
UC Berkeley
UC Berkeley Previously Published Works

Title
LOGAN: High-Performance GPU-Based X-Drop Long-Read Alignment

Permalink
https://escholarship.org/uc/item/8pj6h55s

Authors
Zeni, Alberto
Guidi, Giulia
Ellis, Marquita
et al.

Publication Date
2020-05-22

DOI
10.1109/ipdps47924.2020.00055

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8pj6h55s
https://escholarship.org/uc/item/8pj6h55s#author
https://escholarship.org
http://www.cdlib.org/

LOGAN: High-Performance GPU-Based X-Drop
Long-Read Alignment

Alberto Zeni∗, Giulia Guidi†‡, Marquita Ellis†‡, Nan Ding‡, Marco D. Santambrogio∗,
Steven Hofmeyr‡, Aydın Buluç†‡, Leonid Oliker‡, Katherine Yelick†‡

∗Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
†Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA

‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Availability: https://github.com/albertozeni/LOGAN

Contact: alberto.zeni@mail.polimi.it, gguidi@lbl.gov

Abstract—Pairwise sequence alignment is one of the most
computationally intensive kernels in genomic data analysis, ac-
counting for more than 90% of the runtime for key bioinformatics
applications. This method is particularly expensive for third-
generation sequences due to the high computational cost of
analyzing sequences of length between 1Kb and 1Mb. Given
the quadratic overhead of exact pairwise algorithms for long
alignments, the community primarily relies on approximate
algorithms that search only for high-quality alignments and
stop early when one is not found. In this work, we present
the first GPU optimization of the popular X-drop alignment
algorithm, that we named LOGAN. Results show that our high-
performance multi-GPU implementation achieves up to 181.6
GCUPS and speed-ups up to 6.6× and 30.7× using 1 and
6 NVIDIA Tesla V100, respectively, over the state-of-the-art
software running on two IBM Power9 processors using 168
CPU threads, with equivalent accuracy. We also demonstrate a
2.3× LOGAN speed-up versus ksw2, a state-of-art vectorized
algorithm for sequence alignment implemented in minimap2,
a long-read mapping software. To highlight the impact of our
work on a real-world application, we couple LOGAN with
a many-to-many long-read alignment software called BELLA,
and demonstrate that our implementation improves the overall
BELLA runtime by up to 10.6×. Finally, we adapt the Roofline
model for LOGAN and demonstrate that our implementation is
near optimal on the NVIDIA Tesla V100s.

I. INTRODUCTION

Pairwise alignment is one of the most commonly used

workhorses of sequence analysis. It is used to correct raw

sequencer reads, assemble them into more complete genomes,

search databases for similar sequences, and many other prob-

lems. The optimal solutions for this problem require quadratic

time (i.e. they take O(mn) time for aligning a sequence

A of length m and a sequence B of length n). Namely,

Needleman–Wunsch (NW) [1] is used to find the best global

alignment by forcing the alignment to extend to the endpoints

of both sequences. Alternatively, Smith–Waterman (SW) [2]

computes the best local alignment by finding the highest

scoring alignment between continuous subsequences of the

input sequences.

The popular X-drop [3] algorithm avoids the full quadratic

cost by searching only for high-quality alignments, and can

be viewed as an approach to accelerate both NW and SW.

Most applications of alignment will throw out low quality

alignments, which arise when the two strings are not sim-

ilar. Instead of exploring the whole m × n space, the X-

drop algorithm searches only for alignments that results in

a limited number of edits between the two sequences. X-

drop keeps a running maximum score and does not explore

cell neighborhoods whose score decreases by a user-specified

parameter X . It gets its performance benefits from searching

a limited space of solutions and stopping early when a good

alignment is not possible.

Zhang et al. [3] proved that, for certain scoring matri-

ces, the X-drop algorithm is guaranteed to find the optimal

alignment between relatively similar sequences. In practice,

the algorithm eliminates searches between sequences that

are clearly diverging. This feature is especially effective for

many-to-many alignment problems when there is an attempt

to align many sequences to many other possibly matching

sequences, i.e., the cost is high as is the possibility that some

pairs will not align. With X-drop, any spurious candidate

pair is readily eliminated because the optimal score quickly

drops. Consequently, X-drop and its variants are the algorithm

of choice in some of the most popular sequence mapping

software including BLAST [4], LAST [5], BLASTZ [6] with

Y -drop, and minimap2 [7] with Z-drop.

Although X-drop is a heuristic for cutting the cost of

alignment, it also produces good quality results, which are

sometimes better than a more complete search. Frith et al. [8]

show that a large X does not necessarily produce better align-

ments. Without the X-drop feature, the alignment algorithm

can incorrectly glue two independent local alignments into a

large one. For example, consider two sequences, one of the

form S = A-B-C and other of the form R = A-D-C. Since

the regions A and C produce high-scoring alignments, likely

a high X would incorrectly determine that score(S,R) >
max(score(A,A), score(C,C)) provided that B and D regions

are short enough.

Although there are numerous GPU implementations of

the full O(mn) SW and NW algorithms that often achieve

impressive computational rates (measured in CUPS or cell

updates per second), they are rarely incorporated into high-

impact genomics pipelines due to their quadratic complexity.

By contrast, a GPU implementation of X-drop is notably

missing from the literature despite its benefits and popularity.

This is likely due to the increased complexity of implementing

X-drop efficiently on a GPU, compared with NW and SW

methods, because of the dynamic nature of the computation,

its adaptive band, and the need to check for completion.

Our main contributions are:

• We present the first high-performance, multi-GPU im-

plementation of the X-drop algorithm, named LOGAN,

which achieves significant speed-ups over leading ver-

sions on state-of-the-art processors.

• We integrate LOGAN within BELLA, a long-read many-

to-many overlapping and alignment software and demon-

strate performance improvements up to 10×.

• We adapt the Roofline Model to LOGAN implementation

and underlying hardware, and demonstrate that perfor-

mance is near optimal on NVIDIA Tesla V100s.

