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ABSTRACT 

 

Hursin, Mathieu. PhD, University of California at Berkeley, December 2010. Full 
Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code 
DeCART. Major Professors: Tom Downar and Ehud Greenspan. 

 

 

The current state of the art in reactor physics methods to assess safety, fuel 
failure, and operability margins for Design Basis Accidents (DBAs) for Light Water 
Reactors (LWRs) rely upon the coupling of nodal neutronics and one-dimensional 
thermal hydraulic system codes. The neutronic calculations use a multi-step approach in 
which the assembly homogenized macroscopic cross sections and kinetic parameters are 
first calculated using a lattice code for the range of conditions (temperatures, burnup, 
control rod position, etc...) anticipated during the transient. The core calculation is then 
performed using the few group cross sections in a core simulator which uses some type of 
coarse mesh nodal method. The multi-step approach was identified as inadequate for 
several applications such as the design of MOX cores and other highly hetereogeneous, 
high leakage core designs. Because of the considerable advances in computing power 
over the last several years, there has been interest in high-fidelity solutions of the 
Boltzmann Transport equation. A practical approach developed for high-fidelity solutions 
of the 3D transport equation is the 2D-1D methodology in which the method of 
characteristics (MOC) is applied to the heterogeneous 2D planar problem and a lower 
order solution is applied to the axial problem which is, generally, more uniform. This 
approach was implemented in the DeCART code. Recently, there has been interest in 
extending such approach to the simulations of design basis accidents, such as control rod 
ejection accidents also known as reactivity initiated accidents (RIA). The current 2D-1D 
algorithm available in DeCART only provide 1D axial solution based on the diffusion 
theory whose accuracy deteriorates in case of strong flux gradient that can potentially be 
observed during RIA simulations.  

The primary ojective of the dissertation is to improve the accuracy and range of 
applicability of the DeCART code and to investigate its ability to perform a full core 
transient analysis of a realistic RIA.  

 

The specific research accomplishments of this work include: 

• The addition of more accurate 2D-1D coupling and transverse leakage splitting 
options to avoid the occurrence of negative source terms in the 2D MOC 
equations and the subsequent failure of the DeCART calculation and the 
improvement of the convergence of the 2D-1D method. 

• The implementation of a higher order transport axial solver based on NEM-Sn 
derivation of the Boltzmann equation.  
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• Improved handling of thermal hydraulic feedbacks by DeCART during transient 
calculations. 

• A consistent comparison of the DeCART transient methodology with the current 
multistep approach (PARCS) for a realistic full core RIA. 

 

An efficient direct whole core transport calculation method involving the NEM-
Sn formulation for the axial solution and the MOC for the 2-D radial solution was 
developed. In this solution method, the Sn neutron transport equations were developed 
within the framework of the Nodal Expansion Method. A RIA analysis was performed 
and the DeCART results were compared to the current generation of LWR core analysis 
methods represented by the PARCS code.  In general there is good overall agreement in 
terms of global information from DeCART and PARCS for the RIA considered. 
However, the higher fidelity solution in DeCART provides a better spatial resolution that 
is expected to improve the accuracy of fuel performance calculations and to enable 
reducing the margin in several important reactor safety analysis events such as the RIA. 
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Introduction 

1.1. Motivation 

In the design and licensing of light water reactors, it is postulated that a number of 
low-probability accidents will occur and it is required that the reactor will be able to 
withstand their consequences without affecting the public health and safety. Those 
accidents are called Design Basis Accidents (DBA). The current state of the art methods 
to assess safety, fuel failure and operability margins for DBAs applicable to existing and 
advanced Light Water Reactor (LWR) fuel use coupled nodal neutronic and thermal 
hydraulic system codes. The current generation of LWR core analysis methods using 
coarse mesh nodal methods employs a multi-steps procedure in which the assembly 
homogenized macroscopic cross sections and kinetic parameters are first calculated using 
a lattice code for the range of conditions (temperatures, burnup, control rod position, 
etc...) anticipated during the transient. The core calculation is then performed using the 
few group cross sections in a core simulator which uses some type of coarse mesh nodal 
method. The lattice codes typically used for LWR cross section generation include 
HELIOS (Scandpower 2000) and CASMO-5 (Rhodes 2008) and the nodal codes 
typically used for LWR analysis include SIMULATE-3 (Smith 1999) and the U.S. NRC 
core simulator PARCS (Downar, Xu et al. 2006), which is coupled to the thermal-
hydraulics codes RELAP5(NRC 2001), and TRACE (Odar, Murray et al. 2004) to 
provide temperature and density feedbacks. The fuel pin temperature and power 
variations during a transient are typically determined through some type of pin power 
reconstruction method and resulting pin averaged information is provided to fuel 
performance codes to evaluate fuel behaviour and safety limits. This kind of approach has 
previously been identified as inadequate (Cho 2006) for the design of MOX cores and the 
same limitations would be encountered in the analysis of certain innovative core designs; 
in particular to cores that feature a large heterogeneity in the axial direction. 

Because of the considerable advances in computing power over the last several 
years, there has been interest in high-fidelity solutions of the coupled Boltzmann 
transport and temperature-fluid field equations. However, the computational burden 
inherent in 3D transport solutions for practical coupled field applications still requires the 
investigation of innovative solution algorithms to improve its parallelization and use on 
computer clusters. During the last several years, a class of algorithms was developed 
based on “2D-1D” decomposition of the reactor transport problem (Cho 2002; Cho, Lee 
et al. 2002). This was motivated in part by the naturally stronger radial heterogeneity that 
occurs in most power reactor core problems. The 2D-1D algorithm involves a set of 
coupled 2-D planar transport and 1-D axial diffusion solutions. This method has proven 
to be adequate for a wide range of steady state LWR applications (Cho, Lee et al. 2002). 

Recently, there has been interest in taking advantage of advanced numerical 
methods, involving neutron transport and Computational Fluid Dynamic (CFD), to 
perform high-fidelity simulations of design basis accidents, such as control rod ejection 
accidents also known as reactivity initiated accidents (RIA). These include Pressurized 
Water Reactor (PWR) rod-ejection and Boiling Water Reactor (BWR) rod-drop 
accidents. In these accidents, energy is deposited in the fuel and causes rapid heating that 
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may damage the fuel if the power burst is sufficiently energetic. Besides being DBAs, the 
other advantage of studying RIAs is that they are very short in duration (around a second) 
and driven by their neutronic behavior. Because of the event’s short time-scale, the 
energy remains mostly where it was deposited. Consequently, an accurate treatment of 
the heat dissipation both in the cladding and the coolant is not needed to obtain a 
reasonable simulation of the event, allowing to focus the analysis on the neutronic 
modeling of the accident while using a simple thermal hydraulic solution to provide 
temperature and density feedbacks. The feasibility of such analysis with high-fidelity 
simulations tools like DeCART has been demonstrated by (Hursin 2008). 

The DeCART (Deterministic Core Analysis based on Ray Tracing)(Weber, Sofu 
et al. 2006) code uses the 2D-1D algorithm. Its development began in 2000 as part of 
International Nuclear Energy Research Initiative (INERI) project collaboration between 
Korean Atomic Energy Research Institute (KAERI), Argonne National Laboratory 
(ANL), and Purdue University. The objective was to develop a whole core neutron 
transport code capable of direct sub-pin level flux calculation at power generating 
conditions of a PWR and BWR. Unlike the current generation of nodal codes, DeCART 
does not require a priori homogenization or group condensation which limits the accuracy 
and fidelity of conventional reactor physics calculations. The local heterogeneity at the 
sub-pin level is explicitly represented and solved using the Method of Characteristics 
(MOC) which is an effective transport solution method for such highly refined 
heterogeneous problems and is widely used for LWR problems in codes such as 
CASMO-5.  

The overarching goal of the dissertation is to investigate the ability of the 
DeCART code to accurately perform a full core transient analysis of a realistic RIA. 
During preliminary RIA analysis, the accuracy of the DeCART “2D-1D” formulation 
was found to be insufficient for certain aspects of the simulation. Therefore, research was 
undertaken to improve the 2D-1D formulation, specifically to investigate more accurate 
methods for solution of the axial 1D flux. The next section details what are the issues that 
had to be resolved in order to accurately model a full core RIA with DeCART.  

1.2. Issues and Undertakings 

1.2.1. Key issues 

While the 2D-1D approach to solve the 3D transport equation has not been 
thoroughly studied for the widest range of applications, it has worked well for the 
coupled field solution of the PWR, which is primarily a homogeneous single phase flow 
thermal-hydraulics problem. However, recent applications to the more axially-
heterogeneous two phase flow BWR have exposed limitations in the existing 2D-1D 
solution algorithm. Recently, the application of the DeCART code and the 2D-1D 
algorithm to the gas reactor problem has also resulted in some cases in which the 3D 
solution does not converge. Other convergence issues have been observed when the size 
of the axial mesh is reduced.  

Another issue of the 2D-1D algorithm is related to the axial 1D solver. The 
presence of heterogeneities in the axial direction (partially inserted control assembly, 
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severe void variations, part length fuel rod, axial enrichment zoning, etc …) leads to 3D 
solutions of poor accuracy (Cho, Kim et al. 2006). The current 2D-1D algorithm 
available in DeCART only provide 1D axial solution based on the diffusion theory whose 
accuracy deteriorates in case of strong flux gradient, like the one observed for the 
problems listed above. 

Besides the improvements to the 2D-1D algorithm that would impact steady-state 
and transient solutions, another key aspect of the transient solution algorithm was 
required in order to model full core transient events. The DeCART transient methodology 
has been developed and tested (Cho, Kim et al. 2005) only for cases where macroscopic 
cross sections are given and no thermal hydraulic feedbacks are provided. A proper 
model of the coupled fields of neutronic and thermal hydraulic is needed to accurately 
analyze any kind of transient event. DeCART needs to be able to handle variation of the 
fuel temperature, coolant density, etc…during the course of transient calculations. 

1.2.2. Improvements to DeCART undertaken in this work 

In order to perform high fidelity analysis of a transient event, the following 
research was performed and represents the main outcome of the work summarized in the 
present dissertation: 

• Addition of an axial 1D solver based on a higher order transport solution than the 
existing diffusion solver. 

• Improvement of the coupling of the 2D and 1D solutions through improved transverse 
leakage approximations. 

• Addition of an online treatment of the local thermal hydraulic conditions during 
transient analysis. 

The first two improvements are validated against the C5G7 benchmark (Lewis, 
Smith et al. 2001) and the third improvement is tested during the analysis of the full core 
RIA; its results are compared to the one of the multi-step methodology. 

1.3. Dissertation Outline 

The remaining sections of the present dissertation are designed to discuss in more 
detail the improvements needed by DeCART in order to perform a realistic analysis of a 
RIA and compare the results to those of the current multi-step methodology. 

The first chapter provides general background information on the DeCART code, 
describing its original steady state and transient calculation methodology. The second 
chapter is dedicated to the improvement of the 2D-1D algorithm and more specifically 
the coupling between the 2D transport solution and 1D diffusion solution. Five different 
coupling approaches are investigated and applied to a test problem. The effect in terms of 
accuracy and convergence properties is then discussed. The third chapter is focused on 
the improvement of the 1D axial solver. A few different potential solvers are compared. 
The Nodal Expansion Method (NEM) and discrete ordinate (Sn) method are chosen to 
handle, respectively, the spatial and angular dependence of the angular flux. The 
derivation of the NEM-Sn is described as well as its numerical implementation in 
DeCART. The last part of the third chapter is dedicated to the study of the performance 
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of the NEM-Sn against the diffusion solver for the C5G7 benchmark (Lewis, Smith et al. 
2001). The fourth chapter brings together the improvements described in the Chapter one 
to three by showing a full core transient calculation for a RIA. The handling of thermal 
hydraulic feedback during transient calculations is presented. The approach used in the 
multi-step methodology is detailed and its limitations shown. The subgroup method 
(Notari and Garraffo 1987), which allows DeCART to treat both spatial and resonance 
self shielding online, briefly presented in chapter two, is used to apply the proper local 
thermal hydraulic feedback. The calculation flow of a DeCART transient calculation with 
thermal hydraulic feedbacks is presented. Finally, the DeCART results are compared 
with the current multi-step approach. The final chapter of the dissertation summarizes the 
research performed and its main findings. 
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2. The DeCART Integral Transport Code 

The following sections are describing the primary features of the DeCART code. 
An overview of code methodology is presented first. Then the derivation of the 2D-1D 
approach for steady-state and transient calculation is provided and the spatial and energy 
self-shielding treatment is reviewed. 

2.1. Overview 

DeCART is a 3-D whole core transport code that is capable of generating sub-pin 
level power distributions. This is accomplished by obtaining the integral transport 
solutions to the heterogeneous reactor problem in which the actual detailed geometrical 
configuration of fuel components such as the pellet and cladding is explicitly retained. 
The cross section data needed for the neutron transport calculation are obtained directly 
from a 47 energy group cross section library. Hence DeCART involves neither a priori 
homogenization nor group condensation, which are two of the principal limitations of the 
current generation of nodal methods most commonly used for reactor analysis. 

2.1.1. 2D-1D Solution Approach 

DeCART is based on the 2D-1D algorithm which involves a set of coupled 2-D 
planar transport solutions which use the  MOC and a 1-D axial diffusion solution which 
uses  NEM or Semi-Analytical Nodal Method (SANM) (Fu and Cho 2002). The 3-D 
problem domain is first divided into several thick planes and the MOC calculation is 
performed for each planar problem to determine the neutron fluxes at the fine flat source 
regions. The cell homogenized cross sections are then obtained by flux volume weighting 
based on the flat source region fluxes and the regional microscopic cross sections 
evaluated at the local thermal condition. A diffusion solution is obtained for each fuel rod 
to determine the local axial flux shape that is used to modify the MOC calculation in 
order to take into account axial leakage and produce a 3-D solution. 

 
Fig. 2.1. 2D-1D solution based on 2-D MOC and 3-D CMFD formulations 
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As an effective method to realize a direct whole-core transport calculation 
capability, the planar MOC solution is combined with a 3-D coarse mesh finite difference 
(CMFD) solution (Smith 1983; Sutton 1989). The basic idea of this formulation is to 
represent the whole core transport problem with a simpler 3-D problem using the pin-cell 
homogenized cross sections generated adaptively from the 2-D MOC solutions. The cell 
cross sections are then used in the 3-D CMFD problem which represents the global 
neutron balance. The 3-D CMFD solver becomes the main solver while the MOC and 
NEM/SANM solvers function merely as the regional flux shape generator. The NEM and 
SANM solvers are embedded in the CMFD solver, which permits the generation of the 
axial flux shape directly during the CMFD stage of the calculation. No separate, fuel rod 
wise, diffusion calculation is necessary. The entire solution process described above is 
illustrated in Fig. 2.1. The planar MOC calculation is considerably more expensive than 
the CMFD calculation, as each progression of the MOC solution requires sweeping over 
tens to hundreds of thousands of rays across the core. Consequently, the CMFD approach 
provides an effective acceleration to the transport calculation by rapidly converging the 
fission source distribution at the coarse mesh level. In addition to the multigroup CMFD, 
a two energy group CMFD kernel has been implemented to further accelerate the 
DeCART calculation using an effective group rebalance methodology. This two-level 
CMFD scheme reduces the number of MOC iterations for practical problems by more 
than an order of magnitude (Joo, Cho et al. 2004). 

2.1.2. Modular Ray Tracing 

DeCART implements a modular ray tracing scheme similar to those described in 
the literature (Cho 2006) and implemented into codes such as CASMO-5 and CHAPLET 
(Kosaka and Saji 2000). There are two primary benefits of modular ray tracing: the 
simplification of the geometry calculation and an increased accuracy of calculations with 
reflective boundary conditions. In a typical core calculation, there are hundreds of 
millions of ray segments and the length of each of ray (sl,k

n ) is required.  In modular ray 
tracing, the positioning of the rays is the same for all modular units and the segment 
lengths must be determined only for a few types of modules. These square ray tracing 
modules are then arranged in a regular array and the ray tracing is performed by linking 
rays from one modular unit to the next. The accuracy of problems with reflective 
boundary conditions is achieved because of the cyclic nature of the ray positioning. That 
is, the incoming angular flux for a ray with azimuthal angle α is determined from the 
outgoing angular flux of a ray of angle -α that terminates precisely where the original ray 
began. 

These two features are shown for the case of pin-cell based modular ray tracing in 
Fig 2.2. The ray positioning in each pin-cell is identical and yields continuous rays that 
link to neighboring cells. Thus, the 2x2 pin geometry can be computed by calculating the 
segment lengths in any one cell. Two reflective rays (dashed lines) for the angle -α are 
given as an example. 
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Fig. 2.2. Example of 2x2 fuel pin array with cell modular ray tracing 

2.2. Resonance Treatment 

In DeCART, the subgroup method is used for the resonance treatment. If a 
sequence of heterogeneous transport calculations is performed beforehand, the subgroup 
method permits the adaptive handling of the spatial and energy self-shielding during the 
calculation. The next sections presenting the resonance treatment are a brief summary of 
the references (Stamm'Ler and Abbate 1983; Scandpower 2000). Even though no 
additional work has been done on the resonance treatment in the DeCART code, a 
detailed understanding of the subgroup method is necessary to properly apply 
temperature and density changes during transient calculations. 

2.2.1. General Treatment 

It is very inefficient and time-consuming to use point-wise cross sections in the 
deterministic transport calculation. Therefore, typically 30 to 70 energy discretized cross 
sections are used in Light Water Reactor calculations, which are processed from 
ENDF/B-VI library using codes such as NJOY. The multi-group cross section is 
calculated by, 

∫
∫

∫
∫

∆

∆

∆

∆

φ

φσ
=

φ

φσ
=σ

u

u x

E

E x

x
duu

duuu

dEE

dEEE

)(

)()(

)(

)()(
 Eq. 2.1 

where u is the lethargy defined by u=ln (E0/E), with E0=10 MeV. The accuracy in the 
deterministic transport calculation is mainly dependent upon the scalar flux, φ(u), which 
is not know a priori, and group width, ∆u, used in Eq. 2.1.  
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The resonance behavior of σa(u) complicates the evaluation of group cross 
sections. The flux, φ(u), will have dips at and near resonance energies due to the strong 
absorption in the resonance. These dips depend on the resonances and the concentration 
of the resonance isotopes and on their location.  

The resonance integrals from ENDF/B-VI are tabulated as function of various 
background cross sections and temperatures for the extended applications. The 
background cross section can be expressed as follows: 

epb Σ+Σλ=Σ
 Eq. 2.2 

where λ is the hydrogen-equivalence factor also called intermediate resonance factor, Σp 
is the potential scattering cross section and Σe is the equivalence cross section. The 
equivalence cross section represents a departure from a homogeneous geometry: the 
equivalent cross section takes into account the escape probability from the fuel to the 
surrounding material (cladding, coolant, etc…), which is mainly dependent upon the 
geometrical configuration of the fuel pins. 

Solving the slowing-down equation at resonance lethargies, and away from 
fission sources, using the intermediate resonance (IR) approximation(Goldstein and 
Cohen 1962), leads to the Eq. 2.3: 

)()()(

)()(
)(

uuu

uu
u

epa

ep

Σ+Σ+Σ

Σ+Σ
=

λ
λ

φ
 

Eq. 2.3 

λΣp can be obtained directly from smooth data in the library. However, determining the 
equivalence cross section Σe considering the geometrical configuration is more 
complicated. Before describing how the equivalence cross section is obtained, the 
subgroup method is briefly introduced. 

2.2.2. The Subgroup Method 

The essential is that the numerator and denominator of Eq. 2.1 are approximated 
by quadratures in the absorption cross section. 

 
Fig. 2.3. Subgroup data structure 
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Since the background cross section is constant within a group, Eq. 2.3 can be 
written with microscopic ones as follows: 

ba

b

u
u

σσ
σ

φ
+

=
)(

)(
 

Eq. 2.4 

The lethargy dependence of the flux of Eq. 2.4 is uniquely through σa(u). This is 
essential for the subgroup method. It allows to replace the integration variable u by σa and 
to approximate the integrals by quadratures in σa according to the following equations: 
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Eq. 2.5 

where fn=f(σn) are the integrands at the discrete values of σa. As shown in Fig. 2.3, the 
resonance cross section is subdivided with σan’s over the σa range and their weights (ωn). 

Therefore the resonance cross section in Eq. 2.1 can be approximated by the quadrature 
set of σan and ωn as follows: 
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Eq. 2.6 

N and σan are arbitrarily chosen to produce accurate effective cross sections. In DeCART, 
the number of subgroups is set to 7. The scalar fluxes, φn, correspond to a fixed level of 
absorption σan, are unknown and have to be obtained from the heterogeneous transport 
calculations. In DeCART, in order to reduce the number of heterogeneous transport 
calculations, a detour via a parametrization of the absorption level through the 
background cross section σb instead of directly using the fluxes φn is used. 

2.2.3. Determination of the Equivalence Cross Section 

Due to the weak lethargy dependence of the equivalence cross sections, the 
background cross section is itself lethargy dependent and can be expressed as follow:  
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Eq. 2.7 

M heterogeneous transport calculations are performed with different absorption level (σm, 
m=1,..,M). In DeCART, M is set to 4. Practically, in DeCART, the fixed source 
heterogeneous calculations are performed for each different plane, assuming no axial 
leakage and a homogeneous temperature: 

)(
4

1
)()()(ˆ rQrrr gngrgngn

ρρρρ
π

=ϕΣ+ϕ∇⋅Ω
 

Eq. 2.8 

where ‘g’ is an energy group and ‘n’ the angle. The source in is obtained by  

pgggQ Σ= λ
 Eq. 2.9 
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The removal cross section is calculated by 

pggmgirg N Σ+=Σ λσ
 Eq. 2.10 

The transport calculations provide, for a given absorption level σm, a scalar flux φg. Using 
Eq. 2.7, the background cross section is determined by the Eq. 2.11: 

g

gmgag
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Eq. 2.11 

And the equivalence cross section for a given absorption level, easily follows as: 

Mmpggmgbgmgeg ,..,1)()( =Σ−Σ=Σ λσσ
 Eq. 2.12 

 

2.2.4. Determination of the effective macroscopic resonance cross section. 

By combining Eq. 2.4 and Eq. 2.6, the effective microscopic resonance cross 
section can be obtained by Eq. 2.13 provided that the corresponding background cross 
section σbn to σan is known:  
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Eq. 2.13 

Since the subgroup data σan’s are given, the corresponding σbn’s are obtained by 
linear interpolation in ln (σm) reducing the number of transport calculations needed from 
7 by resonance energy group to 4 by energy group. 

The last step of the determination of resonance effective cross section is to 
generate the region-wise macroscopic cross section which takes into account both spatial 
and energy self shielding. The macroscopic cross section is computed in the Eq. 2.14, 
assuming that the equivalence cross section is known: 
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Eq. 2.14 

with 

anan Nσ=Σ
 

( )anepbnbn NN σσλσ Σ+==Σ  
Eq. 2.15 

The resonance treatment presented above assumed that only one resonant isotope 
was present in each spatial region. If more than one isotope is present, the interactions 
between the resonances of the different isotopes need to be resolved to properly predict 
energy and spatial self-shielding. In the subgroup method, only two cases are considered 
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and correspond to the extreme limits of no or full overlap between the resonances. The 
details on how to handle the interaction between isotopes are beyond the scope of the 
dissertation and can be found in (Stamm'Ler and Abbate 1983). 

 
Fig. 2.4. DeCART flow chart for resonance calculation 

2.2.5. Calculation sequence for resonance treatment 

The resonance calculation module begins with reading the smooth cross section 
and the subgroup data from the library as shown in Fig. 2.4. Fixed source heterogeneous 

Read the required data 
λiσip 

subgroup data  
(wn, σan, σνfn, σm) 

Macroscopic cross section for 
transport calculation  

- λΣp, Σr(σm) 

Fixed source Transport 
calculation at resonance 

- scalar flux (φm) 

Table for the equivalence cross 
section  

- Σe(σm) 

Calculate the effective 
resonance cross section 

σia , νσif 

Update Σix
(l+1) 

Check the convergence  

Cross section library 

Assume Σix
(0)=0.0 

End  
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transport calculation is performed to obtain the scalar flux according to the 4 levels of 
absorption cross sections. The calculated scalar fluxes are converted into the equivalence 
cross sections, and those are tabularized as functions of the absorption cross section. To 
consider the influence of the absorption cross section from the other resonance nuclides, 
the iteration process is required. Iteration process includes the assumption of zero 
absorption cross section from other nuclides at the beginning and the resonance 
absorption cross sections are updated until the spectrums are converged. 

The end result of the resonance calculation module is a library of effective cross 
sections tabulated as functions of the absorption level and temperature. During the actual 
neutron transport module of DeCART, the local macroscopic cross sections for a given 
flat source region is evaluated using the Eq. 2.14. 

Now that the handling of spatial and energy self-shielding has been understood, 
the macroscopic cross sections are determined and the transport calculation itself can be 
performed. 

