeCART, option 2, convesgaonotonically toward its
asymptotic solution when the axial mesh is refiridce the CMFD has been turned off,
the convergence issues observed in the literatureniall mesh size do not appear either
for the Control Rod case. As far as accuracy iseored, the spatial convergence is
smooth towards ack equals to 1.168277.

The conclusions for the control rod case are smidahe water hole case in that
potential convergence problems related to negdi@C source in case of strong axial
leakage are not observed. As far as accuracy isecoed, the spatial convergence is
smooth toward ad¢ equals to 1.168277. The difference of about 250 with respect to
the reference solution is larger than that obsenvéldde Water Hole case. It was expected
since the Control Rod case presents more axiatdgdreities. The departure from a
purely diffusive media is more important in the @oh Rod case. The pinpower
predictions, shown in Table 3.8 and Table 3.9 shibat besides the case of partial
current splitting, all methods converge to the sgmeower distribution. The difference
with the reference solution is less that 0.01%lierfinest spatial mesh for the lower fuel
region, where the error is about 0.03% for the uppesh. The agreement is surprisingly
good and much better than in the Water Hole cakehas likely attributable to some
cancellation of errors.

Table 3.7. Convergence behavior gf for the control rod geometry

DeCART 2D Referencegk 1.168277
Pcm Difference with respect to 2[xk
N‘;rl';?gs"f Aé‘i';‘é '\[’('ﬁs]h 0 la 1b 2 3a 3b

3 18.90 1619 D.V. 1573 1571 1568 1568
6 9.45 223 176 174 170 166 166
9 6.30 -23 -85 -87 -90 -95 -95
12 4.73 -82 -170 -171 -175 -179 -179
15 3.78 -237 -203 -205 -207 -211 -211
18 3.15 277 -221 -223 -225 -229 -229
21 2.70 -227 -231 -233 -235 -24( -240
24 2.36 451 -234 -235 -238 -241 -241
27 2.10 -708 -241 -242 -245 -248 -248
30 1.89 N.C. -243 -244 -247 -251 -251
33 1.72 1219 -246 -247 -250 -253 -253
36 1.58 N.C. -246 -247 -249 -253 -253
39 1.45 N.C. -244 -246 -248 -251 -251
42 1.35 N.C. -247 -248 -250 -253 -253
45 1.26 N.C. -247 -248 -251 -253 -253
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Fig. 3.4. Convergence Behavior qf;kor control rod geometry

Table 3.8. Relative pinpower difference with the RBCART reference for the lower fuel region for the
Control Rod case

% Relative pinpower difference for lower fuel regio

Number of Planes Aé(ili I\[/(I:ers]h 0 la 1b 2 3a 3b
3 18.90 0.65 D.V. 0.89 0.95 0.95 0.95
6 9.45 0.11 0.44 0.47 0.47 0.4f7 0.47
9 6.30 0.25 0.19 0.21 0.21 0.28 0.23
12 4.73 0.47 0.11 0.11 0.11 0.11 0.11
15 3.78 0.63 0.05 0.0§ 0.0 0.08 0.08
18 3.15 0.74 0.03 0.03 0.0 0.06 0.06
21 2.70 0.85 0.02 0.03 0.0 0.03 0.03
24 2.36 0.93 0.01 0.01 0.0 0.02 0.02
27 2.10 1.07 0.01 0.01 0.0 0.0R 0.02
30 1.89 N.C 0.02 0.03, 0.0 0.08 0.03
33 1.72 1.26 0.01 0.01 0.0 0.0R 0.02
36 1.58 N.C 0.01 0.02 0.0 0.02 0.02
39 1.45 N.C 0.01 0.02 0.0 0.02 0.02
42 1.35 N.C 0.01 0.01 0.0 0.02 0.02
45 1.26 N.C 0.01 0.01 0.0 0.01 0.01

The pinpower comparison tends to show the samd aieralready observed in the
Water Hole case, the agreement with the refereimg@ower prediction is better in the
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lower part of the problem because the leakage @agsser role, making the diffusion
solution in the axial direction less of a liability the vicinity of the axial water reflector,
i.e. in the upper fuel region, the neutron leakplggs a more important role, and causes
the 2D-1D methodology to predict less accurate lt®stAnother important item
highlighted by the Control Rod case, is the needdbned spatial meshing in the region
of large flux gradients. The errors in terms ofgawer prediction for the coarser mesh
are around 1% in the lower part of the fuel, buhia area of the control rod tip, i.e. in the
upper part of the fuel, the error is about 9%s Iquickly reduced as the spatial mesh is
refined.

Table 3.9. Relative pinpower difference with the RBCART reference for the upper fuel region for the
Control Rod case

% Relative pinpower difference for upper fuel regio

Number of Planes Aé(i'?é '\[/(l:ﬁ]h 0 la 1b 2 3a 3b
3 18.90 6.76| D.V. 8.68 8.68 9.16 9.16
6 9.45 2.44 4.12 4.12 4.12 4.3p 4.36
9 6.30 0.29 1.79 1.79 1.9% 1.79 1.79
12 4.73 1.53 0.99 0.99 0.99 0.99 0.99
15 3.78 2.37 0.42 0.42 0.51 0.611 0.61
18 3.15 2.69 0.27 0.27 0.19 0.27 0.27
21 2.70 3.33 0.24 0.24 0.24 0.10 0.10
24 2.36 3.39 0.09 0.15 0.1% 0.09 0.09
27 2.10 4.19 0.03 0.03 0.09 0.03 0.03
30 1.89 N.C 0.02 0.02 0.03 0.08 0.08
33 1.72 5.25 0.03 0.03 0.01 0.03 0.03
36 1.58 N.C 0.07 0.01 0.01 0.06 0.05
39 1.45 N.C 0.03 0.03 0.0( 0.08 0.03
42 1.35 N.C 0.03 0.03 0.03 0.00 0.00
45 1.26 N.C 0.03 0.03 0.03 0.06 0.06

The other conclusions from the Water Hole caseakm@ evident in the results of
the control rod case, i.e. the convergence andracguof partial current coupling,
benefits of transverse leakage splitting, and nareurate formulation of transverse
leakage.

3.4.3. Low density case.

For this problem, the pin 3 of the geometry destiim section 3.1.1 is replaced
by a fuel rod, and the water density, both in tbelant and in the axial reflector is
reduced from 100% to 1% to simulate a high neuleakage environment. The types of
calculation performed are the same as in secti2.3. above. The results for the water
hole case are summarized in Fig. 3.5, Table 3.4Bler3.11and Table 3.12.
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The original coupling of DeCART, option 2, divergessoon as the axial mesh is
refined, as already stated in section 3.1.2.2 due ¢trong axial leakage that causes the
MOC source to become negative. Both newly impleettansverse leakage coupling,
based on either isotropic leakage gapPproximations, diverge for the same reason as the
original DeCART coupling. The partial current sjptig as well as the transverse leakage
splitting associated with the isotropic leakageptdimg, option 1a, produces results for a
spatial mesh equivalent to the radial mesh sizeveder, the limitations observed in the
previous test cases with respect to the accuradleopartial current splitting, are also
observed in the Low Density case. Option la perfomell, with a smooth spatial
convergence toward @equals to 0.47431. Surprisingly, option 3a dodscoanverge as
well as expected. When the local polar wise andgllarbecomes small, the division by

(pvam(x, y,ywm) in Eq. 3.24 tends to create very large valuefpr which increases the

local removal term and further reduce the localudengflux eventually causing the
calculation to crash.

Table 3.10. Convergence behavior gf for the low density problem

DeCART 2D Referencek 0.47515
Pcm Difference with respect to 2[xk

Number of | AxalMesh | a | 1 2 | 3| @
3 18.90 -276 -229 -156 -158 D.V. -147
6 9.45 -135 -147 D.V D.V D.V 135
9 6.30 -114 -175 D.V D.V D.V D.V
12 4.73 -120 -189 D.V D.V D.V D.V
15 3.78 -105 -183 D.V D.V D.V D.V
18 3.15 36 -181 D.V D.V D.V D.V
21 2.70 276 -177 D.V D.V D.V D.V
24 2.36 -126 -170 D.V D.V D.V D.V
27 2.10 -152 -175 D.V D.V D.V D.V
30 1.89 23 -177 D.V D.V D.V D.V
33 1.72 17 -183 D.V D.V D.V D.V
36 1.58 -6 -177 D.V D.V D.V D.V
39 1.45 -97 -168 D.V D.V D.V D.V
42 1.35 -78 -175 D.V D.V D.V D.V
45 1.26 40 -177 D.V D.V D.V D.V

The local pinpower agreement is also too good farhsa “hard” problem,
probably coming from a cancellation of errors. f@ower comparison tends to show
the same trend as already observed in both preyimidems, the agreement with the
reference pinpower prediction is better in the loywart of the problem because the
leakage plays a lesser role, making the diffusmaot®n in the axial direction less of a
liability. In the vicinity of the axial water reftgor, i.e. in the upper fuel region, the
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neutron leakage plays a more important role, antgsesathe 2D-1D methodology to
predict less accurate results. For the partialecursplitting, the differences are 2% and
0.2% respectively, which comes from error candelasince the accuracy of the results
is poor as seen in Fig. 3.5.
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Fig. 3.5. Convergence Behavior qf;kor low density problem

Table 3.11. Relative pinpower difference with tii2 ReCART reference for the lower fuel region foe th
Low Density case

% Relative pinpower difference for lower fuel regio

Number of Planes Aé'ill[\gﬁfjh 0 la 1b 2 3a 3b
3 18.90 0.19 0.19| 0.04 0.04 D.N. 0.04
6 9.45 0.00 0.19 D.V D.V| DV 135
9 6.30 0.09 0.19 D.V D.V| D.| DV
12 4.73 0.17 0.19 D.V D.v| D.| DV
15 3.78 0.22 0.19 D.V D.V| DV DV
18 3.15 0.74| 0.20 D.V D.v| D.| DV
21 2.70 1.29 0.21 D.V D.V| DV DV
24 2.36 0.43 0.20 D.V D.v| D.| DV
27 2.10 0.51 0.20 D.V D.V| DV DV
30 1.89 0.09 0.20 D.V D.v| D.| DV
33 1.72 0.08 0.19 D.V D.V| DV DV
36 1.58 0.03 0.21 D.V D.v| D.| DV
39 1.45 0.23 0.21 D.V D.V| DV DV
42 1.35 0.85 0.21 D.V D.V| DV DV
45 1.26 2.01 0.21 D.V D.V| DV DV
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The difference of about 180 pcm with respect to th&erence solution is
surprisingly good for a problem where neutron Iggkeés dominant and should require
transport theory to be captured properly. The pigrgpredictions, shown in and Table
3.11 and Table 3.12, show that the difference fthenreference solution is less than
0.2% for the finest spatial mesh for the lower freglion, where the error is about 0.6%
for the upper mesh, for the option l1a.

The convergence flaws of the 2D-1D methodology hasen highlighted in the
Low Density case and the proposed fix based ottisgliof the transverse leakage has
worked successfully, making high neutron leakagehm axial direction possible to
model with DeCART. The partial current splittingth@ugh converging, has a poor
accuracy and should not be used. For options 1la&8anthe accuracy of the DeCART
solution for such a high leakage case is still faeable since the axial solver still uses
diffusion theory which tends to return poor resitdeakage dominated problems. This
emphasizes the importance of upgrading the DeCARAl aolver to be able to perform
transport calculations.

Table 3.12. Relative pinpower difference with tiiz ReCART reference for the upper fuel region fa th
Low density case

% Relative pinpower difference for upper fuel regio

Number of Planes Aé(i'?é '\[/(l:enf]h 0 la 1b 2 3a 3b
3 18.90 0.22 0.51 0.04 DM 0.00 0.08
6 9.45 0.15 0.58 D.V D.V D.V 135
9 6.30 0.11 0.70 D.V D.V D.V D.V
12 4.73 0.28 0.65 D.V D.V D.V D.V
15 3.78 0.38 0.71 D.V D.V D.V D.V
18 3.15 2.05 0.67 D.V D.V D.V D.V
21 2.70 3.46 0.69 D.V D.V D.V D.V
24 2.36 0.78 0.68 D.V D.V D.V D.V
27 2.10 0.94 0.66 D.V D.V D.V D.V
30 1.89 0.15 0.66 D.V D.V D.V D.V
33 1.72 0.12 0.68 D.V D.V D.V D.V
36 1.58 0.12 0.68 D.V D.V D.V D.V
39 1.45 0.12 0.68 D.V D.V D.V D.V
42 1.35 0.06 0.68 D.V D.V D.V D.V
45 1.26 0.25 0.67 D.V D.V D.V D.V

3.4.4. Impact of improvements on calculation cost

In order to assess the effect of the differentdvarse leakage approximations and
coupling techniques on the computing cost of a DRCAalculation, the Water Hole
case was run for 10 subdivisions of the initial mssucture, i.e. 30 MOC planes in each
3D model. All calculations were performed on areigiersonal computer to insure
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consistency of results: i.e. only DeCART was rugran the time the computing time was
recorded.

The memory requirements as well as the total comgtime and the computing
time per outer iteration are summarized in the &bl 3.

Table 3.13. Computational cost for each transvieaeage option

Option 0 la 1b 2 3a 3b

Memory

Requirement [Mb] 9.39 9.39 9.39 9.39 9.72 9.39

Total Time [s] 34.01 22.12 21.27 26.12 28.82 25.88
Number of Outer 141 90 88 93 93 93
Iterations
Time per lteration| ,, 0.25 0.24 0.28 0.31 0.28

[s]

As expected, the memory requirements of all theooptare identical besides the
P1 coupling with splitting, since an additional nagnstructure to store the axial leakage
and its associated leakage cross section. Howthememory increase is marginal. In
terms of running time, all the methods involving i@otropic leakage at the planar
interface, option 0, 1a and 1b, require less timeitgration, since only half of the polar
angles belonging to the same half space need t@atieed. The gain is not as important
as expected, but this is due to the small sizd@fproblem. For a full core model, the
saving of those options will be more evident.

3.5Summary

The limitations of the current 2D-1D coupling halveen investigated in the
section 3.1. Five new 2D-1D coupling approacheshasen derived and successfully
implemented in DeCART in order to investigate theteptial for improving the
convergence properties of the 2D-1D methodologyhm case of low density, high
neutron leakage cases and improving the accuratheagolution for a given axial mesh.
The latter is particularly important for the purpo®f performing 3D full core
calculations since the axial mesh dictates the murmob MOC sweeps to be performed
per outer iteration.

Two new approximations were investigated to represiee angular flux on the
top and bottom of a MOC plane: one where the d&&lage is considered isotropic and
a second one where a linear approximation of tigelanflux (R approximation) is used.
The main benefit of the isotropic leakage approxiomais to reduce by a factor of 2 the
number of MOC polar angles considered, thereby adieduthe computing cost of the
MOC solver. Conversely the Boupling approach allows complete consistency eetw
the axial solver and the transverse leakage prduini¢he MOC solver: both are based on
the R expansion of the angular flux.
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To address the issues related to negative MOC sdarms, the axial leakage in
the 2D transport formulation, Eq. 3.1, was splitween the LHS and RHS. Three
different splitting were considered, two relatedhe previously mentioned new coupling
approaches, isotropic leakage and®upling, and the last one based on a rearrangemen
of the partial currents.

The three test cases considered have shown that:

e In all cases, theFcoupling failed to improve the accuracy of thecaldtion for a
given axial mesh.

e The isotropic leakage based coupling produced teestd accurate as pRnd R
coupling while reducing the computational burden.

e The negative source term which was isolated am#ia reason for divergence of 3D
calculations was fixed successfully by the transwdeakage splitting formulation
and worked very well for Low Density case.

The newly added user’s options have improved timwe@gence properties of the
2D-1D coupling methodology, provided that the CM@&Dbceleration was turned off.
Improvements to the accuracy have not been obsealldtiree coupling approximations
return almost identical local power prediction. Thigal thought that the discrete 2D-1D
equations may not provide a spatial convergencenwhe numerical grid is refined have
been invalidated, at least until a mesh size etgnvao the radial mesh is used. This was
examined using a set of problems representatitheotonditions in a PWR both under
normal and accidental conditions. It should be cidkat such low density conditions as
examined here are unlikely to be observed in thmest of typical LWR transients such
as a RIA. However, future analysis of LOCA eventl eertainly produce high neutron
leakage conditions and the improvements to the DRC8hould be able to handle such
conditions.