A key aspect of our implementation is combining different

levels of parallelism. Specifically, we implement the intra-
sequence parallelism via dynamic thread scheduling and

in-warp parallelism, while accomplishing inter-sequence
parallelism by assigning each GPU block to a single

alignment. Finally, we carry out parallelism across multiple

GPUs through a load balancer.

The remainder of the paper is organized as follows. Sec-

tion II provides an overview of the related work, while

Section III describes the original software algorithm we port

on GPU. Section IV describes our implementation and op-

timizations. Section V presents LOGAN integration within

BELLA [9], a long-read overlapping and alignment soft-

ware. Section VI illustrates our experimental results, while

Section VII describes the Roolfline model used to analyze

our implementation. Finally, Section VIII summarizes our

contributions and outlines future work.

II. RELATED WORK

The majority of hardware acceleration efforts for pairwise

alignment have focused on the Smith–Waterman (SW) and

Needleman–Wunsch (NW) algorithms. These find exact align-

ments and have quadratic complexity in the lengths of the

reads. Along with some of the most successful NW and SW

acceleration efforts, we review the few efforts to accelerate

heuristics more similar to our own. Though they are more

generally applicable, exploiting GPU parallelism in these

heuristics is more challenging due to their adaptive nature. As

a common success metric, we report Giga Cell Updates Per

Second (GCUPS), as reported by the original work, throughout

this section. It is important to keep in mind that the GCUPS

rates presented in this section were collected by the respective

authors using different architectures than examined in our

study. In Section VI, we collect comparative performance data

with the ksw2 algorithm on equivalent platforms.

The implementation of Michael Farrar [10], which is

adopted in Bowtie2 [11], stands out amongst software imple-

mentations of the SW algorithm. It leverages SIMD instruc-

tions and reaches performance of more than 20 GCUPS on an

Intel Xeon Gold with 40 CPU threads. The same software

implementation has been optimized for the PlayStation 3

processor and the IBM QS20 architecture [12], achieving

performance of 15.5 and 11.6 GCUPS, respectively.

CUDASW++3 [13] accelerates the SW algorithm combin-

ing SIMD instructions and GPU parallelism. The implemen-

tation achieves up to 185.6 GCUPS when aligning reads with

length less than 400 characters. However, the performance

drops significantly when the sequence length exceeds 400
characters. Additionally, when running only using the GPU,

their maximum attained performance is 68 GCUPS (roughly
1/3 of their peak performance).

Muhammadzadeh presented MR-CUDASW++ [14], which

was inspired by CUDASW++3 but optimized for “medium

length” reads. Muhammadzadeh compares MR-CUDASW++

to other tools, with CUDASW++3 as its closest contender,

across sequences lengths of 1K, 10K, and 100K. MR-

CUDASW++ achieved speedups of 1 − 2× over CUD-

ASW++3. The results were below 85 GCUPS using an

NVIDIA Tesla V100, which is the same GPU used for

our benchmarks. Li et al. [15] accelerate the SW algorithm

achieving a speed-up of over 160× compared to software

implementation using an Altera Nios II Field Programmable

Gate Array (FPGA). Nevertheless, the performance of their

proposed solution is comparable to existing optimized software

implementations. The SW implementation of Di Tucci et

al. [16], running on a Xilinx Virtex 7 and a Kintex Ultrascale

platforms, achieves up to 42.5 GCUPS and a speed-up of 1.7×
over the state-of-the-art FPGA implementation. However, this

work is limited to aligning short sequences that have a number

of characters not exceeding the number of processing elements

in the architecture.

A recent work by Turakhia et al. [17], Darwin, exploits

FPGAs to speed up the alignment process achieving up to 45
GCUPS. Darwin uses a seed-and-extend heuristic (GATC) that

performs the extension stage in the seed-and-extend paradigm

in which Dynamic Programming (DP) is used around the seed

hit to obtain local alignments similar to SW.

Feng et al. [18] recently presented accelerator-based opti-

mizations for minimap2 [19]. Leveraging the GPU architec-

ture, they accelerate minimap2’s seed-chain-extend pairwise

alignment algorithm, which is quadratic in the length of the

reads when computing traceback and linear otherwise. They

reported performance of 96.5 GCUPS (a 7.1× speed-up over

the minimap2’s SIMD software implementation). Our X-drop

alignment algorithm in this study computes a similar heuristic

to minimap2’s pairwise alignment. In Section VI, we compare

our work with ksw2 [20] (i.e., minimap2’s alignment kernel),

showing that LOGAN achieves higher performance in terms

of GCUPS than both ksw2 and the performance reported by

Feng et al. for their GPU-accelerated implementation.

Despite a large number of sophisticated implementations,

the overwhelming majority of the proposed hardware accel-

erations studies implement the exact SW or NW algorithms.

Current Iteration

Previous Iteration

Two Iteration Prior

Fig. 1. Each cell at the current iteration has two dependencies on cells from
the previous iteration and one dependency on a cell at two iteration prior.

Banded Search Space

X-Drop Search Space

VS

Fig. 2. Comparison between the search space of an X-drop alignment
algorithm versus the search space of a banded-alignment algorithm.

We believe the although X-drop algorithm is the most prac-

tical choice for targeting large-scale alignments, it requires

more challenging parallelization than the original SW or NW

methods. Though relatively unexplored due to this challenge,

we demonstrate that GPU optimization results in significant

acceleration.

III. BACKGROUND

This section provides an overview of the X-drop imple-

mentation proposed by Zhang et al. [3] and implemented in

the SeqAn library [21], a C++ library for sequence analysis.

First, we review the formal definition of alignment. A pairwise
alignment of sequences s and t over an alphabet Σ is defined

as the pair (s′, t′) such that s′, t′ ∈ Σ∪{−} and the following

properties hold:

1) |s′| = |t′| = l
2) ∀li=1 s′i �= − OR t′i �= −
3) Deleting all “−” from s′ yields s, and deleting all “−”

from t′ yields t.