2.3. Steady State Methodology 

2.3.1. The 2-D Method of Characteristics. 

The formulation begins with the 3-D steady-state Boltzmann transport equation 
for the solution of the angular flux distribution per unit volume, solid angle and energy 
ϕ(r,ΩΩΩΩ,E): 

( ) ( ) ( ) ( ), , , , , , ,E E E q Eϕ ϕΩ⋅∇ + Σ =r Ω r r Ω r Ω
 

Eq. 2.16 

where the source term consists of fission and scattering events: 
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Eq. 2.17 

In DeCART, the scattering source is assumed to be isotropic in the lab system, so Eq. 
2.17 can be simplified: 
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Eq. 2.18 

and the scalar flux φ(r,E) is given by:  

( ) ( )
4

, , ,E E d
π

φ ϕ= Ω Ω∫r r
 

Eq. 2.19 

The 3-D Boltzmann equation is integrated axially over a plane of thickness hz. The result 
is: 
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Eq. 2.20 

where rr is the position vector in 2-D, α is the azimuthal angle, and θ is the polar angle. 
The over-bar indicates axial integration; for instance, the 2-D averaged angular flux is 
given by: 
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Eq. 2.21 

and the effective source term is given by: 

( ) ( ) ( ), , , , , ,zq E q E L E= −r r rr Ω r Ω r Ω%
 

Eq. 2.22 

The axial leakage is given by: 
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Eq. 2.23 

Lz was obtained directly from the integration in Eq. 2.16 and was moved to the 
right-hand side. In the expression for Lz, ϕT and ϕB are the angular fluxes from the top 
and bottom surfaces of the plane and µ=cosθ. One of the major approximations of the 
2D-1D methodology resides in the evaluation of ϕT and ϕB. If these fluxes were obtained 
from the solution of the 3-D Boltzmann equation, then there would be no approximation 
in Eq. 2.20. However, in DeCART, these angular fluxes are approximated from the axial 
1-D diffusion based solution. Currently, the axial angular flux distribution is obtained by 
a double-P0 approximation, which basically assumes an isotropic axial leakage. The axial 
leakage is then expressed as a function of incoming and outgoing partial currents at the 
top and bottom surfaces of the considered plane: 
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Eq. 2.24 

where jT,out and jT,in are the partial outgoing and incoming currents at the top surface, and 
jB,out and jB,in are the corresponding values at the bottom surface. The effect of this 
approximation will be the focus of a detailed investigation in this thesis. 

The next step is to rewrite the 2-D position vector rr as the sum of two vectors: an 
arbitrary starting vector rr0 and the component rr projection of the transport angle onto 
the plane, ΩΩΩΩr. That is, rr = rr0 + sΩΩΩΩ, where s is the distance traveled from rr0 to rr along 
the ΩΩΩΩr direction. This yields a differential equation in the single variable s, for which an 
analytic solution is given by: 
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Eq. 2.25 
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The evaluation of Eq. 2.25 is performed on a discrete spatial mesh where the 
multigroup cross sections are uniform and the source distribution is flat. 

 
Fig. 2.5. Ray Tracing through a discrete region 

Rays are traced across these flat source regions along various directions given by 
ΩΩΩΩ=Ω(αl,θm). For a given direction, there are several parallel rays that pass through a 
particular flat source region. Consider the nth flat source region as depicted in Fig. 2.5. 
Suppose that the kth ray segment is of orientation ΩΩΩΩ(αl,θm) and lies in region n. This 
segment has length sl,k

n and is considered to have a width equal to the ray spacing ∆R
l. 

Suppose that the problem domain is discretized into N flat source regions, L azimuthal 
angles, M polar angles and G energy groups.  The expression for the outgoing angular 
flux, ϕl,m,k

out,g,n at the region boundary can be written in terms of the incoming angular 
flux ϕl,m,k

in,g,n as: 
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Eq. 2.26 

The ray segment k makes a contribution to the angular flux in the band of width 
∆R

l and length sl,k
n shown in Fig. 2.5. The average angular flux in this band is obtained by 

integrating Eq. 2.25 over the track length s: 
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Eq. 2.27 

There are several ray segments that contribute to the angular flux in region n. The 
angular flux in the region is given as a summation of contributions from all rays segments 
lying in region n : 
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Eq. 2.28 
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The segment length sl,k
n is adjusted so that the denominator of Eq. 2.27 equals the 

physical region volume Vn. The scalar flux is obtained by integrating Eq. 2.28 with 
respect to angle: 
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g m l l m

m l

w wφ ϕ= ∑ ∑
 

Eq. 2.29 

where wm and wl are weights for the polar and azimuthal angle, respectively. 

2.3.2. 1-D axial diffusion solvers 

The 1-D diffusion equation for energy group g is: 
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Eq. 2.30 

Qg is the total source, including fission, scattering and radial transverse leakage. The 
latter quantity is determined by the 2-D MOC calculation. DeCART has 2 available nodal 
methods to solve the Eq. 2.30.  

2.3.2.1. Nodal Expansion Method (NEM) 

In DeCART, NEM is derived for the 1-node problem. The main approximation of 
NEM is that the solution of Eq. 2.30 can be represented by a 4th order polynomial: 
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Eq. 2.31 

The derivation of the NEM expression then involves selecting an appropriate set 
of basis functions, f(u) where u=z/hz, and then determining the coefficients of the 
polynomial. DeCART uses a set of orthogonal polynomials defined on the interval [0,1] 
as the basis functions. The basis are the polynomials proposed by (Finnemann, Bennewitz 
et al. 1977). 

There are 5 unknowns per spatial mesh (φi) to be determined, so 5 constraints are 
needed: 

• Current continuity at each face of the considered mesh 
• Neutron balance equation (Eq. 2.30) 
• 2 weighted residual balance equations which are obtained by in multiplying the 

neutron balance equation by fi and integrating it over [0,1]. 

The resulting set of equations relates the node average flux φ0 with the partial 
currents at the top and bottom surfaces of the node, as well as the first and second flux 

moments 1
kφ% and 2

kφ% defined as follow: 

( ) ( )
1

0

i iu f u duφ ϕ= ∫%  Eq. 2.32 

After the 5 unknowns have determined, the outgoing partial currents at the surface of 
a spatial mesh can be expressed as follow: 
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Eq. 2.34 

In this expression, jz
k is a partial current in the axial direction for spatial mesh k, 

the ± superscripts imply incoming or outgoing current and the T and B superscripts refer 
to the top and bottom of the mesh, respectively. The average flux is kϕ , the first and 

second flux moments are 1
kφ% and 2

kφ%, and the ratio of the diffusion coefficient to the node 

size is denoted βk. 

 

2.3.2.2. Semi Analytical Nodal Method (SANM) 

The semi analytic nodal method is also derived for a single spatial mesh starting 
from Eq. 2.30. However, instead of assuming that a 4th order polynomial can satisfy the 
solution, it is assumed that only the source term of Eq. 2.30 is represented by a 4th order 
polynomial. 
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Eq. 2.35 

In the typical SANM formulation, the polynomial basis is composed of the 5 first 
Legendre polynomials and u=2z/hz. 

Eq. 2.30 can then be solved analytically to provide that following expression for 
the scalar flux: 
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Eq. 2.36 

The hyperbolic functions arise from the homogenous part of the solution, and the 
linear combination of Legendre polynomials represents the particular part of the solution 
to the Eq. 2.30. The rest of the steps in deriving the final expression for the SANM 
solution are similar to those required by NEM. An additional step is required in which the 
hyperbolic part of the solution is projected on the Legendre Polynomial basis in order to 
properly compute the source term Q(z). The details of NEM and SANM implementations 
in DeCART are beyond the scope of the dissertation but can be found in (Joo, Cho et al. 
2004; Thomas 2006). 

2.3.3. 3-D Global Solution Strategy 

As mentioned previously, a 3-D solution is obtained by coupling a set of 2-D 
MOC planar problems to a set of 1-D fuel rod wise diffusion problem. The coupling is 
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through transverse leakage which modify respectively the source terms of the Eq. 2.16 
and Eq. 2.30. However, because transverse leakage represents a weak coupling between 
the 2-D and 1-D solutions; and because of the computational cost of every MOC sweep, a 
CMFD approach was implemented to provide an effective acceleration to the transport 
calculation. Even though the CMFD framework is not needed to obtain a 3-D solution 
and can be turned off completely, its fast converging properties makes it an important 
piece of the DeCART methodology. 

The 3-D CMFD kernel in DeCART is formulated as a nodal neutron balance 
equation shown below for a homogenized node m. The coarse mesh node in DeCART is 
understood to be an axial slice of a pin cell as shown in Fig. 2.1 with the node average 
scalar flux, φ , being the solution to the CMFD linear system of equations. 
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Eq. 2.37 

In Eq. 2.37, sm
radJ , and sm

zJ ,  are the surface average currents in the radial and axial 

directions, respectively, normal to node surface s with area A. The symbols mφ , m
rΣ  and 

mS  represent the node average flux, removal cross section, and source which includes 
fission and scattering. Finally, V is the node volume and mradN and m

zN  are the number of 

neighboring nodes in the radial and axial directions. 

The node averaged terms of Eq. 2.37 are all obtained through flux-volume weighted 
homogenization techniques using the higher order solution provided by the 2-D MOC 
solution. The expression for the surface averaged radial net currents is given as: 

( ) ( )mmlsmmmlsmsm
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Eq. 2.38 

where mφ is the node averaged scalar flux for the m node and ( )l mφ  is the node averaged 

scalar flux of the node neighboring node m on the s side. ,m sD%  and ,ˆ m sD  are the radial 

coupling coefficients which represent the coefficient for the normal finite difference 
approximation and a higher-order current correction factor, respectively. ,m sD%  is taken as 

the conventional definition of the diffusion coefficient, whereas ,ˆ m sD  can only be 

determined by the MOC solution. Note that the inclusion of the higher order current 
correction factor allows for the CMFD solution to exactly reproduce the 2-D MOC 
transport solution. 

Just as the radial currents were provided by a higher order 2-D solution, the axial 
currents are also provided by the 1-D solution of a higher order nodal method (NEM, 
SANM) used for the axial direction. As shown in Eq. 2.33, the response matrix for NEM 
and SANM may be formulated to provide the axial current directly. The result of this 
formulation is that the final equations for the 1-D solvers can be imbedded directly into 
the CMFD kernel by substitution into Eq. 2.37 and lead to the following formulation:  
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 Eq. 2.39 

m
2

~
φ and m

iT  are defined in the Eq. 2.32 and Eq. 2.34 above. When the formulation of the 

Eq. 2.39 is used, no separate solution of for the fuel rod wise 1-D axial problem is 
required, only the set of 2-D planar MOC equations and the global solution of the Eq. 
2.39 are needed to get a 3-D flux solution. 

2.3.4. Known Issues of original 2D/1D formulation 

Recently, the DeCART code and the 2D-1D algorithm have been applied to 
problems where neutron streaming plays a major role. Some examples of such problems 
are gas cooled reactor applications, the analysis of a Loss Of Coolant Accident (LOCA) 
where severe voiding occurs or the modeling of high void region in a BWR modeling 
have resulted in some cases (Thomas 2006) in which the 3-D solution does not converge. 
Other convergence issues have been observed when the size of the axial mesh is reduced. 
The DeCART convergence issues reveal that the basic 2D-1D algorithm, although highly 
successful on most problems, requires investigations for robustness of convergence. 
Those investigations are presented in Chapter 3. 

Another issue of the 2D-1D algorithm is related to the axial 1-D solver. The 
presence of heterogeneity in the axial direction, such as  partially inserted control 
assemblies, severe void variations, part length fuel rods, and axial enrichment zoning can  
lead to 3-D solutions of poor accuracy (Cho, Kim et al. 2006). The current 2D-1D 
algorithm available in DeCART only provides 1-D axial solution based on the diffusion 
theory whose accuracy deteriorates in cases of strong flux gradients such as the ones 
observed for the problems listed above. The addition of a transport based solver is the 
subject of Chapter 4. 

2.4. Transient Methodology 

This section briefly describes the main features of the transient implementation in 
DeCART. It is a summary of (Cho, Kim et al. 2005) and is included in the dissertation as 
a starting point for the development of a transient methodology able to include thermal 
hydraulic feedbacks. 

The analysis of the time dependent neutron transport requires the coupled solution 
of a few equations, the time dependent Boltzmann equation as well as the temporal 
variation of the neutron precursor’s population, per spatial mesh. Given the roles of the 
CMFD and MOC steady-state solvers described in the section 2.3 above, the planar 2-D 
MOC solution as well as the CMFD formulation can be extended readily to solve the 
time-dependent Boltzmann equation. It is possible to make most of the transient 
calculations be carried out by the CMFD calculation by limiting the MOC calculation to 
update the intra-cell regional flux shapes and the radial cell coupling coefficients. Since 
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the intra-cell flux shape would not vary much unless there is a significant change in the 
material composition of the cell itself or its neighbors. 

The time discretization is performed for the time dependent 3-D CMFD neutron 
balance equation to formulate a transient fixed source problem (TFSP). The 3-D TFSP is 
solved with the embedded nodal method (NEM or SANM) based axial solution kernel 
which takes care of the axial variation of the flux within the large axial node. If 
requested, the MOC calculation is performed only when there are significant changes in 
the local composition at the current time step. This intermittent MOC calculation based 
on the monitoring of the composition change is referred to as the conditional MOC 
update. As much as CMFD wasn’t required to perform steady state calculation, it is the 
cornerstone of the DeCART transient solver. 

2.4.1. Governing equations 

Three families of equations are solved by DeCART during transient analysis: the 
diffusion equation which is solved by the CMFD method, the time dependent transport 
equation solved by the MOC method and the equations describing the evolution of the 
precursor’s concentration solved to compute the delayed neutron source. All three 
equations are described in the following sections. 

The discretized time dependent neutron diffusion equation for the spatial mesh m 
and the energy group g is: 
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Eq. 2.40 
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Eq. 2.41 

mψ represents the total fission source, m
dS  the delayed neutron source and m

kC  is 

the precursor k concentration. K represents the number of precursors and kλ  is its 

associated decay time constant. ±m
guJ  is the surface average current along direction u at 

the positive and negative side surfaces of the node m defined by the CMFD relation, the 
Eq. 2.38. G represents the number of energy groups. The details of the discretization and 
solution of the transient equations are given in the following sections. 

2.4.1.1. Time discretization 

The theta method is used to discretize the time derivative term in the Eq. 2.40:  
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Eq. 2.42 

with n represents the time index, ,m n
gR denoting the RHS of Eq. 2.42 at time step n. 

Typically, the crank Nicholson scheme is used (θ=0.5). 

2.4.1.2. Delayed Neutron Source Approximation 

The evolution of a given precursor concentration with time is governed by: 

m
kk

mm
k

m
k C

dt

dC
λψβ −=  Eq. 2.43 

m
kβ  is the fraction of delayed neutron produced by precursor k. The first term on the right 

hand side (RHS) represents the source term by fission mψ defined in Eq. 2.41 and the 
second term the loss term by beta decay.  

It was shown in (Keepin, Wimmett et al. 1957) that it is not required to keep track 
all of the neutron precursors (about 40 element produce delayed neutron with different 
decay constants), and that just six representative precursors are needed to properly 
capture the delayed neutrons effect. Consequently, seven equations need to be solved per 
spatial mesh. To further reduce the computational burden, a second order precursor 
integration technique (Downar, Xu et al. 2006) is used which is an approximate technique 
to avoid the time differencing of the precursor equation. The precursor’s concentrations 
and their contribution to the delayed neutron source are evaluated using a second order 
approximation of the time variation of the fission source during the current time step. 

The delayed neutron source can then be expressed as follow: 
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and the following constants, nk t
k e ∆−= λκ  and 

1−∆
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By an additional storage of the node-wise fission source over the past 2 time 
steps, it is possible to avoid the solution of the system of 6 coupled differential equations. 

2.4.1.3. Multi-group CMFD transient fixed source formulation 

By inserting Eq. 2.42 and Eq. 2.44 into Eq. 2.40, the TFSP for the CMFD can be 
written as follow: 
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Eq. 2.46 

The RHS of Eq. 2.46 represents the fixed source of spatial mesh m. The source 
term consists of five terms: the usual fission and scattering source terms as well as three 
transient specific terms, the previous flux term, the delayed neutron source term, and the 
residual term. The residual term representing the imbalance at the previous time should 
be evaluated to establish the fixed source problem. Provided that the previous time step 
scalar fluxes, delayed neutron source and residuals are stored, it is possible to use the 
steady-state CMFD solver with a modified source term to perform transient calculation. 

2.4.1.4. MOC transient fixed source formulation 

In the framework of the 2D-1D methodology, the time dependent form of the 
planar transport equation, obtained by axial integration of the 3D time dependent 
Boltzmann equation can be written as follow for angle w, spatial mesh m and energy 
group g: 
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Eq. 2.47 

Eq. 2.47 is the discretized, time-dependent version of Eq. 2.20. mψ  and m
dS have 

the same definition that in section 2.4.1.3. Using the temporal discretization discussed in 
section 2.4.1.1, a TFSP for the planar Boltzmann equation is obtained: 
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Eq. 2.48 
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Here the residual term represents the imbalance between neutron production and 
loss in direction w in a spatial mesh region m. In principle, Eq. 2.48 can be solved by 
MOC as long as the RHS is exactly known for each flat source region. However, there 
are several practical difficulties in solving Eq. 2.48 as is. First of all, the total cross 
section is augmented by the 1-over-v∆t term. This augmentation changes the ray 
attenuation characteristics in the MOC solution since all the exponential terms have to be 
evaluated with the augmented cross section. Secondly, since the angular flux of the 
previous step appears on the RHS, all the angular flux should be stored at every flat 
source region which would cause a significant increase in the memory. In order to avoid 
these problems, an approximate solution approach is applied. The 1-over-v∆t term of the 
current time step is first moved to the RHS so that the left hand side becomes identical to 
the steady-state form. The angular dependence of the 1-over-v∆t term is then neglected 
by treating this term isotropic. This approximation would have negligible impact since 
the isotropy assumption is applied to the difference term not to the angular flux itself. 
Furthermore the angular dependence of the residual term is neglected. Eq. 2.48 now 
becomes: 
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Eq. 2.49 

Once the delayed neutron source and the residual terms are given for each flat 
source region, Eq. 2.49 can be solved using the steady-state MOC solver with only a few 
additions of source terms. However, the residual term cannot be determined readily for 
each flat source region because the shape of the surface of a flat source region is 
irregular. Thus a further approximation is introduced to use the cell based residual term 
which is determined for the multi-group CMFD TFSP. The final equation becomes: 
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Eq. 2.50 

The bar above designates parameters obtained from the multi-group CMFD. 
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2.4.2. Calculation flow 

The calculation flow of a DeCART transient calculation is shown in Fig. 2.6. The 
transient calculation is driven by the CMFD TFSP solver. At each time step, the new 
multi-group (MG) constants are determined using the intra-cell flux shapes and regional 
microscopic cross sections from the last MOC transient update. 

 
Fig. 2.6. DeCART flow chart for transient calculation 

One of the user’s options for the transient calculation is a threshold value in the 
MG cross section change. If, for a given spatial mesh, the change is bigger than the 
threshold value, a MOC transient calculation is performed to generate the intra-cell flux 
shapes and regional microscopic cross sections reflecting the new local conditions in the 
reactor. Otherwise the TFSP CMFD calculation continues and the next step scalar fluxes 
are computed by the CMFD solver. Finally, the new delayed neutron source is updated 
before the start a new time step. 

2.4.3. Kinetics parameters 

In the TFSP equations, i.e. in Eq. 2.46 and Eq. 2.47, three kinetics parameters 
appear: the total delayed neutron fraction, group-wise neutron velocity, and delayed 
neutron emission spectra. The delayed neutron fraction which has a strong isotopic 
dependence is obtained directly from the multi-group cross section library. The delayed 
neutron fraction of an isotope is constant and is not affected by the reactor condition such 
as the fuel temperature. However, for a mixture of fissionable isotopes the average 
delayed neutron fraction becomes condition dependent. It is obtained by isotopic fission 
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source weighting. Specifically, for a given spatial mesh m, the mesh averaged delayed 
neutron for precursor group k is obtained by: 

∑∑ ∑

∑∑ ∑

= = =

= = =



















=
m m

m m

I

i

im
J

j

G

g

im

g
im

j
jim

fg

I

i

im
J

j

G

g

im

g
im

j
jim

fg
j

k

m
k

VN

VN

1

,

1 1

,,,,

1

,

1 1

,,,,

φνσ

φνσβ

β

 

Eq. 2.51 

I represents the total number of flat source region per nodal mesh m and J the number of 
isotopes in a given flat source region. Note also that the temperature dependence is 
carried by the microscopic nu-fission cross section im

fg
,σ of isotope j and group g at flat 

source region i of cell m. 

The neutron velocity data are not available from the cross section library. Instead 
it is inferred from the microscopic group cross section of B-10 which is a nearly perfect 
1-over-v absorber. The reciprocal velocity is obtained by: 
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Eq. 2.52 

where 0σ  and 0v  B-10 the absorption cross section and velocity at the room temperature, 

namely 3837 barns and 220,000 cm/sec, respectively. 

Since the group cross section depends on the temperature of the medium, the 
reciprocal neutron velocity obtained by Eq. 2.52 is not uniform across the domain and 
each cell is assigned its own reciprocal velocity. The above formula cannot be applied to 
high energy groups since the energy dependence is no longer 1-over-v. For the energy 
groups beyond 0.1 MeV, the velocity is determined by taking the midpoint lethargy 
instead of the B-10 absorption cross section. 

The delayed neutron emission spectrum is much softer than the prompt fission 
spectrum and it is dependent on the precursor group as shown (Ott and Neuhold 1985). 
However, the precursor group dependence is neglected in DeCART by using only one 
spectrum which is averaged over all the delayed neutrons.  

The decay constants kλ of the six precursor groups are fixed and they were 
obtained from the specification of a PWR control rod ejection benchmark problem 
(Finnemann and Bauer 1994). The decay constants can be overridden by the user input 
though. 

2.4.4. Limitations 

The final form of Eq. 2.46 and Eq. 2.47 for DeCART transient calculations has 
been validated by comparing the DeCART solution with the VARIANT-K transport 
solution for several transient benchmark problems (Cho, Kim et al. 2005). However, all 
calculations were performed with a fixed set of macroscopic cross sections. The transient 
analyses were triggered by changing the macroscopic cross sections of a given region. 
Typically, when a control rod was withdrawn, the cross sections of the rodded region 
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changed from the set corresponding to a control rod to the set corresponding to water. As 
it was described in the section 2.4.2, MOC TFSPs are triggered when local changes in the 
local composition of the reactor were detected. Practically, with provided macroscopic 
cross sections sets, as it was the case for the calculations reported in (Cho, Kim et al. 
2005), the MOC TFSP happened when a region has its cross sections set modified by 
control rod movement for example. Furthermore, these calculations did not involve any 
kind of thermal hydraulic feedbacks. 

In order to perform realistic transient calculations at the core level, without 
relying on a multi-step approach where a library of macroscopic cross sections is 
generated for the wide range of thermal hydraulic and burnup conditions encountered in a 
reactor during the transient, DeCART’s transient methodology needs to be modified. The 
modifications should allow the code to handle changes in local thermal hydraulic 
conditions (fuel temperature, water density, etc…). 
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3. Improvement of the 2D/1D coupling 

The goal of this part of the dissertation is to improve the 2D-1D methodology and 
more specifically the coupling between the MOC solver and the 1-D axial solver. 

3.1. Investigation of the potential issues with the current 2D-1D coupling 

In the 2D-1D methodology, the axial integration of the 3-D Boltzmann equation 
leads to (for convenience of the notation, the energy group index g has been omitted.): 
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Eq. 3.1 
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Eq. 3.2 

A close look at the Eq. 3.1 shows that a potential for a negative source term exists 
for 2 distinct sets of conditions: 

• When the axial leakage is much larger than the neutron source term, typical for low 
density region where neutron streaming occurs. It is rarely encountered in LWR but 
can happen under accident conditions such as LOCA. 

• When the axial mesh size becomes small. Numerical problem may arise when the 

transverse leakage term becomes large due to its 
zh

1
 dependence. 

When the source term of the MOC equation becomes negative, the DeCART 
calculation usually does not recover and diverges. Although the low density conditions 
are not likely to be encountered during most practical transient analysis, fine axial mesh 
are needed to ensure an accurate scalar flux solution, especially for cases where axial 
heterogeneities are present. In those cases, a fine mesh is required for low order methods 
such as diffusion theory to properly capture the flux gradient. 



27 
 

In order to illustrate the limits of the current 2D-1D methodology described 
above, a simple problem, yet representative of PWR conditions, was developed and 
performed with DeCART. 

3.1.1. Test Case Description 

The test case geometry is shown in Fig. 3.1 and its cross sections are based on the 
C5G7 benchmark specifications (Lewis, Smith et al. 2001). 

The model consists of 5 pins, and a reflective boundary condition is imposed at 
the boundary surfaces except for the top surface where a vacuum boundary condition is 
imposed. Four pins, pins 1, 2, 4 and 5, are fuel pins and pin 3 is a non-fuel pin. The fuel 
pin has a slab shape. The demonstrative model is similar to a slab geometry model except 
for the additional reflector region above which the vacuum boundary condition applies. 
The equivalent fuel radius was determined to preserve the fuel volume from a circular 
pellet. The non-fuel pin of pin number 3 is added to analyze the heterogeneity effect of a 
water hole or the control rod. The total height of the geometry is 56.7 cm including the 
39.8 cm of fuel region and 18.9 cm of reflector region. The fuel region is initially divided 
in 2 meshes of 18.9 cm size and the reflector region is represented by 1 axial mesh. 

