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Abstract 14 

Plant diversity safeguards wetland ecosystem functions, stability, and resilience, but is threatened by 15 

habitat loss and degradation. Remote sensing could support the cost-effective management of biodiversity 16 

by providing consistent and frequent data at large scales. While identifying individual species from 17 

remote sensing with low spatial and spectral resolution data is challenging, studies can focus on factors 18 

known to correlate with or promote diversity. We tested the predictive potential of such factors — 19 

maximum annual greenness as an indicator of productivity, texture (i.e., spatial arrangements of grey 20 

tones) as a proxy for habitat heterogeneity, and spatial autocorrelation — across a dataset of 1,115 21 

wetlands in the conterminous United States surveyed by the EPA’s National Wetland Condition 22 

Assessment. We used multivariate linear regressions to test whether spectral and spatial metrics derived 23 

from two open-source datasets — NASA’s Landsat 5 TM and 7 ETM+ (30m, 16-day revisit) and 24 

USDA’s National Agriculture Inventory Program (1m, biennial) — can predict wetland plant diversity 25 

and richness. Individual texture metrics showed different sensitivity to vegetation evenness, growth form, 26 

and spatial distribution and could together predict 35-36% of site variation in richness and diversity. This 27 

highlights the impact of habitat heterogeneity on species diversity and spectral variability. While 28 

maximum annual greenness and texture metrics had similar predictive capacity, their interactions and 29 

combined effects improved the fit of linear models by 11-14%, demonstrating their complementarity.  30 
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Best results were achieved when including distance-based Moran Eigenvector Maps (dbMEMs) 31 

describing spatial relations among sites at multiple scales and reflecting the role of spatially structured 32 

factors (e.g., climate, topography, dispersal) on diversity. Together greenness, texture, and dbMEMs 33 

could predict 59% of plant richness and 50% of plant diversity across the entire dataset and up to 71% of 34 

the richness of least disturbed sites. These results show the potential of open-source remote sensing 35 

datasets to monitor biodiversity resources at a large scale and prioritize the protection and field 36 

monitoring of wetlands. 37 

Keywords: remote sensing, distance-based Moran Eigenvectors Maps, National Agriculture Inventory 38 

Program, Landsat, National Wetland Condition Assessment, spectral heterogeneity 39 

Abbreviations 40 

Distanced-based Moran’s eigenvector maps (dbMEMs) 41 

Green Normalized Difference Vegetation Index (GNDVI) 42 

National Agriculture Inventory Program (NAIP) 43 

National Wetland Condition Assessment (NWCA) 44 

Near infrared (NIR) 45 

Spectral Vegetation Indices (SVI) 46 

1 Introduction 47 

1.1 Importance of biodiversity  48 

Theoretical and experimental studies have demonstrated the crucial role of biodiversity in promoting 49 

ecosystem productivity, stability, and resilience (Cardinale et al., 2012; Hooper et al., 2012, 2005). 50 

Wetlands support a diversity of organisms at several trophic levels (Kingsford et al., 2016), sheltering 51 

over one third of species listed as threatened or endangered in the United States (Niering, 1988). Yet 52 

wetlands are declining at a greater rate than most terrestrial habitats, making them one of the most 53 

stressed ecosystems in the world (Davidson, 2014; Dudgeon et al., 2006; Gibbs, 2011). Their rate of 54 

degradation is likely to accelerate with climate change exacerbating droughts, floods, and sea level rise 55 

(Craft et al., 2009; Shepard et al., 2011) while increasing human needs for the ecosystem services they 56 

provide (e.g., flood control, carbon sequestration, water filtration; Chmura et al., 2003; Costanza et al., 57 

2008; Zedler, 2003). Protecting wetlands and restoring degraded sites is thus crucial to ensure the long-58 

term persistence of their biological diversity and the ecosystem services it provides (Dudgeon et al., 59 

2006). 60 
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1.2 Large scale monitoring of wetland diversity 61 

As wetland conservation resources are scarce (Kingsford et al., 2016), it is pivotal to develop 62 

methodologies enabling the rapid assessment of biodiversity at high frequency, large scales, and low cost 63 

(Pereira et al., 2013). Yet current monitoring efforts tend to be limited in coverage and difficult to upscale 64 

due to varying methodologies and taxonomic focus (Pereira and Daily, 2006). As a result, it becomes 65 

difficult to identify priority areas where conservation interventions are most needed or likely to be 66 

rewarding. Remote sensing products, some of which offer a global coverage at frequent time intervals 67 

(e.g., Landsat, MODIS, Sentinel-2), can help monitor diversity by providing consistent low-cost primary 68 

data thus bridging gaps between smaller-scale in situ biodiversity assessments (Pereira and Daily, 2006). 69 

However, identifying individual species or measuring their diversity from satellite images is challenging, 70 

particularly when using multispectral broadband data (i.e., spectral signal summarized within fewer bands 71 

integrating wider portions of the electromagnetic spectrum), a medium to coarse resolution (>30m), or 72 

when focusing on heterogeneous environments such as wetlands (Andrew and Ustin, 2008; Bradley, 73 

2014; Turner et al., 2003). Differentiating individual species is most effective when using high resolution 74 

(<1m) or hyperspectral data (i.e., spectral signal summarized within narrower portions of the 75 

electromagnetic spectrum) which can best detect chemical differences among species (Andrew et al., 76 

2014; Ustin and Gamon, 2010). At coarser resolutions (e.g., Landsat’s 30m), the background effect of 77 

non-vegetated surfaces including open water and bare soil can obscure plant reflectance (Andrew and 78 

Ustin, 2008; Schmidt and Skidmore, 2003). To overcome these limitations, recent efforts have sought to 79 

estimate biodiversity from its known associations with ecosystem properties (e.g., Castillo-Riffart et al. 80 

2017; Madonsela et al. 2017; Taddeo, Dronova, and Harris 2019) or by using broadband, multispectral, 81 

and medium-high resolution data to measure ecosystem/landscape factors known to promote diversity 82 