Future work will include an investigation of thenvergence properties of the
CMFD algorithm for the various new 2D-1D splittimyethods introduced here, since
without CMFD, full core steady state and transmaiculations will not be practical.
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4. Improvement of the axial solver

One of the principle approximations of the 2D-1Qaasithm in DeCART is the
axial 1D solver. The presence of heterogeneityhe axial direction (partially inserted
control assembly, severe void variation, part lrfigel rod, axial enrichment zoning, etc
...) can potentially lead to 3D solutions of poor@ecy. The current 2D-1D algorithm
available in DeCART provides a 1D axial solutiorséé on diffusion theory whose
accuracy deteriorates in regions of strong fluxdgmats, such as the one observed for the
problems listed above.

The present chapter is aimed at describing theemehtation in DeCART of an
axial solver based on transport theory. A litetaview is presented first to show what
are the potential solvers and their limitations.idt followed by the mathematical
derivation of the NEM-Sn method. The NEM-Sn methesblves the spatial variation of
the flux through the Nodal Expansion Method (NEMypats angular variation through
the discrete ordinate method (Sn). The next sedtiafevoted to the description of the
NEM-Sn implementation in DeCART. In order to redube computational cost and
improve the accuracy of the calculations, an engstilgorithm, the sub-plane scheme is
implemented in DeCART. It is described in the fawection. The last section provides a
summary of a set of calculations performed by DeTAfBr the C5G7 benchmark
problem.

4.1 L iterature Review

Few codes are based on the 2D-1D methodology: CHEFPEKosaka and
Takeda 2004), CRX (Cho and Lee 2006) and DeCARTHERAversion) (Cho, Kim et
al. 2007). All three are capable of performing 3@leit whole core analysis by linking
radial 2D MOC solutions to an axial solver to takéo account the axial neutron
transport.

In the CHAPLET code, the method of characterisscemployed as a radial 2D
solver, and a finite difference method (FDM), nodadpansion method (NEM) in
diffusion theory or MOC can be chosen as an axiakalver. The MOC is based on the
flat source region approximation, where the fissiod scattering source is assumed to be
constant throughout the spatial mesh. In orderctoeze a reasonable accuracy, a fine
mesh is needed involving a very detailed spatiadhma the axial direction, requiring a
large number of planes, and consequently a nunikid MOC calculations prescriptive
in order to perform accurate full core calculatiansa reasonable amount of time.
Additionally, as discussed in Chapter Ill, converge problems that originate from the
transverse leakage coupled scheme tends to happavéry fine axial mesh.

In the CRX code, the MOC is used for radial 2D hegeneous calculation and
Sn-like methods such as diamond difference (DD)esehis used for the axial 1D
calculation. Similarly to CHAPELET, in order to aehe accurate results, a fine axial
mesh is needed, making full core calculations basetD transport kernel not practical.

49



Various advanced nodal transport methods have teesloped for an accurate
and efficient core neutronics calculation (Smitt8@9Lee and Downar 2004). In these
methods, the Simplified Pn (SPn) approximation lteen popular as a transport method
since it can produce an accurate transport solwtitm a minimal modification of the
existing diffusion code. In the KAERI version of OART, a Simplified B (SR, solver
replaces the axial diffusion solver of the DeCARilect whole core transport code to
provide more accurate, transport theory based asadltions. In solving the SPn
equations, the NEM is applied to treat the axiaiateons of the angular moments. Two
different orders of SPn are available;3iAd SB. DeCART-KAERI was tested against
the C5G7 benchmark problem and the addition ofxaal aodal transport based solver
proved to be very worthwhile (Cho, Kim et al. 2007)

As far as the 2D-1D methodology is concerned, ectlicorrespondence between
the discrete directions considered in the 2D MOG@ #re chosen axial solver would
provide a benefit in terms of consistency. No gudfation would be required to estimate
the angular flux in a given direction from the S&hgular flux moments. Although the
SPn method has been popular for full core transgdulations, its accuracy is also an
issue (Brantley and Larsen 2000). A different tpams solver is considered. As already
mentioned above, both Sn and MOC have been usedauBe of a simpler
implementation and relative lower computationaltctiee Sn method was chosen for the
work here. The spatial variation of the fluxesti# Bandled through nodal methods.

Besides the NEM method, both the SANM and Analitadal Method (ANM)
(Lee, Downar et al. 2004) are potential methodeemlve the spatial variation of the
flux. SANM and NEM are currently used in the axigffusion solver of the DeCART
code. Both SANM and ANM use exponential functionsreépresent, respectively, the
source term and the flux which, in the limit of igptly thin or thick medium, can create
numerical instabilities (Thomas 2006). Finally, tN&M methodology is chosen to
resolve the spatial variation of the flux and threrSethod, its angular dependence. The
derivation of the NEM-Sn method is presented next.

4.2 NEM-Sn derivation

The following derivation is given for a 1-D problemhe incorporation in the
framework of the 2D-1D methodology is describeth® next section.

4.2.1. Legendre Polynomials

The derivation of the NEM-Sn method begins withinlgbns of the node and
expansion coefficients. The node is the name spatial mesh in nodal method. Its
lengthh is first normalized so it ranges from -1 to 1 ®fiding a new spatial variablé,

2z
== Eq. 4.1
g h
This normalization makes it convenient to expand flux using Legendre

polynomials. The first five Legendre Polynomiale asted below:

1

R()=1R()=¢.R(§)=7"-1) Eq 4.2
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P(6)=3 62 -3) Pe) =S loss* -30e7+ 3

The spatial variation of the angular flux is expesido the % order using the
Legendre Polynomials:

20ul2)=3 aR(&) £, 43

i=0

where g is thei™ order moment of the angular fl%w(z).

4.2.2. Discrete Ordinate Method

The discrete ordinates equations solve for the landlux based on an angular
guadrature set. For a given directian the angular flux is obtained from the 1-D
Boltzmann equation:

2u, 0 S
luw (pg W(@t) z“tg(pg w szf g' ¢ + Zzs,w<—w',g<—g'¢)g',w' (5) Eq- 4.4
h 65 eff g=1 g'=l

The scalar flux results from the weighted sum efdiscrete angular fluxes:
W
= PgulEW, Eq. 4.5
w'=1
Wherew, are the weights associated to the discrete desof the angular quadrature.

For simplicity of the notations, the energy indgis dropped. Furthermore, the scattering
is assumed to be isotropic, Eq. 3.1 becomes:

2u, 0 _%
h a‘f q)w(é:)—i_zt q)w(‘f)_ 472_ Eq. 4.6
With
ZvEf NAEDRNNC) Eq. 4.7

4.2.3. Nodal Expansion Method

Similarly to the diffusion NEM method described @hapter I, there are 5
unknowns per discrete directioffherefore 5 constraints are needed:

e Flux continuity at the node interface

e Neutron balance equation, Eq. 4.1.

e 3 weighted residual balance equations which araimdd by in multiplying the
neutron balance equation by a Legendre PolynorRjasd integrating it over [0,1].
The " weighted residual balance equation is obtainede flutron balance is
identical to the § order weighted residual balance.
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The NEM is solved in a sweeping fashion, wherenlkeming angular flux at the
node boundary is assumed to be known and the ogtgoigular flux is computed. The
flux continuity equation at the node interface begw the noda-1 andn leads to:

4
2,(-)=0,=> 0P(-)=p, -0+ 0, -0+, Eq. 4.8
i=0

The 4 weighted residual equations are obtained bitiptying Eq. 4.1 by a
Legendre Polynomid®; to give:

(22 00+ 500 rieke= [ 2 reiac-s
i(z_ﬁw%(/’w(f )+Zt¢w(§)jpl(§)d§ :i X eeyoc - »
I [ e o) ztcow(f)JPz(ﬁ)dﬁ =j A ehae -5, v
I [ e o)+ ztcow(f)]%(f)dﬁ - j Aoy ez -

Replacingg, (£)by its polynomial expansion, integrating and reagiag the terms lead
to the four equations below:

2
2t¢o+%(¢1+¢3)=5

z 2u,, =
?t(Pl"'T((pz"'(le) S
Eq. 4.10

z 24,
Et%"‘ h P;=S,

) 2 ~
7t¢3 +%¢4 =S
Together with Eq. 4.8, a complete set of 5 equati@md 5 unknowns has been
constructed. It can be solved. Given 4 source teomsiputed using previous iteration
results, and an incoming angular flux, coming freoundary conditions or the outgoing
flux of a previous node, the angular flux momesnts = 0.4 are obtained and the spatial
variation of the angular flux for the directionand energy groug is fully determined.

The next section described the numerical approaeld in DeCART to solve the NEM-
Sn equations.

4.3 Numerical NEM-Sn implementation

4.3.1. Choice of angular quadrature

In order to insure consistency with the directimim®sen in the 2D transport
solution, the angular quadrature chosen for the NEikernel is the same as chosen for
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the polar angle of the 2D MOC solver. Usually fdow number of angles which would
be less than four per half space, the quadratwpoped by (Leonard and McDaniel
1995) is used. However, for a higher number of pdileections, the quadrature proposed
in (Halsall 1980) is used. Finally, the Gauss-Lelyjenquadrature has been added to
DeCART for the polar directions, up to 8 directigues half space.

4.3.2. Transverse leakage

4.3.2.1. Formulation of the modified 1D equation with traesse leakage

The NEM-Sn is used in the framework of the 2D-1Dthodology. The 1-D
equations derived in section 4.2 need to be matlifieorder to reflect the 3-D movement
of the neutrons. The 3-D Boltzmann equation, assgran isotropic neutron source, is:

[ V 1_ ‘U\f/ (COS@W)% + Sin(aw)%j + :uw ngw(x7 y’ Z7 awnuw)' T

0z
XY,z
+Zt ¢W(X1 y, Z,aw,ﬂw)zw
T

By integrating Eq. 4.11 along thlxeandy faces of the considered node and moving the x
and y derivatives on the RHS, it becomes:

Q(x.y.2)

/uwiwv)\jY (Z’aw’/uw)—l—zt Q)V)\,(Y(Z,(ZW,‘UW)=——TLCEY(Z,O[W,IUW) Eq. 4.12
0z A

Eq. 4.11

with
Yr Xp

ou (2 aw,ﬂw)=%yflel(ﬂw(x, Y. Z.a,, 1, )dxdy

r

f COS“?(%(Xr Y. Z,a,, ﬂw)— <0W(X' Y, Z, aw,uw))dy Eq. 4.13
1- /uvzv y

A + sinaxf(gow(x, Y.z, aw,ﬂw)— CDW(X, Y.z aw’/uw))dx

X

T (2@, )=

Theoretically, provided that an azimuthally depemdgansverse leakage was
available from the 2D MOC calculations, the exasfuson of the 3-D Boltzmann
equation is possible, the only approximation wdmddthe use of transverse leakage, i.e.
the averaging of the leakage over the (x,y) fa¢éseonode.

However, in order to reduce both storage and comguime, only a polar
dependent transverse leakage is considered. Evttnomly polar dependent transverse
leakage, the need for additional storage is sicpmifi, since the azimuthally integrated,
polar dependent angular flux from each 2D MOC plangtored for each node faces. In
DeCART, a node corresponds to an axial segmentfoélarod, typically an elongated
cube of 1.26 by 1.26 by 20 cm. There are aboutd0®0Onodes in a full PWR core model.
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Consequently, the azimuthal variation of Eq. 4.%2integrated to give the
following:

w2 ) (o)=L T () ca. 414
Z ar
with
2z
P (2,4,,)= {(/’f(z,aw’ﬂw)d“w Eq. 4.15
Tl (z,11,)=.
yr
Wzn COSaJ:((pW(Xr,y, Z’aw’qu)_(pW(Xl’y’ Z,(ZW,,UW))dy Eqg. 4.16
TWI i da,,

° + SinaJ-(¢w(X7 yr 12, awhuw)_ ¢W(X7 yl 12, aw’:uw)bx

Eq. 4.15 is very similar to the starting point foe NEM-Sn derivatioreq. 4.1, if
the transverse leakage is incorporated in the sdieren on the LHS. The four weighted
residual balances source terms of Eq. 4.10 arefraddiy the corresponding moments of
the transverse leakage. The next section is dedi¢atthe definition and calculations of
the moments of the transverse leakage.

4.3.2.2. Transverse Leakage Approximation

The accuracy of the spatial variation of the angtilax in NEM-Sn solution
increases as the axial node size decreases. Tisuseiter to employ thinner planes when
formulating the 3D problem. However, it is not ajwadesirable to reduce the plane
thickness since this will result in the increasdh& number of planes for each of which
the radial MOC calculations which have to be perfed or potentially cause some
convergence issue as seen in Chapter lll. SincefD€ calculations are costly, it is
better to avoid using very thin planes. Howevengetain accuracy, the axial variation of
the transverse leakage within a node needs tokiea iato account. A typical quadratic
expansion of the transverse leakage is then used:

2

TL (£.,)=>aR(¢) Eq. 4.17

i=0
Where ais the ith transverse leakage moment and Pi lthieeigendre Polynomial.
For a given spatial medh the expansion coefficients are determined from th

—XY
mesh averaged transverse leak@ige and the transverse leakages at the top and bottom
surfaces as followings:

—XY

ay =TLu (1, Eq. 4.18
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—XY, T —XY,B

a1=TLW,| Qm);TLW.(uW)

—XY, T —XY,B

azz-ﬁ:\j_TLW" (ﬂw)ZTLWl (/uw)

—=XY,B —=XY,B
WhereTLw, andTL., are the transverse leakages at the top and batioiaces of
the considered nodeThey are calculated from the mesh averaged temss\eakages of
neighboring nodes so as to preserve the mesh a&ktlagkage:

—XY —XY
TLuw, (,uw) N TLW,I—l(,UW)

—XY,B | -1
B h h
TLW,| = 1 1
D h
oy oy Eqg. 4.19
TLwi (24,)  TLwia(se,,)
ﬁXY, T hl + hl +1
W 1 1
[N

The first, second and third moments of the trarsvdeakage term are obtained by
multiplying Eq. 4.17 by its proper Legendre Polynalsand integrating over the spatial
mesh size. Thdjmoment of the transverse leakage is then defiaddllaw:

12

TU (& )= [ 28R (€)P (€1 Eq. 4.20

_1i=0

By properties of the Legendre Polynomials, it comes

1

TLYI(E )= 2, [P(£)P (€)g Eq. 4.21

-1

And since the transverse leakage is a second padgnomial, the contribution of the
third moment of the transverse leakage to the gosrequal to zero.

4.3.2.3. 2D-1D modified weighted residual equations

Given the previous definition for th& moment of the transverse leakage, the 4
weighted residual equations become:

2
% 0+ (g, + ) = S—

A N
s 2u, ~
SO ﬁ (¢2+¢4)=Sr% Eq. 4.22

%, 214, N
=t + — _ 2
5 @, h P3=S 5
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4.3.3. Solver for the NEM-Sn system of equations

The flow chart of the NEM-Sn solver is shown in thig. 4.1. The NEM-Sn
solver takes employs a sweeping approach per patfespolar direction. For each spatial
mesh in the axial direction, a 5 by 5 NEM-Sn reggomatrix is generated with the Eq.
4.8 and Eqg. 4.22 and solved by direct LU decomjuosib determine the; coefficients
for the considered axial mesh, polar direction anergy group.

Given the small size of the NEM-Sn response madridirect solver is acceptable
in terms of computational cost. Additional inneerétions per fuel rod are aimed at
converging the scattering source faster. It ise’si©option. 5 is the default value and it
has been chosen as being the optimum value for ByffRcations.

Finally, the angular fluxes, and consequently, gheoefficients, are not stored
for each axial mesh, only the moments of the s¢higes are kept to reduce the memory
requirements of the NEM-Sn solver. The angular #iithe problem boundary, on top
and at the bottom of the geometry is kept in menagryvell.