 
Fig. 3.1. 5-pin test problem geometry 

Pin 1, 2, 4 and 5: Fuel Pin 
Pin 3: Fuel Pin or Guide Tube or Control Rod can be loaded 

1.26 cm 

37.8 cm 

1.26 cm 

z 

x 
y 

18.9 cm 

18.9 cm 
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In order to illustrate the short comings of the current 2D-1D methodology in 
DeCART, 2 sets of calculations are performed: One where the axial mesh is gradually 
reduced to less than a centimeter to assess the convergence properties of the 2D-1D 
algorithm in the limit of a small mesh size and a second calculation where the coolant 
density is reduced from 100% to 1% of its normal value to represent high leakage, low 
density conditions.  

3.1.2. Results and Discussion 

3.1.2.1. Reduced Mesh Size Case 

The model described above is used with the pin 3 replaced by water hole. The 
axial mesh is refined by subdividing the initial spatial discretization (3 planes) evenly, see 
Table 3.1. 

Table 3.1. Effective multiplication coefficient for various axial mesh sizes of the reduced mesh size case 

Number of 
Planes 

Axial Mesh  
Size [cm] 

keff 

3 18.90 1.25810 

6 9.45 1.25960 

9 6.30 1.25970 

12 4.73 1.25970 

15 3.78 1.25970 

18 3.15 1.25980 

21 2.70 1.25980 

24 2.36 1.25980 

27 2.10 1.25980 

30 1.89 1.25980 

33 1.72 1.25980 

36 1.58 1.25980 

39 1.45 1.25980 

42 1.35 1.25980 

45 1.26 1.25980 

Contrary to what was expected from the previous discussion, even when the axial 
mesh becomes small, about the size of the radial mesh, 1.26cm, the DeCART solution 
does not diverge. It is also important to note the importance of refining the mesh. The 
predicted effective multiplication coefficient of the initial case differs by 140 pcm (per 
cent milli-k) compared to the case where the axial direction is refined as much as possible 
(1.26 cm). 140 pcm represents a non trivial difference, especially considering that the 
problem, a water hole surrounded by fuel rods is relatively “easy”; there is no significant 
axial heterogeneity. 
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3.1.2.2.  Low Density Case 

The model described above was used with the pin 3 replaced by fuel rod. The 
coolant density is reduced from 100% to 1% and the axial mesh is refined by subdividing 
the initial spatial discretization (3 planes) evenly, see Fig. 3.1. The calculation does not 
converge when the axial mesh is reduced below 20cm. When the axial leakage is much 
larger than the neutron source term, usually for low density regions where neutron 
streaming occurs, the MOC source term become negative, leading to the divergence of 
the solution. In Fig. 3.2, the scalar flux calculated for energy group 3 is shown for the top 
of core near the fuel/water interface. The quantities shown in Fig 3.2. are expressed in 
neutrons per cm3 but are not normalized. As indicated, the entire region corresponding to 
the axial water reflector has a negative flux. The reason can be understood by a closer 
look to the two RHS source terms of Eq. 3.1. As shown Fig. 3.2.c) and Fig. 3.2.d), since 
the leakage term is much larger than the usual source term, the overall MOC source term 
(shown in Fig. 3.2.b)) becomes negative and results in non-physical negative MOC scalar 
fluxes and consequently divergence of the 2D-1D algorithm.  

 

 

 

 
a) MOC Scalar Flux b) Total MOC Source 

 

 

 

 
c) Fission, Scattering Source d) Leakage Source 

Fig. 3.2. Epithermal energy group results for the plane near the top of core 

The objectives of the investigations on the 2D-1D coupling are: 

• Improve the accuracy of the 2D-1D coupling while retaining the same axial solver. 
• Resolve the occurrence of negative source terms in high neutron leakage regions. 

 

 



30 
 

Table 3.2. Effective multiplication coefficient for various axial mesh sizes of the low density case 

Number of Planes 
Axial Mesh 

Size 
keff 

3 18.90 0.51019 
6 9.45 Divergence 

The next section describes how these goals were achieved in this work. 

3.2. Formulation of the new 2D/1D coupling approaches 

The 2-D planar transport equation was presented above in the Eq. 3.1 and is 
solved together with the associated 1-D axial diffusion equation: 
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Eq. 3.4 

The main challenge of the 2D-1D methodology is to properly determine the term 
( )yxTLZ

w , of Eq. 3.2 using information coming from the 1-D diffusion solution. Currently, 

( )yxTLZ
w ,  is evaluated using the DP0 approximation: 
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Eq. 3.5 

where jT,out and jT,in are the partial outgoing and incoming currents at the top surface, and 
jB,out and jB,in are the corresponding values at the bottom surface. They are computed by 
solving the Eq. 3.4. 

Two alternate formulations to the Eq. 3.5 are proposed in the following sections. 

3.2.1. Isotropic Leakage Coupling 

In this approximation, the axial leakage is assumed to be isotropic: 
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Eq. 3.6 
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Note: ( )yxTLz
w ,  represents the true axial leakage and ( ) , yxTL

z
w  its approximation, in the 

direction w defined by an azimuthal angle α and a polar angle µ. 

Using the Eq. 3.2, 
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Eq. 3.7 

By inserting Eq. 3.6 into the previous equation, it becomes: 
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Eq. 3.8 

By definition of the net neutron current, 
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Eq. 3.9 

Projecting along the z direction leads to the needed quantity: 
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Finally: 
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Eq. 3.11 

3.2.2. P1 coupling 

In this approximation, the angular flux on top and bottom of the considered spatial 
mesh is assumed to have a linear dependence in angle: 
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Eq. 3.12 

Integrating ( )zyxw ,,ϕ  over the top and bottom faces of a considered axial mesh, it 

becomes: 
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Eq. 3.13 

By projecting the net current J along the direction z, and integrating over x and y, it 
comes: 
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Both formulations of Eq. 3.11 and Eq. 3.14 were implemented into DeCART as 
new user’s options for the 2D-1D transverse leakage coupling to replace the original 
formulation of Eq. 3.5. Because of its consistency with the diffusion theory (both are 
based on a P1 approximation of the angular flux) the formulation of Eq. 3.14 is expected 
to give the best results in terms of accuracy. The isotropic leakage formulation of Eq. 
3.11 represents a step down in terms of accuracy compared to the DP0 approximation 
because it assumes a completely isotropic leakage instead of a half-space isotropic 
leakage in the DP0 approximation. However, since the Eq. 3.11 produces the same axial 
transverse leakage for symmetric polar angles with respect to the (x,y) plane, it is possible 
to solve the MOC formulation only for half the polar angles, reducing the computational 
cost of the calculation. 

If the formulation of Eq. 3.14 is expected to improve the accuracy of the 2D-1D 
methodology, and the formulation of Eq. 3.11 is expected to reduce its cost, neither of 
them does solve the potential occurrence of negative MOC source term as discussed in 
section 3.1. The next section details a potential fix to the problem by proposing a splitting 
of the transverse leakage term between the Left Hand Side (LHS) and RHS of Eq. 3.1. 

3.3. Transverse Leakage Splitting Formulation 

The principal idea of the transverse leakage splitting formulation is to separate the 
quantity ( )yxTLz

w ,  between the LHS and RHS of Eq. 3.1. By moving part of ( )yxTLz
w ,  on 

the LHS, Eq. 3.1 can be reformulated as: 
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Eq. 3.15 

Where LgΣ is an angle independent “leakage” cross sections, and ( )yxZ
w ,~ϕ  some 

approximation of the angular flux. To simplify the notations, the leakage term in the LHS 
of Eq. 3.16 is referred as XY

wL . The goal is to avoid cases where ( )yxTLz
w ,  is bigger 

than
( )

π4

, yxQ
 causing negative MOC sources, or cases where the modified removal term, 

( )Lgtg Σ+Σ , becomes itself negative.  

Before going any further, the reason why LgΣ must be angle independent needs to 

be clarified. As described in Chapter II, the macroscopic cross sections in DeCART are 
evaluated during the calculation given a local flux shape and thermal hydraulic 
conditions. They are computed before the inner most loop of the MOC algorithm, i.e. 
before the sweeping through every segment of every region for each angle. Having angle 
dependent macroscopic cross sections would require their evaluation during the MOC 
inner most loop which would undesirably increase the cost of the calculation.  

The next sections describe how to properly choose LgΣ and ( )yxZ
w ,~ϕ . Three 

different splitting are considered. A partial current splitting using a formulation of 
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( )yxTLz
w ,  based on Eq. 3.11 is discussed first. Then a splitting also related to the isotropic 

formulation of ( )yxTLz
w , , see Eq. 3.11, is presented. Finally a splitting based on the 

formulation of Eq. 3.14, for ( )yxTLz
w ,  is the last to be considered. 

3.3.1. Partial Current Splitting 

For this approach, the starting point is the isotropic leakage formulation 
for ( )yxTLz

w , , Eq. 3.11. Expressing the net current ( )zJ XY  as function of its associated 

partial currents leads to: 

( ) inToutTTXY jjzJ ,, −=  
Eq. 3.16 

jT,out and jT,in are the partial outgoing and incoming currents at the top surface. 

By inserting Eq. 3.16 into Eq. 3.11, it becomes: 
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Then LgΣ and ( )yxZ
w ,~ϕ  can be defined as follow: 
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With the choices of Eq. 3.18, the RHS of Eq. 3.16 becomes: 
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This quantity will always be positive, being the sum of positive quantities. 

The LHS of Eq. 3.16 is also modified: 
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Eq. 3.20 

This approach has been implemented in the ANL version of DeCART to analyze 
gas cooled reactors. It is reported in (Pointer, Lee et al. 2009) to have good convergence 
properties. 

3.3.2. Isotropic Leakage Splitting 

Similarly to section 3.3.1, the starting point for the isotropic leakage splitting is 
Eq. 3.11. LgΣ and ( )yxZ

w ,~ϕ  are chosen as follow: 
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The logic behind the choice of LgΣ  is that if the quantity 
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φ
 is positive, the axial leakage contribution is negative 

potentially causing the MOC source term to become itself negative. By transferring it to 
the LHS, the added removal term is positive ensuring that both removal and source terms 
are positive. 

3.3.3. P1 Splitting 

For this approach, the starting point is the P1 transverse leakage formulation 
for ( )yxTLz

w , ,Eq. 3.14. It is possible to define an angle dependent leakage cross section, 
w
LgΣ : 
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Consequently, the choice of ( )yxZ
w ,~ϕ is: 
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One of the issues of the P1 splitting is the determination of ( )w
Z

w yx µϕ ,, , which is 

the azimuthally integrated, polar dependent angular flux. It is easily determined during 
the 2-D MOC calculation but requires additional memory storage, hence a higher 
computational cost.  

The other issue is the angular dependence of w
LgΣ . As stated at the beginning of 

this section, having a angular dependent cross section would require the evaluation of the 
removal term in the inner most loop of the MOC sweep which is not desirable in terms of 
computational cost. Similar to what was shown in 3.3.2, an angular independent splitting 
is chosen: 
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So the angular direction, wm, for which the MOC source term, including axial 
transverse leakage, is the most negative, is selected and the leakage cross section is 
defined as: 
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where ( )yxTLz
wm

,  is defined as follow: 
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LgΣ  is now angular independent and it is applied to all angular directions w, even 

though it was determined from the direction, wm. For the direction wm, the complete axial 
transverse leakage is moved to the LHS. The other directions corresponding to other 
polar direction, the source term is given by: 
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Since the direction has been chosen for its maximum axial transverse leakage, the 
quantity ( ) ( )yxTLyxTL z

w
z
w mm

,, −  is positive. The potential for negative source is 

eliminated. 

3.3.1. Approximation involved in transverse leakage splitting 

Because of ( ) ( )∫=
π

ϕφ
4

,, dwyxyx Z
w

Z  in the partial current splitting, and 

( ) ( )∫=
π

αµϕϕ
2

,,,~
ww

Z
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Z
w dyxyx  for the P1 transverse leakage splitting, the overall neutron 

balance of the considered spatial mesh is preserved. However, depending on which side 
of the equation the transverse leakage is applied, the approximation made to the 3-D 
transport equation is different. When the additional leakage cross section LgΣ  is added to 

the LHS, its angular dependence is proportional to the angular dependence of ( )yxZ
w ,ϕ . 

Added on the RHS, the contribution to the source term is isotropic. The approximation 
introduced by transverse leakage splitting is shown in Eq. 3.28: 

( ) ( ) εϕ ++= 21 ,, LyxLyxTL Z
w

z
w  Eq. 3.28 

where ( )yxL Z
w ,1ϕ  is the contribution to the LHS, L2 the contribution to the RHS and ε the 

error term. The transverse leakage term has the same order of magnitude than a net 
current gradient. 

For the partial current splitting, 
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Eq. 3.29 

The transverse leakage term has the order of magnitude of the sum of partial 
currents divided by the mesh size, which in the P1 approximation have the order of 
magnitude of a scalar flux. In the limit of a fine mesh, the sum of partial currents goes to 
a finite quantity while the denominator goes to zero. This formulation will produce poor 
results in the limit of small mesh size. 

For the P1 transverse leakage splitting and isotropic transverse leakage, L1 and L2 
are chosen to have the same order of magnitude than the initial transverse leakage, 
limiting the amount of error introduced by the transverse leakage approximation. 

3.4. Results 

3.4.1. Foreword about CMFD and convergence 

The convergence analysis of the CMFD method has shown (Cho, Lee et al. 2003; 
Lee, Downar et al. 2004; Lee, Lee et al. 2004) that under certain conditions, especially 
for small mesh size, the CMFD is not stable. Since the primary purpose of the work 
summarized here is to improve the 2D-1D algorithm itself, the CMFD acceleration has 
been turned off. Any occurrence of divergence is then solely due to the breakdown of the 
2D-1D methodology. 

During the course of a given calculation, the DeCART convergence can break 
down in two different manners. The first one is a divergence, where the residual increases 
exponentially and eventually causes the calculation to fail. This failure mode is recorded 
as “D.V.” for divergence in the result’s table. The second one is a non convergence, 
where the residual stops decreasing and keff oscillates between two values until the 
maximum number of outer iterations is reached. This failure mode is recorded as “N.C.” 
for non convergence in the result’s table. 

3.4.2. Mesh refinement problems 

The 2 new coupling approaches and their associated three splitting are applied to 
the problem described in section 3.1.1 to evaluate their effect on the convergence and 
accuracy of the DeCART solution. Pin 3 is replaced first by a water hole, then by a 
partially inserted control rod. Finally, the convergence issue described in section 3.1.2.2 
is investigated by looking at a problem where the water density in the water hole is 
reduced from 100% to 1%. 

For each of the 3 problems, 6 DeCART calculations are recorded; each of them 
represents the original 2D-1D DeCART coupling and the new approaches described 
above. Each option is described in the Table 3.3 below. 

3.4.2.1. Water Hole case 

For this case, the pin 3 of the problem described in section 3.1.1 is made of a 
water hole. For each of the 6 coupling options, the axial mesh is refined by subdividing 
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equally the initial geometry. Initially, there are 3 planes of 21.42cm thickness each. Each 
plane is subdivided in 2 equal size subdivisions to form the next problem. 

A reference solution is obtained by running DeCART on the equivalent 2D model 
using only the MOC solver. The transport solution obtained is used as a reference to 
compare with each of the 2D-1D calculations. 

Table 3.3. 2D-1D coupling options summary 

Option Index Description 
0 Partial current splitting (section3.3.1) 
1a Isotropic Leakage, splitting (section 3.2.1 and 3.3.2) 
1b Isotropic Leakage, no splitting (section 3.2.1) 
2 DP0 coupling, no splitting (original DeCART) 
3a P1 coupling, splitting (section 3.2.2 and 3.3.3) 
3b P1 coupling, no splitting (section 3.2.2) 

For each DeCART run, the effective multiplication coefficient keff is recorded. 
The results for the water hole case are summarized in Table 3.4 and Fig. 3.3. In the Fig. 
3.3, all the curves besides option 0 are located on top of each other. Instead of showing 
the actual effective multiplication coefficients, Table 3.4 presents the difference with the 
reference keff expressed in terms of pcm. The definitions of pcm and relative pinpower 
difference are given in the equations Eq. 3.30 and Eq. 3.31 below: 
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Eq. 3.31 

The effective multiplication coefficients represent a measure of the global 
differences between calculations. In order to have a better understanding of the local 
differences, the averaged power generated by fuel rod per initial axial mesh is also 
recorded and compared between calculations. In the DeCART model, there are 2 axial 
slice, see section 3.1.1. Their local power comparison is summarized in Table 3.5 and 
Table 3.6. 

The original coupling of DeCART, option 2, converges monotonically toward its 
asymptotic solution when the axial mesh is refined. Since the CMFD has been turned off, 
the convergence issues observed in the literature for small mesh size do not appear.  

Similarly, the potential convergence problem, related to a negative MOC source 
in the case of strong axial leakage, is not observed in the Water Hole case. As far as 
accuracy is concerned, the spatial convergence is smooth towards a keff equal to 1.2614. 
The difference of about 130 pcm with respect to the reference solution is rather small but 
expected because the reference solution is obtained by a pure transport solution, whereas 
the 2D-1D method is based on a mix of diffusion and transport theories. The relatively 
good agreement was expected given the weak axial heterogeneities of the Water Hole 
problem. The pinpower predictions, shown in Table 3.5 and Table 3.6 show that besides 
the case of partial current splitting, all methods converge to the same pinpower 
distribution. 
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Table 3.4. Convergence behavior of keff for the water hole geometry 

DeCART 2D Reference keff 1.2614 

Pcm Difference with respect to 2D keff 

Number of 
Planes 

Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 -248 -260 -262 -261 -259 -259 

6 9.45 -121 -143 -143 -143 -142 -142 

9 6.30 -104 -134 -134 -134 -132 -132 

12 4.73 -94 -132 -133 -132 -131 -131 

15 3.78 -87 -131 -131 -131 -130 -130 

18 3.15 -81 -130 -130 -130 -129 -129 

21 2.70 -51 -129 -130 -129 -128 -128 

24 2.36 112 -127 -128 -127 -126 -126 

27 2.10 -800 -128 -129 -128 -128 -128 

30 1.89 -859 -128 -128 -128 -128 -128 

33 1.72 N.C -128 -129 -128 -128 -128 

36 1.58 N.C -128 -128 -128 -127 -127 

39 1.45 N.C -127 -128 -127 -126 -126 

42 1.35 N.C -128 -128 -128 -127 -127 

45 1.26 N.C -128 -128 -128 -126 -126 
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Fig. 3.3. Convergence Behavior of keff for water hole geometry 
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The difference with the reference solution is less that 0.4% for the finest spatial 
mesh for the lower fuel region, where the error is about 0.7% for the upper mesh. The 
agreement is better in the lower part of the problem because the leakage plays a lesser 
role, making the diffusion solution in the axial direction less of a liability. In the vicinity 
of the axial water reflector, i.e. in the upper fuel region, the neutron leakage plays a more 
important role, and causes the 2D-1D methodology to predict less accurate results. 

Except for the partial current coupling, the other coupling methods all have 
similar convergence and accuracy properties. They all converge to eigenvalue around 
1.2614 in a conventional manner: when the spatial mesh is refined, the solution 
converges to a constant keff. The small discrepancies in terms of eigenvalue observed 
from isotropic leakage to DP0 to P1 come from the different approximations applied to the 
transverse leakage term as described in the section 3.2 and 3.3. 

Table 3.5. Relative pinpower difference with the 2D DeCART reference for the lower fuel region for the 
Water Hole case 

% Relative pinpower difference for lower fuel region 

Number of Planes 
Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 0.81 0.98 0.98 0.98 0.90 0.90 

6 9.45 0.29 0.55 0.55 0.55 0.51 0.51 

9 6.30 0.09 0.43 0.43 0.43 0.40 0.40 

12 4.73 0.06 0.42 0.42 0.42 0.42 0.42 

15 3.78 0.18 0.39 0.41 0.39 0.39 0.39 

18 3.15 0.29 0.40 0.40 0.40 0.38 0.38 

21 2.70 0.36 0.38 0.38 0.38 0.36 0.36 

24 2.36 0.47 0.40 0.40 0.40 0.36 0.36 

27 2.10 0.51 0.39 0.39 0.39 0.39 0.39 

30 1.89 0.38 0.37 0.38 0.37 0.37 0.37 

33 1.72 N.C 0.38 0.38 0.37 0.35 0.35 

36 1.58 N.C 0.37 0.37 0.37 0.35 0.35 

39 1.45 N.C 0.36 0.38 0.36 0.35 0.35 

42 1.35 N.C 0.36 0.37 0.36 0.35 0.35 

45 1.26 N.C 0.37 0.38 0.37 0.35 0.35 

For this first test problem, there were no benefits of using the transverse leakage 
splitting techniques recently implemented in DeCART since no convergence issues are 
observed even for very small mesh size of 1.26 cm. This finding was expected since the 
Water Hole case is not driven by neutron leakage. However, it allows us to confirm that 
the 2D-1D methodology has no convergence issues for regular PWR problems even if the 
axial mesh is refined to about the size of the radial mesh. 

For the Water Hole problem, the benefits of the recently implemented treatment 
of the transverse leakage at the planar interface, namely the isotropic leakage and P1 
coupling, are not visible. For relatively homogeneous problem, all the available coupling 
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return the same answer, both in terms of global and local information, i.e. effective 
multiplication coefficients and fuel rod power. The main benefit of using the isotropic 
leakage coupling instead of the P1 coupling is the same level of accuracy in term of keff is 
reached while considering half of the polar directions, reducing the computing cost of the 
calculation. 

The worst 2D-1D coupling option, both in terms of convergence and accuracy is 
the partial current splitting option, since no converged solution is obtained for an axial 
mesh of less than 1.8 cm. For the converged solutions, the accuracy is questionable since 
no spatial convergence seems to be observed: keff keeps increasing without reaching a 
plateau as it is observed for the other methods. This behavior can be explained by the 
limitations already formulated in section 3.3.1 about the partial current splitting. The 
better convergence properties and the accuracy issues both come from an artificially 
increased removal and source terms in Eq. 3.15. The partial currents are always a much 
bigger quantity than the net currents, which makes the transferring of partial currents 
from one side to the other, not a physically correct approach as already discussed in 3.3.1. 

Table 3.6. Relative pinpower difference with the 2D DeCART reference for the upper fuel region for the 
Water Hole case 

% Relative pinpower difference for lower fuel region 

Number of Planes 
Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 0.81 0.98 0.98 0.98 0.90 0.90 

6 9.45 0.29 0.55 0.55 0.55 0.51 0.51 

9 6.30 0.09 0.43 0.43 0.43 0.40 0.40 

12 4.73 0.06 0.42 0.42 0.42 0.42 0.42 

15 3.78 0.18 0.39 0.41 0.39 0.39 0.39 

18 3.15 0.29 0.40 0.40 0.40 0.38 0.38 

21 2.70 0.36 0.38 0.38 0.38 0.36 0.36 

24 2.36 0.47 0.40 0.40 0.40 0.36 0.36 

27 2.10 0.51 0.39 0.39 0.39 0.39 0.39 

30 1.89 0.38 0.37 0.38 0.37 0.37 0.37 

33 1.72 N.C 0.38 0.38 0.37 0.35 0.35 

36 1.58 N.C 0.37 0.37 0.37 0.35 0.35 

39 1.45 N.C 0.36 0.38 0.36 0.35 0.35 

42 1.35 N.C 0.36 0.37 0.36 0.35 0.35 

45 1.26 N.C 0.37 0.38 0.37 0.35 0.35 

3.4.2.2. Control Rod case 

For this case, the pin 3 of the problem described in section 3.1.1 is made of a 
partially inserted control rod. The control rod is inserted from the top surface to 18.9 cm 
from the bottom of the problem geometry. The types of calculation performed are the 



41 
 

same as in section 3.4.2.1 above. The results for the water hole case are summarized in 
Fig. 3.4 and Table 3.7, Table 3.8 and Table 3.9. 

The original coupling of DeCART, option 2, converges monotonically toward its 
asymptotic solution when the axial mesh is refined. Since the CMFD has been turned off, 
the convergence issues observed in the literature for small mesh size do not appear either 
for the Control Rod case. As far as accuracy is concerned, the spatial convergence is 
smooth towards a keff equals to 1.168277. 

The conclusions for the control rod case are similar to the water hole case in that 
potential convergence problems related to negative MOC source in case of strong axial 
leakage are not observed. As far as accuracy is concerned, the spatial convergence is 
smooth toward a keff equals to 1.168277. The difference of about 250 pcm with respect to 
the reference solution is larger than that observed in the Water Hole case. It was expected 
since the Control Rod case presents more axial heterogeneities. The departure from a 
purely diffusive media is more important in the Control Rod case. The pinpower 
predictions, shown in Table 3.8 and Table 3.9 show that besides the case of partial 
current splitting, all methods converge to the same pinpower distribution. The difference 
with the reference solution is less that 0.01% for the finest spatial mesh for the lower fuel 
region, where the error is about 0.03% for the upper mesh. The agreement is surprisingly 
good and much better than in the Water Hole case, which is likely attributable to some 
cancellation of errors. 