(Turner et al., 2003).  83 

1.2.1 Diversity-productivity relationships 84 

A prime example of such applications is the use of spectral vegetation indices (SVI) as a proxy for species 85 

diversity. This application is rooted in the diversity-productivity theory, which posits that sites with a 86 

higher plant richness should maintain a greater productivity due to a more efficient partitioning and use of 87 

resources in time and space (Hooper et al., 2005; Tilman et al., 1996). From a remote sensing perspective, 88 

this means that high values for a SVI sensitive to plant coverage, biomass, or photosynthetic activity 89 

(Huete et al., 1997) should correlate to species richness. This theory has been tested in a variety of 90 

ecosystems (Castillo-Riffart et al., 2017; Madonsela et al., 2017) including wetlands (Taddeo et al., 91 

2019b) with sometimes modest yet significant results demonstrating the utility of this approach to help 92 

target field monitoring and conservation interventions.  93 
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1.2.2 Texture and habitat heterogeneity 94 

Alternative approaches involve using remote sensing indices as proxy for site and landscape factors 95 

known to promote plant diversity. Habitat heterogeneity (i.e., variety of habitat types and characteristics) 96 

stimulates biodiversity by providing distinct ecological niches enabling more species to co-exist 97 

(Deutschewitz et al., 2003; Gould, 2000). The spectral variability hypothesis postulates that species 98 

richness and habitat heterogeneity should linearly increase spatial variability in spectral signal due to 99 

species- and habitat-specific differences in chemical composition, productivity, phenology, and exposure 100 

to background land covers (Palmer et al., 2002). Some researchers have used texture metrics describing 101 

variations in the grey tones of aerial images (Hall-Beyer, 2007; Haralick, 1979) as an indicator of within-102 

patch habitat heterogeneity to indirectly predict diversity (Hernández-Stefanoni et al., 2012; Wood et al., 103 

2013).  104 

In wetlands, including spectral heterogeneity in biodiversity estimates might differentiate sites with low 105 

plant diversity, greenness, and coverage (Fig. 1A) from sites with high diversity but a patchy vegetation 106 

distribution (Fig. 1C). In the latter case, the background effects of soil, water, and litter might obscure 107 

high but localized productivity and diversity, thus reducing SVI values and their effectiveness as a proxy 108 

of diversity-productivity relationships (Fig. 1). As such, using a model that combines texture (as a proxy 109 

of spectral heterogeneity) and greenness (related to biodiversity effects on plant biomass and coverage) 110 

might account for both the effect of the diversity-productivity relationship and habitat heterogeneity. 111 

Incorporating texture as a proxy for habitat heterogeneity may also help address an important challenge in 112 

the application of the diversity-productivity theory in monodominant wetlands covered by few invasive 113 

species associated with high greenness values (e.g., EVI; NDVI) but low species richness (Fig. 1B; 114 

Taddeo et al., 2019b). Highly invaded sites, however, might have a low spectral heterogeneity which 115 

could be captured by textural metrics.  116 
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 117 

Figure 1: Conceptual model describing the potential relationship between site greenness, spectral 118 

heterogeneity, and species richness. (A) Disturbed site with a low overall greenness, spectral 119 

heterogeneity, and species diversity. (B) Site with monodominant non-native species resulting in high 120 

greenness and low spectral heterogeneity. (C) Local stressors (e.g., salinity, flooding) result in low overall 121 

greenness but high spectral heterogeneity and high, but localized, species diversity. (D) Resource-122 

abundant site with high greenness, spectral heterogeneity, and species diversity. 123 

1.2.3 Spatial autocorrelation 124 

Spatial autocorrelation, or the degree of similarity among plant communities in close proximity, could 125 

also improve biodiversity estimates (e.g., Kreft and Jetz 2007). Spatially structured local (e.g., soil, 126 

topography) and regional abiotic characteristics (e.g., climate) influence species composition and 127 

diversity resulting in their positive spatial autocorrelation (i.e., similarity). Meanwhile, physical barriers 128 

limiting species dispersal (Karst et al., 2005) and disturbances impacting plant persistence (Biswas et al., 129 

2016) can result in a negative spatial autocorrelation (i.e., distinctiveness in site composition and 130 

diversity) at the local or regional scale. Recognizing that the effects of spatial autocorrelation can be both 131 

positive and negative and vary across scales, recent efforts have developed eigenfunctions describing 132 

spatial relationships (i.e., distance and connectivity) among sites (Dray et al., 2006; Peres-Neto and 133 

Legendre, 2010). These multi-scale predictors can be incorporated in models predicting diversity to 134 

account for the influence of spatially-structured variables and disturbances on plant assembly (e.g., 135 

Hernández-Stefanoni et al., 2012; Peres-Neto and Legendre, 2010). 136 
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1.2.4 Research goals and hypotheses 137 

Our goal was to compare predictors (i.e., maximum annual greenness, texture, and spatial autocorrelation) 138 

of wetland plant richness and diversity derived from open-source databases. This study builds on a 139 

previous effort utilizing maximum annual greenness (i.e., maximum annual value for a spectral vegetation 140 

index sensitive to plant coverage and abundance) derived from the Landsat archive to predict plant 141 

diversity across 1,115 wetlands of the conterminous United States (Taddeo et al., 2019b). We 142 

hypothesized that a multivariate predictive model leveraging both texture and greenness (i.e., maximum 143 

SVI value) would enhance predictive potential by accounting for the positive impact of habitat 144 

heterogeneity on plant richness and minimizing the confounding effect of background land covers (e.g., 145 

soil, water, litter) and introduced species on diversity-productivity relationships. Our previous effort did 146 

incorporate standard deviation in maximum greenness measured from Landsat data as a predictor of 147 

species richness, with a significant but somewhat low predictive capacity ( i.e., standard deviation in 148 

maximum greenness estimated using the Green Normalized Vegetation Index could predict 3% of 149 

variation in site richness; Taddeo et al., 2019b). In the present study, we explored this potential more in-150 

depth by testing a greater range of texture measures representing complementary aspects of spatial 151 

heterogeneity. Finally, we expected that including spatial autocorrelation in models would enhance their 152 

predictive capacity by accounting for the positive impact of spatially structured abiotic conditions 153 