A scoring scheme is used to distinguish high-quality align-

ments from the many (valid) alignments of a given pair of

sequences. Scoring schemes generally reward matches and

penalize mismatches, insertions, and deletions.

A. The X-drop Algorithm

Given two DNA sequences A = a1a2 . . . am and B =
b1b2 . . . bn of length m and n, the goal of the X-drop

algorithm is to find the highest-scoring semi-global alignment

between A and B of the forms a1a2 . . . ai and b1, b2 . . . bj ,

for some i ≤ m and j ≤ n that are chosen to maximize the

score.

For a given i and j, we define S as the alignment matrix and

S(i, j) as the alignment score between A and B. A positive

match score is added to S(i, j) for each pair of identical

nucleotides. If nucleotides do not match, the algorithm can

either subtract a mismatch score to S(i, j) and move diago-

nally or subtract a gap score and move horizontally (gap into

the vertical sequence) or vertically (gap into the horizontal

sequence) in the dynamic programming grid. More formally,

each cell of the alignment matrix S is computed as follows:

S(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

S(i− 1, j − 1) +match if i > 0, j > 0 and ai = bj
S(i− 1, j − 1) +mismatch if i > 0, j > 0 and ai �= bj
S(i, j − 1) + gap if j > 0
S(i− 1, j) + gap if i > 0

Figure 1 shows the three dependencies of a cell during the

computation: two dependencies on cells from the previous

iteration and one dependency on a cell at two iterations prior.

Note that SW, NW, as well as the majority of their heuristic

implementations show these dependencies. SW and NW com-

pute the entire S matrix to find the optimal alignment. This

quadratic algorithm is extremely inefficient in the case of either

misalignment or when aligning almost identical sequences. A

misalignment could happen, for example, when two sequences

have a tiny region in common due to a genomic repetition.

The SW algorithm would spend significant computational

resources calculating the entire dynamic programming (DP)

matrix and report a very poor alignment score between the

two sequences. On the other hand, SW or NW on two almost

identical sequences would compute the whole DP matrix with

no additional benefit, since the optimal alignment score would

remain close to the diagonal of the DP matrix.

The concept of the X-drop termination consists of halting

the computation if the alignment score drops more than X
below the best alignment score σ seen so far for that pair

of sequences. σ is potentially updated at each anti-diagonal

iteration. If S(i, j) < σ − X , we set the cell S(i, j) equal

to −∞ and no longer consider that cell for the subsequent

iterations of S. The cells set to −∞ are used to compute the

lower and upper bound for the next anti-diagonal iteration.

This approach limits the anti-diagonal width, reducing the

search space of the algorithm, and automatically provides a

termination condition. The X-drop algorithm is particularly

efficient when two sequences do not align. A pseudo-code of

the X-drop algorithm is shown in Algorithm 1.

Note that X-drop should not be confused with the popular

banded-SW method. This approach constrains the search space

to a fixed band along the diagonal, regardless of the drop in

the score. The areas of the m×n dynamic programming grid

explored by these algorithms are characteristically different

from X-drop’s search space, which is reminiscent of a rugged

band with changes in the length of each anti-diagonal, as

shown in Figure 2. To better understand the difference in

practice, consider two sequences that have very high (over

50%) differences in terms of substitutions but have no indel

(insertion or deletion) differences. The optimal path would be

along the diagonal because both a mismatch and match move

the cursor in both sequences. X-drop will correctly terminate

the search early due to a significant drop in the score whereas

banded-SW would explore the entire band.

Algorithm 1 Pairwise alignment of Sq and St with X-drop

1: procedure PAIRWISEALIGNMENT(Sq , St, X)

2: A1, A2, A3 � Create anti-diagonal

3: best ← 0 � Initialize best score to 0

4: while A1.size() �= 0 do � DP matrix

5: A1 ← A3. � Anti-diagonal swap

6: A2 ← A1.

7: A3 ← A2.

8: ComputeAntiDiag(A1, A2, A3)

9: best ← A1.max()
10: for k ← 0 to A1.size() do
11: if A1[k] = −∞ then
12: ReduceAntiDiagFromStart(A1)

13: for k ← A1.size() to 0 do
14: if A1[k] = −∞ then
15: ReduceAntiDiagFromEnd(A1)

16: return(best) � X-drop termination

IV. IMPLEMENTATION

The key aspect of our implementation is exploiting as many

levels of parallelism as possible on the Graphical Processing

Unit (GPU). Intra-level parallelism is achieved by dynamically

scheduling the threads based on the value of X and through the

use of in-warp parallelization to find the maximum of the anti-

diagonals. To achieve inter-level parallelism, we implement the

parallel execution of multiple alignments by assigning each

GPU block to a single alignment. Multi-GPU parallelism is

obtained by implementing a GPU load balancer that adapts

the execution of LOGAN to leverage multiple GPUs.

In this section, we describe the design of our implementa-

tion. Section V then presents our optimized kernel integration

within BELLA, a real-world application. Note that we refer to

GPU threads and GPU blocks simply as threads and blocks.

A. Intra-Sequence Parallelism

We first consider the intra-sequences parallelism, which is

the parallelization of a single pairwise alignment and its anti-

diagonals computation. Given that the X-drop algorithm we

decided to port to GPU does not perform alignment trace-back,

we do not store the entire alignment matrix on the device

for each alignment. Therefore, we can reduce the memory

footprint of our kernel on the GPU by storing only three anti-

diagonals per alignment: current, previous, and two iterations

prior, as highlighted in Figure 1.