Table 3.7. Convergence behavior of keff for the control rod geometry 

DeCART 2D Reference keff 1.168277 

Pcm Difference with respect to 2D keff 

Number of 
Planes 

Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 1619 D.V. 1573 1571 1568 1568 

6 9.45 223 176 174 170 166 166 

9 6.30 -23 -85 -87 -90 -95 -95 

12 4.73 -82 -170 -171 -175 -179 -179 

15 3.78 -237 -203 -205 -207 -211 -211 

18 3.15 277 -221 -223 -225 -229 -229 

21 2.70 -227 -231 -233 -235 -240 -240 

24 2.36 451 -234 -235 -238 -241 -241 

27 2.10 -708 -241 -242 -245 -248 -248 

30 1.89 N.C. -243 -244 -247 -251 -251 

33 1.72 1219 -246 -247 -250 -253 -253 

36 1.58 N.C. -246 -247 -249 -253 -253 

39 1.45 N.C. -244 -246 -248 -251 -251 

42 1.35 N.C. -247 -248 -250 -253 -253 

45 1.26 N.C. -247 -248 -251 -253 -253 
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Fig. 3.4. Convergence Behavior of keff for control rod geometry 

Table 3.8. Relative pinpower difference with the 2D DeCART reference for the lower fuel region for the 
Control Rod case 

% Relative pinpower difference for lower fuel region 

Number of Planes 
Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 0.65 D.V. 0.89 0.95 0.95 0.95 

6 9.45 0.11 0.44 0.47 0.47 0.47 0.47 

9 6.30 0.25 0.19 0.21 0.21 0.23 0.23 

12 4.73 0.47 0.11 0.11 0.11 0.11 0.11 

15 3.78 0.63 0.05 0.06 0.08 0.08 0.08 

18 3.15 0.74 0.03 0.03 0.03 0.06 0.06 

21 2.70 0.85 0.02 0.03 0.03 0.03 0.03 

24 2.36 0.93 0.01 0.01 0.02 0.02 0.02 

27 2.10 1.07 0.01 0.01 0.01 0.02 0.02 

30 1.89 N.C 0.02 0.03 0.03 0.03 0.03 

33 1.72 1.26 0.01 0.01 0.01 0.02 0.02 

36 1.58 N.C 0.01 0.02 0.02 0.02 0.02 

39 1.45 N.C 0.01 0.02 0.02 0.02 0.02 

42 1.35 N.C 0.01 0.01 0.02 0.02 0.02 

45 1.26 N.C 0.01 0.01 0.01 0.01 0.01 

The pinpower comparison tends to show the same trend as already observed in the 
Water Hole case, the agreement with the reference pinpower prediction is better in the 
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lower part of the problem because the leakage plays a lesser role, making the diffusion 
solution in the axial direction less of a liability. In the vicinity of the axial water reflector, 
i.e. in the upper fuel region, the neutron leakage plays a more important role, and causes 
the 2D-1D methodology to predict less accurate results. Another important item 
highlighted by the Control Rod case, is the need for refined spatial meshing in the region 
of large flux gradients. The errors in terms of pinpower prediction for the coarser mesh 
are around 1% in the lower part of the fuel, but in the area of the control rod tip, i.e. in the 
upper part of the fuel, the error is about 9%. It is quickly reduced as the spatial mesh is 
refined. 

Table 3.9. Relative pinpower difference with the 2D DeCART reference for the upper fuel region for the 
Control Rod case 

% Relative pinpower difference for upper fuel region 

Number of Planes 
Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 6.76 D.V. 8.68 8.68 9.16 9.16 

6 9.45 2.44 4.12 4.12 4.12 4.36 4.36 

9 6.30 0.29 1.79 1.79 1.95 1.79 1.79 

12 4.73 1.53 0.99 0.99 0.99 0.99 0.99 

15 3.78 2.37 0.42 0.42 0.51 0.61 0.61 

18 3.15 2.69 0.27 0.27 0.19 0.27 0.27 

21 2.70 3.33 0.24 0.24 0.24 0.10 0.10 

24 2.36 3.39 0.09 0.15 0.15 0.09 0.09 

27 2.10 4.19 0.03 0.03 0.09 0.03 0.03 

30 1.89 N.C 0.02 0.02 0.03 0.08 0.08 

33 1.72 5.25 0.03 0.03 0.01 0.03 0.03 

36 1.58 N.C 0.07 0.01 0.05 0.05 0.05 

39 1.45 N.C 0.03 0.03 0.00 0.03 0.03 

42 1.35 N.C 0.03 0.03 0.03 0.00 0.00 

45 1.26 N.C 0.03 0.03 0.03 0.06 0.06 

The other conclusions from the Water Hole case are also evident in the results of 
the control rod case, i.e. the convergence and accuracy of partial current coupling, 
benefits of transverse leakage splitting, and more accurate formulation of transverse 
leakage. 

3.4.3. Low density case. 

For this problem, the pin 3 of the geometry described in section 3.1.1 is replaced 
by a fuel rod, and the water density, both in the coolant and in the axial reflector is 
reduced from 100% to 1% to simulate a high neutron leakage environment. The types of 
calculation performed are the same as in section 3.4.2.1 above. The results for the water 
hole case are summarized in Fig. 3.5, Table 3.10, Table 3.11and Table 3.12. 
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The original coupling of DeCART, option 2, diverges as soon as the axial mesh is 
refined, as already stated in section 3.1.2.2 due to a strong axial leakage that causes the 
MOC source to become negative. Both newly implemented transverse leakage coupling, 
based on either isotropic leakage or P1 approximations, diverge for the same reason as the 
original DeCART coupling. The partial current splitting as well as the transverse leakage 
splitting associated with the isotropic leakage coupling, option 1a, produces results for a 
spatial mesh equivalent to the radial mesh size. However, the limitations observed in the 
previous test cases with respect to the accuracy of the partial current splitting, are also 
observed in the Low Density case. Option 1a performs well, with a smooth spatial 
convergence toward a keff equals to 0.47431. Surprisingly, option 3a does not converge as 
well as expected. When the local polar wise angular flux becomes small, the division by 

( )
mm w

Z
w yx µϕ ,,  in Eq. 3.24 tends to create very large value forw

LgΣ , which increases the 

local removal term and further reduce the local angular flux eventually causing the 
calculation to crash. 

Table 3.10. Convergence behavior of keff for the low density problem 

DeCART 2D Reference keff 0.47515 

Pcm Difference with respect to 2D keff 

Number of 
Planes 

Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 -276 -229 -156 -158 D.V. -147 

6 9.45 -135 -147 D.V D.V D.V 135 

9 6.30 -114 -175 D.V D.V D.V D.V 

12 4.73 -120 -189 D.V D.V D.V D.V 

15 3.78 -105 -183 D.V D.V D.V D.V 

18 3.15 36 -181 D.V D.V D.V D.V 

21 2.70 276 -177 D.V D.V D.V D.V 

24 2.36 -126 -170 D.V D.V D.V D.V 

27 2.10 -152 -175 D.V D.V D.V D.V 

30 1.89 23 -177 D.V D.V D.V D.V 

33 1.72 17 -183 D.V D.V D.V D.V 

36 1.58 -6 -177 D.V D.V D.V D.V 

39 1.45 -97 -168 D.V D.V D.V D.V 

42 1.35 -78 -175 D.V D.V D.V D.V 

45 1.26 40 -177 D.V D.V D.V D.V 

The local pinpower agreement is also too good for such a “hard” problem, 
probably coming from a cancellation of errors. The pinpower comparison tends to show 
the same trend as already observed in both previous problems, the agreement with the 
reference pinpower prediction is better in the lower part of the problem because the 
leakage plays a lesser role, making the diffusion solution in the axial direction less of a 
liability. In the vicinity of the axial water reflector, i.e. in the upper fuel region, the 
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neutron leakage plays a more important role, and causes the 2D-1D methodology to 
predict less accurate results. For the partial current splitting, the differences are 2% and 
0.2% respectively, which comes from error cancellation since the accuracy of the results 
is poor as seen in Fig. 3.5.  
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Fig. 3.5. Convergence Behavior of keff for low density problem 

Table 3.11. Relative pinpower difference with the 2D DeCART reference for the lower fuel region for the 
Low Density case 

% Relative pinpower difference for lower fuel region 

Number of Planes 
Axial Mesh 
Size[cm] 

0 1a 1b 2 3a 3b 

3 18.90 0.19 0.19 0.04 0.04 D.V. 0.04 

6 9.45 0.00 0.19 D.V D.V D.V 135 

9 6.30 0.09 0.19 D.V D.V D.V D.V 

12 4.73 0.17 0.19 D.V D.V D.V D.V 

15 3.78 0.22 0.19 D.V D.V D.V D.V 

18 3.15 0.74 0.20 D.V D.V D.V D.V 

21 2.70 1.29 0.21 D.V D.V D.V D.V 

24 2.36 0.43 0.20 D.V D.V D.V D.V 

27 2.10 0.51 0.20 D.V D.V D.V D.V 

30 1.89 0.09 0.20 D.V D.V D.V D.V 

33 1.72 0.08 0.19 D.V D.V D.V D.V 

36 1.58 0.03 0.21 D.V D.V D.V D.V 

39 1.45 0.23 0.21 D.V D.V D.V D.V 

42 1.35 0.85 0.21 D.V D.V D.V D.V 

45 1.26 2.01 0.21 D.V D.V D.V D.V 
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The difference of about 180 pcm with respect to the reference solution is 
surprisingly good for a problem where neutron leakage is dominant and should require 
transport theory to be captured properly. The pinpower predictions, shown in and Table 
3.11 and Table 3.12, show that the difference from the reference solution is less than 
0.2% for the finest spatial mesh for the lower fuel region, where the error is about 0.6% 
for the upper mesh, for the option 1a. 

The convergence flaws of the 2D-1D methodology have been highlighted in the 
Low Density case and the proposed fix based on splitting of the transverse leakage has 
worked successfully, making high neutron leakage in the axial direction possible to 
model with DeCART. The partial current splitting, although converging, has a poor 
accuracy and should not be used. For options 1a and 3a, the accuracy of the DeCART 
solution for such a high leakage case is still questionable since the axial solver still uses 
diffusion theory which tends to return poor results in leakage dominated problems. This 
emphasizes the importance of upgrading the DeCART axial solver to be able to perform 
transport calculations. 

Table 3.12. Relative pinpower difference with the 2D DeCART reference for the upper fuel region for the 
Low density case 

% Relative pinpower difference for upper fuel region 

Number of Planes 
Axial Mesh 
Size [cm] 

0 1a 1b 2 3a 3b 

3 18.90 0.22 0.51 0.08 D.V. 0.00 0.08 

6 9.45 0.15 0.58 D.V D.V D.V 135 

9 6.30 0.11 0.70 D.V D.V D.V D.V 

12 4.73 0.28 0.65 D.V D.V D.V D.V 

15 3.78 0.38 0.71 D.V D.V D.V D.V 

18 3.15 2.05 0.67 D.V D.V D.V D.V 

21 2.70 3.46 0.69 D.V D.V D.V D.V 

24 2.36 0.78 0.68 D.V D.V D.V D.V 

27 2.10 0.94 0.66 D.V D.V D.V D.V 

30 1.89 0.15 0.66 D.V D.V D.V D.V 

33 1.72 0.12 0.68 D.V D.V D.V D.V 

36 1.58 0.12 0.68 D.V D.V D.V D.V 

39 1.45 0.12 0.68 D.V D.V D.V D.V 

42 1.35 0.06 0.68 D.V D.V D.V D.V 

45 1.26 0.25 0.67 D.V D.V D.V D.V 

3.4.4. Impact of improvements on calculation cost 

In order to assess the effect of the different transverse leakage approximations and 
coupling techniques on the computing cost of a DeCART calculation, the Water Hole 
case was run for 10 subdivisions of the initial mesh structure, i.e. 30 MOC planes in each 
3D model. All calculations were performed on an idle personal computer to insure 
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consistency of results: i.e. only DeCART was running at the time the computing time was 
recorded. 

The memory requirements as well as the total computing time and the computing 
time per outer iteration are summarized in the Table 3.13. 

Table 3.13. Computational cost for each transverse leakage option 

Option 0 1a 1b 2 3a 3b 

Memory 
Requirement [Mb] 

9.39 9.39 9.39 9.39 9.72 9.39 

Total Time [s] 34.01 22.12 21.27 26.12 28.82 25.88 

Number of Outer 
Iterations 

141 90 88 93 93 93 

Time per Iteration 
[s] 

0.24 0.25 0.24 0.28 0.31 0.28 

As expected, the memory requirements of all the options are identical besides the 
P1 coupling with splitting, since an additional memory structure to store the axial leakage 
and its associated leakage cross section. However, the memory increase is marginal. In 
terms of running time, all the methods involving an isotropic leakage at the planar 
interface, option 0, 1a and 1b, require less time per iteration, since only half of the polar 
angles belonging to the same half space need to be tracked. The gain is not as important 
as expected, but this is due to the small size of the problem. For a full core model, the 
saving of those options will be more evident. 

3.5. Summary 

The limitations of the current 2D-1D coupling have been investigated in the 
section 3.1. Five new 2D-1D coupling approaches have been derived and successfully 
implemented in DeCART in order to investigate the potential for improving the 
convergence properties of the 2D-1D methodology in the case of low density, high 
neutron leakage cases and improving the accuracy of the solution for a given axial mesh. 
The latter is particularly important for the purpose of performing 3D full core 
calculations since the axial mesh dictates the number of MOC sweeps to be performed 
per outer iteration. 

Two new approximations were investigated to represent the angular flux on the 
top and bottom of a MOC plane: one where the axial leakage is considered isotropic and 
a second one where a linear approximation of the angular flux (P1 approximation) is used. 
The main benefit of the isotropic leakage approximation is to reduce by a factor of 2 the 
number of MOC polar angles considered, thereby reducing the computing cost of the 
MOC solver.  Conversely the P1 coupling approach allows complete consistency between 
the axial solver and the transverse leakage provided to the MOC solver: both are based on 
the P1 expansion of the angular flux. 
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To address the issues related to negative MOC source terms, the axial leakage in 
the 2D transport formulation, Eq. 3.1, was split between the LHS and RHS. Three 
different splitting were considered, two related to the previously mentioned new coupling 
approaches, isotropic leakage and P1 coupling, and the last one based on a rearrangement 
of the partial currents. 

The three test cases considered have shown that: 

• In all cases, the P1 coupling failed to improve the accuracy of the calculation for a 
given axial mesh. 

• The isotropic leakage based coupling produced results as accurate as DP0 and P1 
coupling while reducing the computational burden. 

• The negative source term which was isolated as the main reason for divergence of 3D 
calculations was fixed successfully by the transverse leakage splitting formulation 
and worked very well for Low Density case. 

The newly added user’s options have improved the convergence properties of the 
2D-1D coupling methodology, provided that the CMFD acceleration was turned off. 
Improvements to the accuracy have not been observed, all three coupling approximations 
return almost identical local power prediction. The initial thought that the discrete 2D-1D 
equations may not provide a spatial convergence when the numerical grid is refined have 
been invalidated, at least until a mesh size equivalent to the radial mesh is used. This was 
examined using a set of problems representative of the conditions in a PWR both under 
normal and accidental conditions. It should be noted that such low density conditions as 
examined here are unlikely to be observed in the context of typical LWR transients such 
as a RIA. However, future analysis of LOCA events will certainly produce high neutron 
leakage conditions and the improvements to the DeCART should be able to handle such 
conditions. 

Future work will include an investigation of the convergence properties of the 
CMFD algorithm for the various new 2D-1D splitting methods introduced here, since 
without CMFD, full core steady state and transient calculations will not be practical. 
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4. Improvement of the axial solver 

One of the principle approximations of the 2D-1D algorithm in DeCART is the 
axial 1D solver. The presence of heterogeneity in the axial direction (partially inserted 
control assembly, severe void variation, part length fuel rod, axial enrichment zoning, etc 
…) can potentially lead to 3D solutions of poor accuracy. The current 2D-1D algorithm 
available in DeCART provides a 1D axial solution based on diffusion theory whose 
accuracy deteriorates in regions of strong flux gradients, such as the one observed for the 
problems listed above.  

The present chapter is aimed at describing the implementation in DeCART of an 
axial solver based on transport theory. A literature review is presented first to show what 
are the potential solvers and their limitations. It is followed by the mathematical 
derivation of the NEM-Sn method. The NEM-Sn method resolves the spatial variation of 
the flux through the Nodal Expansion Method (NEM) and its angular variation through 
the discrete ordinate method (Sn). The next section is devoted to the description of the 
NEM-Sn implementation in DeCART. In order to reduce the computational cost and 
improve the accuracy of the calculations, an existing algorithm, the sub-plane scheme is 
implemented in DeCART. It is described in the fourth section. The last section provides a 
summary of a set of calculations performed by DeCART for the C5G7 benchmark 
problem.  

4.1. Literature Review 

Few codes are based on the 2D-1D methodology: CHAPELET(Kosaka and 
Takeda 2004), CRX (Cho and Lee 2006) and DeCART (KAERI version) (Cho, Kim et 
al. 2007). All three are capable of performing 3D explicit whole core analysis by linking 
radial 2D MOC solutions to an axial solver to take into account the axial neutron 
transport. 

In the CHAPLET code, the method of characteristics is employed as a radial 2D 
solver, and a finite difference method (FDM), nodal expansion method (NEM) in 
diffusion theory or MOC can be chosen as an axial 1D solver. The MOC is based on the 
flat source region approximation, where the fission and scattering source is assumed to be 
constant throughout the spatial mesh. In order to achieve a reasonable accuracy, a fine 
mesh is needed involving a very detailed spatial mesh in the axial direction, requiring a 
large number of planes, and consequently a number of 2D MOC calculations prescriptive 
in order to perform accurate full core calculations in a reasonable amount of time. 
Additionally, as discussed in Chapter III, convergence problems that originate from the 
transverse leakage coupled scheme tends to happen for a very fine axial mesh. 

In the CRX code, the MOC is used for radial 2D heterogeneous calculation and 
Sn-like methods such as diamond difference (DD) scheme is used for the axial 1D 
calculation. Similarly to CHAPELET, in order to achieve accurate results, a fine axial 
mesh is needed, making full core calculations based on 1D transport kernel not practical. 
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Various advanced nodal transport methods have been developed for an accurate 
and efficient core neutronics calculation (Smith 1986; Lee and Downar 2004). In these 
methods, the Simplified Pn (SPn) approximation has been popular as a transport method 
since it can produce an accurate transport solution with a minimal modification of the 
existing diffusion code. In the KAERI version of DeCART, a Simplified Pn (SPn) solver 
replaces the axial diffusion solver of the DeCART direct whole core transport code to 
provide more accurate, transport theory based axial solutions. In solving the SPn 
equations, the NEM is applied to treat the axial variations of the angular moments. Two 
different orders of SPn are available, SP3 and SP5. DeCART-KAERI was tested against 
the C5G7 benchmark problem and the addition of an axial nodal transport based solver 
proved to be very worthwhile (Cho, Kim et al. 2007).  

As far as the 2D-1D methodology is concerned, a direct correspondence between 
the discrete directions considered in the 2D MOC and the chosen axial solver would 
provide a benefit in terms of consistency. No extrapolation would be required to estimate 
the angular flux in a given direction from the SPn angular flux moments. Although the 
SPn method has been popular for full core transport calculations, its accuracy is also an 
issue (Brantley and Larsen 2000). A different transport solver is considered. As already 
mentioned above, both Sn and MOC have been used. Because of a simpler 
implementation and relative lower computational cost, the Sn method was chosen for the 
work here. The spatial variation of the fluxes is still handled through nodal methods.  

Besides the NEM method, both the SANM and Analytic Nodal Method (ANM) 
(Lee, Downar et al. 2004) are  potential methods to resolve the spatial variation of the 
flux. SANM and NEM are currently used in the axial diffusion solver of the DeCART 
code. Both SANM and ANM use exponential functions to represent, respectively, the 
source term and the flux which, in the limit of optically thin or thick medium, can create 
numerical instabilities (Thomas 2006). Finally, the NEM methodology is chosen to 
resolve the spatial variation of the flux and the Sn method, its angular dependence. The 
derivation of the NEM-Sn method is presented next.  

4.2. NEM-Sn derivation 

The following derivation is given for a 1-D problem. The incorporation in the 
framework of the 2D-1D methodology is described in the next section. 

4.2.1. Legendre Polynomials 

The derivation of the NEM-Sn method begins with definitions of the node and 
expansion coefficients.  The node is the name of a spatial mesh in nodal method. Its 
length h is first normalized so it ranges from -1 to 1 by defining a new spatial variable, ξ: 

h

z2
=ξ

 
Eq. 4.1 

This normalization makes it convenient to expand the flux using Legendre 
polynomials. The first five Legendre Polynomials are listed below: 
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The spatial variation of the angular flux is expanded to the 4th order using the 
Legendre Polynomials: 
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Eq. 4.3 

where iϕ is the ith order moment of the angular flux ( )zwg,ϕ . 

4.2.2. Discrete Ordinate Method 

The discrete ordinates equations solve for the angular flux based on an angular 
quadrature set. For a given direction w, the angular flux is obtained from the 1-D 
Boltzmann equation: 
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Eq. 4.4 

The scalar flux results from the weighted sum of the discrete angular fluxes: 
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Eq. 4.5 

Where ww’ are the weights associated to the discrete directions of the angular quadrature. 
For simplicity of the notations, the energy index g is dropped. Furthermore, the scattering 
is assumed to be isotropic, Eq. 3.1 becomes: 
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Eq. 4.7 

4.2.3. Nodal Expansion Method 

Similarly to the diffusion NEM method described in Chapter II, there are 5 
unknowns per discrete directions. Therefore 5 constraints are needed: 

• Flux continuity at the node interface 
• Neutron balance equation, Eq. 4.1. 
• 3 weighted residual balance equations which are obtained by in multiplying the 

neutron balance equation by a Legendre Polynomials Pi and integrating it over [0,1]. 
The ith weighted residual balance equation is obtained. The neutron balance is 
identical to the 0th order weighted residual balance. 
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The NEM is solved in a sweeping fashion, where the incoming angular flux at the 
node boundary is assumed to be known and the outgoing angular flux is computed. The 
flux continuity equation at the node interface between the node n-1 and n leads to: 
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Eq. 4.8 

The 4 weighted residual equations are obtained by multiplying Eq. 4.1 by a 
Legendre Polynomial Pi to give: 
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Eq. 4.9 

Replacing ( )ξϕ w by its polynomial expansion, integrating and rearranging the terms lead 

to the four equations below: 
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Eq. 4.10 

Together with Eq. 4.8, a complete set of 5 equations and 5 unknowns has been 
constructed. It can be solved. Given 4 source terms, computed using previous iteration 
results, and an incoming angular flux, coming from boundary conditions or the outgoing 
flux of a previous node, the angular flux moments 4..0, =iiϕ  are obtained and the spatial 
variation of the angular flux for the direction w and energy group g is fully determined. 
The next section described the numerical approach used in DeCART to solve the NEM-
Sn equations. 

4.3. Numerical NEM-Sn implementation 

4.3.1. Choice of angular quadrature 

In order to insure consistency with the directions chosen in the 2D transport 
solution, the angular quadrature chosen for the NEM-Sn kernel is the same as chosen for 
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the polar angle of the 2D MOC solver. Usually for a low number of angles which would 
be less than four per half space, the quadrature proposed by (Leonard and McDaniel 
1995) is used. However, for a higher number of polar directions, the quadrature proposed 
in (Halsall 1980) is used. Finally, the Gauss-Legendre quadrature has been added to 
DeCART for the polar directions, up to 8 directions per half space. 

4.3.2. Transverse leakage 

4.3.2.1. Formulation of the modified 1D equation with transverse leakage 

The NEM-Sn is used in the framework of the 2D-1D methodology. The 1-D 
equations derived in section 4.2 need to be modified in order to reflect the 3-D movement 
of the neutrons. The 3-D Boltzmann equation, assuming an isotropic neutron source, is: 
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Eq. 4.11 

By integrating Eq. 4.11 along the x and y faces of the considered node and moving the x 
and y derivatives on the RHS, it becomes: 
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Eq. 4.13 

Theoretically, provided that an azimuthally dependent transverse leakage was 
available from the 2D MOC calculations, the exact solution of the 3-D Boltzmann 
equation is possible, the only approximation would be the use of transverse leakage, i.e. 
the averaging of the leakage over the (x,y) faces of the node. 

However, in order to reduce both storage and computing time, only a polar 
dependent transverse leakage is considered. Even with only polar dependent transverse 
leakage, the need for additional storage is significant, since the azimuthally integrated, 
polar dependent angular flux from each 2D MOC plane is stored for each node faces. In 
DeCART, a node corresponds to an axial segment of a fuel rod, typically an elongated 
cube of 1.26 by 1.26 by 20 cm. There are about 150 000 nodes in a full PWR core model. 
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Consequently, the azimuthal variation of Eq. 4.12 is integrated to give the 
following: 

( ) ( ) ( ) ( )wwwwtwww zTL
zQ

zz
z

µ
π

µϕµϕµ ,
4

, ,
XYXYXY −=Σ+

∂
∂

 
Eq. 4.14 
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Eq. 4.16 

Eq. 4.15 is very similar to the starting point for the NEM-Sn derivation, Eq. 4.1, if 
the transverse leakage is incorporated in the source term on the LHS. The four weighted 
residual balances source terms of Eq. 4.10 are modified by the corresponding moments of 
the transverse leakage. The next section is dedicated to the definition and calculations of 
the moments of the transverse leakage. 