(temperature, precipitations) on wetland plant diversity. 154 

2 Methods 155 

2.1 Study area and sites 156 

Our study leverages species composition and coverage data collected by the U.S Environmental 157 

Protection Agency’s National Wetland Condition Assessment (NWCA) during peak growing season in 158 

the spring and summer of 2011 in 1,138 wetlands of the conterminous United States (Fig. 2). We 159 

excluded 23 sites that were not covered in 2010 nor 2011 by the National Agriculture Inventory Program 160 

(NAIP), the dataset of higher resolution (1m) aerial images used in this study to compute texture metrics. 161 

Wetlands sampled by the NWCA are stratified by state (≥ 8 sites per state) and wetland type to represent 162 

the broader population of wetlands in the United States (US EPA, 2016). 163 

Wetlands are classified into four general types based on their hydrological characteristics and dominant 164 

vegetation (Fig. 2; US EPA 2016): estuarine herbaceous (EH; n=270) and inland herbaceous (PRLH; 165 

n=350) wetlands dominated by emergent herbaceous species, estuarine woody wetlands dominated by 166 

small trees and shrubs (EW; n=70), and inland woody wetlands including both forested and scrub-shrub 167 
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wetlands (PRLW; n=425). NWCA sites are also grouped in three categories along a disturbance gradient 168 

— least disturbed (n=273), intermediate (n=518), and most disturbed (n=324) — based on anthropogenic 169 

structures (e.g., agriculture, timber, urban development), hydrological disturbances (e.g., ditches, dams, 170 

levees), heavy metal concentration, and introduced species (US EPA, 2016). 171 

 172 

Figure 2. Wetland sites surveyed in 2011 by the US EPA’s National Wetland Condition Assessment 173 

(NWCA), by wetland type (i.e., aggregated wetland classes as defined in the NWCA). 174 

2.2 In situ biodiversity and abiotic data 175 

The NWCA surveyed species cover and composition in five 100m2 plots per site included in a 0.5 ha 176 

assessment area (US EPA, 2016). Two sites per state (n=96) were visited a second time in the same year 177 

to assess the stability of previous observations and showed a high correlation between floristic 178 

characteristics measured during the first and second visit (US EPA 2016; SI Table S1). In this study, we 179 

focused on three diversity indicators derived from the NWCA first visits: the Shannon-Wiener Diversity 180 

Index, total species richness, and the richness of native species (Table 1). These metrics were calculated 181 

from the entire list of vascular plant species observed across the five sampling plots of a site’s assessment 182 

area (US EPA, 2016). The NWCA labeled species as “native” when they were native to the state in which 183 

they were found based on the U.S Department of Agriculture PLANTS database and state-specific 184 
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floristic databases (US EPA, 2016). The term “alien species” refers to both introduced species (i.e., plant 185 

species introduced from outside the conterminous United States) and adventive species (i.e., plant species 186 

native to some portions of the United States but introduced to the state in which their presence was 187 

recorded).  188 

Table 1. In situ variables (i.e., vegetation characteristics extracted from the NWCA) used for this analysis 189 

with the acronyms used to identify them in the NWCA. 190 

Category Variable Description 

Species diversity Shannon-Wiener Diversity Index (H_ALL) Diversity of species  

Total Species Richness (TOTN_SPP) Count of unique species  

Native Species Richness (TOTN_SPP) Count of unique native species  

 
Percent Alien Species Richness (PCNT_ALIEN) Percent of total richness associated to alien 

species 

Vegetation 

coverage 

Total vegetation coverage (XTOTABCOV) Total vegetation coverage  

Coverage of native species (XABCOV_NATSPP) Total vegetation coverage of native species  

Coverage of non-native species 

(XABCOV_ALIENSPP) 

Total vegetation coverage of non-native 

species  

 191 

2.3 Spectral and Texture Indicators 192 

2.3.1 Site Greenness 193 

We used the Green Normalized Difference Vegetation Index (GNDVI) —based on the normalized 194 

difference between the green band, sensitive to species-specific variation in chlorophyll content, and the 195 

near infrared (NIR) band, strongly reflected by mesophyll cells — as an indicator of plant biomass and 196 

coverage (Gitelson and Merzlyak, 1998; here after referred to as "greenness"). GNDVI was the best 197 

predictor of plant richness and diversity in this dataset among a group of six SVIs (Taddeo et al., 2019b). 198 

Remote sensing images were processed in the cloud based platform Google Earth Engine (Gorelick et al., 199 

2017). We estimated GNDVI at the pixel level for all Landsat 5 TM and 7 ETM+ cloud-free images 200 

captured in 2011 and overlapping the NWCA sites (Taddeo et al., 2019b). We leveraged the quality 201 

assessment band of the Landsat 5 TM and 7 ETM+ surface reflectance products to mask pixels with 202 

clouds or cloud shadows in the time series. We computed GNDVI for nine Landsat pixels (30m) 203 

overlapping each site, which roughly corresponds to the 0.5-acre assessment used by the NWCA (Taddeo 204 

et al., 2019b). We focused on the maximum GNDVI value per site (i.e., spatial average of the maximum 205 

GNDVI value observed in individual pixels) as an estimate of site productivity as it significantly 206 

predicted plant diversity in our previous study while being less sensitive to the background effect of 207 

water, soil, and litter exposure than the median value (Taddeo et al., 2019b, 2019a). 208 
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2.3.2 Texture 209 

We used high resolution aerial images (1m) from the U.S. Department of Agriculture’s National 210 

Agriculture Imagery Program (NAIP) to calculate texture metrics describing spatial heterogeneity in the 211 

reflectance of all 1m pixels included in the 0.5 ha assessment area of individual NWCA sites (~5,026 212 

pixels per site). Texture metrics were generated in Google Earth Engine using the glcmTexture function. 213 