Similarly to SW and NW algorithms, we compute the

cell updates of each anti-diagonal of the alignment matrix

in parallel. Each anti-diagonal cell has three dependencies on

cells from anti-diagonals at previous iterations. Nevertheless,

we can leverage the independence between cells belonging to

the same anti-diagonal. To compute an anti-diagonal update

in parallel, we assign each cell to a GPU thread and compute

them independently, where a GPU block can schedule up

to 1024 threads. To overcome this limitation and ensure the

THREAD

SEGMENT

Fig. 3. Each anti-diagonal is divided in segments, whose width is equal to
the number of threads scheduled in a block

Algorithm 2 Computation of the anti-diagonal in parallel

1: procedure ANTIDIAG(A1, A2, A3, Sq, Sv, X, best)
2: tid ← threadID
3: while tid < A1.size() do
4: if Sq[tid] == Sv[tid] then
5: A1[tid] ← A3[tid− 1] + match
6: else
7: A1[tid] ← A3[tid− 1] + mismatch
8: tmp ← max(A2[tid] + gap, A2[tid− 1) + gap)
9: A1[tid] ← max(A1[tid], tmp)

10: if A1[tid] < best−X then
11: A1[tid] ← −∞
12: tid ← tid+ numScheduledThreads

computation of any anti-diagonal length, we split each anti-

diagonal into segments, as shown in Figure 3. The anti-

diagonal is split into segments whose width is equal to the

number of threads within a block. Once a segment of the

anti-diagonal is completed, the kernel initiates the computation

of the subsequent segment. This process is repeated until the

entire anti-diagonal is computed.

For each cell, the corresponding thread sets the score to

−∞ if the cell score drops X below the global maximum of

the alignment matrix, that is best in Algorithm 1. The overall

maximum score is a shared variable within the considered

block. The global maximum of the scoring matrix is updated

after any anti-diagonal has been completely calculated since it

needs to consider the newly computed scores. Computing the

global maximum naively would significantly slow down the

execution since it would require serial comparison of each cell

with the all others in a given anti-diagonal. Thus we speed up

this process by computing the maximum anti-diagonal score

via a parallel reduction.

Once each thread is assigned to a cell of the anti-diagonal,

our algorithm leverages in-warp thread communication to

compare the values inside cells and perform the reduction,

where a warp is a set of 32 threads executing the same code

and sharing the same data. All threads within a warp com-

municate using registers, which maximizes communication

speed. Algorithm 2 illustrates the parallel computation of the

anti-diagonal. Finally, the size of the next anti-diagonal to be

BLOCK
KERNEL

Fig. 4. Each alignment is assigned to one block. The kernel executes all the
block in parallel, in order to leverage inter-alignment parallelization.

computed is updated by checking if there are cells marked

with −∞ at the end or the start of the current anti-diagonal.

LOGAN continues computing the alignment matrix until either

it reaches the end of the shortest read or the size of the current

anti-diagonal is set to zero, meaning that it has satisfied the

condition.

B. Inter-Sequence Parallelism

Intra-sequence parallelism optimizes the alignment compu-

tation for a single pair of sequences, however, it does not

effectively leverage the large volume of GPU computational

resources. We therefore exploit the GPU computational poten-

tial by designing LOGAN to align multiple pairs of sequences

in parallel by assigning each alignment to a GPU block —

thus taking advantage of inter-sequences parallelism. LOGAN

schedules the number of GPU blocks based on the number of

alignments needed to be performed (Figure 4). Each NVIDIA

V100s GPU block can store up to 64KB in shared-memory

and performs an independent alignment. Since only three

anti-diagonals need to be stored, we could ostensibly store

them into GPU shared-memory (the fastest memory available

after the registers). However, despite the potential of reserving

64KB of memory per block, this cannot be implemented in

practice as the device has only 96KB of memory per streaming

multiprocessor (SM). Given that each SM on the device can

execute up to 32 blocks in parallel, if a single block has

reserved too much memory, a SM is forced to exchange data

with the DRAM of the GPU every time it computes a block.

Furthermore, given that only a single block could fit on a

single SM, the execution would be limited to a single block per

SM. Given our goal of achieving the best possible board-level

utilization, we need to compute multiple blocks per SM in

parallel. Consequently, to overcome these limitations and avoid

shared memory contention, LOGAN stores the three anti-

diagonals of each alignment on the High Bandwidth Memory

(HBM) of the GPU. Doing so, removes the limitation on the

number of blocks per SM, and achieves significantly more

effective parallelism.

To further improve our resource utilization, LOGAN sched-

ules a number of threads per block lower than the maximum

of 1024. In fact, if the number of threads exceeds the anti-

diagonal length, many of the threads will stall, decreasing

SEED

s1

s2

RIGHT-EXTENSIONLEFT-EXTENSION

Fig. 5. In the seed-and-extend alignment paradigm, the seed location
determines where the read pair is split into two different alignments: left-
and right-extension.

TABLE I
X -DROP EXECUTION TIMES ON GPU USING X = 100 AND EXPLOITING

DIFFERENT LEVELS OF PARALLELISM.

Parallelism Pairs Threads Blocks Time Speed-Up

None 1 1 1 1.50s -

Intra-sequence 1 128 1 0.16s 9.3×
Intra-sequence 100K 128 1 45h -

Intra- and inter-sequence 100K 128 100K 7.35s 22000.0×

overall performance. Additionally, we need to store the in-

termediate results of the parallel reduction in shared memory

to enable in-warp thread communication when computing the

anti-diagonal maximum score. Since the number of intermedi-

ate results is equal to the number of scheduled threads, reduc-

ing the number of scheduled threads per block also reduces

the risk of shared memory contention. Given that the length

of each anti-diagonal is proportional to the value of X , our

implementation schedules a number of threads proportional

to X , significantly reducing the number of stalled threads.

This scheduling increases our performance and improves our

resource utilization. Table I shows the impact of the various

degrees of parallelization implemented in the LOGAN kernel.

The first two rows of the table show the impact of intra-

level parallelism over a single-thread execution, while the

second two show the impact over inter-level parallelism for

100K alignments of read pairs. Note that intra-level parallelism

improves the performance by a factor of about 9×, while the

introduction of inter-level parallelism improves performance

by an impressive factor of 22, 000× with respect to intra-

parallelism alone. The intra-sequence parallelism has insuf-

ficient work to consume available GPU resources, hence its

impact on performance is limited compared to inter-sequence

parallelism. Notably, inter- and intra-sequence parallelisms are

complementary to each other. LOGAN therefore implements

both to better exploit the resources of the GPU and maximize

our kernel performance.

