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P. J. Reynolds, R. N. Barnett2, B. L. Hammond2, and W.A. Lester, Jr.2 

Materials and Molecular Research Division, 
Lawrence Berkeley Laboratory, 
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Abstract. 

We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in 

its application to molecular systems. The formal correspondence of the imaginary time 
Schrodinger equation to a diffusion equation allows one to calculate quantum mechanical 

expectation values as Monte Carlo averages over an ensemble of random walks. 'rVe 
report work on atomic and molecular total energies, as well as properties including elec­

tron affinities, bind ing energies, reaction barriers, and momen ts of the electronic charge 

distribution. A brief discussion is given on how standard QMC must be modified for cal­

culating properties. Calculated energies and properties are presented for a number of 
molecular systems, including He, F, F-, H2, N, and N2. Recent progress in extending 
the basic QMC approach to the calculation of "analytic" (as opposed to finite-difference) 

derivatives of the energy is presented, together with an H2 potential-energy curve 
obtained using analytic derivatives. 

Key Words: diffusion quantum Monte Carlo, Schrodinger equation, fixed nodes, atomic 
properties, molecular properties, total energies, analytic energy derivatives, excited 
states, quadrupole moments, binding energies, electron affinities. 

I This work was supported by the Director, OtTice of Energy Research, OtTice of Basic Energy Sciences, 
Chemical Sciences Division of the U. S. Department of Energy under contract number DE-AC03- i6SFOO098 

,~ 

- Also, Department of Chemistry, University of California, Berkeley, CA 94i:!O 



2 

I. Introduction 

In the past few years, quantum mechanical Monte Carlo (QMC) methods have 
• 

begun to be applied in the domain of atomic and molecular physics (1-6). Long in the 

realm of condensed-matter physics, and more recently nuclear and particle physics, 

Monte Carlo methods play an indispensible role in treating multi-dimensional, and hence 

many-body problems. For obtaining molecular properties, the Monte Carlo technique is 

now showing itself to be equally useful, providing an approach complementary to tradi-

tional ab initio electronic-structure calculations. 

Atomic and molecular QMC applications have been primarily devoted to calcula-

tions of ground-state energies. Workers have focused on correlation energies (1,2) as well 

as on stationary points on potential-energy surfaces (3,4). In these studies, total energies 

have been obtained to accuracies of better than 99.9%. Though impressive by most 

standards, an accuracy of 99.9% is only marginally useful for many chemical applica-

tions, in which one seeks very small differences of large numbers. Thus better alga-

rithms and faster computers are still needed. In Section II we review the use of Q1IC in 

calculations of ground-state energies, and give an extension to excited states. Results are 

presented for a number of atomic and molecular species. Section III describes the calcu-

lation of other molecular properties, including the calculation of energy derivatives, 

which are ·useful in the study of potential-energy surfaces. 

II. QMC Energy Calculations 

Theory 

The QMC method of obtaining energies of atomic and molecular systems has been 

descrihed in detail elsewhere (1-8) .. The key point to note here is that a simubt.ion is per-

formed in which an ensemble of random walks (the coordinates of which, at any given 

time, represent a configuration of the electrons) evolves to an equilibrium distribution. 

r 
, 

•• 
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At any time after equilibrium has been reached, the ensemble of configurations is a ran-

dom sample drawn from the probability distribution f oo(R )='11 T (R )¢>(R), where the 

coordinate-vector R is the multi-dimensional vector describing the full many-electron 

system. Here '11 T (R ) is a simple trial wave function used for importance sampling (9). 

The function ¢>(R) is the lowest-energy eigenfunction of the Schrodinger equation which 

is not orthogonal to '11 T. Convergence to the lowest-energy state results from an essen-

tial feature of the mapping of the Schrodinger equation into its diffusion equation 

analog--that time in these two equations differs by a factor of £. Thus, when a time-

dependent molecular state vector is expanded in energy eigenfunctions multiplied by 

exp( -iEt / fi), in imaginary time one obtains a series in which only the lowest-energy term 

(i.e. ¢» survives at large t. If '11 T is orthogonal to the exact lowest-energy state, one pro-

jects out the ground state, and convergence will be to the next-lowest energy. In the 

fixed-node approximation (10), ~hich we use to handle the Fermion problem, the nodes of 

'11 T are imposed on the solution ¢>. 

Although neither ¢> nor f 00 is known analytically, one can nevertheless sample 

desired quantities from the equilibrium distribution f 00. Averages taken with respect to 

f 00 are known as mixed averages. For example, sampling a quantity A in equilibrium 

gives (in the limit of large N) the average 

(1) 

where the Dirac notation being used has the normalization absorbed. The correct expec-

tation value of A , for a state ¢>, is < ¢> I A I¢»; however, in compu ting any property 

,r'" for which ¢> is an eigenstate, there is no difference between these two averages. This fol-

\,} lows since the eigenvalue can be taken out of the integral in Eq. 1. In particular, to 

compute the energy one samples the quantity EL (R) = 'Vy.l(R)H 'V T (R). Then 

<E > foo=<¢ III I'VT >=£0, 
where it 0 is defined by II ¢;=£ o¢;. 