These metrics (Table 2) describe how often different combinations of grey values (i.e., digital numbers in 214 

a given band) occur together in the image (in this case, the extent of the “image” corresponds to the 215 

assessment area of a site). These metrics are second order-based, meaning that they account for the 216 

relationships (e.g., contrast, homogeneity, correlation) between a pixel and its neighbors. Texture metrics 217 

were computed for individual bands (red, blue, green, NIR) of the NAIP dataset. To reduce redundancy 218 

among these metrics, we focused on five texture metrics per band representing broad categories of metrics 219 

described by Hall-Beyer (2007): contrast, orderliness, and descriptive texture measures (Table 2). Entropy 220 

(i.e., degree of uniformity in grey tones; Guo et al. 2004) was used in this study as a metric of orderliness, 221 

dissimilarity (i.e., contrasts between neighboring pixels; Guo et al. 2004; Hall-Beyer 2017) as a measure 222 

of contrast, while correlation (linear correlation in grey tones), average (average digital number value 223 

within the assessment area), and variance (variance in digital numbers within the assessment area) were 224 

used as descriptive measures. Using the cor.test function in R, we measured the Pearson’s correlation 225 

coefficient among all pairs of texture metrics and removed three variables with a correlation coefficient 226 

exceeding 0.8 (p<0.05): sum average in the NIR band, sum average in the green band, and entropy in the 227 

red band. Lastly, we used the decostand function of the vegan package in R (Oksanen et al., 2019) to 228 

normalize texture variables prior to conducting linear regressions. 229 

Table 2. Texture metrics computed for this analysis and their interpretation 230 

Category Texture 

metric 

Description Interpretation 

Contrast Dissimilarity Measures contrast in the grey-tone 

of neighboring pixels 

High value indicates an important local contrast 

between neighbors 

Orderliness Entropy Measures the degree of randomness 

in the distribution of pairs of grey 

tones 

Low entropy value suggest uniformity in clusters of 

grey tones (i.e., clusters of grey tones are repeated 

throughout the image) 

Descriptive Sum average Mean grey tone value across an 

image 

Magnitude of reflectance in each band at the image 

scale 

Sum 

Variance 

Variance in grey tones within an 

image 

Greater variance suggests a greater dispersion of grey 

tone values within the image 

Correlation Linear correlation between the 

grey-tone values of an image 

Predictability in the grey-tones of neighboring pixels 

 231 
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2.4 Spatial analyses 232 

We used distanced-based Moran’s eigenvector maps (dbMEMs) to assess the impact of spatial 233 

autocorrelation (i.e., how similarity in plant richness and diversity varies with distance among sites) on 234 

plant diversity. The dbMEM approach produces a set of uncorrelated spatial predictors that can be 235 

integrated in explanatory models to account for the effect of spatial phenomenon (e.g., dispersal, 236 

competition at a local scale, climate at a broader scale) on species composition and diversity (Peres-Neto 237 

and Legendre, 2010). To generate dbMEMs, users must first produce a truncated matrix of Euclidean 238 

distances among all pairs of sites (Dray et al., 2006; Peres-Neto and Legendre, 2010). Spatial 239 

eigenvectors are then generated from the resulting matrix with the first few eigenvectors representing 240 

broad spatial relationships (i.e., distance among sites at different scales) while the last eigenvectors 241 

describe local spatial relationships (SI Fig. S4). dbMEMs were calculated in R 3.6.2 using the dbmem 242 

function of the adespatial package (Dray et al., 2018). Lastly, for each individual predictive model (i.e., 243 

species diversity and richness) we used the forward.sel function of the adesaptial R package (Dray et al., 244 

2018) to select the most parsimonious model (i.e., minimum number of dbMEMs for the highest 245 

explanatory power). Forward.sel iteratively adds explanatory variables to a predictive model until the 246 

adjusted R2 of the global model (i.e., model with all explanatory variables) is reached (Dray et al., 2018). 247 

After determining the most parsimonious combination of dbMEMs to predict the richness and diversity of 248 

the entire dataset, specific wetlands types, and disturbance levels, we visually grouped the dbMEMs into 249 

four scales — broad, medium, fine, very fine — to test which scale of spatial relationships had the 250 

strongest incidence on floristic diversity (SI Fig. S4).  251 

2.5 Statistical analyses 252 

We used univariate (e.g., maximum annual greenness, individual texture metrics) and multivariate (e.g., 253 

texture metrics, dbMEMs) linear regressions to identify the best predictors of the Shannon-Wiener 254 

diversity index, total species richness, and the richness of native species. Species richness and native 255 

species richness were both log-transformed as they had a skewed distribution. Three groups of variables 256 

were used as predictors in multivariate linear regressions. The “greenness” group refers to the maximum 257 

GNDVI detected in 2011 and averaged over the nine Landsat pixels overlapping each NWCA site. The 258 

“texture” group includes 17 uncorrelated texture metrics (Table 2) derived from the NAIP dataset. The 259 

dbMEM group includes dbMEMs generated for the entire dataset with a forward selection to only include 260 

a most parsimonious subset of variables. Linear regressions were conducted in R using the lm function. 261 

We report in this paper the adjusted R2 of relationships and their p-value (significant when p<0.05). We 262 

used the dcor function of the energy R package (Rizzo and Székely, 2018) to examine non-linear 263 

relationships between maximum annual greenness and individual texture metrics by measuring their 264 
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distance correlation, which is computed by comparing the distance between the X values of a pair of 265 

observations and their Y values (Székely et al., 2007). A distance correlation (dcor) of 1 indicates a strong 266 

nonlinear relationship among two variables. Finally, we used the non-parametric Kruskal-Wallis test with 267 

Bonferroni multi-comparison correction to assess the significance of greenness and textural differences 268 

among the four wetland types. We focused on six texture metrics with the strongest predictive power in 269 

univariate predictive models (SI Table S2). This step was used to assess the sensitivity of individual 270 

texture metrics to patterns of vegetation distribution and growth forms specific to each wetland type. 271 