To make the LOGAN processing more efficient on the

GPU, we additionally introduce CPU host optimization. First,

LOGAN loads the length of the sequences and the seed

locations for each pair of sequences and stores them into two

buffers. Each pair of sequences is split in two based on the

seed’s location, resulting in a left-extension pair and a right-
extension pair, as shown in Figure 5. Left-extension and right-

extension pairs are stored into two different vectors, and these

alignments are computed independently by scheduling two

different streams on the GPU. Traditionally, when aligning

two sequences, one of them is accessed backward, resulting

A C GC T A G A

A

A

C

T

G

G

A

G

C
O

M
P

U
TA

T
IO

N

0-INDEX

A C GC T A G A

A

G

G

G

T

C

A

A

C
O

M
P

U
TA

T
IO

N

0-INDEX

COMPUTATION COMPUTATION

Fig. 6. The query (vertical) sequence is reversed to exploit coalesced memory
access on the GPU.

DNA sequences HOST

LOAD BALANCER

GPU 5 GPU 6GPU 2 GPU 3 GPU 4GPU 1

Fig. 7. Load balancing scheme of our multi-GPU implementation to distribute
alignments across GPUs.

in memory performance degradation since characters are read

in the opposite direction of the memory. To ensure coalesced

data access on the GPU and exploit memory burst, one of

the two sequences (for each given pair) is reversed, as shown

in Figure 6. This optimization linearizes the GPU memory

data access, thus increasing performance while preserving

the correct solution. Finally, note that kernel execution is

scheduled asynchronously from the host, enabling the retrieval

of alignment results as soon as they are available, instead of

waiting for all the alignments to complete.

C. Implementation with Multiple GPU Devices

To effectively exploit the available multiple GPU resources,

LOGAN leverages a load balancer as shown in Figure 7.

This optimization allows LOGAN to run on varying GPU

configurations, since it can adapt the load to the specific

number of GPUs present within a given system.

The host application balances the computation by schedul-

ing the number of alignments for each GPU. The host switches

context multiple times and then replicates the operations for

each GPU to simplify its task. The pre-processing of the se-

quences occurs as in the single device implementation and the

load balancer divides the sequences into different groups that

are then assigned to the GPUs. The HBM memory of the GPU

represents a limiting resource for LOGAN, since in the single

GPU implementation it is fully utilized. To ensure balance,

we schedule the number of alignments per GPU considering

both the number of available GPUs and the length of the

sequences. Once the division is completed, the host allocates

the necessary memory on the different GPUs, enabling each

GPU to execute its set of alignments independently. The host

then schedules each GPU kernel to be executed in parallel

and collects alignment results asynchronously. Once the GPU

devices completed their execution, the load balancer collects

and organizes the results.

V. BELLA INTEGRATION

To demonstrate the impact of the work, we integrate LO-

GAN into a long-read analysis software, called BELLA [9].

BELLA is a recently released, publicly-available software

for long-read many-to-many overlap detection and alignment.

Detecting overlaps is a crucial and computationally intense

step in many long-read applications, such as de novo genome

assembly and error correction. BELLA uses a seed-based

approach for overlap detection implemented as an efficient

sparse matrix-matrix multiplication (SpGEMM) kernel. Before

performing overlapping, BELLA provides a new algorithm

for pruning the k-mers, substrings of fixed length k used as

seeds. The k-mers are pruned because unlikely to be useful in

overlap detection and their retention would cause unnecessary

computational overhead and potential errors. Once overlaps

are identified, a seed-end-extend pairwise alignment step is

performed to filter out spurious overlaps. BELLA chooses the

optimal k-mer to begin alignment extension, as illustrated in

Figure 5, through a binning mechanism, where k-mer locations

are used to estimate the overlap length and to “bin” k-mers

to form a consensus. BELLA additionally uses the novel ap-

proach of separating true alignments from false positives using

an adaptive threshold based on a combination of alignment

techniques and probabilistic modeling.

BELLA relies on SeqAn’s X-drop implementation [21]

for pairwise alignment, which constitutes about 90% of the

overall runtime when using real data sets. Once overlaps are

computed via SpGEMM, BELLA performs the pairwise align-

ment and determines if the aligned pair should be kept. The

current implementation is efficient for SeqAn as the processor

computes independent pairwise alignments in parallel using

OpenMP [22]. However, this approach is inefficient for the

GPU architecture, since it limits the amount of parallelism

between alignments. To better exploit inter-alignment paral-

lelism, we modify BELLA to batch the entire set of alignments

together and send them to the GPU devices. The host CPU

then retrieves and post-processes the alignment results. Our

optimized BELLA version with LOGAN integration produces

equivalent results as the original version.

VI. DISCUSSION

In this section, we describe the experimental settings used

to evaluate the LOGAN methodology and present our perfor-

mance results.

A. Experimental Setting

We first compare LOGAN against the CPU-based X-drop

algorithm as implemented in SeqAn [21]. Next, we evaluate

LOGAN against two GPU-based algorithms: the current state-

of-the-art implementation of full Smith-Waterman (SW), CU-

DASW3++ [13], and the closest heuristics to ours proposed by

Feng et al., manymap [18]. Finally, we integrate LOGAN into

1 GPU
6 GPUs
Baseline

S
pe

ed
-U

p
ov

er
 1

68
 C

P
U

 T
hr

ea
ds

1

101

X-Drop

10 100 1000

LOGAN Speed-Up over SeqAn

Fig. 8. LOGAN’s speed-up over SeqAn for 100K alignments (log-log scale).
POWER9 Platform with 6 NVIDIA Tesla V100s.

TABLE II
LOGAN AND SEQAN EXECUTION TIMES IN SECONDS FOR 100K

ALIGNMENTS (POWER9 PLATFORM WITH 6 NVIDIA TESLA V100S).