4.3.2.2. Transverse Leakage Approximation 

The accuracy of the spatial variation of the angular flux in NEM-Sn solution 
increases as the axial node size decreases. Thus it is better to employ thinner planes when 
formulating the 3D problem. However, it is not always desirable to reduce the plane 
thickness since this will result in the increase of the number of planes for each of which 
the radial MOC calculations which have to be performed or potentially cause some 
convergence issue as seen in Chapter III. Since the MOC calculations are costly, it is 
better to avoid using very thin planes. However, to retain accuracy, the axial variation of 
the transverse leakage within a node needs to be taken into account. A typical quadratic 
expansion of the transverse leakage is then used: 
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Where ai is the ith transverse leakage moment and Pi the ith Legendre Polynomial. 

For a given spatial mesh l, the expansion coefficients are determined from the 

mesh averaged transverse leakage 
XY

wTL and the transverse leakages at the top and bottom 
surfaces as followings: 
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XY

,0 = Eq. 4.18 
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Where 
BXY,

,lwTL  and 
BXY,

,lwTL  are the transverse leakages at the top and bottom surfaces of 
the considered node l. They are calculated from the mesh averaged transverse leakages of 
neighboring nodes so as to preserve the mesh averaged leakage: 
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Eq. 4.19 

The first, second and third moments of the transverse leakage term are obtained by 
multiplying Eq. 4.17 by its proper Legendre Polynomials and integrating over the spatial 
mesh size. The jth moment of the transverse leakage is then defined as follow: 
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Eq. 4.20 

By properties of the Legendre Polynomials, it comes: 

( ) ( ) ( ) ξξξµξ dPPaLT jjjww ∫
−

=
1

1

jXY, ,
~

 

Eq. 4.21 

And since the transverse leakage is a second order polynomial, the contribution of the 
third moment of the transverse leakage to the source is equal to zero. 

4.3.2.3. 2D-1D modified weighted residual equations 

Given the previous definition for the jth moment of the transverse leakage, the 4 
weighted residual equations become: 
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4.3.3. Solver for the NEM-Sn system of equations 

The flow chart of the NEM-Sn solver is shown in the Fig. 4.1. The NEM-Sn 
solver takes employs a sweeping approach per half-space polar direction. For each spatial 
mesh in the axial direction, a 5 by 5 NEM-Sn response matrix is generated with the Eq. 
4.8 and Eq. 4.22 and solved by direct LU decomposition to determine the φi coefficients 
for the considered axial mesh, polar direction and energy group.  

Given the small size of the NEM-Sn response matrix, a direct solver is acceptable 
in terms of computational cost. Additional inner iterations per fuel rod are aimed at 
converging the scattering source faster. It is a user’s option. 5 is the default value and it 
has been chosen as being the optimum value for LWR applications. 

Finally, the angular fluxes, and consequently, the φi coefficients, are not stored 
for each axial mesh, only the moments of the scalar fluxes are kept to reduce the memory 
requirements of the NEM-Sn solver. The angular flux at the problem boundary, on top 
and at the bottom of the geometry is kept in memory as well.  

4.3.4. Sub-plane Scheme 

The error introduced in each part  of the DeCART solution had been quantified 
for a typical problem in (Cho, Kim et al. 2006).  Specifically, the homogenization error, 
the diffusion approximation error, and the nodal solution error were separately evaluated 
for a LWR problem. The main conclusion of the work presented in the reference above, 
is that the homogenization error is small but the nodal and the diffusion errors can be 
large. The nodal error originates from the second order approximation of the axial 
variation of the radial transverse leakage as well as the fourth order intra-nodal flux 
shape, while the diffusion error is attributable to neglecting the angular dependence of the 
flux in the axial direction. 

The diffusion and the nodal errors can be minimized by introducing a fine mesh 
transport solution for the axial direction that is realized in some codes (Kosaka and 
Takeda 2004; Cho and Lee 2006). However, a fine mesh calculation for the axial 
direction requires an increased computing time. In order to minimize the higher 
computing cost, a sub-plane scheme has been introduced in (Cho, Kim et al. 2007) and 
was successful in  minimizing  the nodal error while maintaining a reasonable computing 
time. The sub-plane scheme has been implemented in the DeCART code and is briefly 
described below, a more complete description is available in (Cho, Kim et al. 2007). 

In the sub-plane scheme, the radial MOC calculation is performed for a thick 
plane whereas the axial calculation is performed with finer planes. Several sub-planes 
belonging to a thick MOC plane share radial equivalent constants which consist of the 
homogenized group constants and the radial transverse leakage determined for the thick 
MOC plane. The axial solver in DeCART which can be either NEM or NEM-Sn, uses a 
fine axial mesh and returns an axial transverse leakage to the radial MOC calculation at 
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each thick plane. The sub-plane scheme introduces much less nodal error while having 
little impact on the axial leakage representation of the radial MOC calculation. 

 

 
Fig. 4.1. NEM-Sn Flow chart for axial transport solver 
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Fig. 4.2. Components and relations of the radial and axial problems in sub-plane scheme 

4.4. Application: C5G7 benchmark 

4.4.1. Benchmark description 

The problem specifications of the C5G7 benchmark consist of the core geometry 
data and the seven group macroscopic cross sections specified for each material 
composition including the UOX and MOX fuel pins and also the control rods. A 
description of the core geometry is shown in the Fig. 4.3, Fig. 4.4 and Fig. 4.5. There are 
three configurations defined: Unrodded, Rodded A, and Rodded B. Among the two 
rodded configurations, Rodded B configuration is more heavily rodded. For all these 
three problems, a reflective boundary condition is applied to the bottom boundary which 
leads to unrealistic conditions, but more challenging problems. The reference solutions 
generated with the MCNP code is available for a comparison. The core effective 
multiplication coefficients keff is computed for each configuration and the pin wise power 
distributions were axially averaged for three equal thicknesses axial slices of the active 
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core for comparison purposes. The base DeCART model consists of four planes; three 
14.28 cm planes for the fuel region and one 21.42 cm plane for the axial reflector region. 
Within each fuel cell, 40 flat source regions consisting of five annular regions and eight 
azimuthal sectors are defined. Two annular regions are assigned in the moderator region. 
The three fuel annular regions have the same area. 

 
Fig. 4.3. Radial Cross Section of the C5G7 core 

 
Fig. 4.4. Axial Cross Section of the C5G7 core 
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Fig. 4.5. Benchmark fuel pin compositions 

4.4.2. Results 

For each of the three configuration of the C5G7 benchmark, the effective 
multiplication coefficient as well as the pinpower are recorded and compared to a 
reference solution obtained with a Monte Carlo based code (MCNP) provided with the 
benchmark results. 

To assess the overall pinpower distribution, the following per cent error measures 
were selected in the benchmark: average pinpower per cent error (AVG), root mean 
square (RMS) of pinpower per cent error distribution, mean relative pinpower per cent 
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error (MRE) and the maximum pinpower per cent error (MAX). The definitions of those 
quantities are shown in Eq. 4.23 below. 
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Eq. 4.23 

Where N is the number of fuel pins, en is the computed relative per cent error for the nth 
pinpower pn. 

This problem was previously solved by the DeCART code by using the diffusion 
NEM option and the solution accuracy was reported (Cho, Kim et al. 2006). The previous 
work showed that the eigenvalue and the power distribution errors are sensitive to the 
axial plane division, but not sensitive to the ray density and the number of azimuthal and 
polar directions considered. Therefore, in the examination of the newly developed axial 
solver, the ray option is fixed by using 4 azimuthal and 2 polar angles for each octant of 
the unit sphere to define the solid angle, and 0.05 cm ray spacing, and the effects of the 
sub-planes and the increase of the number of polar directions in the axial solver are 
examined. 

4.4.2.1. Effect of axial angular discretization 

The effect of the Sn order is first analyzed to determine a proper angular 
discretion for the axial solver. The rodded configuration B is used as test case and its 
MCNP solution as reference. 2, 4, 8 and 16 polar directions are considered for the NEM-
Sn solver. The effective multiplication coefficient and the pinpower comparison are 
shown in Table 4.1. The computing cost, CPU time and memory requirement is shown in 
Table 4.2. The calculations are run on the RESERV cluster of ANL, on four PENTIUM 
3.0 GHz processors. 

In terms of keff and power error, the increase of number of polar directions lead to 
an error reduction compared to the reference solution. The difference of keff goes from 
150 pcm to about 7pcm difference while the maximum power error goes from 7% to 
about 4%. 

The computational time increases more than linearly with the number of polar 
directions considered. The memory allocation required also increases when the number of 
polar directions considered. The increase is due to the additional storage of the angular 
flux at the problem boundary as well as polar dependent transverse leakage. 

Consequently, increasing the number of polar directions from 4 to 16 does not 
improve the agreement with MCNP while it does increase the computing cost. Two polar 
angles per half space, i.e. S4 are enough to obtain a converged axial solution. This 
discretization is chosen for all the following NEM-Sn calculations. 
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Table 4.1. keff and powers errors for the polar angle discretization 

Solver NEM-Sn 

Order of Sn 2 4 8 16 

Reference keff 1.07777 

 keff difference[pcm] -154.9 -10.2 6.5 7.4 

Slice 1 Pin 
Power Error [%] 

Maximum 4.2 2.7 2.4 2.2 

Mean 0.7 0.6 0.6 0.5 

RMS 1.0 0.8 0.7 0.7 

MRE 0.4 0.4 0.3 0.3 

Slice 2 Pin 
Power Error [%] 

Maximum 4.2 2.3 2.1 2.1 

Mean 0.9 0.7 0.6 0.6 

RMS 1.3 0.8 0.8 0.8 

MRE 0.3 0.2 0.2 0.2 

Slice 3 Pin 
Power Error [%] 

Maximum 7.6 6.0 5.8 5.7 

Mean 2.8 2.1 1.9 1.8 

RMS 3.4 2.7 2.5 2.3 

MRE 0.4 0.3 0.3 0.3 

Axially 
Integrated Pin 

Power Error [%] 

Maximum 4.2 2.4 2.1 2.0 

Mean 0.6 0.4 0.4 0.4 

RMS 1.0 0.6 0.5 0.5 

MRE 0.5 0.3 0.3 0.3 

Table 4.2. Computational Requirements for the polar angle discretization 

Solver NEM-Sn 

Order of Sn 2 4 8 16 

CPU time [s] 5594.1 10629 24660 57719 

Memory Requirement [Mb] 286.4 369.4 535.4 867.4 

4.4.2.2. Unrodded Case 

The unrodded configuration is shown in the Fig. 4.6 below. 
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Fig. 4.6. Unrodded Configuration of the C5G7 benchmark 

Table 4.3. keff and power errors for the unrodded configuration of the C5G7MOX 3-D benchmark problem 

Solver NEM NEM-Sn 

Sub-Planes per MOC Plane 1 10 1 10 

Reference keff 1.1431 

keff difference[pcm] -151.3 -95.4 -48.1 -40.2 

Slice 1 Pin 
Power Error 

[%] 

Maximum 2.9 2.1 2.1 2 

Mean 0.4 0.6 0.6 0.7 

RMS 0.7 0.7 0.7 0.8 

MRE 0.1 0.3 0.3 0.3 

Slice 2 Pin 
Power Error 

[%] 

Maximum 2.8 2.4 2.3 2.3 

Mean 0.5 0.5 0.3 0.5 

RMS 0.6 0.6 0.5 0.6 

MRE 0.1 0.2 0.1 0.2 

Slice 3 Pin 
Power Error 

[%] 

Maximum 2.5 4.1 3.2 4.1 

Mean 0.5 2 1.2 2.1 

RMS 0.7 2.2 1.3 2.2 

MRE 0.1 0.4 0.2 0.4 

Axially 
Integrated 
Pin Power 
Error [%] 

Maximum 2.7 2.5 2.3 2.4 

Mean 0.4 0.4 0.3 0.4 

RMS 0.6 0.6 0.5 0.5 

MRE 0.3 0.3 0.2 0.3 
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It is a fairly homogeneous geometry; the control rod is not inserted in the active 
fuel region, only in the upper water reflector. The computational results for this 
benchmark problem are summarized in the Table 4.3. 

By increasing the number of sub-planes to 10 per thick MOC plane, the nodal 
error is reduced, as shown by the DeCART calculation using the NEM solver. keff is 
reduced from 150 to about 95 pcm, the axially averaged maximum error being reduced 
from 2.7 to 2.5%. It is worthwhile to note that the local maximum power error increases 
from 2.5% to 4%. However, this is not significant because it occurs at a very low power 
region (slice 3). The absolute error is actually reduced. 

The remaining error is due to diffusion theory and is reduced when the new NEM-
Sn solver is used. keff is reduced from 95 to about 40 pcm, the axially averaged maximum 
error being reduced from 2.5 to 2.4%. 

Overall, the improvement in terms of keff and pinpower prediction is small. It is 
expected for such a homogeneous case, where the diffusion theory is enough to capture 
correctly the spatial variation of the neutron flux. 

4.4.2.3. Rodded Case A 

The rodded configuration A is shown in the Fig. 4.7 below. 

 

 
Fig. 4.7. Rodded Configuration A of the C5G7 benchmark 

It is a harder problem to model, the control rod is slightly inserted in the active 
fuel region of the inner most fuel assembly as well as in the upper water reflector. The 
computational results for this benchmark problem are summarized in the Table 4.4. 

By increasing the number of sub-planes to 10 per MOC plane, the nodal error is 
reduced, as shown by the DeCART calculation using the NEM solver. keff is reduced from 
93 to about 74 pcm, the axially averaged maximum error remaining constant. It is 
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worthwhile to note that the local maximum power error increases from 2.3% to 6%. 
However, this is not very significant because it occurs at a very low power region (slice 
3), and is due to the relative nature of the error.  

Table 4.4. keff and power errors for the rodded configuration A of the C5G7MOX 3-D benchmark problem 

Solver NEM NEM-Sn 

Sub-Planes per MOC Plane 1 10 1 10 

Reference keff 1.1282 

keff difference[pcm] -93.1 -74.5 3.5 -11.5 

Slice 1 Pin 
Power Error 

[%] 

Maximum 2.0 1.6 1.4 1.6 

Mean 0.4 0.6 0.6 0.5 

RMS 0.5 0.7 0.7 0.6 

MRE 0.1 0.3 0.3 0.2 

Slice 2 Pin 
Power Error 

[%] 

Maximum 2.5 2.4 2.1 2.3 

Mean 0.5 0.4 0.5 0.5 

RMS 0.7 0.6 0.7 0.6 

MRE 0.2 0.1 0.2 0.2 

Slice 3 Pin 
Power Error 

[%] 

Maximum 2.3 3.6 2.6 3 

Mean 0.7 1.6 0.8 1.3 

RMS 0.9 1.9 1 1.4 

MRE 0.1 0.2 0.1 0.2 

Axially 
Integrated 
Pin Power 
Error [%] 

Maximum 2.1 2.2 1.8 2.1 

Mean 0.3 0.4 0.3 0.3 

RMS 0.5 0.5 0.4 0.5 

MRE 0.3 0.3 0.2 0.3 

The remaining error is due to the diffusion theory and is reduced when the new 
NEM-Sn solver is used. keff is reduced from 74 to about 11 pcm. The distortions 
introduced in the axial neutron flux by the partially inserted control rod, are more severe 
than in the unrodded case and the diffusion theory is not capable of capturing them. The 
NEM-Sn solver improves the accuracy of the calculation. 

4.4.2.4. Rodded Case B 

The rodded configuration B is shown in the Fig. 4.8 below. 
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Fig. 4.8. Rodded Configuration B of the C5G7 benchmark 

Table 4.5. keff and power errors for the rodded configuration A of the C5G7MOX 3-D benchmark problem 

  NEM NEM-Sn 

Sub-Planes per MOC Plane 1 10 1 10 

Reference keff 1.07777 

 keff difference[pcm] -95.6 -110.4 63.1 -12.1 

Slice 1 Pin 
Power Error 

[%] 

Maximum 2.8 2.6 2.0 2.6 

Mean 0.5 0.4 0.6 0.6 

RMS 0.7 0.6 0.8 0.8 

MRE 0.3 0.2 0.4 0.3 

Slice 2 Pin 
Power Error 

[%] 

Maximum 2.5 2.6 1.9 2.2 

Mean 0.5 0.6 0.4 0.6 

RMS 0.7 0.8 0.6 0.8 

MRE 0.1 0.1 0.1 0.2 

Slice 3 Pin 
Power Error 

[%] 

Maximum 6.3 4.5 7.5 5.8 

Mean 2.2 1.6 2.5 2.0 

RMS 2.9 1.9 3.3 2.5 

MRE 0.3 0.2 0.4 0.3 

Axially 
Integrated 
Pin Power 
Error [%] 

Maximum 2.4 2.7 1.9 2.3 

Mean 0.4 0.5 0.3 0.4 

RMS 0.6 0.7 0.5 0.6 

MRE 0.3 0.4 0.3 0.3 

This is the hardest problem of the benchmark to model. The core is heavily 
rodded with the control rod inserted in the active fuel region of the inner most UO2 
assembly and both of its MOX neighbor. The computational results for this benchmark 
problem are summarized in the Table 4.5. 
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By increasing the number of sub-planes to 10 per thick MOC plane, the nodal 
error is increased, as shown by the DeCART calculation using the NEM solver. keff is 
increased from 95 to about 110 pcm. This unexpected behavior comes from the additional 
nodal error introduced by the heavily rodded configuration. The axially averaged 
maximum error also increases. The remaining error is due to diffusion theory and is 
reduced when the new NEM-Sn solver is used. keff is reduced from 1104 to about 12 pcm, 
the axially averaged maximum error being reduced from 2.7 to 2.3 

The distortions introduced in the axial neutron flux by the heavily rodded case, 
are more severe than in the rodded case A and the diffusion theory is not capable of 
capturing them. The NEM-Sn solver improves the accuracy of the calculation. 

4.5. Summary 

The computational results for this benchmark problem are summarized in Table 
4.3, Table 4.4 and Table 4.5 for each of the problem configurations. In the eigenvalue 
error, the diffusion approximation shows about -95, -74 and -110 pcm errors for the 
unrodded, rodded configuration A and B, respectively. These eigenvalue errors decrease 
to about -40, -11 and -12 pcm by using the NEM-Sn solver. In the unrodded and rodded 
A configurations, the introduction of S4 instead of a diffusion approximation has a trivial 
effect on the pin power distribution. However, in the rodded configuration B where the 
control rods are heavily inserted and a large error is shown for the diffusion 
approximation, the introduction of the S4 approximation is required.  

The implementation of the sub-plane scheme in DeCART also helped reduce the 
nodal error and keep the axial MOC mesh coarse which made it possible to reduce the 
computational cost of the 3-D calculations. 
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5. Application: Full core Reactivity Initiated Accident Calculation. 

The overarching goal of the dissertation is to perform a full core transient analysis 
of a realistic RIA with the DeCART code and to compare its results with those obtained 
by the multi-step methodology to evaluate the benefits of the higher fidelity of the 
DeCART formulation. The multi-step methodology is represented by the U.S. NRC core 
simulator, PARCS. 

The chapter is divided in three sections. In the first section, the handling of the 
thermal hydraulic feedbacks in DeCART during transient calculations is discussed. The 
second part is dedicated to the multi-steps methodology, its general approach to perform 
transient calculations and its main approximations. Finally, in the third part, a full core 
RIA is presented and its analysis with DeCART and PARCS summarized. 

5.1. DeCART Transient Calculation with Thermal Hydraulic Feedbacks 

In this section, the methodology in DeCART to handle time dependent thermal 
hydraulic feedback is discussed. One of the major contributions of the dissertation was to 
properly account for the time-dependent fuel and moderator temperatures as well as the 
moderator density provided by the thermal hydraulic solver. First, the theory involved in 
the subgroup methodology to deal with non uniform temperature field is reviewed. Then 
the new DeCART transient calculation flow is presented. 

5.1.1. Uniform fuel temperature case 

The spatial and energy self shielding treatment in DeCART, through the subgroup 
method, has been described in details in Chapter 2. However, the temperature treatment 
has not being addressed yet. Recall from the Chapter 2, the macroscopic absorption cross 
section is obtained as follow: 
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Eq. 5.1 

With 
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( )anepbnbn NN σσλσ Σ+==Σ  
Eq. 5.2 

anσ represents the subgroup level of absorption n, and bnσ , its associated background 

cross section. In DeCART, sets of anσ  and wn for each isotope are available for five 

different temperatures. However, the same anσ are used for all temperatures so only the 
wn depend on the temperature through a linear interpolation according to the square root 
of the homogeneous temperature T. 
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5.1.2. Non Uniform temperature treatment 

As already described in Chapter 2, the equivalence cross section, eΣ , is 

determined by a set of fixed source transport calculations for fixed level of absorption mσ  
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Eq. 5.3 

The equivalence cross section is a function of its resulting heterogeneous fluxes 

gφ as seen in Eq. 5.4. 
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Eq. 5.4 

However, the use of the constant subgroup level σm throughout the domain 
becomes illogical in the non uniform temperature case. Now the cross section level must 
be adjusted depending on the temperature of the region. In DeCART, the temperature 
dependence is carried by the subgroup weight rather than by the subgroup level. It is thus 
not straightforward to incorporate the temperature dependence of the resonance cross 
section in Eq. 5.4. As an approximate measure to this problem is provided in (Joo, Beom 
et al. 2005). A forced subgroup level adjustment scheme is proposed to adjust the 
subgroup level using the ratio of the subgroup weights. Specifically, σm in Eq. 5.3 is 
replaced by the following: 
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Eq. 5.5 

where Tk and Tref are the temperature of region k and the average temperature, 
respectively. The subgroup level is adjusted such that the product of weight and the 
subgroup level is preserved. 
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And the temperature effect on the macroscopic cross sections is accounted for as: 
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With 
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Eq. 5.8 

This process represents the detailed treatment of the temperature dependence of 
the macroscopic cross sections. 
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5.1.3. Local temperature feedbacks in DeCART 

The typical neutronic mesh used in DeCART is shown in the Fig. 5.1. The fuel 
region is meshed in 24 regions, 3 rings and 8 azimuthal sectors. The cladding is divided 
in 8 azimuthal regions and the moderator in 2 rings for a total of 16 regions. 

Because the subgroup method can handle non uniform temperature distribution, 
as described in the previous sections, a different temperature can be assigned to each 
region for which a macroscopic cross section is computed. Currently, in DeCART, two 
options are available. In the first one, a set of macroscopic cross sections is defined for 
each annular ring depicted in  Fig. 5.1. The first option is the default option of the code. 
The second option allows evaluating cross sections for each sector of the spatial mesh 
described in the Fig. 5.1. 

 
Fig. 5.1. Typical Neutronic Mesh of the DeCART code 

5.1.4. Temperature dependent macroscopic cross section for transient 
applications 

The approach used for steady state calculation described in the previous sections 
can be applied readily to transient calculations if a time dependent temperature 
distribution is provided to DeCART. Currently, there are two options to specify thermal 
hydraulic feedbacks, both for steady-state and transient applications. The first one is a 
solver internal to DeCART and described in the section 5.3.4 below. The second option is 
to use the CFD code, STAR-CD (CD-adapco 2004) to provide time dependent thermal 
hydraulic feedbacks. The coupling of DeCART and STAR-CD has been successfully 
performed for both steady state (Weber, Sofu et al. 2006) and transient (Hursin 2008) 
applications.  

The recalculation of the equivalence cross section is needed only when the 
average core temperature changes significantly. It is a user defined parameter. For the 
RIA, since only local fuel temperatures change dramatically but not the overall core 
temperature, the effect on the equivalence cross sections is small and updating them is 
not necessary. The local temperature changes are mostly taken into account through the 
temperature dependent subgroup weight wn(T). The actual flow chart of a transient 
calculation with temperature feedbacks is shown in the Fig. 5.2.  
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Fig. 5.2. DeCART Flow chart for transient calculation with thermal hydraulic feedbacks 

5.2. Overview of the multi-step methodology 

In order to understand the differences observed between PARCS and DeCART 
for core-wide transient calculations, and more specifically for RIA analyses, it is 
worthwhile to describe the multi-steps methodology in details. 

5.2.1. General Approach 

The neutronics analysis of a RIA transient requires a multi-steps calculation. The 
first step involves the generation of the homogenized cross sections by a lattice code for 
the range of conditions (temperatures, burnup, control rod position, etc...) anticipated 
during the transient. For each different state of the core, a two dimensional, single 
assembly transport calculation with reflective boundary condition is performed. The 
principle outcome of each calculation is the heterogeneous, fine energy group scalar 
fluxes that are used to collapse the fine energy group structure cross section library into a 
coarse energy group structure (usually two different neutron energies are considered) 
homogenized macroscopic cross sections for each fuel assembly and to generate the 
kinetics parameters (delayed neutron fractions, group velocities, delayed neutron decay 
constants). The heterogeneous surface fluxes are used to generate the assembly 
discontinuity factors (ADF) and the heterogeneous flux within the assembly is used to 
generate the form factors needed to perform the pinpower reconstruction in order to 
determine the fuel rod wise power distribution within the assembly. 