Analyses were conducted using the dunn.test R package. 272 

3 Results 273 

3.1 Relationships between greenness and texture 274 

Individual texture metrics showed a non-significant to low significant (SI Table S3) linear correlation 275 

with maximum annual greenness and, generally, a low non-linear correlation (SI Fig. S1) as measured by 276 

their distance correlation. Among all texture metrics, entropy — and particularly entropy in the blue (dcor 277 

= 0.30), green (dcor =0.48), and NIR bands (dcor = 0.36) — showed the highest non-linear correlation 278 

with greenness, with higher entropy generally corresponding to a higher greenness. Dissimilarity also 279 

tended to increase with maximum greenness (with distance correlation coefficients varying between 0.29 280 

and 0.34; SI Fig. S1). Similarly, sum variance (indicating the amount of spatially variability in grey tones) 281 

was generally associated with higher maximum annual greenness (distance correlation varying between 282 

0.29 and 0.39). Lastly, the sum average in different bands and the correlation in band value all showed the 283 

lowest non-linear correlations with maximum annual greenness. 284 

3.2 Textural differences between wetland types  285 

Kruskal-Wallis tests with Bonferroni multiple test correction revealed significant contrast in the greenness 286 

(χ2=455.13, df=3, p<0.0001; Fig. S2A) and texture of the different wetland types (Fig. 3) included in this 287 

study. Inland wetlands dominated by woody vegetation were characterized by a significantly greater 288 

greenness (p<0.0001), followed by inland herbaceous wetlands, estuarine woody, and estuarine 289 

herbaceous wetlands (SI Fig. S2A). Wetland types also differed in their entropy in the green band 290 

(χ2=373.93, df=3, p<0.0001; Fig. 3A), dissimilarity in the NIR band (χ2=259.28, df=3, p<0.0001; Fig. 291 

3B), variance in the green band (χ2=306.66, df=3, p<0.0001; Fig. 3C), dissimilarity in the red band 292 

(χ2=220.63, df=3, p<0.0001; Fig. 3D), variance in the NIR band (χ2=211.15, df=3, p<0.0001; Fig. 3E), 293 

and the variance in the red band (χ2=195.76, df=3, p<0.0001; Fig. 3F). Inland and estuarine wetlands 294 

dominated by woody vegetation both showed significantly greater entropy in the green band (p<0.0001; 295 
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Fig. 3A) than herbaceous-dominated wetlands, indicating a greater heterogeneity in assemblages of green 296 

values, while herbaceous wetlands were characterized by a greater orderliness. Wetlands dominated by 297 

woody species (i.e., inland woody and estuarine woody wetlands) showed a greater dissimilarity in the 298 

NIR (p<0.0001; Fig. 3B) and red (P<0.001; Fig. 3D) bands than sites dominated by herbaceous species 299 

indicating a higher contrast between neighboring pixels. Lastly, inland woody wetlands were 300 

characterized by a greater sum variance in the green (p<0.0001; Fig. 3C), NIR (p<0.0001; Fig. 3C) and 301 

red bands (p<0.0001; Fig.3F), indicating higher overall local spectral variability in this wetland type. 302 

 303 

Figure 3. Textural differences by wetland type where EH are estuarine herbaceous wetlands, EW are 304 

estuarine woody wetlands, PRLH are inland herbaceous wetlands and PRLW are inland woody wetlands. 305 

Texture metrics represented in this figure are the six best individual predictors of species richness and 306 

diversity, as presented in SI Table S2. 307 
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3.3 Predictors of biodiversity 308 

 309 

Figure 4. Proportion of variation in plant diversity and richness explained by different groups of 310 

explanatory variables as measured by their adjusted R2. 311 

3.3.1 Multivariate models 312 

Texture metrics could explain 35% of variation in the species diversity of the entire dataset 313 

(F17,1097=36.64, adjR2=0.35, p<0.0001; Table 3; Fig. 4), which according to an ANOVA test was 314 

significantly greater than the proportion of variance explained by maximum greenness alone (ANOVA 315 

test; F16=3.09, p<0.0001). Texture could improve the capacity of the greenness model to predict species 316 

diversity by 12% (ANOVA test; F17=14.27, p<0.0001). However, greenness-only and texture-only models 317 

did not significantly differ in the capacity to predict species richness despite their 8% difference in adjR2 318 

(Table 3; Fig. 4). Incorporating texture to the greenness model significantly improved its capacity to 319 

predict the richness of all species (ANOVA test; F17=13.66, p<0.0001) by 9%. Similarly, the capacity of 320 

the greenness-only and texture-only models to predict the richness of native species did not significantly 321 

differ according to an ANOVA test (p>0.05) but incorporating texture to greenness significantly 322 

increased the fit (ANOVA; F17=13.78, p<0.0001; Table 3; Fig. 4) of the model by 9%. Models accounting 323 

for the interaction between greenness and texture (greenness * texture, Table 3; Fig. 4) explained more 324 

variation in species diversity (ANOVA; F17=21.59, p<0.0001), total species richness (ANOVA; F17=3.91, 325 
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p<0.0001), and the richness of native species (ANOVA; F17=3.31, p<0.0001) than multivariate models 326 

based on solely greenness and texture (greenness + texture, Table 3; Fig. 4). 327 

The greenness-only and texture-only models did not differ significantly in their capacity to predict the 328 

richness and diversity of least disturbed sites. Texture metrics could explain 42-45% of variation in the 329 

richness and diversity of least disturbed sites and improved the fit of greenness models by 7-8% (Table 3). 330 

Similarly, greenness-only and texture-only models did not differ significantly in their capacity to predict 331 

the richness and diversity of sites with an intermediate level of disturbance, but texture metrics could 332 

improve the fit of the greenness model by 7-10% (Table 3). Texture was, however, a better predictor of 333 

the richness (ANOVA; F17=13.53, p<0.0001) and diversity (ANOVA; F17=14.05; p<0.0001) of most 334 

disturbed sites than greenness, explaining 39-44% of their variation (Table 3). Texture metrics explained 335 