4.3.4. Sub-plane Scheme

The error introduced in each part of the DeCARIUt#mn had been quantified
for a typical problem in (Cho, Kim et al. 2006) pesifically, the homogenization error,
the diffusion approximation error, and the noddlgon error were separately evaluated
for a LWR problem. The main conclusion of the weprksented in the reference above,
is that the homogenization error is small but teah and the diffusion errors can be
large. The nodal error originates from the secordero approximation of the axial
variation of the radial transverse leakage as wasllthe fourth order intra-nodal flux
shape, while the diffusion error is attributableneglecting the angular dependence of the
flux in the axial direction.

The diffusion and the nodal errors can be minimizgdntroducing a fine mesh
transport solution for the axial direction thatremalized in some codes (Kosaka and
Takeda 2004; Cho and Lee 2006). However, a finehnuwadculation for the axial
direction requires an increased computing time.older to minimize the higher
computing cost, a sub-plane scheme has been iceddn (Cho, Kim et al. 2007) and
was successful in minimizing the nodal error @hmilaintaining a reasonable computing
time. The sub-plane scheme has been implementtéte iDeCART code and is briefly
described below, a more complete description idaa in (Cho, Kim et al. 2007).

In the sub-plane scheme, the radial MOC calculatsoperformed for a thick
plane whereas the axial calculation is performeth Winer planes. Several sub-planes
belonging to a thick MOC plane share radial eqenticonstants which consist of the
homogenized group constants and the radial trass\eakage determined for the thick
MOC plane. The axial solver in DeCART which candither NEM or NEM-Sn, uses a
fine axial mesh and returns an axial transversealpato the radial MOC calculation at
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each thick plane. The sub-plane scheme introduceh ess nodal error while having
little impact on the axial leakage representatibthe radial MOC calculation.

| New outer itratior |_>| Update fission sour

v

Compute Transverse Leakage
shape function coefficients

v

Add transverse leakage sourc|
to fission source

(]

A 4

Update scattering source |

A 4
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v

Construct NEM-Sn response
matrix

v

5 iterations per fuel rod Direct solution of the matrix Loop over energy group
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Fig. 4.1. NEM-Sn Flow chart for axial transport\sai
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Fig. 4.2. Components and relations of the radidlaial problems in sub-plane scheme

4.4 Application: C5G7 benchmark

4.4.1. Benchmark description

The problem specifications of the C5G7 benchmarisisb of the core geometry
data and the seven group macroscopic cross sectipesified for each material
composition including the UOX and MOX fuel pins aatso the control rods. A
description of the core geometry is shown in thee Ei3, Fig. 4.4 and Fig. 4.5. There are
three configurations defined: Unrodded, Rodded #d &odded B. Among the two
rodded configurations, Rodded B configuration isrenbeavily rodded. For all these
three problems, a reflective boundary conditioagplied to the bottom boundary which
leads to unrealistic conditions, but more challeggbroblems. The reference solutions
generated with the MCNP code is available for a mamison. The core effective
multiplication coefficients & is computed for each configuration and the pirevaewer
distributions were axially averaged for three eghatknesses axial slices of the active
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core for comparison purposes. The base DeCART muudists of four planes; three
14.28 cm planes for the fuel region and one 21mM?lane for the axial reflector region.
Within each fuel cell, 40 flat source regions cetiag of five annular regions and eight
azimuthal sectors are defined. Two annular regimasassigned in the moderator region.
The three fuel annular regions have the same area.
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o o
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@ O 2
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Fig. 4.3. Radial Cross Section of the C5G7 core
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Fig. 4.4. Axial Cross Section of the C5G7 core
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Fig. 4.5. Benchmark fuel pin compositions
4.4.2. Results

For each of the three configuration of the C5G7 cherark, the effective
multiplication coefficient as well as the pinpoware recorded and compared to a
reference solution obtained with a Monte Carlo dasede (MCNP) provided with the
benchmark results.

To assess the overall pinpower distribution, tHiewong per cent error measures
were selected in the benchmark: average pinpowercget error (AVG), root mean
square (RMS) of pinpower per cent error distributiomean relative pinpower per cent
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error (MRE) and the maximum pinpower per cent efk®X). The definitions of those
guantities are shown in Eq. 4.B8low.

2. le

AVG=-1N

Eq. 4.23

WhereN is the number of fuel ping, is the computed relative per cent error for the nt
pinpowerpn.

This problem was previously solved by the DeCARTecby using the diffusion

NEM option and the solution accuracy was repoft@&ub, Kim et al. 2006). The previous
work showed that the eigenvalue and the poweriloigion errors are sensitive to the
axial plane division, but not sensitive to the density and the number of azimuthal and
polar directions considered. Therefore, in the eration of the newly developed axial
solver, the ray option is fixed by using 4 azimlidwad 2 polar angles for each octant of
the unit sphere to define the solid angle, and @r@5ay spacing, and the effects of the
sub-planes and the increase of the number of mhtactions in the axial solver are
examined.

4.4.2.1. Effect of axial angular discretization

The effect of the Sn order is first analyzed toed®ine a proper angular
discretion for the axial solver. The rodded confgdion B is used as test case and its
MCNP solution as reference. 2, 4, 8 and 16 polactons are considered for the NEM-
Sn solver. The effective multiplication coefficieahd the pinpower comparison are
shown in Table 4.1. The computing cost, CPU time memory requirement is shown in
Table 4.2. The calculations are run on the RESERSter of ANL, on four PENTIUM
3.0 GHz processors.

In terms ofkess and power error, the increase of number of palactons lead to
an error reduction compared to the reference swolufThe difference okes goes from
150 pcm to about 7pcm difference while the maxinpower error goes from 7% to
about 4%.

The computational time increases more than lineaitih the number of polar
directions considered. The memory allocation reglialso increases when the number of
polar directions considered. The increase is dutdcadditional storage of the angular
flux at the problem boundary as well as polar ddpantransverse leakage.

Consequently, increasing the number of polar doestfrom 4 to 16 does not
improve the agreement with MCNP while it does iasethe computing cost. Two polar
angles per half space, i.e. S4 are enough to olataionverged axial solution. This
discretization is chosen for all the following NEB& calculations.
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Table 4.1. k and powers errors for the polar angle discretirati

Solver NEM-Sn
Order of Sn 2 4 8 | 16
Reference keff 1.07777

keff difference[pcm] -154.9 -10.2 6.5 7.4
Maximum 4.2 2.7 2.4 2.2

Slice 1 Pin Mean 0.7 0.6 0.6 0.5
Power Error [%] RMS 1.0 0.8 0.7 0.7
MRE 0.4 0.4 0.3 0.3

Maximum 4.2 2.3 2.1 2.1

Slice 2 Pin Mean 0.9 0.7 0.6 0.6
Power Error [%] RMS 1.3 0.8 0.8 0.8
MRE 0.3 0.2 0.2 0.2

Maximum 7.6 6.0 5.8 5.7

Slice 3 Pin Mean 2.8 2.1 1.9 1.8
Power Error [%] RMS 3.4 2.7 2.5 2.3
MRE 0.4 0.3 0.3 0.3

Maximum 4.2 24 2.1 2.0

Axially Mean 0.6 0.4 0.4 0.4

Integrated Pin
Power Error [%] RMS 1.0 0.6 0.5 05
MRE 0.5 0.3 0.3 0.3
Table 4.2. Computational Requirements for the patayle discretization
Solver NEM-Sn
Order of Sn 2 4 8 16

CPU time [s] 5594.1 10629 24660 57719
Memory Requirement [Mb] 286.4 369.4 535.4 867.4

4.4.2.2. Unrodded Case

The unrodded configuration is shown in the Fig.eB®w.
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Fig. 4.6. Unrodded Configuration of the C5G7 benahm

Solver NEM NEM-Sn
Sub-Planes per MOC Plang 1 10 1 10
Reference keff 1.1431
keff difference[pcm] -151.3 -95.4 -48.1 -40.2
Maximum 2.9 2.1 2.1 2
Slice 1 Pin Mean 0.4 0.6 0.6 0.7
Power Error
[%] RMS 0.7 0.7 0.7 0.8
MRE 0.1 0.3 0.3 0.3
Maximum 2.8 2.4 2.3 2.3
Slice 2 Pin Mean 0.5 0.5 0.3 0.5
Power Error
[%] RMS 0.6 0.6 0.5 0.6
MRE 0.1 0.2 0.1 0.2
Maximum 2.5 4.1 3.2 4.1
Slice 3 Pin Mean 0.5 2 1.2 2.1
Power Error
[%] RMS 0.7 2.2 1.3 2.2
MRE 0.1 0.4 0.2 0.4
Maximum 2.7 2.5 2.3 2.4
Axially
Integrated Mean 0.4 0.4 0.3 0.4
Pin Power RMS 0.6 0.6 0.5 0.5
Error [%]
MRE 0.3 0.3 0.2 0.3

Table 4.3k and power errors for the unrodded configuratiothefC5G7MOX 3-D benchmark problem
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It is a fairly homogeneous geometry; the contral i® not inserted in the active
fuel region, only in the upper water reflector. Themputational results for this
benchmark problem are summarized in the Table 4.3.

By increasing the number of sub-planes to 10 pek tMOC plane, the nodal
error is reduced, as shown by the DeCART calculatising the NEM solverks is
reduced from 150 to about 95 pcm, the axially ayedamaximum error being reduced
from 2.7 to 2.5%. It is worthwhile to note that tleeal maximum power error increases
from 2.5% to 4%. However, this is not significamichuse it occurs at a very low power
region (slice 3). The absolute error is actualbueed.

The remaining error is due to diffusion theory @dceduced when the new NEM-
Sn solver is usedkt is reduced from 95 to about 40 pcm, the axiallyaged maximum
error being reduced from 2.5 to 2.4%.

Overall, the improvement in terms kfs and pinpower prediction is small. It is
expected for such a homogeneous case, where fasialif theory is enough to capture
correctly the spatial variation of the neutron flux

4.4.2.3. Rodded Case A

The rodded configuration A is shown in the Fig. Befow.
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Fig. 4.7. Rodded Configuration A of the C5G7 benahim

It is a harder problem to model, the control roglightly inserted in the active
fuel region of the inner most fuel assembly as waslin the upper water reflector. The
computational results for this benchmark probleensarmmarized in the Table 4.4.

By increasing the number of sub-planes to 10 pelCMiane, the nodal error is
reduced, as shown by the DeCART calculation usiegNEM solverkeis reduced from
93 to about 74 pcm, the axially averaged maximunoreremaining constant. It is
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worthwhile to note that the local maximum poweroerincreases from 2.3% to 6%.
However, this is not very significant because itws at a very low power region (slice
3), and is due to the relative nature of the error.

Table 4.4k and power errors for the rodded configuration Ahaf C5G7MOX 3-D benchmark problem

Solver NEM NEM-Sn
Sub-Planes per MOC Plang 1 10 1 10
Reference Y 1.1282
ki difference[pcm] -93.1 -74.5 3.5 -11.5
Maximum 2.0 1.6 1.4 1.6
Slice 1 Pin Mean 0.4 0.6 0.6 0.5
Power Error
[%] RMS 0.5 0.7 0.7 0.6
MRE 0.1 0.3 0.3 0.2
Maximum 2.5 2.4 2.1 2.3
Slice 2 Pin Mean 0.5 0.4 0.5 0.5
Power Error
[%)] RMS 0.7 0.6 0.7 0.6
MRE 0.2 0.1 0.2 0.2
Maximum 2.3 3.6 2.6 3
Slice 3 Pin Mean 0.7 1.6 0.8 1.3
Power Error
[%)] RMS 0.9 1.9 1 1.4
MRE 0.1 0.2 0.1 0.2
Maximum 2.1 2.2 1.8 2.1
Axially
Integrated Mean 0.3 0.4 0.3 0.3
Pin Power RMS 0.5 0.5 0.4 0.5
Error [%]
MRE 0.3 0.3 0.2 0.3

The remaining error is due to the diffusion theand is reduced when the new
NEM-Sn solver is usedkes is reduced from 74 to about 11 pcm. The distortions
introduced in the axial neutron flux by the patyiahserted control rod, are more severe
than in the unrodded case and the diffusion thesonpt capable of capturing them. The
NEM-Sn solver improves the accuracy of the calooat

442.4. Rodded CaseB

The rodded configuration B is shown in the Fig. defow.
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Fig. 4.8. Rodded Configuration B of the C5G7 benahm

Table 4.5k and power errors for the rodded configuration Ahef C5G7MOX 3-D benchmark problem

NEM NEM-Sn
Sub-Planes per MOC Plane 1 10 1 | 10
Reference ¥ 1.07777 |
ke difference[pcm] -95.6 -110.4 63.1 -12.1
Maximum 2.8 2.6 2.0 2.6
Slice 1 Pin Mean 0.5 0.4 0.6 0.6
Power Error
[%] RMS 0.7 0.6 0.8 0.8
MRE 0.3 0.2 0.4 0.3
Maximum 2.5 2.6 1.9 2.2
Slice 2 Pin Mean 0.5 0.6 0.4 0.6
Power Error
[%] RMS 0.7 0.8 0.6 0.8
MRE 0.1 0.1 0.1 0.2
Maximum 6.3 4.5 7.5 5.8
Slice 3 Pin Mean 2.2 1.6 25 2.0
Power Error
[%] RMS 2.9 1.9 3.3 2.5
MRE 0.3 0.2 0.4 0.3
Maximum 2.4 2.7 1.9 2.3
Axially
In_tegrated Mean 0.4 0.5 0.3 0.4
Pin Power RMS 0.6 0.7 0.5 0.6
Error [%]
MRE 0.3 0.4 0.3 0.3

This is the hardest problem of the benchmark to ehoflhe core is heavily
rodded with the control rod inserted in the activel region of the inner most YO
assembly and both of its MOX neighbor. The companal results for this benchmark
problem are summarized in the Table 4.5.
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By increasing the number of sub-planes to 10 pek tMOC plane, the nodal
error is increased, as shown by the DeCART calicuiaising the NEM solverks is
increased from 95 to about 110 pcm. This unexpdmtddvior comes from the additional
nodal error introduced by the heavily rodded canfigion. The axially averaged
maximum error also increases. The remaining esoadue to diffusion theory and is
reduced when the new NEM-Sn solver is ugeggis reduced from 1104 to about 12 pcm,
the axially averaged maximum error being reducechf2.7 to 2.3

The distortions introduced in the axial neutrorxflwy the heavily rodded case,
are more severe than in the rodded case A andiffusioh theory is not capable of
capturing them. The NEM-Sn solver improves the ey of the calculation.

4.5.Summary

The computational results for this benchmark pnoblee summarized in Table
4.3 Table 4.4 and Table 4.5 for each of the problenfigorations. In the eigenvalue
error, the diffusion approximation shows about -98 and -110 pcm errors for the
unrodded, rodded configuration A and B, respectivEhese eigenvalue errors decrease
to about -40, -15nd -12 pcm by using the NEM-Sn solver. In the ddenl and rodded
A configurations, the introduction of S4 insteadaddiffusion approximation has a trivial
effect on the pin power distribution. However, hetrodded configuration B where the
control rods are heavily inserted and a large etfsrshown for the diffusion
approximation, the introduction of the S4 approxiomais required.

The implementation of the sub-plane scheme in DeCARo helped reduce the
nodal error and keep the axial MOC mesh coarsehmmade it possible to reduce the
computational cost of the 3-D calculations.
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5. Application: Full core Reactivity Initiated Accide@alculation.

The overarching goal of the dissertation is toganfa full core transient analysis
of a realistic RIA with the DeCART code and to carits results with those obtained
by the multi-step methodology to evaluate the henedf the higher fidelity of the
DeCART formulation. The multi-step methodology épresented by the U.S. NRC core
simulator, PARCS.

The chapter is divided in three sections. In thst fsection, the handling of the
thermal hydraulic feedbacks in DeCART during transicalculations is discussed. The
second part is dedicated to the multi-steps metbggipits general approach to perform
transient calculations and its main approximatidneally, in the third part, a full core
RIA is presented and its analysis with DeCART aARES summarized.