X-Drop SeqAn LOGAN LOGAN
168 CPU Threads 1 GPU 6 GPU

10 5.1 2.2 1.9

20 12.7 3.1 2.1

50 29.6 5.0 2.2

100 45.7 7.2 2.7

500 102.6 14.9 4.0

1000 133.3 20.2 4.9

2500 168.0 25.3 5.6

5000 176.6 26.7 5.8

the BELLA long-read application to demonstrate its benefit in

a real-world computation.

To compare LOGAN against SeqAn’s, we generate a set of

100K read pairs with read length between 2,500 and 7,500

characters and an error rate of ≈15% between two reads of a

given pair. The results were collected on a dual-socket server

with two 22-core IBM POWER9 processors and 6 NVIDIA

Tesla V100s (16 GB HBM2) with 512 GB DDR4 of RAM.

Each processor has 21 compute cores with 4 threads per core.

Also, we compare LOGAN to minimap2’s [19] vectorized

Z-drop alignment algorithm, called ksw2 [20], using the

same data set of 100K pairs described above. Note that we

conducted these comparisons on a different hardware platform:

a dual-socket computer with two 20-core Intel Xeon Gold

6148 CPU processors, each running at 2.40 GHz with 384

GB DDR4 2400 MHz memory and 8 NVIDIA Tesla V100s

(16 GB HBM2) GPUs. A different platform was required

since the POWER9 processors are not compatible with ksw2’s

SSE2 SIMD instructions. On the Intel Xeon Gold platform

with 8 NVIDIA Tesla V100s, we also perform the comparison

between LOGAN, CUDASW++, and manymap using the same

100K pairs as above.

Additionally, we integrate LOGAN into the BELLA long-

read application [9], described in Section V, by evaluating

1 GPU
8 GPUs
Baseline

S
pe

ed
-U

p
ov

er
 8

0
C

P
U

 T
hr

ea
ds

1

101

102

103

X-Drop

10 100 1000

LOGAN Speed-Up over ksw2

Fig. 9. LOGAN’s speed-up over ksw2 for 100K alignments (log-log scale).
“Skylake” Platform with 8 NVIDIA Tesla V100s.

TABLE III
LOGAN AND KSW2 EXECUTION TIMES IN SECONDS FOR 100K

ALIGNMENTS (“SKYLAKE” PLATFORM WITH 8 NVIDIA TESLA V100S).

X-Drop ksw2 LOGAN LOGAN
80 CPU Threads 1 GPU 8 GPU

10 6.9 2.5 1.7

20 7.0 3.8 1.8

50 7.7 5.8 2.1

100 10.4 7.3 2.4

500 113.0 15.2 3.4

1,000 209.5 20.4 4.3

2,500 1235.8 25.9 5.2

5,000 3213.1 27.2 5.2

the performance difference of replacing SeqAn with LOGAN.

For this comparison, we used a real E. coli and a synthetic

C. elegans data sets, requiring 1.8M and 235M alignments,

respectively. We analyzed these experiments on the same

hardware platform as SeqAn evaluation.

B. Results

Figure 8 shows LOGAN’s speed-up using both one GPU

and the entire set of six GPUs compared against SeqAn’s

implementation using 168 threads on two POWER9 proces-

sors. Details of the execution time are shown in Table II.

Note that LOGAN’s execution times remain roughly constant

for large values of X . In these scenarios, we can exploit

the full parallelism of the GPU architecture, resulting in

similar execution times. Observe that LOGAN attains speed-

ups ranging from 2.3× to 6.6× for a single GPU and from

2.7× to 30.7× using all six GPUs. As expected, LOGAN

achieves higher speed-ups as the value of X increases, since

the alignment runs for a longer duration. We also note that

LOGAN multiple GPU implementation scales better for longer

execution runs. This is due to amortizing the load balancing

overhead when dividing the sequences into different groups.

Figure 9 presents LOGAN’s performance using both 1 GPU

and the entire set of 8 GPUs when compared against ksw2’s

1 GPU
6 GPUs
Baseline

S
pe

ed
-U

p
ov

er
 1

68
 C

P
U

 T
hr

ea
ds

1

101

X-Drop

5 10 20 50 100

BELLA Speed-Up for E. coli Data Set

Fig. 10. BELLA’s speed-up replacing its pairwise alignment kernel (SeqAn)
with LOGAN for the E. coli data set for 1.8M alignments (log-log scale).
POWER9 Platform with 6 NVIDIA Tesla V100s.

TABLE IV
EXECUTION TIMES ON POWER9 PLATFORM WITH 6 NVIDIA TESLA

V100S IN SECONDS FOR 1.82M ALIGNMENTS (E. coli).

X-Drop BELLA LOGAN LOGAN
168 CPU Threads 1 GPU 6 GPU

5 53.2 110.4 114.3

10 108.6 146.4 115.3

15 139.0 152.9 114.8

20 226.7 162.7 118.4

25 275.3 173.5 125.3

30 558.0 185.3 130.6

35 654.1 198.4 136.8

40 750.1 212.7 138.4

50 913.1 248.5 141.4

80 1303.7 295.8 142.4

100 1507.1 336.3 144.5

CPU vectorized implementation on the Skylake processor.

Both algorithms are benchmarked using the same set of 100K

alignments used to compare LOGAN and SeqAn. Results

show that LOGAN attains significant speed-ups ranging from

3.1× to 120.4× with a single GPU and from 3.7× to 558.5×
using eight GPUs. Additionally, we can observe that ksw2

performs better when aligning the sequences using a small

value of X and its performance degrades drastically when

increasing the X-drop value, as shown in Table III. Given

LOGAN and ksw2 implement two slightly different heuristics,

we also report a comparison based on the GCUPS metric.

LOGAN achieves up to 181.4 GCUPS with a single GPU for

X = 5000, while ksw2 best performance is only 77.6 GCUPS

for X = 100. Importantly, LOGAN always outperforms ksw2

both in terms of runtime and GCUPS, independently from their

respective peak performance at different values of X .