26-32% of variation in the richness and diversity of estuarine woody wetlands, 14-17% of variation in the 336 

richness and diversity of estuarine herbaceous wetlands, 7-13% of variation in the richness and diversity 337 

of inland herbaceous wetlands, and 12-14% of variation in the richness and diversity of inland woody 338 

wetlands (Table 3). 339 

3.3.2 Spatial relationships 340 

The most parsimonious species diversity model included 14 dbMEMs and could explain 14% 341 

(F22,1092=1.90, adjR2=0.14, p<0.0001) of the variation among all sites (Fig. 4; Table 3). An ANOVA test 342 

showed that including dbMEMs significantly improved the greenness + texture model (ANOVA; 343 

F13=1.47, p<0.0001; Fig. 4), increasing its predictive capacity to 50%. The most parsimonious species 344 

richness model included 23 dbMEMs and could explain 23% (F22,1092=16.11, adjR2=0.23, p<0.0001) of 345 

the variation among all sites (Table 3). dbMEMs combined to greenness and texture explained 59% of 346 

variation in species richness (F40,1074=38.75, adjR2=0.59, p<0.0001), thus significantly improving the fit of 347 

the model (ANOVA; F22=7.32, p<0.0001; Fig. 4; Table 3). The most parsimonious native species richness 348 

model included 25 dbMEMs and could explain 23% of the variation among all sites (F24,1092=14.73, 349 

adjR2=0.23, p<0.0001; Fig. 4; Table 3). dbMEMs combined to greenness and texture could explain 58% 350 

of variation in native species richness (F42,1072=37.42, adjR2=0.58, p<0.0001), significantly increasing the 351 

fit of the linear relationships (ANOVA; F24=7.46, p<0.0001). Broad scale patterns (SI Fig.S4) could 352 

explain 21.6% of variation in native species richness (F44,1,108=52.1, adjR2=0.22, p<0.0001). Medium-353 

scale patterns (SI Fig.S4) could explain 4.7% of variation in species diversity (F44,1,108=10.15, adjR2=0.05, 354 

p<0.0001). Fine-scale patterns (SI Fig.S4) could explain 4% of variation in species diversity 355 

(F44,1,177=8.43, adjR2=0.04, p<0.0001). Very fine-scale (SI Fig.S4) patterns could explain 5% of variation 356 

in species diversity (F44,1,100=5.21, adjR2=0.05, p<0.0001). 357 
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4 Discussion 358 

Spectral and spatial variables derived from open-source datasets could predict up to 59% of plant richness 359 

and diversity across the NWCA sample representative of the broader population of US wetlands. In least 360 

disturbed sites, this predictive capacity reached 71%. This suggests that combining texture metrics with 361 

spectral greenness and dbMEMs can predict a substantial proportion of plant diversity, even in habitats 362 

where remote sensing-based monitoring is challenged by patchy vegetation or predominance of woody 363 

species. These results highlight the potential of remote sensing in informing the field monitoring and 364 

management of wetlands and upscaling local in situ surveys of floristic diversity into regional estimates 365 

(Pereira et al., 2013; Pereira and Daily, 2006). The predictive capacity of our different sets of variables 366 

(i.e., greenness, texture, dbMEMs) varied among wetland types and disturbance levels which points to 367 

their sensitivity to different drivers of wetland heterogeneity and constraints to diversity and productivity. 368 

4.1 Contrasts and interactions among greenness and texture  369 

Texture metrics and maximum annual greenness did not differ significantly in their capacity to predict the 370 

species richness of the entire dataset. Yet, texture metrics were better predictors of species diversity in the 371 

entire dataset, in most disturbed sites, and in estuarine woody wetlands. While both greenness and texture 372 

metrics are sensitive to the abundance and spatial distribution of vegetation as shown by previous studies 373 

(Feilhauer et al., 2012; Taddeo et al., 2019a), their low linear and non-linear correlations (SI Table S3; 374 

Fig. S1) suggest that they ultimately vary differently across ecosystem and vegetation types, likely due to 375 

their contrasts in spatial and temporal scales and sensitivity to wetland characteristics. This suggests that 376 

texture and greenness are strongly complementary and should be considered together in efforts to monitor 377 

diversity or develop leading indicators of its change in wetlands. 378 

Incorporating texture into greenness models increased their fit by 11-14% which shows that texture 379 

metrics might help overcome some limitations of greenness as a predictor of species richness. First, 380 

texture metrics may improve floristic diversity predictions where large monodominant colonies of alien 381 

species result in high greenness and low richness. In our previous effort (Taddeo et al., 2019b), some sites 382 

with a high coverage of alien species, high greenness, and low richness appeared as “outliers” in the 383 

relationship between greenness and richness, thus limiting its applicability as a predictor of diversity in 384 

most invaded sites. The predictive potential of texture was evident in most disturbed sites characterized 385 

by a greater coverage of alien species (Taddeo et al., 2019b; US EPA, 2016), where they explained a 386 

greater proportion of variation in diversity than greenness and improved the fit of greenness models by up 387 

to 37%. Incidentally, while both categories of inland wetlands (PRLH, PRLW; SI Fig. S2A) showed a 388 

high maximum annual greenness, inland woody wetlands showed a greater spectral heterogeneity and 389 
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species richness while inland herbaceous wetlands showed a higher coverage and richness of alien species 390 

and a lower spectral heterogeneity (SI Fig. S3C;F).  391 

Second, texture metrics derived from high resolution data may be more sensitive to vegetation coverage 392 

and diversity where vegetation extent is spatially constrained by stressors (e.g., flooding or salinity 393 

gradient). At the scale of Landsat pixels (30m), low greenness can reflect both a lower plant coverage 394 

(Fig. 1A) or a high but localized productivity (Fig. 1C) where background exposure reduces greenness 395 