5.1 DeCART Transient Calculation with Thermal Hydraukieedbacks

In this section, the methodology in DeCART to hantiine dependent thermal
hydraulic feedback is discussed. One of the majatributions of the dissertation was to
properly account for the time-dependent fuel andienator temperatures as well as the
moderator density provided by the thermal hydrasditver. First, the theory involved in
the subgroup methodology to deal with non unifoemperature field is reviewed. Then
the new DeCART transient calculation flow is presdn

5.1.1. Uniform fuel temperature case

The spatial and energy self shielding treatmelma@€ART, through the subgroup
method, has been described in details in ChapteEloRever, the temperature treatment
has not being addressed yet. Recall from the Cha@pthe macroscopic absorption cross
section is obtained as follow:

ZWn(T)i

2z, +2bn

1ZW Z

Eq. 5.1

+an
With
Zan = Naan

Eq. 5.2
2., =No,, =/1Nc>'p +Ee(0'an)

o,,represents the subgroup level of absorptiprand o,,, its associated background
cross section. In DeCART, sets ef  andw, for each isotope are available for five
different temperatures. However, the samgare used for all temperatures so only the

w, depend on the temperature through a linear ink&tipa according to the square root
of the homogeneous temperatiire
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5.1.2. Non Uniform temperature treatment

As already described in Chapter 2, the equivalenoess sectior,, is
determined by a set of fixed source transport ¢aticns for fixed level of absorptios

&, Vo, (A + (NP + 22, (B o (P =$zzp(r") Eq. 5.3

The equivalence cross section is a function ofasulting heterogeneous fluxes
¢, as seen in Eq. 5.4.

Z. (o, )—1¢¢ No, - 4,2, Eq.5.4

9

However, the use of the constant subgroup lexglthroughout the domain
becomes illogical in the non uniform temperatureecdNow the cross section level must
be adjusted depending on the temperature of therreth DeCART, the temperature
dependence is carried by the subgroup weight ratiaer by the subgroup level. It is thus
not straightforward to incorporate the temperatdependence of the resonance cross
section in Eg. 5.4. As an approximate measureisoptitoblem is provided in (Joo, Beom
et al. 2005). A forced subgroup level adjustmerteste is proposed to adjust the
subgroup level using the ratio of the subgroup tsigSpecifically,on, in Eq. 5.3 is
replaced by the following:

w,(T,)

T )= o Eq. 5.5

where Ty and Tis are the temperature of regi&nand the average temperature,
respectively. The subgroup level is adjusted sungt the product of weight and the
subgroup level is preserved.
¢g Wn(Tk)

2 (o,T)= N O~ A2 Eq. 5.6
“ 1- ¢g ( ref) P

And the temperature effect on the macroscopic gessons is accounted for as:

3w, (T,) % aZon(T)

z:a + an(Tk)

%)= s, Eq. 5.7
1- ZW WM(T)
With
2w =Nog,
Zpn(T)=No, (T )= ANo, + 2 (0,,.T) Eq. 5.8

This process represents the detailed treatmertieofeimperature dependence of
the macroscopic cross sections.
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5.1.3. Local temperature feedbacks in DeCART

The typical neutronic mesh used in DeCART is shawihe Fig. 5.1. The fuel
region is meshed in 24 regions, 3 rings and 8 ahalsectors. The cladding is divided
in 8 azimuthal regions and the moderator in 2 rilogs total of 16 regions.

Because the subgroup method can handle non unifemperature distribution,
as described in the previous sections, a diffetemiperature can be assigned to each
region for which a macroscopic cross section ismaed. Currently, in DeCART, two
options are available. In the first one, a set atrascopic cross sections is defined for
each annular ring depicted in Fig. 5.1. The fagtion is the default option of the code.
The second option allows evaluating cross sectiongach sector of the spatial mesh
described in the Fig. 5.1.

Fig. 5.1. Typical Neutronic Mesh of the DeCART code

5.1.4. Temperature dependent macroscopic cross sectianaiosient
applications

The approach used for steady state calculatiorridesicin the previous sections
can be applied readily to transient calculationsaiftime dependent temperature
distribution is provided to DeCART. Currently, thesre two options to specify thermal
hydraulic feedbacks, both for steady-state andsieamh applications. The first one is a
solver internal to DeCART and described in theisads.3.4 below. The second option is
to use the CFD code, STAR-CD (CD-adapco 2004) twige time dependent thermal
hydraulic feedbacks. The coupling of DeCART and &f8D has been successfully
performed for both steady state (Weber, Sofu eR@D6) and transient (Hursin 2008)
applications.

The recalculation of the equivalence cross secisomeeded only when the
average core temperature changes significantlig & user defined parameter. For the
RIA, since only local fuel temperatures change ciarally but not the overall core
temperature, the effect on the equivalence crossose is small and updating them is
not necessary. The local temperature changes astynt@ken into account through the
temperature dependent subgroup weightT). The actual flow chart of a transient
calculation with temperature feedbacks is showthénFig. 5.2.
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Fig. 5.2. DeCART Flow chart for transient calcudatiwith thermal hydraulic feedbacks

5.2 0verview of the multi-step methodology

In order to understand the differences observeddmt PARCS and DeCART
for core-wide transient calculations, and more #padly for RIA analyses, it is
worthwhile to describe the multi-steps methodologgetails.

5.2.1. General Approach

The neutronics analysis of a RIA transient requaesulti-steps calculation. The
first step involves the generation of the homogethizross sections by a lattice code for
the range of conditions (temperatures, burnup,robmbd position, etc...) anticipated
during the transient. For each different state i tore, a two dimensional, single
assembly transport calculation with reflective bdany condition is performed. The
principle outcome of each calculation is the hejer®ous, fine energy group scalar
fluxes that are used to collapse the fine energymstructure cross section library into a
coarse energy group structure (usually two diffemeeutron energies are considered)
homogenized macroscopic cross sections for eadhaiksembly and to generate the
kinetics parameters (delayed neutron fractionsymgneelocities, delayed neutron decay
constants). The heterogeneous surface fluxes aeel 3 generate the assembly
discontinuity factors (ADF) and the heterogenedus fvithin the assembly is used to
generate the form factors needed to perform thegwwer reconstruction in order to
determine the fuel rod wise power distribution witthe assembly.

The second step is to perform a core calculatiadh Wie standard coarse mesh
nodal methods using the diffusion approximatione Geometry is homogenized at the
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assembly level so that the local fuel rod informatiis not retained. The set of
macroscopic cross sections determined during tts¢ $tep is provided to the core
simulator that interpolates the nuclear data (nmsmmpic cross sections and kinetic
parameters) between all state points (temperdbureup, etc...) to determine the nuclear
data that corresponds to the local specific comakitin each node of the core during the
transient. This process is illustrated in Ehg. 5.3.

The third step consists of determining fuel rodeleinformation out of the
assembly wise data coming from the second stejer Afie core calculation, knowledge
of fuel rod information must be inferred from thesembly-wise information through
some type of fuel rod reconstruction. The pinpowezonstruction is detailed in the
section 5.2.2 below. It usually involves form fupnas which are pre-calculated at the
assembly level during the lattice calculations, the first step. These forms functions do
not represent exactly the conditions at the fudllevel, especially during fast evolving
transient events.

======== Assembly Level

CEC s
R & Lisserhly !
Hormogenized /

Macroscopic Cross
Sections

PWE Quarter Core O

Core calculation with
homogenized assemblies

Fig. 5.3. Multi-steps methodology for core-widers@nt analysis

In summary, the multi-steps methodology to analgzRIA uses the following
approximations:

Diffusion theory.

Coarse neutron energy discretization.

Geometry homogenization at the assembly level.

Fuel rod power reconstruction obtained through gadeulated form functions
obtained at the assembly level for steady statditions.

5.2.2. PARCS Code

The PARCS code (Downar, Xu et al. 2006) represttr@score simulator of the
multi-steps methodology and performs step two dmeet described in the previous
section. The PARCS code is used in the analysesgefivalue, transient and depletion
problems in LWRs. As far as the dimensionality emeerned, PARCS is capable of
performing calculations in any dimension, i.e., 0ibD, 2-D, and 3-D. PARCS uses the
standard coarse mesh nodal methods where the ggambbmogenized at the assembly
level. A library of macroscopic cross sections daieed before the calculation for the
anticipated range of conditions encountered isigea/to PARCS, which interpolates the
nuclear data between all state variables (burnumtral rod position, boron
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concentration, fuel temperature, moderator temperadnd density.) to determine the
nuclear data that corresponds to the specific tongi in each assembly of the core
during the calculation.

The PARCS spatial kinetics calculation involves tbalution of the time-
dependent neutron balance equations. The firstistége solution process is to discretize
the balance equations in both time and space.Heotemporal discretization, the theta-
method with exponential transformation is employedARCS along with a second-
order analytic precursor integration technique. Tmeporal discretization scheme allows
sufficiently large time step sizes even in seveaadients involving super-prompt critical
reactivity insertion. For spatial discretizatiohgetefficient nonlinear nodal method is
employed in which the coarse mesh finite differe(C&FD) problems and the local
two-node problems are repetitively solved during tourse of the nonlinear iteration.
The temporal and spatial differencing of the spdiaetics equation results in a fixed
source type of the problem at every time step.

The solution of a transient fixed source problenF{P) consists of the
simultaneous solutions of the CMFD, two-node, dmelrhal-hydraulics problems. The
CMFD problem involves a linear system with a blgenta-diagonal matrix in three-
dimensional problems. In PARCS, the solution of lihear system is obtained using a
Krylov subspace method.

The two-node problems are solved to correct fordiseretization error in the
nodal interface current resulting from the finitéfetence approximation in a coarse
mesh structure. They can be solved using any oree mimber of so-called advanced
nodal methods. In PARCS, the nodal expansion mefN&M) and the analytic nodal
method (ANM) are used to obtain the two-node sofutBecause the NEM can provide a
more robust and faster solution than ANM, it haerbpreferred in many other reactor
physics codes even though it is less accurate. Menvéehe ANM is used as the primary
nodal solver in PARCS because of the improvemeritehwwere used to produce a
robust solution regardless of the nodal condition.

5.2.3. Pinpower Reconstruction

After the core calculation, knowledge of fuel rodwer distribution must be
inferred from the assembly-wise information througbme type of fuel rod power
reconstruction. During the second step of the nrsidips methodology, assembly
averaged quantities are computed and a globaleoaesh solution is obtained, usually
few energy group wise scalar fluxes.The pinpoweomstruction process is illustrated in
the Fig. 5.4.

Depending on the nodal method used during the sestep, NEM, ANM, or
even finite difference, it is possible to reconstrthe spatial variation of the scalar flux
within the node. As discussed in Chapter 2, the NEMased on a™4order polynomial
expansion of the scalar flux, as shown in the E9}. 5

p(u)= §¢i fi(u) Eq. 5.9
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Given its flux moments,, by product of the core calculation, it is possitd get
information about the local scalar flu¥(x, y, z). However, the flux distribution(x, y, z)

is merely a shape and does not take into accoentottal heterogeneities, guide tube,
different fuel enrichments, etc...
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Fig. 5.4. Pinpower Reconstruction with multi-stepsthodology

The effect of local heterogeneities is determingdhe lattice code during the
first step of the calculations. Form functions ammputed assuming a flat assembly
power and are superposed on the shafey, z) to reconstruct the local pinpower.

Even though, the form functions are generated fawide range of thermal
hydraulic and exposure conditions, they suffer frdme same limitations than the
macroscopic cross sections, i.e. their generatioc&D, at the assembly level, assuming
reflective boundary conditions and an approximatealaleakage. Consequently, the
pinpower reconstruction process introduces appratton in the multi-steps
methodology.

5.2.4. Handling of Thermal Hydraulic Feedbacks

Two different treatments for treating thermal hydiafeedback are available in
PARCS and are representative of the general appnsed by core simulators. Below is
described the native PARCS cross section handiingore sophisticated approach, the
PARCS cross section library tool, GenPMAXS (Xu @wlvnar 2005) was used for the
calculation reported here, but fundamentally, bagiproaches are similar. The native
treatment is interesting to understand the bagibew the cross sections are handled in a
core simulator and how it differs from the DeCAR&atment.

The first parameter treated is the local burnugheffuel. In PARCS, only node
wise macroscopic cross sections obtained for thde aise burnup distribution at the
burnup state point of interest are necessary. Tlaerascopic cross sections are
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functionalized on state parameters such as codl@nsity and boron concentration to
incorporate the feedback and/or boron effects.

A set of base macroscopic cross sections are gedettaring the first step of the
calculation, at a reference set of thermal hydcacdinditions, referred to as 0 in the Eq.
5.10. The macroscopic cross sections are assignedch composition and four sets of
partial (derivative) cross sections are also prediétom the first calculation step, at the
reference conditions to describe the boron andTtie feedback effects. The thermal
hydraulic effects considered are Doppler tempeealdy moderator temperatuig, and
moderator densityy. The four partial group constant sets are usetdrfollowing way
based on the assumption of linear variation ofseextion over the state variables:

(BT o) =20+ 75| (BB o) (T 7o)
O - Eq. 5.10
+ oz (TM _TM ,0)+ 2 (pM — Pu ,O)
Ty o

whereB is the boron concentration in ppm and the Dopfderperature is defined as a
weighted average as:

T =0T + Q-1 Eq. 5.11

with the superscripts CL and PS designating centednd pellet surface, respectively. In
the PARCS model, the effective Doppler temperatisreobtained byw equal to
0.3(Finnemann and Bauer 1994).

After the T-H effect is incorporated, the crossters are modified to incorporate
the control rod effects as follows:

(&)= 2 p + @éAT, Eq. 5.12

Where¢ is the nodal volume fraction of control rad,js the flux weighting factor that
accounts for the local flux depression in the aamod region, and; is the cross section
change due to the control rod when it is fully mse into the node and is given as a
composition dependent input.

In terms of RIA analysis, the main difference beawd®ARCS and DeCART is
the way Doppler feedbacks are treated. As statedation 5.1.3, local fuel temperatures
are provided locally in DeCART and taken into actainrough changes in the subgroup
parameters. In PARCS, a node averaged effectivgplBopemperature, as defined in Eq.
5.11, is provided from the thermal hydraulic solv&his represents one of the most
important differences between PARCS and DeCAREim$ of RIA modeling.
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5.3 Full Core PWR Model

5.3.1. PWR core model description

Assembly Layout

ABCDEFGHI J KLMNOP Q

1/8"Core CR and Load Pattern
For Typical 4-Loop PWR

A B C D E F G H

0 N U WN P

CR-A  Control Rod Bank A
CR-B Control Rod Bank B
Fresh CR-C  Control Rod Bank C

CR-D  Control Rod Bank D
Once Burned CR-SA  Shutdown Rod Bank A

UOX Fuel CR-SB  Shutdown Rod Bank B

UOX IFBA Fuel CR-SC  Shutdown Rod Bank C
CR-SD  Shutdown Rod Bank D

Guide Tube or Control Rod )

Guide Tube QO Eiected crA

Fig. 5.5. Assembly and core layout for the 1/8thRP¢dre model

The model used in the RIA analysis was based gpieal 4-loop Westinghouse
PWR. The core is a 3 batch core consisting of 1@Bdssemblies. Symmetric 1/8th core
loading was assumed in order to minimize the coatprtal burden. The core model
used by PARCS and DeCART is shown in the Fig. hiclwvalso shows the position of
the shutdown and control rod banks. The circle im B.5 represents the control rod
assembly that is to be ejected during the RIA aislylhe core design specifications are
summarized in the Table 5.2. The PWR assembly tisesstandard Westinghouse
integrated fuel burnable absorber (IFBA) pins atb@ach of the guide tubes. Three
unique pin cell geometries are used to describemal fuel pin, an IFBA fuel pin, and a
guide tube, as shown in Fig. 5.6. Their geometrggacifications are provided in the
Table 5.1. An axially uniform U-235 enrichment o2% is used for the fuel and all the
fuel pins and IFBA fuel pins have the same enriahime

The core geometry is divided into 22 axial planesqual thickness (18.288 cm),
for a total core height of about 402 cm. The acfive height is spanned by 20 axial
segments for a total length of 366 cm. The fuslisounded on the top and bottom by an
axial water reflector. The radial discretizatiortiie DeCART code, within each fuel rod
and guide tube is shown previously in Fig. 5.1. P&RCS, the radial discretization
consists of each fuel assembly being divided ioto Equal area nodes.
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Table 5.1. Geometry Specifications [cm]

P rl r2 r3 t
Pin Type  Fyel Pin Fuel Pellet Outer Clad Outer IFBA Layer Outel Cladding
Pitch radius Radius Radius Thickness
Fuel Pin 1.26 0.3951 0.4583 0.0573
IFBA Pin 1.26 0.3951 0.4583 0.3991 0.0573
Guide Tube 1.26 0.6032 0.0408
Table 5.2. Core Parameters Specifications
Parameter Value
Number of Fuel Assemblies 193
Pin Pitch [cm] 1.26
Assembly Pitch [cm] 21.42
Active Core Height [cm] 365.76
Baffle Thickness [cm] 2.52
Nominal Power [MWth] 3565
System Pressure [MPa] 155
Inlet Temperature [°C] 286.85
Core Flow Rate [kg/s] 15849.4
Cycle Length [EFPD] 352.95
< 3 > + > - - >

a) Fuel Rod Geometry b) IFBA Fuel Rod Geometry u)dd Tube Geometry
Fig. 5.6. Geometry Description of the componenta BWR assembly

Prior to describing the core loading pattern aredrttethod used to determine the
equilibrium core composition, it is worthwhile toxamine the computational
requirements of a 1/8th core steady state calomatith DeCART. The data described
below was previously reported by (Kochunas 2008 domputational requirements of a
3-D problem in DeCART are reduced by using planegothposition and solving each
plane on a separate processor. However, the dataaich plane problem must be
contained on each parallel process for a 3-D calicul. The modeling requirements
necessary for performing a 1/8th core calculatimsbown in Table 5.3, with most of
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the information being provided on a per plane baé$ate, for a quarter-core these values
roughly double, and for a full core model with nerenetry the requirements would be
approximately 8 times what is shown in the Tablée 13-D calculations that were
performed were executed on the RESERV cluster dt wNich has 100 nodes each with
2 GB of memory and a 3.4 GHz Intel Pentium 4 preces The calculations used 22
processors (one for each plane in the model).