(2) 
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Results 

Table I reports the total energies obtained for a number of atomic and molecular 

species. These energies are compared with Hartree-Fock results, with the best varia-

tional calculations to date, and with exact or experimental values. QMC compares quite 

favorably with the other methods, generally performing better than the best of the other 

calculations. 

When studying excited states of a given symmetry, such as the He states displayed 

in Table I, it is generally not possible to find a trial wave function exactly orthogonal to 

all the lower-energy states of that symmetry. This implies (cf. Eq. 2) that convergence 

wiII ultimately be to the lowest-energy state; however, the fixed-node approximation 

used to treat the Fermi problem is also of assistance in this context. In the fixed-node 

approximation, the nodes of 111 T are used to divide R -space into distinct volume ele-

ments. The Schrodinger equation is solved separately in each of these elements. This 

results in a solution of the Schrodinger equation with added bO l1 ndary conditions. 

Viewed this way, the Fermi problem is handled by forcing the generation of an antisym-

metric state above the Bose ground state through the placement of nodes in the solution 

~. In like manner, other excited states can be treated approximately by imposing addi-

tional nodes. The accuracy of the approximation will depend on how well these nodes 

are placed. Furthermore, if 1I1T is not orthogonal to all lower energy states, the approxi-

mation is no longer variational. 

Traditional ab initio methods generate excited-state wave functions which generally 

contain the correct number and dimensionality of nodal surfaces. Thus such wave func-

tions are a good place to begin in choosing a trial wave function 111 T. In our work on 

the excited states of He, we have taken a sum or two Slater determinants in 1I1T to 

obtain the required spatial symmetry. Although the result ror the (ls25) IS st.ate is not 

a.s accura.te as that ror the Is3s state, our calculated energy is nevertheless within 0.66 

,.­
r 
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kcal/mol of the experimental value. This is generally considered chemical accuracy. 

ill. QMC Molecular Properties 

Energy-Related Quant£t£es 

Table II reports the results obtained for a number of.atomic and molecular proper-

ties. The first four columns are properties that are derived from the energy. Thus, for 

example, separate energy calculations of F and F- are performed, and the difference 

gives the electron affinity. Most of the properties give impressively close agreement with 

experimental results. The somewhat larger discrepency in the binding energy of N2 IS 

probably attributable to the fixed-node approximation. 

Another important quantity is the potential-energy surface of a molecule, which IS 

obtained in the Born-Oppenheimer approximation from the solution of the electronic 

Schrodinger equation. Derivatives of the energy with respect to nuclear coordinates are 

very useful in accurately determining potential-energy surfaces including critical points, 

e.g. transition states and barriers, as well as in determining equilibrium geometries (11), 

and (by finite difference or higher analytic derivatives) in obtaining vibrational frequen­

cies (12). While advances over the past decade in conventional ab initio approaches allow 

the direct calculation of derivatives, only finite difference approaches have been imple-

mented in QMC (13). In principle there is no reason for this limitation. The energy 

derivative with respect to a nuclear coordinate p, can be written (14) 

d <E > I.", aEL 1 aJJ 1 a'1> 
d = <-a-> I + < ""7"-a· EL > I -<""7"-a > I <EL >, p p 00 ¢p 00 ¢p 00 00 

1 a'llT 1 a'llT 
+ <~-a-EL > I -<~-->, <EL> . (3) 

't!T P 00 't!T ap 00 100 

Although ;P-la'1>lap is unknown, it is possible to sample it. The other terms in Eq. 3 

may be evaluated straight-forwardly during the QMC simulation. Rather than sampling 

9- la¢/ap, as a first approximation we take ;P-la;Plap='II:r1a'llT lap. This turns out t.o 
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be a good approximation even when '11 T is only of moderate accuracy. 

Using this approach, we have performed calculations on H2 at several nuclear 

separations. Combining the QMC energies and derivatives at only four points leads to 

the curve shown in Figure 1. Compared to the exact curve obtained by Kolos and Wol­

niewicz (15), our error is less than the thickness of the line. 

Other Expectat£oll Values 

For expectation values of quantities whose operators do not commute with H, the 

mixed average of Eq. (1) is only approximate. One suspects that the mixed average is in 

some sense "half-way" between the exact expectation value (with respect to ~) and the 

variational expectation value, taken with respect to the trial wave function, I.e. 

Taken literally, this implies that 

2<WT I A I ~>-<'lIT I A 1 'liT >. This result can be formalized to first crder in the 

difference 8=4>-'11 T (8,14). It is, however, difficult to know how significant it is to drop 

terms of order 82. Thus, it is desirable to be able to sample exactly from the distribution 

I ~ I 2. This can be done, though it entails some changes in the usual QMC algorithm. 