(Huete et al., 1985; Taddeo et al., 2019a; Todd and Hoffer, 1998). Texture metrics computed at a higher 396 

spatial resolution might thus help distinguish scattered vegetation from high plant coverage with low 397 

overall productivity and richness, as evidenced by textural differences between the two wetland types 398 

with the lowest greenness (EW and EH; Fig. 3; SI Fig. S2A) and the strong predictive capacity of texture 399 

in estuarine woody wetlands.  400 

Third, texture metrics were sensitive to the heterogeneity of growth forms and habitats, both of which can 401 

promote floristic diversity, as is underscored in textural differences among wetland types translating 402 

specific patterns of species distribution. While both inland wetland types were characterized by a greater 403 

greenness, inland woody wetlands showed a higher overall vegetation coverage than inland herbaceous 404 

wetlands (SI Fig. S2B), suggesting that their spectral heterogeneity is not driven by a scattered 405 

distribution of vegetation (which would result in background exposure) but by spectral differences among 406 

plant functional types. Inland woody wetlands were associated with a greater dissimilarity, which indicate 407 

high local contrasts in the NIR portions of the electromagnetic spectrum (Guo et al., 2004; Hall-Beyer, 408 

2017). The difference in NIR reflectance between woody vegetation and co-occurring herbaceous species 409 

(Asner, 1998) might explain the prevalence of this local contrast. It is also possible that high-resolution 410 

images, even with a poorer temporal frequency, can improve the predictive capacity of multivariate 411 

models in sites dominated by woody vegetation. At the scale of Landsat data, prevalence of dense woody 412 

vegetation in mixed pixels can obscure herbaceous vegetation, but texture metrics might be more 413 

sensitive to variation in species diversity within both herbaceous and woody canopies.  414 

Finally, texture metrics were a better predictor of the Shannon-Wiener diversity index than greenness 415 

across the entire dataset and in most disturbed wetlands. This may reflect the sensitivity of texture metrics 416 

to the effect of plant dominance on diversity which richness indicators alone would not capture. When a 417 

dominant species reduces diversity without affecting the total species count, texture metrics including 418 

dissimilarity and entropy could be impacted without affecting the overall site greenness. Our results 419 

suggest that these signatures of local plant dominance, and their impact on plant diversity, may also be 420 

easier to capture using high resolution aerial images (NAIP; 1m) rather than maximum greenness 421 

estimations based on coarser data (Landsat; 30m).  422 
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While texture metrics can overcome some limitations of greenness as a predictor of diversity, the latter 423 

might be sensitive to properties of diverse wetlands that may not otherwise be captured by the single-date 424 

images we used to generate texture metrics. Both our multivariate linear models and variance partitioning 425 

(SI Fig. S3) suggest that accounting for the interactions between greenness and texture increases the 426 

predictive capacity of diversity models. At a high greenness, incorporating texture metrics might help 427 

separate the positive impact of diversity on productivity (Fig. 1D) from high greenness attributed to few 428 

monodominant but highly productive species (Fig. 1C). Meanwhile, high spectral heterogeneity might 429 

result from both a scattered vegetation (Fig. 1C) or the assembly of species associated to different spectral 430 

properties (Fig. 1D) but different maximum greenness. In addition, the low correlation between sum 431 

average in the green and NIR bands of NAIP images and the maximum GNDVI estimated from Landsat 432 

(Fig. S1) suggests that these metrics have different sensitivities to maximum biomass, possibly resulting 433 

from variations in the timing of NAIP image acquisition which does not always correspond to peak 434 

wetland greenness (SI Fig. S5).  435 

4.2 Predictive capacity of dbMEMs 436 

Spatial relationships among sites (i.e., their connectivity at different scales), as modeled by distance-based 437 

Moran Eigenvector Maps, capture drivers of diversity that may not be reflected in texture nor greenness. 438 

This is evidenced in the results of the variance partitioning (SI Fig. S3) which shows that 3-5% of 439 

variation in richness and diversity is uniquely explained by dbMEMs (i.e., predictive capacity when 440 

controlling for other groups of variables). Broad scale dbMEMs (i.e., dbMEMs representing spatial 441 

structures at the national scale; SI Fig.S4) explained a greater proportion of variation in site richness and 442 

diversity than groups of dbMEMs representing spatial relationships at a smaller scale. This reflects the 443 

impact of broad abiotic gradients (e.g., climate, temperature) on patterns of floristic diversity across the 444 

United States. For example, MEM2, which by itself can predict 4% of variation in species richness, 445 

roughly corresponded to patterns of high, constant mean temperature in the southeast of the United States, 446 

and the more variable climate of the Midwest and West regions (SI Fig. S4). Mean annual temperature 447 

impacts resource availability and the length of growing seasons enabling species with different temporal 448 

niches to coexist while precipitations affect local salinity in turn modulating species composition based on 449 

their tolerance to these conditions (Feher et al., 2017; Osland et al., 2017). Meanwhile, fine and very fine 450 

scale dbMEMs explained a small, but significant proportion of species richness and diversity, which may 451 

reflect more regional constraints to diversity. Spatially structured land cover context, for example, 452 

isolating or otherwise promoting connectivity among wetland sites could modulate diversity at a more 453 

regional scale.  454 
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Finally, the significant predictive capacity of dbMEMs underlines their potential to help upscale local in 455 

situ floristic surveys into biodiversity estimates. While greenness and texture can help account for 456 

conditions favoring diversity at the site scale (e.g., habitat heterogeneity, presence of resource promoting 457 

both productivity and diversity), dbMEMs might help account for other regional conditions that further 458 

modulate patterns of richness. Using dbMEMs might thus refine predictions where species richness is 459 

lower or higher than its expected magnitude based on greenness and texture as a result of regional factors 460 

and exogenous controls. 461 

4.3 Limitations 462 

This study leveraged products from different sensors and at a vast scale, which inevitably brings certain 463 

challenges and limitations. First, there is a mismatch in the timing of field surveys, NAIP data acquisition, 464 

and peak greenness as determined from Landsat time series. Field monitoring occurred between April and 465 