Table 5.3. Computational requirements for 1/8theddodel

Parameter Value
Number of Energy Groups 47
Number of Axial Planes 22
Flat Source Regions per plane ~461,000
CMFD Nodes per plane 18,207
Depletable Regions per plane 15,000-20,000
Rays per plane ~32,000
Ray segments per plane ~16,000,000
Isotopes tracked per region 510
Memory Required per plane ~1.6 GB
Execution time 88h
CPU time 1936

5.3.2. Generation of an equilibrium core composition

In order to generate a realistic fuel composition the once and twice burned
assemblies of the model, an equilibrium core contiposcalculation was performed
with DeCART prior to the transient calculations.elprimary outcome of this calculation
was the isotopic compositions of each intrapin $latirce region of the 1/8th core model
as well as a 3D assembly averaged exposure map vehised as input by PARCS.

5.3.2.1. Methodology

An equilibrium core calculation scheme with DeCARias developed by
(Kochunas 2008). The objective was to determineutmgue equilibrium composition
corresponding to a specified fuel loading and fskuffling pattern. The algorithm
implemented in DeCART uses a sequence of repetityede depletions with the same
fuel shuffling pattern until convergence of thelfted power prediction, i.e. the fuel rod
power prediction from one cycle to the next is léssn a user specified convergence
criteria (10° was used in the search here).

The loading pattern and shuffling scheme used enpttesent study are shown in
Fig. 5.7. The latter indicates the path along whiehassembly will be shuffled during its
life in the core and the number indicates its pnesgcle of residence in the core (e.g. 1
is the first cycle in residence and 3 is the tluydle in residence). The initial guess was
determined from a single 3-D assembly depletiorhwadially reflective boundary
condition and a void boundary condition on thedaog bottom of the core.
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Fig. 5.7. Loading pattern and shuffling schemetfier PWR 1/8th core model

For the loading pattern shown here, the fresh dslsesnare on the periphery to
limit the pinpower peaking at the center of theegothe once and twice burned
assemblies are arranged in a checkerboard elsewhtre core. It should be noted that
no optimization was performed in the design ofltdeling pattern. It was simply chosen
arbitrarily to be a realistic representative exampince actual designs are typically
proprietary.

The primary outcome of the equilibrium core composicalculation is the local
fuel composition for the burned assemblies in DeCAR well as a 3-D exposure map
which is used in PARCS. As noted earlier, the emsghwas to insure consistency
between the burnup data used PARCS and DeCART.

5.3.2.2. Results

An important quantity that will be presented exteely during the next few
sections is the relative difference of a certaiargily Q between DeCART and PARCS.
The relative difference R in terms of Q is givereguation 5.13:

R= QDeCART B Q PARCS, 100

Eqg. 5.13
QDeCART

Every time a relative difference is reported, tkeérdtion of Equation 5.13 is used
in which the relative difference is expressed in %.
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5.3.2.2.1.  Convergence

The convergence behavior of the equilibrium Begignof Cycle (BOC) power
distributions is first described for the given cdesign. The local maximum absolute and
relative differences of the relative pin power disition in the entire core and also the
percent RMS of the relative differences is shownFig. 5.8. These differences are
calculated from the solutions of successive iterei

The convergence criterion chosen for the equiliorzore was an RMS less than
1% because this equates to a maximum local reldifference in pin power of less than
0.1% and an absolute difference in the relative govers of less than 0.01. These
differences in the relative pin power distributiare generally considered small for most
code to code comparisons, and given the natureh@fcbmputation time of these
calculations this level of error in the solution svadleemed acceptable. The total
computation time of the 3-D equilibrium core caltidn was about 22 days.

10 ————— 1 A0

Pin Power RMS (%)

Pin Power Max. Relative Error (%)
Pin Power Max. Abs. Error

Iteration Iteration Iteration

Fig. 5.8. Equilibrium calculation convergence babav
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Fig. 5.9. BOC core power distributions - axial powariation and axially integrated radial variation

Burnup = 15.000 MWd/kgHM
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Fig. 5.10. EOC core power distributions - axial powariation and axially integrated radial variatio
5.3.2.2.2. Equilibrium core power distribution

In this section the evolution of the power disttibns and peaking factors during
the reactor cycle are examined. Fig. 5.9 and Fi0 Show the radially integrated axial
power shape and axially integrated radial assemblyer distribution for the 1/8th core
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at the BOC and End of Cycle (EOC), respectivelyCBRBT provides this level of detall
without having to use homogenization or de-homaggion (pin power reconstruction)
techniques such as used in PARCS and other indststngdard core simulators.

It is worth noting that the radial power distrikaris in the previous figures are
somewhat atypical since there is high peaking irasgembly close to the periphery of
the core. As noted earlier, because of the compuotdt burden in the DeCART
calculation, no attempt was made to optimize tlalilog pattern to reduce this peaking.
However, even though this result makes the reatindel less realistic, it does not
detract from the primary goal of this study which to perform a code-to-code
comparison of current industry standard and hidjdetity methods.

a) BOC burnup map [MWd/kgHM] b) EOC burnup map [MikgHM]
Fig. 5.11. Axially integrated exposure map at BO@d 80C

As shown in Fig. 5.10, the axially integrated ragiapower distribution tends to
flatten during the cycle and the power peaks tdodwigrate closer to the periphery of
the core. The current methodology used in codels asdPARCS typically has difficulty
correctly describing the spatial variation of thie power during depletion. The evolution
of the axial power variation is typical of a PWRijttwa relatively flat axial shape
becoming "double-peaked" at the end of the cyche @entral deep in the axial power
shape is due to higher burnup at the early patiefuel residence in the core. Finally, a
quantity of particular interest throughout the déiQquum core calculation is the burnup
distribution. Fig. 5.11 shows the fuel rod axialthyegrated radial burnup distribution at
the beginning and end of reactor cycle. One optréicular advantages of higher fidelity
methods such as DeCART is to provide the detanvetlidon of the exposure within fuel
pins in the assembly. The once burned fuel assemihow especially strong spatial
exposure gradients with the maximum exposure at BO&bout 41 MWd/kgHM and 53
MWd/kgHM at EOC. At the end of the equilibrium cgctalculation, the DeCART
output is processed with a MATLAB script to generat 3D exposure map at the
assembly level for the BOC and EOC. This providARES with exposure data that is
consistent with DeCART and insures consistenchéninitial conditions for the transient
calculations.
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5.3.3. Cross Sections and Kinetic Parameters GeneratioPARCS

In order to assure consistency in the nuclear blataeen PARCS and DeCART,
it is desirable to use DeCART as a lattice codgdperate the kinetic parameters and
homogenized cross sections for PARCS. Part of iesedation work involved the
development of a lattice calculation capabilityDeCART as well as an interface with
the PARCS cross section library tool, GenPMAXS. Tbkowing sections described
how the homogenisation and condensation processgsired to generate the
macroscopic cross sections library for PARCS aropeed.

5.3.3.1. Generation of the Homogeneous Parameters

To generate a few group macroscopic cross sectibisseps are required. The
first step is a homogenization step, where theiapa¢pendence of the cross section is
integrated over an assembly in order to obtainsserably-wise cross section. The fine
energy group structure is retained. The cross@edigiven by a flux-volume weighted
average as seen in the Eq. 5.14, in order to pedbe reaction rates over a given
assembly.

Z Zg,k¢kgvk

g _ keAssembly
DIMES

24N

ke Assembly

Eq. 5.14

The second step is a condensation step to redadméhenergy group structure to
a coarse one, involving typically few energy graupsthe considered model, two coarse
energy group are used. The goal is to take intowtdcthe energy dependence of the
cross section. The energy cut-off is set to 3.9%8vhilarly to the homogenization step,
the macroscopic cross section is obtained by avialume weighted average, the flux
being the assembly averaged flux.

The previous 2-steps process is valid for the ¥algy macroscopic cross
sections: absorption, total, transport, fissiontimes fission, kappa times fission and
scattering matrix. Chi and the diffusion coeffiditreatment remain to be determined.

Chi is obtained in a similar fashion than the poegi macroscopic cross sections,
the only difference being that the average issadisvolume weighted average instead of
a flux-volume weighted average as seen in the B4..5

z IG{ ZVE?,k@ngJ
ke Assembly 9'=1, Ngoy
lG _ group & ZG = Zlg, Eq 5.15
> D Vs 82V, v
f.k7k Yk
ke Assembly g'=1 Ngroup

The diffusion coefficient is the most complex mawm@pic cross sections to
obtain since preserving the reaction rates as dloige for the other quantities, doesn't
produce accurate results. The common approach nergge diffusion coefficients is
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through critical spectrum calculation, the diffusicoefficient being a byproduct of such
a calculation.

5.3.3.2. Critical Spectrum Calculation

The critical spectrum calculation is needed intada code in order to correct the
fact that the lattice calculation is performedre aissembly level, in 2-D, with reflective
boundary condition. The spectrum then correspoadstinfinite medium case that may
be significantly different from the local spectrunside a reactor because of the inter
assembly leakage.

The critical spectrum is obtained by solving the &juation (Stamm'Ler and
Abbate 1983). A B1 equation solver has been impteatkin DeCART. The main
outcome of such a solver is a 0-D critical spectmath a fine energy group structure and
a critical buckling value. The assembly averagdflision coefficient is then defined by
Eq. 5.16:

3
|Bcrit ¢g

With J, the net currentg® the fine energy group structure critical flux aBg, the
critical buckling.

D, = Eq. 5.16

In order to obtain the coarse group diffusion doefht, a condensation step is
required, and the same flux weighted average id.usesection 5.3.3.1, the generation of
the macroscopic cross sections needed by PARCS been performed by
homogenization and condensation using the infigjtectrum flux. In order to take into
account the leakage in the lattice calculatioms possible to homogenize and condense
the microscopic cross sections using the critipacgum flux instead of the infinite one.
Since the critical flux is a 0-D flux and that sosyatial variation of the flux is needed
especially in the homogenization step, the regisewine energy group structure scalar
flux is obtained from the infinite one using EqLB.

¢kgcrit (Bczrit )
9 = L g9 Eq. 5.17
¢k,0rlt ¢kg,crit (O) ¢k,°0 |

do. @ndgl  are the region-wise, fine energy group structuitical and infinite

[crit
spectrum scalar flux, respectively, (Bfm) is the critical spectrum flux corresponding
to the critical buckling anob,gcm(o) is the critical spectrum flux corresponding to O
buckling.

5.3.3.3. Kinetic Parameters

The remaining information to be generated by aickttode is the kinetic
parameters, i.e. the neutron velocities and thayeel neutron fractions. Those quantities
were already defined in Chapter 2. The generatioth® assembly-wise data used by
PARCS is described below.
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In order to generate few group velocities, the hgemization and condensation
processes described in section 5.3.3.1 are usexlgé&heration of the delayed neutron
fraction for a coarse energy group structure anudgenized geometry is difficult. In
order to take into account delayed neutron leakage their energy dependence, a
complex treatment needs to be added to the usedkdtiiopic fission source weighting
presented in Chapter 2. Weighting the physical yéelaneutron fraction by the
importance function, i.e. the adjoint of the infenispectrum, region-wise, fine energy
group structure scalar flux, as is shown in Eq85takes the energy dependence as well
as the spatial variation of the flux within the e®bly into account. However, the inter-
assembly leakage is not factored in, since theécéattalculation is performed at the
assembly level with reflective boundary condition.

me Assembl d41 H1
B = Eq. 5.18

> [Zlg mgii[ZVUgllel¢m.)v ]

me Assembl |1 41

Where ¢;“'i and ¢;Yg are the region-wise, fine energy group structininite spectrum

fluxes and its adjoint. In order to take into aauothe inter- assembly leakage, the
energy dependence of the delayed neutron, andedhes critical flux instead of the
infinite one, the following averaging formula (Ef19) is used to determine the effective
delayed neutron fraction:

mogm

me/gsemm{igzdkglﬁ ( );lzlﬂkLZVO'n;g'le' mlJVm.J
B = . 5
% [Zglg"’j;( )ZZ(ZWE”NW )v ]

me Assembl |1 41 gl

Eq. 5.19

Where ¢;“" is the region-wise, fine energy group structurdinite spectrum
fluxes and¢;‘g(Bf,) the adjoint to the fine energy group structuréaai spectrum flux.

In order to compute the latter quantity, a modwde heen added to the DeCART
code to calculate the adjoint of the critical spatt flux. The DeCART has been
developed to be able to perform all the neededtiume to generate the macroscopic
cross sections and kinetic parameters needed byeasanulator, i.e. by PARCS, to run
any kind of steady-state or transient calculatiinally, an interface has been developed
between GenPMAXS and DeCART to streamline the @®oé generating cross sections
library for PARCS with DeCART.

5.3.3.4. Branch Structure and Burnup Steps

The process of generating the macroscopic crossosedibrary for PARCS
requires a few lattice calculations for a range aoinditions and burnup values
representative of the conditions seen by the reattidng the analysis. For the current
RIA model, 4 branches are considered:
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Control Rod

Fuel Temperature

Coolant Density /Moderator Temperature
Boron Concentration

The reference case is obtained for an unroddedndbgewith a fuel temperature
of 900K, a moderator temperature of 580K and a ma@ancentration of 1000ppm. The
branch values are summarized in the Table 5.4 below

The burnup steps considered are typical of a PWR @ad are as follow: 0.2, 0.5,
1.0, 1.5, 2.0, 25, 3.0, 3.5, 4.0, 45, 5.0, 5.8, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 13.5,
15.0, 16.5, 18.0, 20.0, 22.0, 25.0, 30.0, 35.(),445.0, 50.0 and 55.0 MWd/kgHM.

Table 5.4. DeCART lattice calculation branch stouet

Branch Low Reference High
Control Rod Out In
Fuel Temp [K] 560 900 1320
Moderator Temp [K] 560 580 600
B Concentration [ppm] 0 1000 2000

5.3.4. Internal Thermal hydraulic solution

In order to provide thermal hydraulic feedbackstihe neutronic solvers, a
simplified one-dimensional thermal-hydraulic solvier used in both DeCART and
PARCS. It solves the 1-D radial heat conduction &idlaxial heat convection equations
for steady-state and transient problems. In thet loemvection solution, a one-
dimensional single-phase flow model is employedeunthe assumption of constant
pressure and boiling is not considered. Also, unlderassumption of constant pressure,
the momentum equation is not solved so that onlyssmeontinuity and energy
conversation equations are solved in the flow moblThe constitutive relations which
are required to close the field equations are pexias a form of polynomial of
temperature at a given pressure. In the heat ctiodusolution, the radial temperature
distribution within a fuel rod is solved to detenaithe Doppler temperature. A finite
difference scheme is employed to obtain the radialperature distribution during the
transient. The axial heat conduction is neglectethé solution process since it is very
small compared to the radial heat conduction. Tpplieability of the constitutive
relations and the simplifications in flow modelipgovide limitations on the application
of this solver to a wider range of reactor transgmnditions.