Figure 12 illustrates LOGAN’s performance compared to

two GPU-based algorithms, CUDASW++ and manymap. No-

tably, each of these three implementations performs a different

amount of work, therefore we report the performance in

1 GPU
6 GPUs
Baseline

S
pe

ed
-U

p
ov

er
 1

68
 C

P
U

 T
hr

ea
ds

1

101

X-Drop

5 10 20 50 100

BELLA Speed-Up for C. elegans Data Set

Fig. 11. BELLA’s speed-up replacing its pairwise alignment kernel (SeqAn)
with LOGAN for the C. elegans data set for 235M alignments (log-log scale).
POWER9 Platform with 6 NVIDIA Tesla V100s.

TABLE V
EXECUTION TIMES ON POWER9 PLATFORM WITH 6 NVIDIA TESLA

V100S IN SECONDS FOR 235M ALIGNMENTS (C. elegans).

X-Drop BELLA LOGAN LOGAN
168 CPU Threads 1 GPU 6 GPU

5 131.7 577.1 213.1

10 723.3 750.2 579.7

15 1467.7 865.6 749.8

20 1954.8 908.9 777.0

25 2518.8 1015.5 838.9

30 3047.1 1125.0 888.0

35 3492.5 1226.5 927.0

40 3887.0 1329.0 955.9

50 4607.7 1449.0 983.7

80 6367.7 1593.9 1046.1

100 7385.3 1753.3 1080.9

terms of GCUPS. Furthermore, CUDASW++ uses hybrid

GPU/SIMD computation by default. We report its performance

with both hybrid and GPU-only computation. LOGAN con-

sistently outperforms both CUDASW++ and manymap with

performance up to 181 GCUPS on a single GPU, while CU-

DASW++ and manymap achieve at most 70 and 96 GCUPS,

respectively. Running with eight GPUs, LOGAN computes

3.2× more GCUPS than GPU-only CUDASW++.

Finally, Figures 10 and 11 present BELLA’s performance

improvements when using LOGAN as pairwise alignment

kernel. Our results show that BELLA attains significant speed-

ups up to 7× and 10× on one GPU and six GPUs, respectively.

Tables IV and III show the runtime of the original software

in the column named “BELLA” and the runtime of BELLA

using LOGAN as pairwise alignment kernel in the column

“LOGAN”. For large values of X , results show that LO-

GAN’s runtime does not drastically degrade with increasing

X . Notably, BELLA operates in a context where sequences

have an error rate of about 10− 15%. In this scenario, small

values of X can potentially lead to early drop-outs, even when

LOGAN
manymap
CUDASW++ (SIMD)
CUDASW++

G
C

U
P

s/
s

0

2×102

4×102

6×102

8×102

103

GPUs

1 2 3 4 5 6 7 8

GPU-based Pairwise Alignment Comparison

Fig. 12. Comparison amongst GPU-based pairwise alignment algorithms
in terms of GCUPs per second (“Skylake” platform with 8 NVIDIA Tesla
V100s). Higher is better. manymap is single GPU only, hence we report its
performance as a flat line.

sequences are supposed to align until the endpoints. Up to a

certain point, increasing the value of X increases the number

of true alignments and makes it easier to differentiate true

alignments from false positives. LOGAN’s integration would

allow BELLA to use larger X values, resulting in higher

accuracy without a notable increase in runtime.

Computing time scales linearly, however, the communica-

tion with multiple GPUs introduces an overhead that increases

with the number of GPUs.

VII. LOGAN ROOFLINE ANALYSIS

In this section, we provide a detailed analysis of the opti-

mized LOGAN GPU performance by adapting the Roofline

model [23, 24] to fit our specific computational character-

istics. The Roofline model is a visually-intuitive method to

understand the performance of a given kernel based on a

bound and bottleneck analysis approach. The model outlines

which factors affect the performance of computer systems,

relating processor performance to off-chip memory traffic.

The Roofline model characterizes a kernel’s performance in

billions of instructions (GIPS, y-axis) as a function of its

operational intensity (OI, x-axis). We use Operational Intensity
as the x-axis and, given that our kernel performs only inte-

ger operations, use billions of warp instructions per second

(Warp GIPS) as the y-axis. Operational Intensity is defined

as instructions per byte of DRAM traffic, which measures

traffic between the caches and memory. Thus, our Roofline

analysis combines integer performance, operational intensity,

and memory performance into a 2D log-log scale graph, as

shown in Figure 13.

On one NVIDIA Tesla V100 GPU, 80 Streaming Multipro-

cessor (SM)s are available, where each SM consists of four

processing blocks, called warp schedulers. Each warp sched-

uler can dispatch only one instruction per cycle. As such, the

theoretical maximum (warp-based) of instruction/s is 80 SM×
(4×warp scheduler)× (1× instruction/cycle)×1.53 GHz = 489.6
GIPS. Besides, each processing block contains 16 FP32 cores,

8 FP64 cores, and 16 INT32 cores. The maximum attainable

integer performance is 16/32 × 489.6 = 220.8 integer warp

Fig. 13. Roofline analysis for our kernel on the NVIDIA Tesla V100 GPU
performing 100K alignment and using X = 100.

GIPS since 16 INT32 cores can only support 16 threads out

of 32 threads in one warp. Peak Performance is upper bounded

by both the theoretical INT32 peak rate and the peak memory

bandwidth, which define the green line in the plot. The actual

Warp Giga Instructions Per Second (GIPS) depends on the

operational intensity and the ceiling line determines the limit

of the actual performance. A kernel is memory-bound if the

Warp GIPS are limited by the memory bandwidth (left of

the red dotted line), and is compute-bound if limited by the

hardware performance limit (right of the red dotted line). This

maximum attainable performance represents a ceiling in the

Roofline model plot for the considered GPU platform and is

independent from the executed algorithm. To adapt this ceiling

to the X-drop algorithm, we use the following formula:

Ceiling =
1

N

N∑
i=1

f ×Nop,i ×B

(T ×B)/MAXR� (1)