The second step is to perform a core calculation with the standard coarse mesh 
nodal methods using the diffusion approximation. The geometry is homogenized at the 
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assembly level so that the local fuel rod information is not retained. The set of 
macroscopic cross sections determined during the first step is provided to the core 
simulator that interpolates the nuclear data (macroscopic cross sections and kinetic 
parameters) between all state points (temperature, burnup, etc...) to determine the nuclear 
data that corresponds to the local specific conditions in each node of the core during the 
transient. This process is illustrated in the Fig. 5.3.  

The third step consists of determining fuel rod level information out of the 
assembly wise data coming from the second step. After the core calculation, knowledge 
of fuel rod information must be inferred from the assembly-wise information through 
some type of fuel rod reconstruction. The pinpower reconstruction is detailed in the 
section 5.2.2 below. It usually involves form functions which are pre-calculated at the 
assembly level during the lattice calculations, i.e. the first step. These forms functions do 
not represent exactly the conditions at the fuel rod level, especially during fast evolving 
transient events. 

 

Fig. 5.3. Multi-steps methodology for core-wide transient analysis 

 

In summary, the multi-steps methodology to analyze a RIA uses the following 
approximations: 

• Diffusion theory. 
• Coarse neutron energy discretization. 
• Geometry homogenization at the assembly level. 
• Fuel rod power reconstruction obtained through pre-calculated form functions 

obtained at the assembly level for steady state conditions. 

5.2.2. PARCS Code 

The PARCS code (Downar, Xu et al. 2006) represents the core simulator of the 
multi-steps methodology and performs step two and three described in the previous 
section. The PARCS code is used in the analyses of eigenvalue, transient and depletion 
problems in LWRs. As far as the dimensionality is concerned, PARCS is capable of 
performing calculations in any dimension, i.e., 0-D, 1- D, 2-D, and 3-D. PARCS uses the 
standard coarse mesh nodal methods where the geometry is homogenized at the assembly 
level. A library of macroscopic cross sections determined before the calculation for the 
anticipated range of conditions encountered is provided to PARCS, which interpolates the 
nuclear data between all state variables (burnup, control rod position, boron 
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concentration, fuel temperature, moderator temperature and density.) to determine the 
nuclear data that corresponds to the specific conditions in each assembly of the core 
during the calculation. 

The PARCS spatial kinetics calculation involves the solution of the time-
dependent neutron balance equations. The first step in the solution process is to discretize 
the balance equations in both time and space. For the temporal discretization, the theta-
method with exponential transformation is employed in PARCS along with a second-
order analytic precursor integration technique. The temporal discretization scheme allows 
sufficiently large time step sizes even in severe transients involving super-prompt critical 
reactivity insertion. For spatial discretization, the efficient nonlinear nodal method is 
employed in which the coarse mesh finite difference (CMFD) problems and the local 
two-node problems are repetitively solved during the course of the nonlinear iteration. 
The temporal and spatial differencing of the spatial kinetics equation results in a fixed 
source type of the problem at every time step. 

The solution of a transient fixed source problem (TFSP) consists of the 
simultaneous solutions of the CMFD, two-node, and thermal-hydraulics problems. The 
CMFD problem involves a linear system with a block penta-diagonal matrix in three-
dimensional problems. In PARCS, the solution of the linear system is obtained using a 
Krylov subspace method. 

The two-node problems are solved to correct for the discretization error in the 
nodal interface current resulting from the finite difference approximation in a coarse 
mesh structure. They can be solved using any one of a number of so-called advanced 
nodal methods. In PARCS, the nodal expansion method (NEM) and the analytic nodal 
method (ANM) are used to obtain the two-node solution. Because the NEM can provide a 
more robust and faster solution than ANM, it has been preferred in many other reactor 
physics codes even though it is less accurate. However, the ANM is used as the primary 
nodal solver in PARCS because of the improvements which were used to produce a 
robust solution regardless of the nodal condition. 

5.2.3. Pinpower Reconstruction 

After the core calculation, knowledge of fuel rod power distribution must be 
inferred from the assembly-wise information through some type of fuel rod power 
reconstruction. During the second step of the multi-steps methodology, assembly 
averaged quantities are computed and a global coarse mesh solution is obtained, usually 
few energy group wise scalar fluxes.The pinpower reconstruction process is illustrated in 
the Fig. 5.4.  

Depending on the nodal method used during the second step, NEM, ANM, or 
even finite difference, it is possible to reconstruct the spatial variation of the scalar flux 
within the node. As discussed in Chapter 2, the NEM is based on a 4th order polynomial 
expansion of the scalar flux, as shown in the Eq. 5.9. 
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Given its flux moments,iφ , by product of the core calculation, it is possible to get 

information about the local scalar flux, ( )zyx ,,φ . However, the flux distribution ( )zyx ,,φ  
is merely a shape and does not take into account the local heterogeneities, guide tube, 
different fuel enrichments, etc… 

×

1 4 2 43

Global coarse mesh nodal 
solution

Pin power distribution for a 
heterogeneous fuel assembly

Pre-calculated pin 
factors

Reconstructed intra-
assembly flux distribution

 
Fig. 5.4. Pinpower Reconstruction with multi-steps methodology 

The effect of local heterogeneities is determined by the lattice code during the 
first step of the calculations. Form functions are computed assuming a flat assembly 
power and are superposed on the shape ,( )zyx ,,φ  to reconstruct the local pinpower. 

Even though, the form functions are generated for a wide range of thermal 
hydraulic and exposure conditions, they suffer from the same limitations than the 
macroscopic cross sections, i.e. their generation in 2-D, at the assembly level, assuming 
reflective boundary conditions and an approximate axial leakage. Consequently, the 
pinpower reconstruction process introduces approximation in the multi-steps 
methodology. 

5.2.4. Handling of Thermal Hydraulic Feedbacks 

Two different treatments for treating thermal hydraulic feedback are available in 
PARCS and are representative of the general approach used by core simulators. Below is 
described the native PARCS cross section handling. A more sophisticated approach, the 
PARCS cross section library tool, GenPMAXS (Xu and Downar 2005) was used for the 
calculation reported here, but fundamentally, both approaches are similar. The native 
treatment is interesting to understand the basics of how the cross sections are handled in a 
core simulator and how it differs from the DeCART treatment. 

The first parameter treated is the local burnup of the fuel. In PARCS, only node 
wise macroscopic cross sections obtained for the node wise burnup distribution at the 
burnup state point of interest are necessary. The macroscopic cross sections are 
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functionalized on state parameters such as coolant density and boron concentration to 
incorporate the feedback and/or boron effects. 

A set of base macroscopic cross sections are generated during the first step of the 
calculation, at a reference set of thermal hydraulic conditions, referred to as 0 in the Eq. 
5.10. The macroscopic cross sections are assigned to each composition and four sets of 
partial (derivative) cross sections are also provided from the first calculation step, at the 
reference conditions to describe the boron and the T-H feedback effects. The thermal 
hydraulic effects considered are Doppler temperature TF, moderator temperature TM and 
moderator density ρM. The four partial group constant sets are used in the following way 
based on the assumption of linear variation of cross section over the state variables: 
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Eq. 5.10 

where B is the boron concentration in ppm and the Doppler temperature is defined as a 
weighted average as: 

( ) PS
F

CL
FF TTT ϖω −+= 1  Eq. 5.11 

with the superscripts CL and PS designating centerline and pellet surface, respectively. In 
the PARCS model, the effective Doppler temperature is obtained by ω equal to 
0.3(Finnemann and Bauer 1994). 

After the T-H effect is incorporated, the cross sections are modified to incorporate 
the control rod effects as follows: 

( ) cUR ∆Σ+Σ=Σ αξξ
 Eq. 5.12 

Where ξ is the nodal volume fraction of control rod, α is the flux weighting factor that 
accounts for the local flux depression in the control rod region, and Σc is the cross section 
change due to the control rod when it is fully inserted into the node and is given as a 
composition dependent input. 

In terms of RIA analysis, the main difference between PARCS and DeCART is 
the way Doppler feedbacks are treated. As stated in section 5.1.3, local fuel temperatures 
are provided locally in DeCART and taken into account through changes in the subgroup 
parameters. In PARCS, a node averaged effective Doppler temperature, as defined in Eq. 
5.11, is provided from the thermal hydraulic solver. This represents one of the most 
important differences between PARCS and DeCART in terms of RIA modeling. 



76 
 

5.3. Full Core PWR Model 

5.3.1. PWR core model description 

Assembly Layout
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Fig. 5.5. Assembly and core layout for the 1/8th PWR core model 

The model used in the RIA analysis was based on a typical 4-loop Westinghouse 
PWR. The core is a 3 batch core consisting of 193 fuel assemblies. Symmetric 1/8th core 
loading was assumed in order to minimize the computational burden. The core model 
used by PARCS and DeCART is shown in the Fig. 5.5 which also shows the position of 
the shutdown and control rod banks. The circle in Fig. 5.5 represents the control rod 
assembly that is to be ejected during the RIA analysis. The core design specifications are 
summarized in the Table 5.2. The PWR assembly uses the standard Westinghouse 
integrated fuel burnable absorber (IFBA) pins around each of the guide tubes. Three 
unique pin cell geometries are used to describe a normal fuel pin, an IFBA fuel pin, and a 
guide tube, as shown in Fig. 5.6. Their geometrical specifications are provided in the 
Table 5.1. An axially uniform U-235 enrichment of 4.2% is used for the fuel and all the 
fuel pins and IFBA fuel pins have the same enrichment. 

The core geometry is divided into 22 axial planes of equal thickness (18.288 cm), 
for a total core height of about 402 cm. The active fuel height is spanned by 20 axial 
segments for a total length of 366 cm. The fuel is surrounded on the top and bottom by an 
axial water reflector. The radial discretization in the DeCART code, within each fuel rod 
and guide tube is shown previously in Fig. 5.1. For PARCS, the radial discretization 
consists of each fuel assembly being divided into four equal area nodes. 
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Table 5.1. Geometry Specifications [cm] 

Pin Type 

P r1 r2 r3 t 

Fuel Pin 
Pitch 

Fuel Pellet Outer 
radius 

Clad Outer 
Radius 

IFBA Layer Outer 
Radius 

Cladding 
Thickness 

Fuel Pin 1.26 0.3951 0.4583 --- 0.0573 

IFBA Pin 1.26 0.3951 0.4583 0.3991 0.0573 

Guide Tube 1.26 --- 0.6032 --- 0.0408 

Table 5.2. Core Parameters Specifications 

Parameter Value 

Number of Fuel Assemblies 193 

Pin Pitch [cm] 1.26 

Assembly Pitch [cm] 21.42 

Active Core Height [cm] 365.76 

Baffle Thickness [cm] 2.52 

Nominal Power [MWth] 3565 

System Pressure [MPa] 15.5 

Inlet Temperature [°C] 286.85 

Core Flow Rate [kg/s] 15849.4 

Cycle Length [EFPD] 352.95 

 

   
a) Fuel Rod Geometry b) IFBA Fuel Rod Geometry c) Guide Tube Geometry 

Fig. 5.6. Geometry Description of the components of a PWR assembly 

Prior to describing the core loading pattern and the method used to determine the 
equilibrium core composition, it is worthwhile to examine the computational 
requirements of a 1/8th core steady state calculation with DeCART.  The data described 
below was previously reported by (Kochunas 2008). The computational requirements of a 
3-D problem in DeCART are reduced by using planar decomposition and solving each 
plane on a separate processor. However, the data for each plane problem must be 
contained on each parallel process for a 3-D calculation. The modeling requirements 
necessary for performing a 1/8th core calculation are shown in Table 5.3, with most of 
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the information being provided on a per plane basis. Note, for a quarter-core these values 
roughly double, and for a full core model with no symmetry the requirements would be 
approximately 8 times what is shown in the Table. The 3-D calculations that were 
performed were executed on the RESERV cluster at ANL which has 100 nodes each with 
2 GB of memory and a 3.4 GHz Intel Pentium 4 processors. The calculations used 22 
processors (one for each plane in the model). 

Table 5.3. Computational requirements for 1/8th Core Model 

Parameter Value 

Number of Energy Groups 47 

Number of Axial Planes 22 

Flat Source Regions per plane ~461,000 

CMFD Nodes per plane 18,207 

Depletable Regions per plane 15,000-20,000 

Rays per plane ~32,000 

Ray segments per plane ~16,000,000 

Isotopes tracked per region 510 

Memory Required per plane ~1.6 GB 

Execution time 88h 

CPU time 1936 

5.3.2. Generation of an equilibrium core composition 

In order to generate a realistic fuel composition for the once and twice burned 
assemblies of the model, an equilibrium core composition calculation was performed 
with DeCART prior to the transient calculations. The primary outcome of this calculation 
was the isotopic compositions of each intrapin flat source region of the 1/8th core model 
as well as a 3D assembly averaged exposure map which is used as input by PARCS.  

5.3.2.1. Methodology 

An equilibrium core calculation scheme with DeCART was developed by 
(Kochunas 2008). The objective was to determine the unique equilibrium composition 
corresponding to a specified fuel loading and fuel shuffling pattern. The algorithm 
implemented in DeCART uses a sequence of repetitive cycle depletions with the same 
fuel shuffling pattern until convergence of the fuel rod power prediction, i.e. the fuel rod 
power prediction from one cycle to the next is less than a user specified convergence 
criteria (10-2 was used in the search here). 

The loading pattern and shuffling scheme used in the present study are shown in 
Fig. 5.7. The latter indicates the path along which the assembly will be shuffled during its 
life in the core and the number indicates its present cycle of residence in the core (e.g. 1 
is the first cycle in residence and 3 is the third cycle in residence). The initial guess was 
determined from a single 3-D assembly depletion with radially reflective boundary 
condition and a void boundary condition on the top and bottom of the core. 
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Fig. 5.7. Loading pattern and shuffling scheme for the PWR 1/8th core model 

For the loading pattern shown here, the fresh assemblies are on the periphery to 
limit the pinpower peaking at the center of the core; the once and twice burned 
assemblies are arranged in a checkerboard elsewhere in the core. It should be noted that 
no optimization was performed in the design of the loading pattern. It was simply chosen 
arbitrarily to be a realistic representative example since actual designs are typically 
proprietary. 

The primary outcome of the equilibrium core composition calculation is the local 
fuel composition for the burned assemblies in DeCART as well as a 3-D exposure map 
which is used in PARCS.  As noted earlier, the emphasis was to insure consistency 
between the burnup data used PARCS and DeCART. 

5.3.2.2. Results 

An important quantity that will be presented extensively during the next few 
sections is the relative difference of a certain quantity Q between DeCART and PARCS. 
The relative difference R in terms of Q is given in equation 5.13: 

100DeCART PARCS

DeCART

Q Q
R

Q

−
= ×

 

Eq. 5.13 

Every time a relative difference is reported, the definition of Equation 5.13 is used 
in which the relative difference is expressed in %. 
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5.3.2.2.1. Convergence 

The convergence behavior of the equilibrium Beginning of Cycle (BOC) power 
distributions is first described for the given core design. The local maximum absolute and 
relative differences of the relative pin power distribution in the entire core and also the 
percent RMS of the relative differences is shown in Fig. 5.8. These differences are 
calculated from the solutions of successive iterations.  

The convergence criterion chosen for the equilibrium core was an RMS less than 
1% because this equates to a maximum local relative difference in pin power of less than 
0.1% and an absolute difference in the relative pin powers of less than 0.01. These 
differences in the relative pin power distribution are generally considered small for most 
code to code comparisons, and given the nature of the computation time of these 
calculations this level of error in the solution was deemed acceptable. The total 
computation time of the 3-D equilibrium core calculation was about 22 days. 

 

 
Fig. 5.8. Equilibrium calculation convergence behavior 

 



81 
 

 
Fig. 5.9. BOC core power distributions - axial power variation and axially integrated radial variation - 

 
Fig. 5.10. EOC core power distributions - axial power variation and axially integrated radial variation - 

5.3.2.2.2. Equilibrium core power distribution 

In this section the evolution of the power distributions and peaking factors during 
the reactor cycle are examined. Fig. 5.9 and Fig. 5.10 show the radially integrated axial 
power shape and axially integrated radial assembly power distribution for the 1/8th core 
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at the BOC and End of Cycle (EOC), respectively. DeCART provides this level of detail 
without having to use homogenization or de-homogenization (pin power reconstruction) 
techniques such as used in PARCS and other industry standard core simulators.  

It is worth noting that the radial power distributions in the previous figures are 
somewhat atypical since there is high peaking in an assembly close to the periphery of 
the core. As noted earlier, because of the computational burden in the DeCART 
calculation, no attempt was made to optimize the loading pattern to reduce this peaking. 
However, even though this result makes the reactor model less realistic, it does not 
detract from the primary goal of this study which is to perform a code-to-code 
comparison of current industry standard and higher fidelity methods.  

  
a) BOC burnup map [MWd/kgHM] b) EOC burnup map [MWd/kgHM] 

Fig. 5.11. Axially integrated exposure map at BOC and EOC 

As shown in Fig. 5.10, the axially integrated radial pinpower distribution tends to 
flatten during the cycle and the power peaks tends to migrate closer to the periphery of 
the core. The current methodology used in codes such as PARCS typically has difficulty 
correctly describing the spatial variation of the pin power during depletion. The evolution 
of the axial power variation is typical of a PWR, with a relatively flat axial shape 
becoming "double-peaked" at the end of the cycle. The central deep in the axial power 
shape is due to higher burnup at the early part of the fuel residence in the core. Finally, a 
quantity of particular interest throughout the equilibrium core calculation is the burnup 
distribution. Fig. 5.11 shows the fuel rod axially integrated radial burnup distribution at 
the beginning and end of reactor cycle. One of the particular advantages of higher fidelity 
methods such as DeCART is to provide the detailed evolution of the exposure within fuel 
pins in the assembly. The once burned fuel assemblies show especially strong spatial 
exposure gradients with the maximum exposure at BOC of about 41 MWd/kgHM and 53 
MWd/kgHM at EOC. At the end of the equilibrium cycle calculation, the DeCART 
output is processed with a MATLAB script to generate a 3D exposure map at the 
assembly level for the BOC and EOC. This provides PARCS with exposure data that is 
consistent with DeCART and insures consistency in the initial conditions for the transient 
calculations. 
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5.3.3. Cross Sections and Kinetic Parameters Generation for PARCS 

In order to assure consistency in the nuclear data between PARCS and DeCART, 
it is desirable to use DeCART as a lattice code to generate the kinetic parameters and 
homogenized cross sections for PARCS. Part of the dissertation work involved the 
development of a lattice calculation capability in DeCART as well as an interface with 
the PARCS cross section library tool, GenPMAXS. The following sections described 
how the homogenisation and condensation processes required to generate the 
macroscopic cross sections library for PARCS are performed. 

5.3.3.1. Generation of the Homogeneous Parameters 

To generate a few group macroscopic cross sections, 2 steps are required. The 
first step is a homogenization step, where the spatial dependence of the cross section is 
integrated over an assembly in order to obtain an assembly-wise cross section. The fine 
energy group structure is retained. The cross section is given by a flux-volume weighted 
average as seen in the Eq. 5.14, in order to preserve the reaction rates over a given 
assembly. 
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Eq. 5.14 

The second step is a condensation step to reduce the fine energy group structure to 
a coarse one, involving typically few energy groups. In the considered model, two coarse 
energy group are used. The goal is to take into account the energy dependence of the 
cross section. The energy cut-off is set to 3.9eV. Similarly to the homogenization step, 
the macroscopic cross section is obtained by a flux-volume weighted average, the flux 
being the assembly averaged flux. 

The previous 2-steps process is valid for the following macroscopic cross 
sections: absorption, total, transport, fission, υ times fission, kappa times fission and 
scattering matrix. Chi and the diffusion coefficient treatment remain to be determined. 

Chi is obtained in a similar fashion than the previous macroscopic cross sections, 
the only difference being that the average is a fission-volume weighted average instead of 
a flux-volume weighted average as seen in the Eq. 5.14. 
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The diffusion coefficient is the most complex macroscopic cross sections to 
obtain since preserving the reaction rates as it is done for the other quantities, doesn't 
produce accurate results. The common approach to generate diffusion coefficients is 
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through critical spectrum calculation, the diffusion coefficient being a byproduct of such 
a calculation. 

5.3.3.2. Critical Spectrum Calculation 

The critical spectrum calculation is needed in a lattice code in order to correct the 
fact that the lattice calculation is performed at the assembly level, in 2-D, with reflective 
boundary condition. The spectrum then corresponds to an infinite medium case that may 
be significantly different from the local spectrum inside a reactor because of the inter 
assembly leakage. 

The critical spectrum is obtained by solving the B1 equation (Stamm'Ler and 
Abbate 1983). A B1 equation solver has been implemented in DeCART. The main 
outcome of such a solver is a 0-D critical spectrum with a fine energy group structure and 
a critical buckling value. The assembly averaged diffusion coefficient is then defined by 
Eq. 5.16: 
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φ
=

 

Eq. 5.16 

With Jg the net current, gφ  the fine energy group structure critical flux and Bcrit, the 

critical buckling. 

In order to obtain the coarse group diffusion coefficient, a condensation step is 
required, and the same flux weighted average is used. In section 5.3.3.1, the generation of 
the macroscopic cross sections needed by PARCS has been performed by 
homogenization and condensation using the infinite spectrum flux. In order to take into 
account the leakage in the lattice calculation, it is possible to homogenize and condense 
the microscopic cross sections using the critical spectrum flux instead of the infinite one. 
Since the critical flux is a 0-D flux and that some spatial variation of the flux is needed 
especially in the homogenization step, the region-wise, fine energy group structure scalar 
flux is obtained from the infinite one using Eq. 5.17. 
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Eq. 5.17 

g
critk,φ and g

k ∞,φ  are the region-wise, fine energy group structure critical and infinite 

spectrum scalar flux, respectively. ( )2
, crit

g
critk Bφ  is the critical spectrum flux corresponding 

to the critical buckling and ( )0,
g

critkφ  is the critical spectrum flux corresponding to 0 

buckling. 

5.3.3.3. Kinetic Parameters 

The remaining information to be generated by a lattice code is the kinetic 
parameters, i.e. the neutron velocities and the delayed neutron fractions. Those quantities 
were already defined in Chapter 2. The generation of the assembly-wise data used by 
PARCS is described below. 
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In order to generate few group velocities, the homogenization and condensation 
processes described in section 5.3.3.1 are used. The generation of the delayed neutron 
fraction for a coarse energy group structure and homogenized geometry is difficult. In 
order to take into account delayed neutron leakage and their energy dependence, a 
complex treatment needs to be added to the usual the isotopic fission source weighting 
presented in Chapter 2. Weighting the physical delayed neutron fraction by the 
importance function, i.e. the adjoint of the infinite spectrum, region-wise, fine energy 
group structure scalar flux, as is shown in Eq. 5.18, takes the energy dependence as well 
as the spatial variation of the flux within the assembly into account. However, the inter-
assembly leakage is not factored in, since the lattice calculation is performed at the 
assembly level with reflective boundary condition. 
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Eq. 5.18 

Where im
g

,φ  and *
,gmφ  are the region-wise, fine energy group structure, infinite spectrum 

fluxes and its adjoint. In order to take into account the inter- assembly leakage, the 
energy dependence of the delayed neutron, and to use the critical flux instead of the 
infinite one, the following averaging formula (Eq. 5.19) is used to determine the effective 
delayed neutron fraction: 
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Eq. 5.19 

Where im
g

,φ  is the region-wise, fine energy group structure, infinite spectrum 

fluxes and ( )2*
, crgm Bφ  the adjoint to the fine energy group structure critical spectrum flux. 

In order to compute the latter quantity, a module has been added to the DeCART 
code to calculate the adjoint of the critical spectrum flux. The DeCART has been 
developed to be able to perform all the needed functions to generate the macroscopic 
cross sections and kinetic parameters needed by a core simulator, i.e. by PARCS, to run 
any kind of steady-state or transient calculation. Finally, an interface has been developed 
between GenPMAXS and DeCART to streamline the process of generating cross sections 
library for PARCS with DeCART. 

5.3.3.4. Branch Structure and Burnup Steps 

The process of generating the macroscopic cross sections library for PARCS 
requires a few lattice calculations for a range of conditions and burnup values 
representative of the conditions seen by the reactor during the analysis. For the current 
RIA model, 4 branches are considered: 
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• Control Rod 
• Fuel Temperature 
• Coolant Density /Moderator Temperature 
• Boron Concentration 

The reference case is obtained for an unrodded assembly, with a fuel temperature 
of 900K, a moderator temperature of 580K and a boron concentration of 1000ppm. The 
branch values are summarized in the Table 5.4 below. 

The burnup steps considered are typical of a PWR core and are as follow: 0.2, 0.5, 
1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 13.5, 
15.0, 16.5, 18.0, 20.0,  22.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0 and 55.0 MWd/kgHM. 