To sample from the distribution I ~ 1 2
, the distribution f 00 must be weighted 

locally by ~(R )/'11 T (R). This quantity is essentially the asymptotic number of sur-

vivors of the local configuration R (16). Thus, algorithmically, one must follow each 

configuration into the future before computing any averages. As a walk progresses, one 

must not only keep track of its immediate decendents (which is easy), but also the des-

cendents of its decendents for a large number of generations. At first sight, this seems 

to be a very difficult task. But the problem can be greatly simplified by visualizing the 

branching process in time as a "tree." The tree expands vertically in time, t, and, as it 

branches, expands horizontally (or sometimes visualized as azimuthally) in the 0 clirec-

tion. The location of each configuration in the tree is uniquely described by the pair of 

I 
Ii 

r ' 
V 
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values (0, t). In addition, we requIre that all branches eminating from (0, t) have 0 in 

the range from 0 to O+A. No other branches are allowed within this range. This is 

accomplished through a proper choice of A. Following this procedure, the required 

weighting factor for configuration i at some later time is simply the number of 

configurations which lie between OJ and OJ +A j at this later time. Hence the only work 

required is to assign' each configuration, at each step in the walk, a value of 0 and A by 

the above scheme, and at a later (asymptotic) time to count the number of walks falling 

in a particular range. This relatively simple algorithm thus allows one to compute pro-

perties from the correct probability distribution. A more detailed discussion will be pub-
, 

lished elsewhere (17). 

Our results using the above algorithm to compute the electric quadrupole moment 

of H2 (see Table II), show that excellent results may be obtained with QMC by sampling 

from the I if> I 2 distribution. On the other hand, the N2 results use the approximate 

formula, and are also of high quality. Thus it appears that one may not always need to 

use the more complicated algorithm. 

In summary, Q~IC is a powerful and accurate method of calculating energies and 

properties of atomic and molecular systems. The results presented in Tables I and !I 

and Fig. 1 demonstrate its utility. In this paper we have demonstrated several new' 

capabilities of the method. \Ve have also pointed to areas requiring further develop-

ment, such as exactly orthogonal excited-state trial functions, and other approaches to 

excited states. Interestingly, in our approach the fixed-node approximation, which is the 

only obstacle to calculating exact ground-state energies, is the very tool needed in the 

calculation of excited-state energies. We have also shown that Q~'IC can be employed to 

calculate slI/ooth potential-energy surfaces, and ncar basis-set independent properties. 

These capabilit.ies make Q~·rc an attractive method to use for atomic and molecular cal-

cllialions. 
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Table Captions 

Table 1. Energies (in hartrees) for a number of atomic and molecular species. QMC 
energies for the first two excited IS states of He, as well as the ground states of H<), N, 
N

2
, F, and F- are compared with Hartree-Fock results, with the best variational cal~ula­

tions to date, and with exact or experimental results. 

Table II. Atomic and molecular properties for a number of species. Again QMC is 
compared with Hartree-Fock, with the best variational results, and with exact or experi­
mental values. In general, QNIC agrees well with the best calculations performed, as well 
as with experiment. The properties treated are the electron affinity A of F, the binding 
energy EB of N2, the barrier to chemical reaction for H + H2 exchange, the singlet­
triplet energy difference Te in CH2, and the electric quadrupole moment Q of H2 and 

N2· 

Figure Captions 

Figure 1. QMC potential-energy curve for H<). A Hermite polynomial fit to the energy 
and derivatives provides a curve indistinguishable from exact to the resolution of the 
line. A polynomial fit to the energy alone gives oscillatory behavior. The statistical 
error bars on the points are smaller than the points themselves. 



Table I. 

~{eLhod 

Harlree-Fock 

Besl 
Varia.tional 

QMC 

Experimenlal 
or Exacl 

a Ref. 18. 
b Ref. 19. 
c Ref. 20. 

He (1s2s) 

-2.14307 a 

-2.14307 a 

-2.144 93(7} 

-2.145 99 b 

He (1s3s) H2 N N2 

-2.06036 a -1.1336 c -54.4009 9 -108.9939 i 

-2.06036 Ii -1.173 7 <I -54.5133 h -109.365811. 

-2.061 19(7} -1.174 5(8}· -54.5765(12) -109.483 5(37) 

-2.061 28 b -1.17447/ -54.5895 i -109.535 " 

d Ref. 21. This is the best configuration interaction calculation for H2. Explicitly 
correlated variational results for H2 are essentially exact. See Ref. 15. 

e Ref. 1. 
1 From the essentially exact calculation in Ref. 15. 
~ Ref. 22. 

Ref. 23. . 

k 

From experimental results corrected for relativistic etJects in Ref. 24. Ref. 27 
corrects an error in the sign of the Lamb shift. resulting in the energy given here. 
Ref. 25. 
Ref.26. 

m Ref. 27. 
n From experimental results corrected for relativistic effects in Ref. 28. 

aT;.'"" -, 

F 

-99.4093 9 

-99.7166 m 

-99.7005(21) 

-99.731 3 i 

.- -'F 

-F 

-99.4594 9 

-99.831 2 m 

-99.827 3{34) 

-99.857(3) n 

t-' 
N 
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