Equation (1) defines a new ceiling by averaging the number

of cells that GPU can compute in parallel. N indicates the

total number of parallel iterations for a given algorithm, f is

the theoretical ceiling (220.8 warp GIPS), B is the number

of scheduled blocks, Nop,i indicates the number of operations

that need to be computed at each iteration, T is the number

of scheduled threads per block, and, finally, MAXR indicates

the number of INT32 cores available. LOGAN’s overall per-

formance behavior is shown in Figure 13. Result show the

operational intensity of our kernel on the HBM memory of the

GPU, indicating that we are not memory bound and that we

are bound by the adapted theoretical ceiling. In other words,

the operational intensity of our kernel is high enough to be in

the compute-bound area of the Roofline, thus it is not limited

by the HBM memory. Note that the optimized performance

of our algorithm is very close to the adapted theoretical

ceiling. Considering that the adapted ceiling does not take into

account memory latency, the results of our implementation

are extremely close to the maximum achievable performance.

Therefore, LOGAN represents a near-optimal implementation

of the X-drop algorithm and it is only limited by the compute

capability of the GPU.

VIII. CONCLUSIONS

Our work presents LOGAN, the first high-performance

multi-GPU implementation of the X-drop alignment algo-

rithm. X-drop is employed in several important genomics

applications, however it is particularly challenging for GPU

parallelization due to its adaptive banding and continual ter-

mination checks.

Detailed results and analyses show significant performance

acceleration using our novel optimization approach. LOGAN

demonstrated runtime improvements of up to 30.7× using six

GPUs, compared with the original CPU algorithm. Addition-

ally, results show speed-ups up to 614.4× using six GPUs

compared with the SIMD vectorized ksw2 algorithm, which

implements a similar heuristics. Finally, LOGAN integration

resulted in performance improvement up to 10.7× on BELLA,

a real-world many-to-many long-read overlapper and aligner.

Finally, our work provided an adaptation of the Roofline

model that captures the unique aspects of our computation

in the context of the underlying GPU hardware configura-

tion. Roofline analysis demonstrates that our X-drop design

methodology results in near-optimal performance. Our overall

results show that our optimized kernel is flexible, efficient, and

can be easily integrated into long-read application performing

pairwise alignment.

Future work will focus on reducing LOGAN’s load balanc-

ing overhead, to enable linear performance improvements with

increasing GPU counts independent of the value of X . Given

our implementation can be easily adapted to solve other similar

problems, we also plan to extend LOGAN to support protein

alignment and expect the X-drop algorithm to be effective in

protein homology searches.

ACKNOWLEDGMENTS

We would like to thank Francesco Peverelli and Muaaz

Awan for useful suggestions and valuable discussions.

This work is supported by the Advanced Scientific Comput-

ing Research (ASCR) program within the Office of Science

of the DOE under contract number DE-AC02-05CH11231.

This research was also supported by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National

Nuclear Security Administration.

We used resources of the NERSC supported by the Office of

Science of the DOE under Contract No. DEAC02-05CH11231.

This research also used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Depart-

ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[2] T. F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[3] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm
for aligning DNA sequences,” Journal of Computational biology, vol. 7,
no. 1-2, pp. 203–214, 2000.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology, vol.
215, no. 3, pp. 403–410, 1990.

[5] S. M. Kiełbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith, “Adaptive
seeds tame genomic sequence comparison,” Genome research, vol. 21,
no. 3, pp. 487–493, 2011.

[6] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,
D. Haussler, and W. Miller, “Human–mouse alignments with BLASTZ,”
Genome research, vol. 13, no. 1, pp. 103–107, 2003.

[7] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[8] M. C. Frith, M. Hamada, and P. Horton, “Parameters for accurate
genome alignment,” BMC bioinformatics, vol. 11, no. 1, p. 80, 2010.

[9] G. Guidi, M. Ellis, D. Rokhsar, K. Yelick, and A. Buluç, “BELLA:
Berkeley efficient long-read to long-read aligner and overlapper,”
bioRxiv, p. 464420, 2018.

[10] M. Farrar, “Striped Smith–Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2006.

[11] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature methods, vol. 9, no. 4, p. 357, 2012.

[12] A. Szalkowski, C. Ledergerber, P. Krähenbühl, and C. Dessimoz,
“SWPS3–fast multi-threaded vectorized Smith-Waterman for IBM
Cell/BE and x86/SSE2,” BMC research notes, vol. 1, no. 1, p. 107,
2008.

[13] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC bioinformatics, vol. 14, no. 1, p. 117, 2013.

[14] A. Muhammadzadeh, “MR-CUDASW GPU accelerated Smith-
Waterman algorithm for medium-length (meta)genomic data,” Master’s
thesis, University of Saskatchewan, Saskatchewan, July 2014.

[15] I. T. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC bioinformatics, vol. 8, no. 1, p. 185, 2007.

[16] L. Di Tucci, K. O’Brien, M. Blott, and M. D. Santambrogio, “Ar-
chitectural optimizations for high performance and energy efficient
Smith-Waterman implementation on FPGAs using opencl,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 716–721.

[17] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 199–213.

[18] Z. Feng, S. Qiu, L. Wang, and Q. Luo, “Accelerating long read
alignment on three processors,” in Proceedings of the 48th International
Conference on Parallel Processing, ser. ICPP 2019. New York, NY,
USA: ACM, 2019, pp. 71:1–71:10.

[19] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 05 2018.

[20] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations
for faster semi-global alignment of long sequences,” BMC bioinformat-
ics, vol. 19, no. 1, p. 45, 2018.

[21] A. Döring, D. Weese, T. Rausch, and K. Reinert, “SeqAn an efficient,
generic C++ library for sequence analysis,” BMC bioinformatics, vol. 9,
no. 1, p. 11, 2008.

[22] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,” Computing in Science & Engineering,
no. 1, pp. 46–55, 1998.

[23] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun. ACM,
vol. 52, no. 4, 2009.

[24] N. Ding and S. Williams, “An instruction roofline model for gpus,”
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), 2019.