The fundamental difference between PARCS and DeCsédéters is the level at
which the thermal hydraulic feedbacks are providedeCART, the thermal-hydraulics
eguations are solved separately for each fueland,provide intra pin fuel temperature.
Conversely in PARCS, the thermal-hydraulics equtiare solved for each fuel
assembly and only an assembly averaged effecteledmperature is used to determine
the Doppler feedbacks.

The motivations behind the use of a simple thetmydraulic feedback solver are
twofold. Since the main objectives of the presentedk is to evaluate the impact of the
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neutronic approximations made by the current neiwtranethodology in terms of fuel
response during the RIA, it is desirable to usesstent thermal hydraulic solution for
both PARCS and DeCART. Both internal solvers of BT and PARCS have the
needed consistency.

Since the thermal hydraulic solver is based onlDaradial conduction solver, the
temperature is averaged azimuthally. Consequerftlyhe two options presented in
section 5.1.3 above, the first one is selectedffarent temperature is applied for each
annular ring depicted in the Fig. 5.1.

5.3.5. Transient model

The transient event considered for the RIA analigsibe ejection of a control rod
assembly with the reactor being in the hot zero gro(iZP) conditions: the fuel and
coolant temperatures are at the inlet coolant teatype, 287°C. The power generated is
set to 10% of its nominal value which are the typical coiwis of a reactor in standby
condition (control rods in, shutdown rods out).

The control rod assembly to be ejected is chosench a way that the transient is
super prompt critical. The main reason for sucthaice is to have a neutronic driven
event; therefore a simple thermal hydraulic modesufficient to capture the thermal
hydraulic effects. Control rod cusping treatmentusrently not available in DeCART.
Hence, it is not possible to accurately model atrobmod partially inserted within a
plane. In order to avoid partially inserted contr@dl, the ejection time is assumed to be
negligible and the rod withdrawal occurs instantausty at time zero. The usual ejection
time for a control rod assembly in a typical PWRaimut 0.1s, with a transient time of
about 0.5s. Consequently, an instantaneous ejectigpresents a significant
approximation. However, since the main purposeisf work is to make a code-to-code
comparison, the instantaneous ejection presengesdhsistency of both DeCART and
PARCS calculations.

5.4DeCART/PARCS Comparison

In order to check the quality of the macroscopiossr sections and kinetic
parameters, first steady state calculations afeimpeed with both DeCART and PARCS.
Then a RIA scenario is considered involving a aanassembly near the center of the
reactor.

5.4.1. Steady State Comparison

In order to evaluate the quality of the macroscapizss sections and kinetic
parameters generated with DeCART, steady statelatitns are performed with both
DeCART and PARCS. Since the RIA analysis is pertatnat BOC, the steady state
comparison is presented for BOC conditions.

The steady state calculations were performed ferititial state of the reactor
before the start of the RIA, i.e. at BOC, for het@power conditions. In order to obtain
a realistic power distribution, the boron conceamraof both DeCART and PARCS was
adjusted in order to model a critical reactor. f-ies steady calculation was performed
with each code with all the control assemblies riese Then for the critical boron
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concentration, the control rod assembly to be egeduring the RIA was withdrawn and
the steady state eigenvalue and fuel rod relatoxeep prediction of both DeCART and
PARCS were calculated. For each steady state adilon) the effective multiplication
coefficient and relative pinpower were compared #uedresults are summarized in Table
5.5. The axially integrated relative pinpower artie tDeCART/PARCS relative
difference is shown in Fig. 5.12. The axial evaluatiof the local relative power
prediction is shown in Fig. 5.13.

The relative difference in terms ofskbetween DeCART and PARCS is less than
100 pcm for both the unrodded cases. The predatealint of soluble boron necessary
to achieve criticality is also very close betweekRES and DeCART, which provides
confidence that the cross sections were properggeed.

Table 5.5. BOC Steady state comparison of PARC&TART

Multiplication Coefficient  RMS Relative
Case Ak(pcm)  pinpower difference
DeCART PARCS in %
Rodsin 1.0 (946 ppmofB) 1.0 (970 ppm) 0 4.11
Rods out 1.010793 1.01179 -99 3.97

The relative difference in the axially integrateadpgmwer prediction is about 5%
for both cases. The relative difference increasethe area of the core with sharp flux
gradients, in the rodded control assemblies fongta. Some differences are expected
since the nuclear data (cross sections and asselsblyntinuity factors) are generated at
the assembly level with reflective boundary comdis which approximates the actual
heterogeneous configuration in the reactor.

The rod worth for the considered RIA scenario imsarized in Table 5.6o
represents the total reactivity insertion in thacter upon withdrawal of the control rod
assembly. It is computed in Eq. 5.20 belggvrepresents the total delayed neutron
fraction andp; is the reactivity expressed in $, i.e. in fractinp. In both cases, the
control rod worth is well over a dollar of reactiwand the transient resulting from a rod
ejection is super prompt critical.

kunrodded
eff

1% :W—l Eq 5.20
eff

The worth predicted by PARCS is higher than thetiwpredicted by DeCART
because of the combination of differeg§ knd delayed neutron fractions. Consequently,
different transient behaviors are expected betiBERCS and DeCART.

Table 5.6. BOC Control rod worth predicted by DeQA&d PARCS

DeCART PARCS
N 0.01079 0.01165
B 0.00617 0.00615
p [$] 1.75 1.89
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b) S.S. axially integrated pinpower relative
difference in % between PARCS and DeCART

Fig. 5.12. BOC S.S. DeCART/PARCS axially integratelative fuel rod power prediction for the rodded
case

a) DeCART S.S. axially integrated fuel rod power

The control rod assembly to be withdrawn is closeghe core center. In the
central region of the reactor, the power preditigdeCART is consistently lower than
the power predicted by PARCS as seen in the Fi.5The worth of the control rod
predicted by DeCART is then understandably lower.

The analysis of the relative difference in termstloé local fuel rod power
prediction between PARCS and DeCART as shown in % and Fig. 5.13 suggests
that the differences between PARCS and DeCART eamiportant, especially for the
assemblies where the control rods are inserted. iShexpected and is due to the known
limitations of the multi-step methodology to acdeha predict fuel rod powers in area of
the reactor with sharp flux gradients. However, tiggest differences in the power
predictions occur in regions of the reactor gemegalow power, and consequently of
lower importance. Another important factor to caolesiis the effect of analyzing relative
differences. In an area where the considered dgiemntre small, the relative difference
tends to magnify the errors.

5.4.2. Transient Comparison

At BOC, a control rod assembly withdrawal is coesédl as shown in Fig. 5.6.
During the transient analysis, the core averagedepgeneration is recorded as well as a
comparison of the local fuel rod power. As discdssarlier, both DeCART and PARCS
use similar simplified thermal hydraulic methods silmulate the fuel and moderator
temperature response during the course of thei¢ransvith the only difference being
that DeCART provides temperature feedback at thed fod level whereas PARCS
provides feedback at the assembly level.

In terms of computational cost, the memory requeets to run an eighth core
transient model were similar to the one of the ldgjiiim core calculation discussed in
Table 5.3 above. Each of the transient presentdakifollowing sections was run on the
RESERYV cluster in ANL. It took approximately 5 daysing 22 processors to run each
transient. The PARCS transient were run on singtegnal computer in about one hour.

The Control assembly is ejected and the transiastrwn for 0.1s with a time step
of 1ms. The average core power during the evertirdd by each code is shown in Fig.
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5.14 while the fuel rod power relative differencetvileen DeCART and PARCS in %
RMS is shown in the Fig. 5.15.
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Fig. 5.13. Axial evolution of the relative fuel rpdwer difference between DeCART and PARCS at BOC

The predictions of core averaged power by DeCART d&ARCS are
significantly different. The peak power predicted®ARCS is higher by about 50% and
occurs earlier in the transient. The differencéhm peak power can be explained by the
different rod worth predicted by the codes as shawthe Table 5.6, as well as the
slightly different delayed neutron fractions. Tleactivity inserted in the PARCS case is
larger and the delayed neutron fraction is smétlan in the DeCART case. For the super
prompt critical RIA event, the delayed neutron seuof the point kinetics equation can
be neglected and the point kinetics equation casdbeed analytically. The principal
guantities of interest, maximum power and the taevhich the maximum power is
reached, can be expressed as a function of theedseactivity, the prompt neutron life
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time and the total delayed neutron fraction as shaw Eqg. 5.20. This approach is
referred to as the Nordheim Fuchs model which cardérived from the exact point
kinetics equations. The kinetics parameters useldese relations are computed from the
solution of the DeCART and PARCS spatial kineticdusons. The details of the
derivation are given in (Ott and Neuhold 1985).

2 0
p,—p°=— P g t ~ AIn(‘l—loj Eq. 5.21
2A7/ ppl pm

where p,, is the inserted prompt reactivity in &,the neutron generation timg° the
initial power level and the feedback coefficient.

Core Averaged Power

1.40E+04

1.20E+04 == DeCART

1.00E+04 PARCS
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Fig. 5.14. BOC RIA scenario-DeCART/ PARCS Core agerpower comparison-
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Fig. 5.15. BOC RIA scenario -DeCART/ PARCS pinpoRMS relative difference evolution with time-

91



Table 5.7. Nordheim Fuchs model results for BOC RIA

Nordheim Fuchs Moddl Spatial Kinetics Model
DeCART PARCS | DeCART PARCS

p 0.01079 0.01165 0.01079 0.01165
B 0.00617 0.00615 0.00617 0.00615
pl[$] 1.75 1.89 1.75 1.89
Als] 1.70E-05 1.70E-05 1.70E-05 1.70E-05
y[1/fp-s] 1.2 1.2
PP’ 84.9 120.67 88.41 123.58

tm[S] 6.91E-02 5.95E-02| 8.00E-02 7.30E-02

The comparison of the Nordheim Fuchs model resuttsthe spatial kinetic results of PARCS and
DeCART, for the principal quantities of interessismmarized in the

Table 5.7. Since the prompt neutron lifetime aredtttal delayed neutron fraction
in PARCS and DeCART are different, two results pnavided for the Nordheim Fuchs
model, one using the DeCART parameters and ther athresistent with the PARCS
parameters. The Nordheim Fuchs model predicts gecyrately the maximum power
seen by the core during the transient as well astithe at which it happens which
provides confidence that the differences obsenatd/iden PARCS and DeCART come
from steady state differences. The effective gdimrdime is obtained similarly to the
effective delayed neutron fraction as shown in&82 and is computed by PARCS and
DeCART.

Y gl

m
9
A= me Assembly v

G
D P XD VR o4y

me Assembly g'

Eq. 5.22

As for the pinpower prediction, the overall conams are similar to the
conclusions made during the steady state compariSba variation of the %RMS
relative difference in the time between 0.05s af@®can be attributed to the differences
of core averaged power during that time span. FPARCS overall power increases
earlier and the temperature rise tends to flattem shape of the fuel rod power
distribution. Conversely in the DeCART predictiothe fuel temperature hasn't yet
changed and the fuel rod power shape is still genyjlar to the initial shape causing the
overall %RMS relative difference to increase. Latethe transient, the fuel temperature
in the DeCART model increases reducing the relaRMS difference. The %RMS
difference after both the PARCS and DeCART poweakpdas different from the initial
difference since the temperature has been increms@dmpensate for the reactivity
introduced by the withdrawal of the control rod w@hiresults in a transient fuel rod
power shape different from the steady state shape.

In terms of accident analysis, the quantity of nes¢ is the local fuel rod power
during the transient. Fig. 5.16 shows the evolutadnthe core-wide fuel rod power
distribution and the relative difference betweenRES and DeCART for the axial
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segment of the core where the maximum power irstbady state occurs, i.e. at an axial
position of about 340cm from the bottom of the core

Aially Integrated Pin Power at 05 Rel Err for plane19 at 05

Avially Infegrated Pin Power at 0.001s Rel Errfor plane19 at 0.001s

Avially Infegrated Pin Power at 0.075s Rel Errfor plane19 at 0.0755
25 20

Axially Integrated Pin Power at 0.089s Rel Efor plane19 at 0.089s
25

Fig. 5.16. Evolution of the local fuel rod powestlibution during RIA case A scenario at BOC

The conclusion which can be drawn from the comparisf the core average
power evolution and the relative difference betwd®hRCS and DeCART is also
applicable for the local fuel rod power prediction.

The difference observed in terms of core averageepoevolution can be
attributed principally to different control rod wibrin the PARCS and DeCART steady-
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state solution. The steady state difference temdsmask the potential difference
introduced by other neutronic approximations durthg transient. The multi-steps
methodology, for its approximation, produces reswiry close to the higher fidelity
methodology of DeCART.

5.5.Summary

The DeCART code is capable of performing a fullecBiA analysis with thermal
hydraulic feedbacks. The procedure to include &nel moderator temperature feedbacks
as well as density was implemented in DeCART apdesents a significant and original
contribution to LWR reactor analysis methods sithig is the first time a transport based
transient calculation has been performed with loe@perature feedback.

One of the other objectives of this project wasp&rform a code-to-code
comparison between a high fidelity method suchsesiun DeCART and the multi-step
methodology such as used in PARCS for a realisiccbre RIA scenario. In order to
insure the consistency of the code-to-code compagissome approximations were made
to the modeling of the rod ejection accident saenar

A high-fidelity analysis of representative fuel asdlies with explicit
representation of individual fuel pins and surrangdcoolant channels was performed
using transient solution scheme in DeCART. As asbafscomparison, the same analysis
was performed with the U.S. NRC PARCS neutronicecotiich is representative of the
multi-steps methodology currently used by the imgudor performing control rod
ejection analysis. The RIA analysis performed heas applied to a 1/8th reactor core
model corresponding to the equilibrium core comjmsiof a PWR with fuel designs
and cycle lengths representative of current utdipgrating strategies.

A 1/8th core model based on a 4-loop Westinghoeseyd was developed with
fuel designs and cycle lengths representative okaotiutility operating strategies. Three
different RIA analyses are performed. First at B@@, ejection of two different control
assemblies was performed in which one assemblyeyeated near the center of the core
and the other one near its periphery. At EOC, dh& analysis of the ejection of the
control assembly near the core periphery was peddr All three RIA analyses were
performed using the DeCART code with a simplifiedrimal hydraulic feedback model.
The DeCART results were compared to the currenegdion of LWR core analysis
methods represented by the PARCS code which uteztraal hydraulic feedback model
consistent with that used by DeCART. In order thiee consistency between DeCART
and PARCS, the DeCART code was used as a lattide tm generate the assembly
homogenized macroscopic cross sections and kipatameters required by PARCS.

There is good overall agreement in terms of corraye power and pin-wise
power between DeCART and PARCS for the RIA at BORe differences observed in
terms of time and magnitude of the peak powerdaeeto differences in the steady state
calculations.
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6. Conclusions

6.1 Dissertation Summary

The current state of the art in reactor physicshoudt to assess safety, fuel
failure, and operability margins for Design Basiscilents (DBAs) for Light Water
Reactors (LWRs) rely upon the coupling of nodal tremics and one-dimensional
thermal hydraulic system codes. The neutronic taticms rely on a multistep approach
which was identified as inadequate for severaliagpbns (Cho 2006) such as the design
of MOX cores and other innovative reactor desigBscause of the considerable
advances in computing power over the last severalsy there has been interest in high-
fidelity solutions of the Boltzmann Transport edqoat A practical approach to solving
the 3D transport equation is the 2D-1D methodolagy which the method of
characteristics (MOC) is applied to the heterogase?D planar problem and a lower
order solution is applied to the axial problem vhis more uniform. Recently, there has
been interest in taking advantage of advanced noatenethods to perform high-fidelity
simulations of design basis accidents, such agaamtd ejection accidents also known
as reactivity initiated accidents (RIA).