 

Table 5.4. DeCART lattice calculation branch structure 

Branch Low Reference High 

Control Rod  Out In 
Fuel Temp [K] 560 900 1320 

Moderator Temp [K] 560 580 600 
B Concentration [ppm] 0 1000 2000 

5.3.4. Internal Thermal hydraulic solution 

In order to provide thermal hydraulic feedbacks to the neutronic solvers, a 
simplified one-dimensional thermal-hydraulic solver is used in both DeCART and 
PARCS. It solves the 1-D radial heat conduction and 1-D axial heat convection equations 
for steady-state and transient problems. In the heat convection solution, a one-
dimensional single-phase flow model is employed under the assumption of constant 
pressure and boiling is not considered. Also, under the assumption of constant pressure, 
the momentum equation is not solved so that only mass continuity and energy 
conversation equations are solved in the flow problem. The constitutive relations which 
are required to close the field equations are provided as a form of polynomial of 
temperature at a given pressure. In the heat conduction solution, the radial temperature 
distribution within a fuel rod is solved to determine the Doppler temperature. A finite 
difference scheme is employed to obtain the radial temperature distribution during the 
transient. The axial heat conduction is neglected in the solution process since it is very 
small compared to the radial heat conduction. The applicability of the constitutive 
relations and the simplifications in flow modeling provide limitations on the application 
of this solver to a wider range of reactor transient conditions. 

The fundamental difference between PARCS and DeCART solvers is the level at 
which the thermal hydraulic feedbacks are provided. In DeCART, the thermal-hydraulics 
equations are solved separately for each fuel rod, and provide intra pin fuel temperature. 
Conversely in PARCS, the thermal-hydraulics equations are solved for each fuel 
assembly and only an assembly averaged effective fuel temperature is used to determine 
the Doppler feedbacks. 

The motivations behind the use of a simple thermal hydraulic feedback solver are 
twofold. Since the main objectives of the presented work is to evaluate the impact of the 
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neutronic approximations made by the current neutronic methodology in terms of fuel 
response during the RIA, it is desirable to use consistent thermal hydraulic solution for 
both PARCS and DeCART. Both internal solvers of DeCART and PARCS have the 
needed consistency. 

Since the thermal hydraulic solver is based on a 1-D radial conduction solver, the 
temperature is averaged azimuthally. Consequently of the two options presented in  
section 5.1.3 above, the first one is selected: a different temperature is applied for each 
annular ring depicted in the Fig. 5.1. 

5.3.5. Transient model 

The transient event considered for the RIA analysis is the ejection of a control rod 
assembly with the reactor being in the hot zero power (HZP) conditions: the fuel and 
coolant temperatures are at the inlet coolant temperature, 287°C. The power generated is 
set to 10-4% of its nominal value which are the typical conditions of a reactor in standby 
condition (control rods in, shutdown rods out). 

The control rod assembly to be ejected is chosen in such a way that the transient is 
super prompt critical. The main reason for such a choice is to have a neutronic driven 
event; therefore a simple thermal hydraulic model is sufficient to capture the thermal 
hydraulic effects. Control rod cusping treatment is currently not available in DeCART. 
Hence, it is not possible to accurately model a control rod partially inserted within a 
plane. In order to avoid partially inserted control rod, the ejection time is assumed to be 
negligible and the rod withdrawal occurs instantaneously at time zero. The usual ejection 
time for a control rod assembly in a typical PWR is about 0.1s, with a transient time of 
about 0.5s. Consequently, an instantaneous ejection represents a significant 
approximation. However, since the main purpose of this work is to make a code-to-code 
comparison, the instantaneous ejection preserves the consistency of both DeCART and 
PARCS calculations. 

5.4. DeCART/PARCS Comparison 

In order to check the quality of the macroscopic cross sections and kinetic 
parameters, first steady state calculations are performed with both DeCART and PARCS. 
Then a RIA scenario is considered involving a control assembly near the center of the 
reactor. 

5.4.1. Steady State Comparison 

In order to evaluate the quality of the macroscopic cross sections and kinetic 
parameters generated with DeCART, steady state calculations are performed with both 
DeCART and PARCS. Since the RIA analysis is performed at BOC, the steady state 
comparison is presented for BOC conditions.  

The steady state calculations were performed for the initial state of the reactor 
before the start of the RIA, i.e. at BOC, for hot zero power conditions. In order to obtain 
a realistic power distribution, the boron concentration of both DeCART and PARCS was 
adjusted in order to model a critical reactor. First, a steady calculation was performed 
with each code with all the control assemblies inserted. Then for the critical boron 
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concentration, the control rod assembly to be ejected during the RIA was withdrawn and 
the steady state eigenvalue and fuel rod relative power prediction of both DeCART and 
PARCS were calculated. For each steady state calculation, the effective multiplication 
coefficient and relative pinpower were compared and the results are summarized in Table 
5.5. The axially integrated relative pinpower and the DeCART/PARCS relative 
difference is shown in Fig. 5.12. The axial evolution of the local relative power 
prediction is shown in Fig. 5.13. 

The relative difference in terms of keff between DeCART and PARCS is less than 
100 pcm for both the unrodded cases. The predicted amount of soluble boron necessary 
to achieve criticality is also very close between PARCS and DeCART, which provides 
confidence that the cross sections were properly generated. 

Table 5.5. BOC Steady state comparison of PARCS and DeCART 

Case 
Multiplication Coefficient 

∆k(pcm) 
RMS Relative 

pinpower difference 
in % DeCART PARCS 

Rods in 1.0 (946 ppm of B) 1.0 (970 ppm) 0 4.11 

Rods out 1.010793 1.01179 -99 3.97 

The relative difference in the axially integrated pinpower prediction is about 5% 
for both cases. The relative difference increases in the area of the core with sharp flux 
gradients, in the rodded control assemblies for example. Some differences are expected 
since the nuclear data (cross sections and assembly discontinuity factors) are generated at 
the assembly level with reflective boundary conditions which approximates the actual 
heterogeneous configuration in the reactor.  

The rod worth for the considered RIA scenario is summarized in Table 5.6. ρ 
represents the total reactivity insertion in the reactor upon withdrawal of the control rod 
assembly. It is computed in Eq. 5.20 below. β represents the total delayed neutron 
fraction and ρ1 is the reactivity expressed in $, i.e. in fraction of β. In both cases, the 
control rod worth is well over a dollar of reactivity and the transient resulting from a rod 
ejection is super prompt critical.  

1−=
rodded
eff

unrodded
eff

k

k
ρ  Eq. 5.20 

The worth predicted by PARCS is higher than the worth predicted by DeCART 
because of the combination of different keff and delayed neutron fractions. Consequently, 
different transient behaviors are expected between PARCS and DeCART.  

Table 5.6. BOC Control rod worth predicted by DeCART and PARCS 

 DeCART PARCS 

ρ 0.01079 0.01165 
β 0.00617 0.00615 
ρ [$] 1.75 1.89 
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a) DeCART S.S. axially integrated fuel rod power 
b) S.S. axially integrated pinpower relative 

difference in % between PARCS and DeCART 

Fig. 5.12. BOC S.S. DeCART/PARCS axially integrated relative fuel rod power prediction for the rodded 
case 

The control rod assembly to be withdrawn is close to the core center. In the 
central region of the reactor, the power predicted by DeCART is consistently lower than 
the power predicted by PARCS as seen in the Fig. 5.12. The worth of the control rod 
predicted by DeCART is then understandably lower.  

The analysis of the relative difference in terms of the local fuel rod power 
prediction between PARCS and DeCART as shown in Fig. 5.12 and Fig. 5.13 suggests 
that the differences between PARCS and DeCART can be important, especially for the 
assemblies where the control rods are inserted. This is expected and is due to the known 
limitations of the multi-step methodology to accurately predict fuel rod powers in area of 
the reactor with sharp flux gradients. However, the biggest differences in the power 
predictions occur in regions of the reactor generating low power, and consequently of 
lower importance. Another important factor to consider is the effect of analyzing relative 
differences. In an area where the considered quantities are small, the relative difference 
tends to magnify the errors. 

5.4.2. Transient Comparison 

At BOC, a control rod assembly withdrawal is considered as shown in Fig. 5.6. 
During the transient analysis, the core averaged power generation is recorded as well as a 
comparison of the local fuel rod power. As discussed earlier, both DeCART and PARCS 
use similar simplified thermal hydraulic methods to simulate the fuel and moderator 
temperature response during the course of the transient, with the only difference being 
that DeCART provides temperature feedback at the fuel rod level whereas PARCS 
provides feedback at the assembly level. 

In terms of computational cost, the memory requirements to run an eighth core 
transient model were similar to the one of the equilibrium core calculation discussed in 
Table 5.3 above. Each of the transient presented in the following sections was run on the 
RESERV cluster in ANL. It took approximately 5 days using 22 processors to run each 
transient. The PARCS transient were run on single personal computer in about one hour. 

The Control assembly is ejected and the transient was run for 0.1s with a time step 
of 1ms. The average core power during the event obtained by each code is shown in Fig. 
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5.14 while the fuel rod power relative difference between DeCART and PARCS in % 
RMS is shown in the Fig. 5.15.  

  

  

  
Fig. 5.13. Axial evolution of the relative fuel rod power difference between DeCART and PARCS at BOC 

The predictions of core averaged power by DeCART and PARCS are 
significantly different. The peak power predicted by PARCS is higher by about 50% and 
occurs earlier in the transient. The difference in the peak power can be explained by the 
different rod worth predicted by the codes as shown in the Table 5.6, as well as the 
slightly different delayed neutron fractions. The reactivity inserted in the PARCS case is 
larger and the delayed neutron fraction is smaller than in the DeCART case. For the super 
prompt critical RIA event, the delayed neutron source of the point kinetics equation can 
be neglected and the point kinetics equation can be solved analytically. The principal 
quantities of interest, maximum power and the time at which the maximum power is 
reached, can be expressed as a function of the inserted reactivity, the prompt neutron life 
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time and the total delayed neutron fraction as shown in Eq. 5.20. This approach is 
referred to as the Nordheim Fuchs model which can be derived from the exact point 
kinetics equations. The kinetics parameters used in these relations are computed from the 
solution of the DeCART and PARCS spatial kinetics solutions. The details of the 
derivation are given in (Ott and Neuhold 1985). 
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where 1pρ  is the inserted prompt reactivity in $, Λ the neutron generation time, p0 the 

initial power level and γ the feedback coefficient. 
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Fig. 5.14. BOC RIA scenario-DeCART/ PARCS Core average power comparison- 

 
Fig. 5.15. BOC RIA scenario -DeCART/ PARCS pinpower RMS relative difference evolution with time- 
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Table 5.7. Nordheim Fuchs model results for BOC RIA 

  Nordheim Fuchs Model Spatial Kinetics Model 

  DeCART PARCS DeCART PARCS 

ρ 0.01079 0.01165 0.01079 0.01165 

β 0.00617 0.00615 0.00617 0.00615 
ρ1[$] 1.75 1.89 1.75 1.89 

Λ[s] 1.70E-05 1.70E-05 1.70E-05 1.70E-05 

γ[1/fp-s] 1.2 1.2 -- -- 

pm-p0 84.9 120.67 88.41 123.58 

tm[s] 6.91E-02 5.95E-02 8.00E-02 7.30E-02 

The comparison of the Nordheim Fuchs model results with the spatial kinetic results of PARCS and 
DeCART, for the principal quantities of interest is summarized in the  

Table 5.7. Since the prompt neutron lifetime and the total delayed neutron fraction 
in PARCS and DeCART are different, two results are provided for the Nordheim Fuchs 
model, one using the DeCART parameters and the other consistent with the PARCS 
parameters. The Nordheim Fuchs model predicts very accurately the maximum power 
seen by the core during the transient as well as the time at which it happens which 
provides confidence that the differences observed between PARCS and DeCART come 
from steady state differences. The effective generation time is obtained similarly to the 
effective delayed neutron fraction as shown in Eq. 5.22 and is computed by PARCS and 
DeCART. 
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 Eq. 5.22 

As for the pinpower prediction, the overall conclusions are similar to the 
conclusions made during the steady state comparison. The variation of the %RMS 
relative difference in the time between 0.05s and 0.09s can be attributed to the differences 
of core averaged power during that time span.  The PARCS overall power increases 
earlier and the temperature rise tends to flatten the shape of the fuel rod power 
distribution. Conversely in the DeCART prediction, the fuel temperature hasn't yet 
changed and the fuel rod power shape is still very similar to the initial shape causing the 
overall %RMS relative difference to increase. Later in the transient, the fuel temperature 
in the DeCART model increases reducing the relative %RMS difference. The %RMS 
difference after both the PARCS and DeCART power peaks is different from the initial 
difference since the temperature has been increased to compensate for the reactivity 
introduced by the withdrawal of the control rod which results in a transient fuel rod 
power shape different from the steady state shape.  

In terms of accident analysis, the quantity of interest is the local fuel rod power 
during the transient. Fig. 5.16 shows the evolution of the core-wide fuel rod power 
distribution and the relative difference between PARCS and DeCART for the axial 
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segment of the core where the maximum power in the steady state occurs, i.e. at an axial 
position of about 340cm from the bottom of the core. 

  

  

  

  
Fig. 5.16. Evolution of the local fuel rod power distribution during RIA case A scenario at BOC 

The conclusion which can be drawn from the comparison of the core average 
power evolution and the relative difference between PARCS and DeCART is also 
applicable for the local fuel rod power prediction.  

The difference observed in terms of core average power evolution can be 
attributed principally to different control rod worth in the PARCS and DeCART steady-
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state solution. The steady state difference tends to mask the potential difference 
introduced by other neutronic approximations during the transient. The multi-steps 
methodology, for its approximation, produces results very close to the higher fidelity 
methodology of DeCART.  

5.5. Summary 

The DeCART code is capable of performing a full core RIA analysis with thermal 
hydraulic feedbacks. The procedure to include fuel and moderator temperature feedbacks 
as well as density was implemented in DeCART and represents a significant and original 
contribution to LWR reactor analysis methods since this is the first time a transport based 
transient calculation has been performed with local temperature feedback. 

One of the other objectives of this project was to perform a code-to-code 
comparison between a high fidelity method such as used in DeCART and the multi-step 
methodology such as used in PARCS for a realistic full core RIA scenario. In order to 
insure the consistency of the code-to-code comparisons, some approximations were made 
to the modeling of the rod ejection accident scenario. 

A high-fidelity analysis of representative fuel assemblies with explicit 
representation of individual fuel pins and surrounding coolant channels was performed 
using transient solution scheme in DeCART. As a basis of comparison, the same analysis 
was performed with the U.S. NRC PARCS neutronic code which is representative of the 
multi-steps methodology currently used by the industry for performing control rod 
ejection analysis. The RIA analysis performed here was applied to a 1/8th reactor core 
model corresponding to the equilibrium core composition of a PWR with fuel designs 
and cycle lengths representative of current utility operating strategies. 

A 1/8th core model based on a 4-loop Westinghouse design was developed with 
fuel designs and cycle lengths representative of current utility operating strategies. Three 
different RIA analyses are performed. First at BOC, the ejection of two different control 
assemblies was performed in which one assembly was ejected near the center of the core 
and the other one near its periphery. At EOC, only the analysis of the ejection of the 
control assembly near the core periphery was performed. All three RIA analyses were 
performed using the DeCART code with a simplified thermal hydraulic feedback model.  
The DeCART results were compared to the current generation of LWR core analysis 
methods represented by the PARCS code which used a thermal hydraulic feedback model 
consistent with that used by DeCART. In order to achieve consistency between DeCART 
and PARCS, the DeCART code was used as a lattice code to generate the assembly 
homogenized macroscopic cross sections and kinetic parameters required by PARCS. 

There is good overall agreement in terms of core average power and pin-wise 
power between DeCART and PARCS for the RIA at BOC. The differences observed in 
terms of time and magnitude of the peak power, are due to differences in the steady state 
calculations. 
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6. Conclusions 

6.1. Dissertation Summary 

The current state of the art in reactor physics methods to assess safety, fuel 
failure, and operability margins for Design Basis Accidents (DBAs) for Light Water 
Reactors (LWRs) rely upon the coupling of nodal neutronics and one-dimensional 
thermal hydraulic system codes. The neutronic calculations rely on a multistep approach 
which was identified as inadequate for several applications (Cho 2006) such as the design 
of MOX cores and other innovative reactor designs. Because of the considerable 
advances in computing power over the last several years, there has been interest in high-
fidelity solutions of the Boltzmann Transport equation. A practical approach to solving 
the 3D transport equation is the 2D-1D methodology in which the method of 
characteristics (MOC) is applied to the heterogeneous 2D planar problem and a lower 
order solution is applied to the axial problem which is more uniform. Recently, there has 
been interest in taking advantage of advanced numerical methods to perform high-fidelity 
simulations of design basis accidents, such as control rod ejection accidents also known 
as reactivity initiated accidents (RIA).  

The primary ojective of the dissertation is to improve the accuracy and range of 
applicability of the DeCART code and to investigate its ability to perform a full core 
transient analysis of a realistic RIA.. During preliminary RIA analysis, the accuracy of 
the DeCART “2D-1D” formulation was found to be insufficient due to an axial solver 
based on the diffusion theory and poor convergence properties in case of strong axial 
leakage or fine axial spatial meshing. 

The specific research objectives of this work were accomplished. This included: 

• The addition of more accurate 2D-1D coupling and transverse leakage splitting 
options to avoid the occurrence of negative source terms in the 2D MOC equations 
and the subsequent failure of the DeCART calculation and the improvement of the 
convergence of the 2D-1D method. 

• The implementation of a higher order transport axial solver based on NEM-Sn 
derivation of the Boltzmann equation.  

• The proper handling of thermal hydraulic feedbacks by DeCART during transient 
calculations. 

• A consistent comparison of the DeCART transient methodology with the current 
multistep approach (PARCS) for a realistic full core RIA. 

An efficient direct whole core transport calculation method involving the NEM-
Sn formulation for the axial solution and the MOC for the 2-D radial solution was 
established. In this solution method, the solutions for the Sn equations were obtained by 
employing the Nodal Expansion Method. It was shown that the NEM-Sn solution turned 
out to be effective in reducing the eigenvalue error resulting from the diffusion 
approximation. The eigenvalue error could be reduced from 110 pcm to 12 pcm for the 
C5G7 Rodded Configuration B problem and the pin power error from 2.7 to 2.3%. 
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Therefore, it can be concluded that the newly implemented NEM-Sn axial solver  
improves the solution accuracy compared to the original NEM based solver. A 1/8th core 
model based on a 4-loop Westinghouse design was developed with fuel designs and cycle 
lengths representative of current utility operating strategies. A RIA analysis was 
performed and the DeCART results were compared to the current generation of LWR 
core analysis methods represented by the PARCS code. Consistent thermal hydraulic 
feedbacks model and cross section data were used for DeCART and PARCS. The 
DeCART code was used as a lattice code to generate the assembly homogenized 
macroscopic cross sections and kinetic parameters required by PARCS. There is good 
overall agreement in terms of global and local pin-wise power information DeCART and 
PARCS for the RIA considered. However, it is important to keep in mind that the 
considered RIA represents a relatively “easy” problem. A more drastic event, where the 
control assembly is closer to the core periphery is expected to show the limitation of the 
current methodology. 

6.2. Recommended Future Work 

One of the main approximations of the 2D-1D methodology is the azimuthal 
integration of the transverse leakage at the planar surface. Introducing an azimuthally 
dependent transverse leakage would produce real 3D transport accuracy, while still not 
performing a full 3D MOC calculation. It would represent an intermediate step towards a 
3D MOC. 

In term of full core transient analysis with DeCART, the work summarized in the 
dissertation has been limited to the analysis of RIA event because of the simplified 
thermal hydraulic solver available. Future work on this project should take advantage of 
the coupling of DeCART to STAR-CD in order to improve the fidelity of the thermal-
hydraulics solution and to extend the range of potential applications: extend RIA analysis 
post departure from nucleate boiling (DNB), analyze LOCA, etc… Another way to 
extend the range of multi-physics analysis capability would be the coupling to a fuel 
performance code (e.g. FALCON). Such coupling would be needed in order to 
investigate the effect in terms of fuel and cladding response (strain energy density, stress) 
of the local conditions (power, temperature, pressure) during the transient analysis. 
Finally, the DeCART transient methodology has been validated against the current multi-
step methodology, but a comparison with experimental results would be needed to show 
the benefits of the higher fidelity approach and the flaws of the current methodology. A 
very good candidate for validation would be the Short Period Excursion Reactor 
Transients (SPERT) (Spano 1964) experiments. 
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Appendix A DeCART Inputs for Chapter 3 

A.1. Input Information for Water Hole Case 

The following represents the base DeCART input deck used for the Water Hole 
case study. The 2D-1D coupling options are refined through the card split_opt and the 
axial meshing is increased through the card ax_mesh and stack. The file c5g7.xsl contains 
the 7 energy group cross sections specified in the C5G7 benchmark. 

 
CASEID WaterHole 
 
MATERIAL 
 
GEOM 
 ncells  1 
 pitch   1.26 
! 
 pin  1  0.2665 0.9935 1.260 / 1.260 / 7 1 7 / 1 3 1/ 5  
 pin  2                1.260 / 1.260 / 7 / 5 / 5 
 pin  3                1.260 / 1.260 / 8 / 5 / 5 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
! 
! 
 assembly 1  360   1 
 1 
 
 assembly 2  360   1 
 2 
 
 assembly 3  360    1 
 3 
! Axial Description  
! 
 ax_mesh  3*18.900 
 stack 1 2*1 1*2  
 stack 2 1*2 2*2  
 stack 3 1*2 2*3  
! 
 rad_conf 360 
  1 1 2 1 1 
 
 albedo 0.0 0.0 0.5 
OPTION 
  cmfd F F 
  split_opt -2  
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file c5g7.xsl 
. 

A.2. Input Information for Control Rod Case 

The following represents the base DeCART input deck used for the Contro Rod 
case study. The 2D-1D coupling options are refined through the card split_opt and the 
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axial meshing is increased through the card ax_mesh and stack. The file c5g7.xsl contains 
the 7 energy group cross sections specified in the C5G7 benchmark. 

 
CASEID ControlRod 
 
MATERIAL 
 
GEOM 
 ncells  1 
 pitch   1.26 
! 
 pin  1  0.2665 0.9935 1.260 / 1.260 / 7 1 7 / 1 3 1/ 5  
 pin  2                1.260 / 1.260 / 7 / 5 / 5 
 pin  3                1.260 / 1.260 / 8 / 5 / 5 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
! 
! 
 assembly 1  360   1 
 1 
 
 assembly 2  360   1 
 2 
 
 assembly 3  360    1 
 3 
! Axial Description  
! 
 ax_mesh  3*18.900 
 stack 1 2*1 1*2  
 stack 2 1*2 2*2  
 stack 3 1*2 2*3  
! 
 rad_conf 360 
  1 1 3 1 1 
 
 albedo 0.0 0.0 0.5 
OPTION 
  cmfd F F 
  split_opt -2  
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file c5g7.xsl 
. 

A.3. Input Information for Low density Case 

A.3.1. Low Density Cross Sections 

The cross sections used to model a reduced coolant density are detailed in the 
Table A. 1 below. They were obtained by multiplying the original coolant cross section 
by 0.01. 

Table A. 1 Main cross sections for the Low Density case. 

Group  Σa νΣf κΣf χ 
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1 6.01E-06 0.0 0.0 5.88E-01 

2 1.58E-07 0.0 0.0 4.12E-01 

3 3.37E-06 0.0 0.0 3.39E-04 

4 1.94E-05 0.0 0.0 1.18E-07 

5 5.74E-05 0.0 0.0 0.00E+00 

6 1.50E-04 0.0 0.0 0.00E+00 

7 3.72E-04 0.0 0.0 0.00E+00 

 

Table A. 2 Scattering cross sections for the Low Density case 

    To Group 

  1 2 3 4 5 6 7 

From Group 

1 4.45E-04 1.13E-03 7.23E-06 3.75E-08 5.32E-10 0.00E+00 0.00E+00 

2 0.0 2.82E-03 1.30E-03 6.23E-06 4.80E-07 7.45E-08 1.05E-08 

3 0.0 0.0 3.45E-03 2.25E-03 1.70E-04 2.64E-05 5.03E-06 

4 0.0 0.0 0.0 9.10E-04 4.16E-03 6.37E-04 1.21E-04 

5 0.0 0.0 0.0 7.14E-07 1.39E-03 5.12E-03 6.12E-04 

6 0.0 0.0 0.0 0.0 2.22E-05 7.00E-03 5.37E-03 

7 0.0 0.0 0.0 0.0 0.0 1.32E-03 2.48E-02 

 

A.3.2. DeCART Input 

The following represents the base DeCART input deck used for the Low Density 
case study. The 2D-1D coupling options are refined through the card split_opt and the 
axial meshing is increased through the card ax_mesh and stack. The file c5g7.xsl contains 
the 7 energy group cross sections specified in the C5G7 benchmark. 

 
CASEID Void 
 
MATERIAL 
 
GEOM 
 ncells  1 
 pitch   1.26 
! 
 pin  1  0.2665 0.9935 1.260 / 1.260 / 12 1 12 / 1 3 1/ 5  
 pin  2                1.260 / 1.260 / 12 / 5 / 5 
 pin  3                1.260 / 1.260 / 12 / 5 / 5 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
! 
! 
 assembly 1  360   1 
 1 
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 assembly 2  360   1 
 2 
 
 assembly 3  360    1 
 3 
! Axial Description  
! 
 ax_mesh  3*18.900 
 stack 1 2*1 1*2  
 stack 2 1*2 2*2  
 stack 3 1*2 2*3  
! 
 rad_conf 360 
  1 1 1 1 1 
 
 albedo 0.0 0.0 0.5 
OPTION 
  cmfd F F 
  split_opt -2  
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file c5g7.xsl 
. 
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Appendix B DeCART Input for Chapter 4 
 

The geometry is described in the main body of the dissertation. Here is some 
additional information. The pin cell geometry is shown in the Fig B. 1below. 