The primary ojective of the dissertation is to ioy® the accuracy and range of
applicability of the DeCART code and to investig#te ability to perform a full core
transient analysis of a realistic RIA.. During jprehary RIA analysis, the accuracy of
the DeCART “2D-1D” formulation was found to be ifiscient due to an axial solver
based on the diffusion theory and poor converggmoeerties in case of strong axial
leakage or fine axial spatial meshing.

The specific research objectives of this work waareomplished. This included:

e The addition of more accurate 2D-1D coupling ar@hsrverse leakage splitting
options to avoid the occurrence of negative soteoms in the 2D MOC equations
and the subsequent failure of the DeCART calcutatind the improvement of the
convergence of the 2D-1D method.

e The implementation of a higher order transport las@lver based on NEM-Sn
derivation of the Boltzmann equation.

e The proper handling of thermal hydraulic feedbablgsDeCART during transient
calculations.

e A consistent comparison of the DeCART transientho@blogy with the current
multistep approach (PARCS) for a realistic full&®tiA.

An efficient direct whole core transport calculatimethod involving the NEM-
Sn formulation for the axial solution and the MO&@ the 2-D radial solution was
established. In this solution method, the solutifumshe Sn equations were obtained by
employing the Nodal Expansion Method. It was shomat the NEM-Sn solution turned
out to be effective in reducing the eigenvalue remresulting from the diffusion
approximation. The eigenvalue error could be reddoem 110 pcm to 12 pcm for the
C5G7 Rodded Configuration B problem and the pin goerror from 2.7 to 2.3%.
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Therefore, it can be concluded that the newly immaieted NEM-Sn axial solver

improves the solution accuracy compared to thaer@aidNEM based solver. A 1/8th core
model based on a 4-loop Westinghouse design wasdapmd with fuel designs and cycle
lengths representative of current utility operatisfyategies. A RIA analysis was
performed and the DeCART results were comparedheoctrrent generation of LWR

core analysis methods represented by the PARCS. &@umlgsistent thermal hydraulic

feedbacks model and cross section data were use®@dGART and PARCS. The

DeCART code was used as a lattice code to gendénateassembly homogenized
macroscopic cross sections and kinetic parameggrgired by PARCS. There is good
overall agreement in terms of global and localwise power information DeCART and

PARCS for the RIA considered. However, it is impoit to keep in mind that the

considered RIA represents a relatively “easy” peahl A more drastic event, where the
control assembly is closer to the core periphemxigected to show the limitation of the
current methodology.

6.2 Recommended Future Work

One of the main approximations of the 2D-1D methogly is the azimuthal
integration of the transverse leakage at the plandiace. Introducing an azimuthally
dependent transverse leakage would produce redte@i3port accuracy, while still not
performing a full 3D MOC calculation. It would reggent an intermediate step towards a
3D MOC.

In term of full core transient analysis with DeCARfMe work summarized in the
dissertation has been limited to the analysis oA BVent because of the simplified
thermal hydraulic solver available. Future worktbis project should take advantage of
the coupling of DeCART to STAR-CD in order to impeothe fidelity of the thermal-
hydraulics solution and to extend the range of mcdkapplications: extend RIA analysis
post departure from nucleate boiling (DNB), analyZ8CA, etc... Another way to
extend the range of multi-physics analysis capgbvliould be the coupling to a fuel
performance code (e.g. FALCON). Such coupling wobkel needed in order to
investigate the effect in terms of fuel and clagdiesponse (strain energy density, stress)
of the local conditions (power, temperature, presswuring the transient analysis.
Finally, the DeCART transient methodology has beaidated against the current multi-
step methodology, but a comparison with experimaetults would be needed to show
the benefits of the higher fidelity approach and tlaws of the current methodology. A
very good candidate for validation would be the rEhBeriod Excursion Reactor
Transients (SPERT) (Spano 1964) experiments.
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Appendix ADeCART Inputs for Chapter 3

A.1l. Input Information for Water Hole Case

The following represents the base DeCART input desd for the Water Hole
case study. The 2D-1D coupling options are refittedugh the cardéplit_optand the
axial meshing is increased through the @tdmestandstack The file c5g7.xsl contains
the 7 energy group cross sections specified ilC&®7 benchmark.

CASEID WaterHole
MATERIAL

GEOM

ncells 1

pitch 1.26

|

pin 1 0.26650.99351.260/1.260/717/118
pin 2 1.260/1.260/7/5/5

pin 3 1.260/1.260/8/5/5

1

cell111
1
cell211
2
cell311
3
!
!
assembly 1 360 1
1

assembly 2 360 1
2

assembly 3 360 1
3

! Axial Description

!

ax_mesh 3*18.900
stack 1 2*1 1*2
stack 2 1*2 2*2
stack 3 1*2 2*3

!

rad_conf 360
11211

albedo 0.0 0.0 0.5
OPTION
cmfd F F
split_opt -2
|
XSEC
lib_type 1

group_spec 7 4
file c5g7.xsl

A.2. Input Information for Control Rod Case

The following represents the base DeCART input des#d for the Contro Rod
case study. The 2D-1D coupling options are refittedugh the cardéplit_optand the
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axial meshing is increased through the @tdmestandstack The file c5g7.xsl contains
the 7 energy group cross sections specified lC&®7 benchmark.

CASEID ControlRod
MATERIAL

GEOM
ncells 1
pitch 1.26
1

.pin 1 0.2665 0.99351.260/1.260/717 /118
pin 2 1.260/1.260/7/5/5

pin 3 1.260/1.260/8/5/5

!

cell111
1
cell211
2
cell311
3
!
!
assembly 1 360 1
1

assembly 2 360 1
2

assembly 3 360 1
3

! Axial Description

!

ax_mesh 3*18.900
stack 1 2*1 1*2
stack 2 1*2 2*2
stack 3 1*2 2*3

!

rad_conf 360
11311

albedo 0.00.00.5
OPTION
cmfd F F
split_opt -2
|
XSEC
lib_type 1

group_spec 74
file c5g7.xsl

A.3. Input Information for Low density Case

A.3.1.Low Density Cross Sections

The cross sections used to model a reduced codéndity are detailed in the
Table A. 1 below. They were obtained by multiplyitng original coolant cross section
by 0.01.

Table A. 1 Main cross sections for the Low Denskige.

Group Ta VX K¢ X
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1 6.01E-06 0.0 0.0 5.88E-01
2 1.58E-07 0.0 0.0 4.12E-01
3 3.37E-06 0.0 0.0 3.39E-04
4 1.94E-05 0.0 0.0 1.18E-07
5 5.74E-05 0.0 0.0 0.00E+00
6 1.50E-04 0.0 0.0 0.00E+00
7 3.72E-04 0.0 0.0 0.00E+00

Table A. 2 Scattering cross sections for the Lowdity case

To Group
1 2 3 4 5 6 7
1 4.45E-04 1.13E-03 7.23E-06 3.75E-08 5.32E-10 B+00 0.00E+00

2 0.0 2.82E-03 1.30E-03 6.23E-06 4.80E-07 7.45E-0805E-08

3 0.0 0.0 3.45E-03 2.25E-03 1.70E-04 2.64E-05 50G3E
From Group 4 0.0 0.0 0.0 9.10E-04 4.16E-03 6.37E-04 1.21E-04
5 0.0 0.0 0.0 7.14E-07 1.39E-03 5.12E-03 6.12E-04
6 0.0 0.0 0.0 0.0 2.22E-05 7.00E-03 5.37E-03
7 0.0 0.0 0.0 0.0 0.0 1.32E-03 2.48E-02

A.3.2.DeCART Input

The following represents the base DeCART input dessd for the Low Density
case study. The 2D-1D coupling options are refittedugh the cardéplit_optand the
axial meshing is increased through the @tdmestandstack The file c5g7.xsl contains
the 7 energy group cross sections specified ilC&®7 benchmark.

CASEID Void
MATERIAL

GEOM
ncells 1
pitch 1.26
|

.pin 1 0.2665 0.9935 1.260/1.260/12 1 13/115
pin 2 1.260/1.260/12/5/5

pin 3 1.260/1.260/12/5/5

!

cell111
1
cell211
2
cell311
3
!
!
assembly 1 360 1
1
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assembly 2 360 1
2

assembly 3 360 1
3

! Axial Description

!

ax_mesh 3*18.900
stack 1 2*1 1*2
stack 2 1*2 2*2
stack 3 1*2 2*3

!

rad_conf 360
11111

albedo 0.00.00.5
OPTION
cmfd FF
split_opt -2
|

XSEC
lib_type 1
group_spec 74
file c5g7.xsl
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Appendix BDeCART Input for Chapter 4

The geometry is described in the main body of tlesedtation. Here is some
additional information. The pin cell geometry i©sm in the Fig B. 1below.

B Fuel-Clad Mix
OModerator

Fig B. 1 Pin cell geometry

The following represents the base DeCART input deséd for unrodded case
and the rodded configuration A and B. The base CRTModel consists of four planes
of three 14.28 cm planes for the fuel region anel 2h42 cm plane for the axial reflector
region. In the sub-plane calculation, each plangivigled into several sub-planes for an
accurate treatment of the axial neutron leakagehiwieach fuel cell, 64 flat source
regions consisting of eight annular regions anthtedgimuthal sectors are defined. Two
additional annular regions are assigned in the madoeregion. The five inner annular
regions have the same area.

The ray option is fixed by using 4 azimuthal ando?ar angles for each octant of
the unit sphere to define the solid angle, and @®@5ray spacing. The convergence
criterion is set to 1e-5 for the eigenvalue and2irerm of the fission source.

The axial NEM-Sn solver is called by using the caemnsnand the number of
sub-planes is specified by the caubmeshThe Gaussian angular quadrature is used by
setting the cargol_quadto T. The file c5g7.xsl contains the 7 energy grauoss
sections specified in the C5G7 benchmark.

The next three sections describe the base inpufABd&Gor the unrodded, rodded
case A and rodded case B respectively.

B.1.Unrodded Case DeCART Input

CASEID 3d_ur C5G7 BENCHMARK Problem

MATERIAL

GEOM

ncells 17

pitch 1.26

ax_mesh 3*14.28 21.42

albedo 0.5 0.0 0.5
!
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11:U02-3.3, 2:MOX4.3, 3:MOX7.0, 4:MOX8.7, 5:Fidsiin, 6:GT, 7:MOD
pin10.5400.620.63/177/31/2488
pin 20.5400.620.63/277/31/2488
pin 30.5400.620.63/377/31/2488
pin40.5400.620.63/477/31/2488
pin50.5400.620.63/577/31/2488
pin 6 0.5400.620.63/677/31/2488
pin 70.5400.620.63/777/31/2488
pin 80.5400.620.63/877/31/2488

1
cell111

1

cell211

2

cell311

3

cell411

4

cell511

5

cell611

6

cell711

7

cell811

8

!

stack 1 3*1 4*7

stack 2 3*2 4*7

stack 3 3*3 4*7

stack 4 3*4 4*7

stack 5 3*5 4*5

stack 6 3*6 4*8

stack 7 3*7 4*7

stack 8 2*6 1*8 4*8

stack 9 1*6 2*8 4*8

1

assembly 1 360 1
111111112111111111
11111111111111111
11111611611611111
11161111111116111
11111111111111111
11611611611611611
111111112111111111
11111111111111111
11611611511611611
111111112111111111
11111111111111111
11611611611611611
11111111111111111
11161111111116111
11111611611611111
111111112111111111
11111111111111111
1

assembly 2 360 1
22222222222222222
23333333333333332
23333633633633332
23363444444436332
23334444444443332
23644644644644632
23344444444444332
23344444444444332
23644644544644632
23344444444444332
23344444444444332
23644644644644632
23334444444443332
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23363444444436332
23333633633633332
23333333333333332
22222222222222222
|

assembly 3 360 1
1777777777777 7777
1TTTTTTTIIIITTTT07
1TTTTTTTIIINITTTT07
1777777777777 7777
1TTTTTTTIIIITTTT07
1TTTTTTTIIIITTTT07
1777777777 7777777
1TTTTTTTIIINTTTT07
1TTTTTTTIIINTTTU07
177777777777 77777
1TTTTTTTIIINTTTTU07
1TTTTTTTIIIITTTT07
1777777777777 7777
1TTTTTTTIIIITTTT07
1TTTTTTTIIIITTTT07
1777777777777 7777
1TTTTTTTIIIITTTT07
|

assembly 4 360 1
11111111111111111
11111111111111111
11111811811811111
11181111111118111
11111111111111111
11811811811811811
11111111111111111
11111111111111111
11811811511811811
11111111111111111
11111111111111111
11811811811811811
11111111111111111
11181111111118111
11111811811811111
11111111111111111
11111111111111111
!

assembly 5 360 1
11111111111111111
11111111111111111
11111911911911111
11191111111119111
11111111111111111
11911911911911911
11111111111111111
11111111111111111
11911911511911911
11111111111111111
11111111111111111
11911911911911911
11111111111111111
11191111111119111
11111911911911111
11111111111111111
11111111111111111

assembly 6 360 1

22222222222222222
23333333333333332
23333833833833332
23383444444438332
23334444444443332
23844844844844832
23344444444444332
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23344444444444332
23844844544844832
23344444444444332
23344444444444332
23844844844844832
23334444444443332
23383444444438332
23333833833833332
23333333333333332
22222222222222222
|

rad_conf 90 edge

123

213

333

|

XSEC

lib_type 1

group_spec 7 4

file ../../lib/c5g7 .xsl

|

OPTION
conv_crit 4*1e-5
cmfd F F
submesh 10
pol_quad T

B.2. Rodded Case A DeCART Input

CASEID 3d_rA C5G7 BENCHMARK Problem

MATERIAL

GEOM

ncells 17

pitch 1.26

ax_mesh 3*14.28 21.42

albedo 0.5 0.0 0.5

|

11:U02-3.3, 2:M0OX4.3, 3:MOX7.0, 4:MOX8.7, 5:Fids@in, 6:GT, 7:MOD
pin10.5400.620.63/177/31/2488
pin20.5400.620.63/277/31/2488
pin 30.5400.620.63/377/31/2488
pin 4 0.5400.620.63/477/31/2488
pin50.5400.620.63/577/31/2488
pin 6 0.5400.620.63/677/31/2488
pin 70.5400.620.63/777/31/2488
pin 8 0.5400.620.63/877/31/2488
1

cell111
1
cell211
2
cell311
3
cell411
4
cell511
5
cell611
6
cell711
7
cellgll
8
!
stack 1 3*1 4*7
stack 2 3*2 4*7
stack 3 3*3 4*7
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stack 4 3*4 4*7

stack 5 3*5 4*5

stack 6 3*6 4*8

stack 7 3*7 4*7

stack 8 2*6 1*8 4*8

stack 9 1*6 2*8 4*8

|

assembly 1 360 1
111111112111111111
11111111111111111
11111611611611111
11161111111116111
11111111111111111
11611611611611611
11111111111111111
11111111111111111
11611611511611611
111111112111111111
11111111111111111
11611611611611611
111111112111111111
11161111111116111
11111611611611111
111111112111111111
11111111111111111
|

assembly 2 360 1
22222222222222222
23333333333333332
23333633633633332
23363444444436332
23334444444443332
23644644644644632
23344444444444332
23344444444444332
23644644544644632
23344444444444332
23344444444444332
23644644644644632
23334444444443332
23363444444436332
23333633633633332
23333333333333332
22222222222222222
|

assembly 3 360 1
177777777777 777777
1T7T777777777777777
177777777777 777777
177777777777 777777
1T7T777777777777777
177777777777 777777
177777777777 777777
1T7T777777777777777
177777777777 777777
177777777777 777777
177777777777 777777
177777777777 777777
177777777777 777777
1T7T777777777777777
1777177777777 777777
177777777777 777777
1T7T777777777777777
|

assembly 4 360 1
111111112111111111
11111111111111111
11111811811811111
11181111111118111
11111111111111111
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11811811811811811
11111111111111111
11111111111111111
11811811511811811
11111111111111111
11111111111111111
11811811811811811
11111111111111111
11181111111118111
11111811811811111
11111111111111111
11111111111111111
!

assembly 5 360 1
11111111111111111
11111111111111111
11111911911911111
11191111111119111
11111111111111111
11911911911911911
11111111111111111
11111111111111111
11911911511911911
11111111111111111
11111111111111111
11911911911911911
11111111111111111
11191111111119111
11111911911911111
11111111111111111
11111111111111111
!

assembly 6 360 1
22222222222222222
23333333333333332
23333833833833332
23383444444438332
23334444444443332
23844844844844832
23344444444444332
23344444444444332
23844844544844832
23344444444444332
23344444444444332
23844844844844832
23334444444443332
23383444444438332
23333833833833332
23333333333333332
22222222222222222
|

rad_conf 90 edge

423

213

333

!