 

Fig B. 1 Pin cell geometry 

The following represents the base DeCART input deck used for unrodded case 
and the rodded configuration A and B. The base DeCART model consists of four planes 
of three 14.28 cm planes for the fuel region and one 21.42 cm plane for the axial reflector 
region. In the sub-plane calculation, each plane is divided into several sub-planes for an 
accurate treatment of the axial neutron leakage. Within each fuel cell, 64 flat source 
regions consisting of eight annular regions and eight azimuthal sectors are defined. Two 
additional annular regions are assigned in the moderator region. The five inner annular 
regions have the same area.  

The ray option is fixed by using 4 azimuthal and 2 polar angles for each octant of 
the unit sphere to define the solid angle, and 0.05 cm ray spacing. The convergence 
criterion is set to 1e-5 for the eigenvalue and the 2-norm of the fission source.   

The axial NEM-Sn solver is called by using the card nemsn and the number of 
sub-planes is specified by the card submesh. The Gaussian angular quadrature is used by 
setting the card pol_quad to T. The file c5g7.xsl contains the 7 energy group cross 
sections specified in the C5G7 benchmark. 

The next three sections describe the base input DeCART for the unrodded, rodded 
case A and rodded case B respectively. 

B.1. Unrodded Case DeCART Input 
CASEID 3d_ur  C5G7 BENCHMARK Problem 
 
MATERIAL 
 
GEOM 
 ncells  17 
 pitch 1.26 
 ax_mesh  3*14.28 21.42 
 albedo 0.5  0.0  0.5 
! 
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! 1:UO2-3.3, 2:MOX4.3, 3:MOX7.0, 4:MOX8.7,  5:FissCham, 6:GT, 7:MOD 
 pin 1 0.540 0.62 0.63 / 1 7 7 / 3 1 / 24 8 8 
 pin 2 0.540 0.62 0.63 / 2 7 7 / 3 1 / 24 8 8 
 pin 3 0.540 0.62 0.63 / 3 7 7 / 3 1 / 24 8 8 
 pin 4 0.540 0.62 0.63 / 4 7 7 / 3 1 / 24 8 8 
 pin 5 0.540 0.62 0.63 / 5 7 7 / 3 1 / 24 8 8 
 pin 6 0.540 0.62 0.63 / 6 7 7 / 3 1 / 24 8 8 
 pin 7 0.540 0.62 0.63 / 7 7 7 / 3 1 / 24 8 8 
 pin 8 0.540 0.62 0.63 / 8 7 7 / 3 1 / 24 8 8 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
 cell 4 1 1 
  4 
 cell 5 1 1 
  5 
 cell 6 1 1 
  6 
 cell 7 1 1 
  7 
 cell 8 1 1 
  8 
! 
 stack 1  3*1  4*7 
 stack 2  3*2  4*7 
 stack 3  3*3  4*7 
 stack 4  3*4  4*7 
 stack 5  3*5  4*5 
 stack 6  3*6  4*8 
 stack 7  3*7  4*7 
 stack 8  2*6 1*8  4*8 
 stack 9  1*6 2*8  4*8 
! 
 assembly 1  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 5 1 1 6 1 1 6 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 2  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 5 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
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  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 assembly 3  360  1 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
! 
 assembly 4  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 5 1 1 8 1 1 8 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 5  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 5 1 1 9 1 1 9 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 6  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
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  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 5 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 rad_conf 90 edge 
  1 2 3 
  2 1 3 
  3 3 3 
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file ../../lib/c5g7.xsl 
! 
OPTION 
  conv_crit 4*1e-5 
  cmfd F F 
  submesh 10 
  pol_quad T 
. 

B.2. Rodded Case A DeCART Input 
CASEID 3d_rA  C5G7 BENCHMARK Problem 
 
MATERIAL 
 
GEOM 
 ncells  17 
 pitch 1.26 
 ax_mesh  3*14.28 21.42 
 albedo 0.5  0.0  0.5 
! 
! 1:UO2-3.3, 2:MOX4.3, 3:MOX7.0, 4:MOX8.7,  5:FissCham, 6:GT, 7:MOD 
 pin 1 0.540 0.62 0.63 / 1 7 7 / 3 1 / 24 8 8 
 pin 2 0.540 0.62 0.63 / 2 7 7 / 3 1 / 24 8 8 
 pin 3 0.540 0.62 0.63 / 3 7 7 / 3 1 / 24 8 8 
 pin 4 0.540 0.62 0.63 / 4 7 7 / 3 1 / 24 8 8 
 pin 5 0.540 0.62 0.63 / 5 7 7 / 3 1 / 24 8 8 
 pin 6 0.540 0.62 0.63 / 6 7 7 / 3 1 / 24 8 8 
 pin 7 0.540 0.62 0.63 / 7 7 7 / 3 1 / 24 8 8 
 pin 8 0.540 0.62 0.63 / 8 7 7 / 3 1 / 24 8 8 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
 cell 4 1 1 
  4 
 cell 5 1 1 
  5 
 cell 6 1 1 
  6 
 cell 7 1 1 
  7 
 cell 8 1 1 
  8 
! 
 stack 1  3*1  4*7 
 stack 2  3*2  4*7 
 stack 3  3*3  4*7 
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 stack 4  3*4  4*7 
 stack 5  3*5  4*5 
 stack 6  3*6  4*8 
 stack 7  3*7  4*7 
 stack 8  2*6 1*8  4*8 
 stack 9  1*6 2*8  4*8 
! 
 assembly 1  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 5 1 1 6 1 1 6 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 2  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 5 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 assembly 3  360  1 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
! 
 assembly 4  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 5 1 1 8 1 1 8 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 5  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 5 1 1 9 1 1 9 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 6  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 5 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 rad_conf 90 edge 
  4 2 3 
  2 1 3 
  3 3 3 
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file ../../lib/c5g7.xsl 
! 
OPTION 
  conv_crit 4*1e-5 
  cmfd F F 
  submesh 10 
  pol_quad T 
. 
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B.3. Rodded Case B DeCART Input 
CASEID 3d_rB  C5G7 BENCHMARK Problem 
 
MATERIAL 
 
GEOM 
 ncells  17 
 pitch 1.26 
 ax_mesh  3*14.28 21.42 
 albedo 0.5  0.0  0.5 
! 
! 1:UO2-3.3, 2:MOX4.3, 3:MOX7.0, 4:MOX8.7,  5:FissCham, 6:GT, 7:MOD 
 pin 1 0.540 0.62 0.63 / 1 7 7 / 3 1 / 24 8 8 
 pin 2 0.540 0.62 0.63 / 2 7 7 / 3 1 / 24 8 8 
 pin 3 0.540 0.62 0.63 / 3 7 7 / 3 1 / 24 8 8 
 pin 4 0.540 0.62 0.63 / 4 7 7 / 3 1 / 24 8 8 
 pin 5 0.540 0.62 0.63 / 5 7 7 / 3 1 / 24 8 8 
 pin 6 0.540 0.62 0.63 / 6 7 7 / 3 1 / 24 8 8 
 pin 7 0.540 0.62 0.63 / 7 7 7 / 3 1 / 24 8 8 
 pin 8 0.540 0.62 0.63 / 8 7 7 / 3 1 / 24 8 8 
! 
 cell 1 1 1 
  1 
 cell 2 1 1 
  2 
 cell 3 1 1 
  3 
 cell 4 1 1 
  4 
 cell 5 1 1 
  5 
 cell 6 1 1 
  6 
 cell 7 1 1 
  7 
 cell 8 1 1 
  8 
! 
 stack 1  3*1  4*7 
 stack 2  3*2  4*7 
 stack 3  3*3  4*7 
 stack 4  3*4  4*7 
 stack 5  3*5  4*5 
 stack 6  3*6  4*8 
 stack 7  3*7  4*7 
 stack 8  2*6 1*8  4*8 
 stack 9  1*6 2*8  4*8 
! 
 assembly 1  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 5 1 1 6 1 1 6 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1 
  1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 2  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 5 4 4 6 4 4 6 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2 
  2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 assembly 3  360  1 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
! 
 assembly 4  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 5 1 1 8 1 1 8 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 8 1 1 1 1 1 1 1 1 1 8 1 1 1 
  1 1 1 1 1 8 1 1 8 1 1 8 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 5  360  1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 5 1 1 9 1 1 9 1 1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 9 1 1 1 1 1 1 1 1 1 9 1 1 1 
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  1 1 1 1 1 9 1 1 9 1 1 9 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
! 
 assembly 6  360  1 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 5 4 4 8 4 4 8 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2 
  2 3 8 4 4 8 4 4 8 4 4 8 4 4 8 3 2 
  2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2 
  2 3 3 8 3 4 4 4 4 4 4 4 3 8 3 3 2 
  2 3 3 3 3 8 3 3 8 3 3 8 3 3 3 3 2 
  2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
! 
 rad_conf 90 edge 
  5 6 3 
  6 1 3 
  3 3 3 
! 
XSEC 
  lib_type 1 
  group_spec  7 4 
  file ../../lib/c5g7.xsl 
! 
OPTION 
  pol_quad T 
  conv_crit 4*1e-5 
  cmfd F F 
  submesh 10 
. 
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Appendix C Codes Input for Chapter 5 

C.1. Additional Information 

The number of density for each material is provided inTable C. 1. They 
correspond to the fresh material before exposure and are used as starting point for the 
core equilibrium calculation. 

Table C. 1. Material Compositions 

Material 
Density 
[g/cm3] 

Enrichment Isotope 
Number of Density 

[#/b-cm] 

UO2 Fuel 10.412 
4.0% U-

235 

U-235 9.41E-04 

U-238 2.23E-02 

O-16 4.65E-02 

IFBA 1.690 --- 

B-10 3.59E-03 

B-11 1.45E-02 

Nat. Zr. 9.02E-03 

Gap 0.001 --- O-16 3.76E-05 

Clad/Guide Tube 6.504 --- 

N-14 2.15E-05 

Nat. Cr 4.28E-05 

Nat. Fe 5.13E-05 

Nat. Zr 4.20E-02 

Nat. Sn 6.42E-04 

Core Baffle 7.820 --- 

Nat. Cr 1.63E-02 

Mn-55 1.71E-03 

Nat. Fe 5.99E-02 

Nat. Ni 7.22E-03 

The loading pattern, which has not been optimized, is shown in Fig C. 1 for the PWR 
core model and is used to generate the equilibrium core composition. The number indicates 
the current cycle of residence for that assembly, (e.g. 1 is for the first cycle of residence and 
indicates a fresh assembly). The letter indicates the path along which the assembly is shuffled 
throughout its residency in the core. The shuffling path of the P1 assembly is less intuitive. 
Its location has eight symmetric positions elsewhere in the full core. It is then moved onto 
two locations on the quarter-symmetry boundary, which in the full core also accounts for 
eight assembly locations; therefore Pa2 and Pb2 will have the same composition at BOC 
which is equivalent to the P1 composition at EOC. Note that the axial reflectors consist only 
of water; the density of which is computed by the T/H module and contains soluble boron. 

 

Q3 Pa2 Ba3 Pb2 Pb3 Ba1 Pa3 B1 

 A3 L2 D3 D2 F3 L1 J1 
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  Q2 H2 H3 O2 O3 F1 

   A2 F2 L3 H1 D1 

    Q1 J2 O1  

     A1 P1  

Fig C. 1. PWR Loading Pattern 

The spatial discretization of the various pin cells is shown in Fig C. 2. The mesh in 
the axial reflectors is the same as the mesh in the regions below, so the part of the axial 
reflector above the fuel will have the fuel pin mesh, and similarly for the parts above the 
guide tubes and baffle and radial reflector. Axially, there are 22 planes, each of equal 
thickness (18.288 cm). The subgroup calculation is performed once at the beginning and then 
again at 10 GWd/t. The rays spacing is 0.05 cm with 4 azimuthal and 2 polar angles per 90° 
octant. The SANM solver is used for computing the partial currents in the axial direction. For 
the heat conduction calculation, one mesh region is used for the clad and six equidistance 
rings are used in the fuel pellet. The tolerance is 10-5 for the eigenvalue, fission source and 
CMFD balance residuals.  

 

  
a) Fuel Pin Mesh b) Guide Tube Mesh 

  
c) Baffle and Radial Reflector Mesh d) Axial Reflector Mesh 

Fig C. 2. Pin cell mesh in PWR DeCART model 
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C.2. DeCART Input 

C.2.1. Lattice Calculations 

Below is the DeCART input used to generate cross sections for the PARCS run. 
The BRANCH cases are missing and are described in Chapter 5. 
CASEID  batch1 
 
STATE 
!          power_fa (MW), t_in(C), p_exit(MPa), mdot_fa (kg/s) 
   th_cond      18.4715    286.85         15.5      82.12102 
 
MATERIAL 
   file      ../../shared_input/mixtures.inp 
 
GEOM 
   ncells    17 
   pitch     1.26 
   ax_mesh   22*18.288 
   albedo    0.0  0.0  0.0  0.0  0.5  0.5 
 
   file      ../../shared_input/pins3D.inp 
   file      ../../shared_input/assemblies.inp 
! 
! Assembly Types 
! 1 - UO2 4.2% 
! 2 - UO2 4.2% Control Assembly 
! 3 - West Edge Baffle/Reflector 
! 4 - NE Corner Baffle/Reflector 
! 5 - NE Edge Baffle/Reflector 
! 6 - North Edge Baffle/Reflector 
!  
    rad_conf 45 
     1 
! 
XSEC 
   lib_type   0 0 
   file       ../../shared_input/hel047g_v19a_ascii.xsl 
   depl_lib   ../../shared_input/DeCART_v2.dpl 
TH 
   pin_dim    0.3951 0.4583 0.0573  0.6032 
   steam_tbl  ../../shared_input/tpfh2o_ascii.txt 
   matprop    F 
! 
OPTION 
   feedback   T 0.5 
   cmfd       T T 
   reso_opt   4 F F 
   nem        F 
   ray        0.05 4 2 
   boron      1000 
   threads    1 
! 
SHUFFLE 
!    
   id_map 
     BATCH0 
!    
   cfile_map 
     0 
!    
   rot_map 
     0 
!    
   id_wrt 
     BATCH1 
! 
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EDIT 
  eqx  F 
  rst  T 
  isum F 
  bin  T 
/ 
DEPL 
  bu_opt 2 1 
  burnup 0.1 0.5 
EDIT 
  isum F 
  rst  F 
  eqx  F  
/ 
DEPL 
  bu_opt 2 2 
  burnup 1.0 2.0 3.0 4.0 5.0 
EDIT 
  isum F 
  rst  F 
  eqx  F 
/ 
DEPL 
  bu_opt 2 5 
  burnup 7.5 10.0 12.5 15.0 
EDIT 
  isum F 
  rst  F 
  eqx  F 
. 

 

C.2.2. Transient Calculations 

Below is the input used to run the RIA scenario presented in Chapter 5 . The 
equilibrium core composition is recorded in the file PWR_UO2_octCore.core. 
CASEID  PWR_UO2_octCore_octCore 
   init PWR_UO2_octCore_000_00000.rst 
STATE 
!          power_fa (MW), t_in(C), p_exit(MPa), mdot_fa (kg/s) 
   core_power   1e-6 
   th_cond      18.4715    286.85         15.5      82.12102 
 
MATERIAL 
   file      ../shared_input/mixtures.inp 
 
GEOM 
   ncells    17 
   pitch     1.26 
   ax_mesh   22*18.288 
   albedo    0.5  0.0  0.0  0.5  0.0  0.0 
 
   file      ../shared_input/pins3Dtmp.inp 
   file      ../shared_input/assemblies.inp 
! 
! Assembly Types 
! 1 - UO2 4.2% 
! 2 - UO2 4.2% Control Assembly 
! 3 - West Edge Baffle/Reflector 
! 4 - NE Corner Baffle/Reflector 
! 5 - NE Edge Baffle/Reflector 
! 6 - North Edge Baffle/Reflector 
!  
 
    rad_conf  45 CENT 
     2  1  2  1  2  1  2  1  3 
        1  1  1  1  2  1  1  3 
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           2  1  1  1  2  1  3 
              1  1  2  1  1  3 
                 2  1  2  5  4 
                    1  1  3 
                       5  4 
 
XSEC 
   lib_type   0 0 
   file       ../shared_input/hel047g_v19a_ascii.xsl 
   depl_lib   ../shared_input/DeCART_v2.dpl 
   chi_lib T 
TH 
   pin_dim    0.3951 0.4583 0.0573  0.6032 
   steam_tbl  ../shared_input/tpfh2o_ascii.txt 
   matprop    F 
! 
SHUFFLE 
   cfile 1 PWR_UO2_octCore.core 
   file       ../shared_input/eighth/lp_mh_n.inp 
! 
OPTION 
   feedback   T 0.5   
   cmfd       T T 
   ray        0.05 4  2 
   boron 1000. 
   threads    1 
EDIT 
   rst  T 
ROD 
   rod_typ PWR 220 
   rod_mat 9 9 9 9 9 9 9 9 9 
   no_rod 11 
! bank 1 CR-A see MOX benchmark 
! bank 2 CR-B 
! bank 3 CR-C 
! bank 4 CR-D 
! bank 5 CR-SA 
! bank 6 CR-SB 
! bank 7 CR-SC 
! bank 8 CR-SD 
! bank 9 Cr to eject 
   bank 1 3 
   bank 2 22   
   bank 3 7 18  
   bank 4 1 
   bank 5 33   
   bank 6 14 
   bank 7 27 
   bank 8 5 
   bank 9 31 
   bank_pos 1 220.0 2 220.0 3 220.0 4 220.0 5 0.0 6 0.0 7 0.0 8 0.0 9 220.0 ! RI 
   move_bank 9 0.0005 220 0.0006 0 
! 
/  
STATE 
   tran  T 
TRAN 
   time_step  0.1 0.0001 0.001 10  
   theta  1.0 
   expo_opt  F 
   cond_rt 1e-2 1e0 1e-2 
OPTION 
   feedback T 
. 
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C.3. PARCS Input 

Below is the PARCS input used to run the RIA scenario presented in Chapter 5. 
The 3-D exposure map is specified in the file EXPu.dep. The fuel, reflector and corner 
cross sections in UO2_900_inf.PMAX, refl_xu.PMAX and corner.PMAX respectively. 

 
!************************************************** **************************** 
CASEID PWR_3D4_TR_uo2_900_inf Transient Validation 
!************************************************** **************************** 
CNTL 
      core_power 1e-6 
!        bank   A    B    C    D   SA   SB   SC   SD  to eject step withdrawn 
      bank_pos  0.0 0.0 0.0 0.0 22.0 22.0 22.0 22.0 0.0  ! RI MOX benchmark config 
!      bank_pos  0.0 0.0 0.0 0.0 22.0 22.0 22.0 22.0 22.0  ! RO 
      depletion T 
      TREE_XS  T  2     T F F F F F T F F F T T T F 
!                       a,x,e,j,p,d,v,t,y,c,g,b,l,h 
!      search ppm 
      ppm 0.2 
!      ppm 949.96 
      transient  F 
      th_fdbk    T 
      pin_power  T 
!------------------------------------------------------------------------------ 
!                    input  iteration     planar                   adj 
!                     edit      table      power        pin       reac 
      print_opt          T          F          T          T          T 
!                     fdbk       flux     planar 
!                      rho    precurs       flux      xe/sm        T/H 
      print_opt          F          F          F          F          F 
!                       1d         pk    rad pwr   rad flux       assy 
!                    const       data      shape      shape      const 
      print_opt          F          T          F          F          F 
!************************************************** **************************** 
PARAM 
!************************************************** **************************** 
GEOM 
      geo_dim  17 17 22 1 1   !nasyx,nasyy,nz 
      Rad_Conf 
      0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 
      0 0 1 1 1 2 2 2 2 2 2 2 1 1 1 0 0 
      0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 
      0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 
      1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1       
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 
      1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
      0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 
      0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 
      0 0 1 1 1 2 2 2 2 2 2 2 1 1 1 0 0 
      0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 
               
      grid_x     17*21.42 
      neutmesh_x 17*2 
      grid_y     17*21.42 
      neutmesh_y 17*2 
      grid_z     22*18.288 
 
      Boun_Cond  2 2  2  2  2  2 !ibcw,ibce,ibcn,ibcs,ibcb,ibct 
 
      planar_reg 1 
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              2 2 2 2 2 2 2 2 2      
          2 2 3 1 1 1 1 1 1 1 3 2 2  
        2 3 1 1 1 1 1 1 1 1 1 1 1 3 2  
        2 1 1 1 1 1 1 1 1 1 1 1 1 1 2  
      2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2       
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
      2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 
        2 1 1 1 1 1 1 1 1 1 1 1 1 1 2  
        2 3 1 1 1 1 1 1 1 1 1 1 1 3 2  
          2 2 3 1 1 1 1 1 1 1 3 2 2  
              2 2 2 2 2 2 2 2 2    
 
      planar_reg 2 
              2 2 2 2 2 2 2 2 2      
          2 2 2 2 2 2 2 2 2 2 2 2 2  
        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2       
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
          2 2 2 2 2 2 2 2 2 2 2 2 2  
              2 2 2 2 2 2 2 2 2    
      cr_axinfo 0.0 18.288    !fully inserted position and step size 
      bank_conf 
              0 0 0 0 0 0 0 0 0      
          0 0 0 0 0 0 0 0 0 0 0 0 0  
        0 0 0 5 0 2 0 3 0 2 0 5 0 0 0  
        0 0 0 0 7 0 6 0 6 0 7 0 0 0 0  
      0 0 5 0 9 0 0 0 8 0 0 0 9 0 5 0 0 
      0 0 0 7 0 0 0 0 0 0 0 0 0 7 0 0 0 
      0 0 2 0 0 0 3 0 1 0 3 0 0 0 2 0 0 
      0 0 0 6 0 0 0 0 0 0 0 0 0 6 0 0 0       
      0 0 3 0 8 0 1 0 4 0 1 0 8 0 3 0 0 
      0 0 0 6 0 0 0 0 0 0 0 0 0 6 0 0 0 
      0 0 2 0 0 0 3 0 1 0 3 0 0 0 2 0 0 
      0 0 0 7 0 0 0 0 0 0 0 0 0 7 0 0 0 
      0 0 5 0 9 0 0 0 8 0 0 0 9 0 5 0 0 
        0 0 0 0 7 0 6 0 6 0 7 0 0 0 0  
        0 0 0 5 0 2 0 3 0 2 0 5 0 0 0  
          0 0 0 0 0 0 0 0 0 0 0 0 0  
              0 0 0 0 0 0 0 0 0    
 
      Pincal_loc 
              0 0 0 0 0 0 0 0 0      
          0 0 0 0 0 0 0 0 0 0 0 0 0  
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       
      0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
      0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 
      0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 
      0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
      0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
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        0 0 0 0 0 0 0 0 0 0 0 0 1 1 0  
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
          0 0 0 0 0 0 0 0 0 0 0 0 0  
              0 0 0 0 0 0 0 0 0    
 
      PR_Assign  1*2 20*1 1*2 
 
!************************************************** **************************** 
TH 
      unif_th      0.75238 286.85 286.85 
      n_pingt      264 25                     !npin,ngt 
      fa_powpit    18.4715   21.42          !assembly power(Mw) and pitch(cm) 
      pin_dim      3.951 4.583 0.573  6.032 !pin radii, rs,rw,tw, and rgt in mm 
      flow_cond    286.85 82.12102             !tin,cmfrfa(Kg/sec) 
      hgap         10000.                     !hgap(w/M^2-C) 
      n_ring       10                         !number of meshes in pellet 
      thmesh_x     17*2                       !Number of T/H Nodes per FA in X-dir 
      thmesh_y     17*2                       !Number of T/H Nodes per FA in y-dir 
!************************************************** **************************** 
TRAN 
      time_step    1.0 0.0001 0.001 10 !tend,delt0,tswitch,texpand 
      move_bank    9  0.0 0.0 0.0005 0.0 0.0006 22.0 
      conv_tr      0.001              !eps_r2 
      expo_opt     F F 
      pin_freq 10 
!************************************************** **************************** 
DEPL 
 INP_HST './xsec/EXPu.dep' 1 1 
 PMAXS_F  1  './xsec/UO2_900_inf.PMAX'  1   
 PMAXS_F  2  './xsec/refl_xu.PMAX'   2     
 PMAXS_F  3  './xsec/corner.PMAX'   3     
!************************************************** **************************** 
. 

C.4. GenPMAXS Input 

Below is the GenPMAXS input used to generate the PARCS cross sections. It 
uses the .xsec file generated by DeCART to produce a .pmax file. 

 
%JOB_TIT 
 ' UO2_900_inf.PMAX'  T   !TMI Assembly 
%JOB_OPT 
   T  F  F  F  F  F  F  F  F  F  F  F  F  F   1 
 !ad,xe,de,j1,ch,Xd,iv,dt,yl,cd,gf,be,lb,dc,ups 
%DAT_SRC  
    4   1   1   1.0 
%FIL_CNT  
   1  'batch1.xsec' 1 1 
%JOB_END 

 

 