XSEC

lib_type 1

group_spec 7 4

file ../../lib/c5g7 .xsl

!

OPTION
conv_crit 4*1e-5
cmfd FF
submesh 10
pol_quad T
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B.3. Rodded Case B DeCART Input

CASEID 3d_rB C5G7 BENCHMARK Problem

MATERIAL

GEOM

ncells 17

pitch 1.26

ax_mesh 3*14.28 21.42

albedo 0.5 0.0 0.5
|

11:U02-3.3, 2:2MOX4.3, 3:MOX7.0, 4:MOX8.7, 5:Fidsin, 6:GT, 7:MOD
pin10.5400.620.63/177/31/2488
pin20.5400.620.63/277/31/2488

pin 30.5400.620.63/377/31/2488

pin 4 0.5400.620.63/477/31/2488
pin50.5400.620.63/577/31/2488

pin 6 0.5400.620.63/677/31/2488

pin 70.5400.620.63/777/31/2488

pin 80.5400.620.63/877/31/2488

!

cell111

1

cell211

2

cell311

3

cell411

4

cell511

5

cell611

6

cell711

7

cell811

8

!

stack 1 3*1 4*7

stack 2 3*2 4*7

stack 3 3*3 4*7

stack 4 3*4 4*7

stack 5 3*5 4*5

stack 6 3*6 4*8

stack 7 3*7 4*7

stack 8 2*6 1*8 4*8

stack 9 1*6 2*8 4*8

1

assembly 1 360 1
111111112111111111
11111111111111111
11111611611611111
11161111111116111
111111112111111111
11611611611611611
111111112111111111
111111112111111111
11611611511611611
111111112111111111
11111111111111111
11611611611611611
111111112111111111
11161111111116111
11111611611611111
111111112111111111
11111111111111111
1

assembly 2 360 1
22222222222222222
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23333333333333332
23333633633633332
23363444444436332
23334444444443332
23644644644644632
23344444444444332
23344444444444332
23644644544644632
23344444444444332
23344444444444332
23644644644644632
23334444444443332
23363444444436332
23333633633633332
23333333333333332
22222222222222222
|

assembly 3 360 1
1777777777777 7777
1TTTTTTTIIIITTTT07
1TTTTTTTIIIITTTT07
1777777777777 7777
1TTTTTTTIIIITTTT07
1TTTTTTTIIIITTTT07
1777777777777 7777
1TTTTTTTIIINTTTTT07
1TTTTTTTIIINITTTTU07
1777777777777 7777
1777777777777 7777
1TTTTTTTIIINTTTU07
1777777777777 7777
1777777777777 7777
1TTTTTTTIIIITTTT07
1777777777777 7777
1777777777777 7777
|

assembly 4 360 1
11111111111111111
11111111111111111
11111811811811111
11181111111118111
11111111111111111
11811811811811811
11111111111111111
11111111111111111
11811811511811811
11111111111111111
11111111111111111
11811811811811811
11111111111111111
11181111111118111
11111811811811111
11111111111111111
11111111111111111
!

assembly 5 360 1
11111111111111111
11111111111111111
11111911911911111
11191111111119111
11111111111111111
11911911911911911
11111111111111111
11111111111111111
11911911511911911
11111111111111111
11111111111111111
11911911911911911
11111111111111111
11191111111119111
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11111911911911111
11111111111111111
11111111111111111
|

assembly 6 360 1
22222222222222222
23333333333333332
23333833833833332
23383444444438332
23334444444443332
23844844844844832
23344444444444332
23344444444444332
23844844544844832
23344444444444332
23344444444444332
23844844844844832
23334444444443332
23383444444438332
23333833833833332
23333333333333332
22222222222222222
|

rad_conf 90 edge

563

613

333

|

XSEC

lib_type 1

group_spec 7 4

file ../../lib/c5g7 .xsl

|

OPTION
pol_quad T
conv_crit 4*1e-5
cmfd F F
submesh 10
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Appendix CCodes Input for Chapter 5

C.1. Additional Information

The number of density for each material is providadable C. 1. They
correspond to the fresh material before exposudeaaa used as starting point for the
core equilibrium calculation.

Table C. 1. Material Compositions

Material E;?Qﬁ:at]y Enrichment  Isotope Numg%_cgnl?]ensny

U-235 9.41E-04

UO; Fuel 10.412 4'3(?5U' U-238 2.23E-02
0-16 4.65E-02

B-10 3.59E-03

IFBA 1.690 B-11 1.45E-02
Nat. Zr. 9.02E-03
Gap 0.001 0-16 3.76E-05
N-14 2.15E-05

Nat. Cr 4.28E-05

Clad/Guide Tube 6.504 - Nat. Fe 5.13E-05
Nat. Zr 4.20E-02

Nat. Sn 6.42E-04

Nat. Cr 1.63E-02

Mn-55 1.71E-03

Core Baffle 7.820

Nat. Fe 5.99E-02

Nat. Ni 7.22E-03

The loading pattern, which has not been optimiigeghown inFig C. 1for the PWR
core model and is used to generate the equilibdare composition. The number indicates
the current cycle of residence for that assemely. (1 is for the first cycle of residence and
indicates a fresh assembly). The letter indicdtegptth along which the assembly is shuffled
throughout its residency in the core. The shuffigagh of the P1 assembly is less intuitive.
Its location has eight symmetric positions elsewharthe full core. It is then moved onto
two locations on the quarter-symmetry boundary,ctwhin the full core also accounts for
eight assembly locations; therefore2 Rind B2 will have the same composition at BOC
which is equivalent to the P1 composition at EOGte\that the axial reflectors consist only
of water; the density of which is computed by tlE Thodule and contains soluble boron.

Q3 P2 B3 R2 R3 Bl P3 Bl
A3 L2 D3 D2 F3 L1 J1
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Q2 H2 H3 02 03 F1
A2 F2 L3 H1 D1
Q1L J2 o1
Al P1

Fig C. 1. PWR Loading Pattern

The spatial discretization of the various pin c&lshown inFig C. 2 The mesh in
the axial reflectors is the same as the mesh inrdgmns below, so the part of the axial
reflector above the fuel will have the fuel pin imeand similarly for the parts above the
guide tubes and baffle and radial reflector. Axiallhere are 22 planes, each of equal
thickness (18.288 cm). The subgroup calculatigrerformed once at the beginning and then
again at 10 GWAd/t. The rays spacing is 0.05 cm widzimuthal and 2 polar angles per 90°
octant. The SANM solver is used for computing taeipl currents in the axial direction. For
the heat conduction calculation, one mesh regiamseéxl for the clad and six equidistance
rings are used in the fuel pellet. The toleranc&Qisfor the eigenvalue, fission source and
CMFD balance residuals.

a) Fuel Pin Mesh b) Guide Tube Mesh

c) Baffle and Radial Reflector Megh d) Axial ReflmcMesh
Fig C. 2. Pin cell mesh in PWR DeCART model
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C.2.DeCART Input

C.2.1.Lattice Calculations

Below is the DeCART input used to generate crosiaes for the PARCS run.
The BRANCH cases are missing and are describethapi@r 5.

CASEID batchl

STATE
! power_fa (MW), t_in(C), p_exit(MPa), mda (kg/s)
th_cond 18.4715 286.85 15.82.12102

MATERIAL
file  .././shared_input/mixtures.inp

GEOM
ncells 17
pitch  1.26
ax_mesh 22*18.288
albedo 0.0 0.0 0.0 0.0 0.5 05

file  .././shared_input/pins3D.inp
file  .././shared_input/assemblies.inp

|

! Assembly Types

11-U024.2%

12 -U02 4.2% Control Assembly

1 3 - West Edge Baffle/Reflector

14 - NE Corner Baffle/Reflector

15 - NE Edge Baffle/Reflector

1 6 - North Edge Baffle/Reflector

|

rad_conf 45
1
!
XSEC
lib_type 00
file ..I../shared_input/hel047g_v19a_asgsli
depl_lib ../../shared_input/DeCART_v2.dpl
TH
pin_dim 0.3951 0.4583 0.0573 0.6032
steam_tbl ../../shared_input/tpfh20_ascii.txt
matprop F
!
OPTION
feedback T 0.5
cmfd TT
reso_opt 4FF
nem F
ray 0.0542
boron 1000
threads 1
|
SHUFFLE
|
id_map
BATCHO

cfile_map
0

rot_map
0

id_wrt
BATCH1
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EDIT
egx F
rst T
isum F
bin T

/

DEPL
bu_opt21
burnup 0.1 0.5

EDIT
isum F
rst F
egx F

/

DEPL
bu_opt2 2
burnup 1.02.03.04.05.0

EDIT
isum F
rst F
egx F

/

DEPL
bu_opt25
burnup 7.5 10.0 12.5 15.0

EDIT
isum F
rst F
egx F

C.2.2.Transient Calculations

Below is the input used to run the RIA scenariosprgéed in Chapter 5 . The
equilibrium core composition is recorded in the HWR_UO2_octCore.core.

CASEID PWR_UO2_octCore_octCore
init PWR_UO2_octCore_000_00000.rst

STATE

! power_fa (MW), t_in(C), p_exit(MPa), mda (kg/s)
core_power 1le-6
th_cond 18.4715 286.85 15.82.12102

MATERIAL
file  ../shared_input/mixtures.inp

GEOM
ncells 17
pitch  1.26
ax_mesh 22*18.288
albedo 0.5 0.0 0.0 0.5 0.0 0.0

file  ../shared_input/pins3Dtmp.inp
file  ../shared_input/assemblies.inp

!

I Assembly Types

11-U024.2%

12 -U02 4.2% Control Assembly

1 3 - West Edge Baffle/Reflector

!4 - NE Corner Baffle/Reflector

15 - NE Edge Baffle/Reflector

1 6 - North Edge Baffle/Reflector

|

rad_conf 45 CENT
2121212183
11112113
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XSEC
lib_type 00
file .Ishared_input/hel047g_v19a_asdii.xs
depl_lib ../shared_input/DeCART_v2.dpl
chi_libT
TH
pin_dim 0.3951 0.4583 0.0573 0.6032
steam_tbl ../shared_input/tpfh20_ascii.txt
matprop F
|
SHUFFLE
cfile 1 PWR_UO2_octCore.core
file ../shared_input/eighth/lp_mh_n.inp
|
OPTION
feedback T 0.5
cmfd TT
ray 0.054 2
boron 1000.
threads 1
EDIT
rst T
ROD
rod_typ PWR 220
rod_mat999999999
no_rod 11
I bank 1 CR-A see MOX benchmark
I bank 2 CR-B
I'bank 3 CR-C
I bank 4 CR-D
I bank 5 CR-SA
! bank 6 CR-SB
I bank 7 CR-SC
! bank 8 CR-SD
' bank 9 Cr to eject
bank 13
bank 2 22
bank 37 18
bank 4 1
bank 5 33
bank 6 14
bank 7 27
bank 8 5
bank 9 31
bank_pos 1 220.0 2 220.0 3 220.0 4 220.05 0.06 0.0 8 0.0 9 220.0 ! RI
move_bank 9 0.0005 220 0.0006 0
|
/
STATE
tran T
TRAN
time_step 0.1 0.0001 0.001 10
theta 1.0
expo_opt F
cond_rt 1e-2 1e0 1le-2
OPTION
feedback T
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C.3.PARCS Input

Below is the PARCS input used to run the RIA scenaresented in Chapter 5.
The 3-D exposure map is specified in the file EX¥ep. The fuel, reflector and corner
cross sections in UO2_900_inf.PMAX, refl_xu.PMAXdacorner.PMAX respectively.

CASEID PWR_3D4_TR_uo2_900_inf Transient Validation
CNTL
core_power le-6
! bank A B C D SA SB SO t6 eject step withdrawn
bank_pos 0.0 0.0 0.0 0.0 22.0 22.0 22.0 200! RI MOX benchmark config
! bank_pos 0.00.00.00.022.022.022.022.0 ! RO
depletion T
TREE_XS T2 TFFFFFTFFFTTTF
! a,x.e,j,p.d,vty,.c,gb,lh
I search ppm
ppm 0.2
I ppm 949.96
transient F
th_fdbk T
pin_power T

! input iteration planar adj

! edit table power pin reac
print_opt T F T T T

! fdbk flux  planar

! rho precurs flux xe/sm T/H
print_opt F F F F F

! 1d pk rad pwad flux assy

! const data  shapeshape  const

print_opt F T F F F
PARAM
CEOM
geo_dim 17 172211 !nasyx,nasyy,nz
Rad_Conf

00001111111110000
00111222222211100
01122222222222110
01222222222222210
11222222222222211
12222222222222221
12222222222222221
12222222222222221
12222222222222221
12222222222222221
12222222222222221
12222222222222221
11222222222222211
01222222222222210
01122222222222110
00111222222211100
00001111111110000

grid_x 17*21.42

neutmesh_x 17*2

grid_y 17*21.42

neutmesh_y 17*2

grid_z 22*18.288

Boun_Cond 22 2 2 2 2 libcw,ibce,ibarsibcb,ibct

planar_reg 1
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222222222
2231111111322
231111111111132
211111111111112
23111111111111132
21111111111111112
21111111111111112
21111111111111112
21111111111111112
21111111111111112
21111111111111112
21111111111111112
23111111111111132
211111111111112
231111111111132
2231111111322
222222222

planar_reg 2
222222222
2222222222222
222222222222222
222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
22222222222222222
222222222222222
222222222222222
2222222222222
222222222

cr_axinfo 0.0 18.288 !fully inserted pasitand step size

bank_conf
000000000
0000000000000
000502030205000
000070606070000
00509000800090500
00070000000007000
00200030103000200
00060000000006000
00308010401080300
00060000000006000
00200030103000200
00070000000007000
00509000800090500
000070606070000
000502030205000
0000000000000
000000000

Pincal_loc
000000000
0000000000000

000000000000000

000000000000O0O0O
0000000000000Q00OO0OOO
00000000000000000O0
0000000000O00O00O00O00OOOO
00000000000O00O00Q00OO0OOO
00000000111111110
0o000000011111110
0oo000000001111110
00000000000111110
00000000000011100
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0o0000000O0O0OOO11O0
0000000O0OOOCOOOOO
00000000000COQO
000000000

PR_Assign 1*2 20*1 1*2

TH
unif_th 0.75238 286.85 286.85
n_pingt 264 25 Inpigt
fa_powpit 18.4715 21.42 lassigmbwer(Mw) and pitch(cm)
pin_dim  3.951 4.583 0.573 6.032 !pidiras,rw,tw, and rgt in mm
flow_cond 286.85 82.12102 ,timfrfa(Kg/sec)
hgap 10000. Ihfa1"2-C)
n_ring 10 Inuentof meshes in pellet
thmesh_x  17*2 INemof T/H Nodes per FA in X-dir
thmesh_y 17*2 INemof T/H Nodes per FA in y-dir
TRAN

time_step 1.0 0.0001 0.001 10 !tend,dsltfitch,texpand
move_bank 9 0.0 0.0 0.0005 0.0 0.0008 22.

conv_tr  0.001 leps_r2
expo_opt FF
pin_freq 10

DEPL

INP_HST "./xsec/EXPu.dep'1 1

PMAXS_F 1 './xsec/UO2_900_inf.PMAX' 1
PMAXS_F 2 './xseclref_xu.PMAX' 2
PMAXS_F 3 '/xsec/corner.PMAX' 3

C.4.GenPMAXS Input

Below is the GenPMAXS input used to generate th&@8 cross sections. It
uses the .xsec file generated by DeCART to produpenax file.

%JOB_TIT
'U02_900_inf.PMAX" T ITMI Assembly
%JOB_OPT
TFFFFFFFFFFFFF 1
lad,xe,de,j1,ch,Xd,iv,dt,yl,cd,gf,be,lb,dc,ups
%DAT_SRC
4 1110
%FIL_CNT
1 'batchl.xsec'11
%JOB_END
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