November of 2011 (US EPA, 2016). As such, the timing of field monitoring may not fully represent 466 

conditions at the maximum greenness state used for this analysis (Taddeo et al., 2019a) or when the high 467 

resolution images used to derived texture metrics were captured (although all NAIP images have been 468 

acquired between April and October; SI Fig. S5). Our analysis reveals a strong correlation between in-situ 469 

field observations conducted during the first and second visit in a subsample of 96 sites (SI Table S1), 470 

consistent with observations made by the EPA (US EPA 2016), suggesting that field surveys may offer a 471 

reasonable approximation of floristic conditions at peak greenness. Furthermore, we used high-resolution 472 

aerial images captured in both 2010 (30 states) and 2011 (18 states) with the month of image acquisition 473 

differing by state (SI Fig. S5) and may consequently not correspond to the timing of maximum greenness 474 

approximated from Landsat time series nor the exact timing of field surveys. As such, it is possible that 475 

the textural metrics we are using in this dataset do not fully capture the spectral heterogeneity that would 476 

be observable at a different time of the year, particularly in sites in which species have a contrasted 477 

phenology. To assess the degree of seasonal variation in spectral heterogeneity, we plotted site-wide 478 

coefficient of variation in GNDVI (i.e., coefficient of variation in GNDVI across the nine Landsat cells 479 

overlapping NWCA sites) for the different months corresponding to NAIP image acquisition (SI Fig. S6). 480 

While the coefficient of variation in GNDVI in estuarine wetlands is fairly constant throughout the 481 

growing season (SI Fig. S6A), inland wetlands are characterized by a greater spatial variability in GNDVI 482 

values in early spring and fall, possibly due to an asynchrony in plant phenology (Fig. S6B). NAIP 483 

images acquired in inland wetlands in April, September, and October might thus be underestimating 484 

spectral heterogeneity. 485 
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5 Conclusion 486 

Wetland biodiversity is globally threatened but increasingly important considering its support of key 487 

ecosystem functions and services. It is critical to offer a consistent, repeated, and reliable portrait of 488 

biological resources at a national scale to support the cost-effectively allocation of conservation resources. 489 

While hyperspectral and very high-resolution remote sensing datasets offer the best likelihood of 490 

successfully identifying individual species, recent publications have found that indicators of site 491 

greenness can help predict plant richness, due to their sensitivity to diversity-productivity relationships. 492 

Our results suggest that incorporating texture metrics sensitive to habitat heterogeneity and diversity of 493 

growth forms can amplify this potential and enhance diversity and richness predictions, particularly in 494 

sites in which depending solely on maximum greenness is challenging due to the prevalence of mixed 495 

pixels or a high coverage of non-native species. In addition, our study shows that integrating dbMEMs 496 

representing spatial relationships among sites might help upscale local site surveys into regional or 497 

national estimates of biodiversity by offering a substitute to spatially structured variables known to 498 

locally or regionally impact plant diversity. 499 

Overall, our results together with several previous studies (Hernández-Stefanoni et al., 2012; Madonsela 500 

et al., 2017; Wood et al., 2013) show the benefit of incorporating remote sensing into national 501 

conservation and monitoring strategies. Remote sensing and in situ floristic surveys can be part of a 502 

holistic, dynamic program in which in situ biodiversity assessments help train and interpret remote 503 

sensing-based assessments, while remote sensing can be used to identify where further local field 504 

investigation is needed to confirm biodiversity hotspots or areas of rapid degradation and bridge temporal 505 

and spatial gaps in between field assessments. For instance, changes in the spectral characteristics of a site 506 

could reflect a shift in plant composition or increased background exposure all of which could warrant 507 

further field investigation. Spectral indicators could also track wetland diversity resources at the national 508 

or continental scale to highlight biodiversity hotspots which should be targeted by conservation and 509 

planning efforts. Similarly, repeated site assessments using remote sensing products could be used as a 510 

low-cost, rapid monitoring of the biological conditions in each wetland of a particular site or region.  511 

Finally, novel machine learning approaches could improve the predictive capacity of similar multivariate 512 

models combining spatial and spectral variables to estimate plant diversity across large datasets and study 513 

extents (SI Fig. S7). Machine learning models are particularly well suited for the analysis of complex 514 

ecological datasets as they can account for both linear and non-linear relationships and typically rely on 515 

fewer assumptions than traditional linear regression models (Olden et al., 2008). 516 
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Table 3. Adjusted R2 and Akaike information criterion (AIC) for linear regressions between maximum annual greenness, texture metrics, 664 

combinations of greenness and texture, dbMEMs, a combination of spectral and spatial metrics (“all”) species richness, and diversity, by wetland 665 

type and disturbance level. Stars indicate p-value, where: *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001. 666 

Dataset Diversity 

Index 

Greenness Texture Texture + 

Greenness 

Texture * 

Greenness 

dbMEMs All 

  AdjR2 AIC AdjR2 AIC AdjR2 AIC AdjR2 AIC AdjR2 AIC AdjR2 AIC 

All sites Diversity 0.33*** 2284.63 0.35*** 2267.50 0.45*** 2091.42 0.47*** 2065.36 0.14*** 2594.78 0.50*** 2155.72 

Total Richness 0.44*** 2433.46 0.36*** 2590.66 0.53*** 2253.19 0.55*** 2219.39 0.23*** 2799.64 0.59*** 2153.13 

Native 

Richness 

0.43*** 2443.64 0.36*** 2574.99 0.52*** 2261.61 0.54*** 2237.46 0.23*** 2798.02 0.58*** 2140.87 

Least 

disturbed sites  

(n=273) 

Diversity 0.50*** 534.90 0.42*** 590.30 0.57*** 507.45 0.58*** 518.95 0.31*** 667.44 0.60*** 530.02 

Total Richness 0.57*** 618.93 0.45*** 699.99 0.65*** 578.04 0.66*** 587.55 0.45*** 727.41 0.71*** 570.70 

Native 

Richness 

0.56*** 608.21 0.45*** 682.24 0.64*** 569.26 0.65*** 578.69 0.43*** 718.95 0.70*** 562.66 

Intermediate 

disturbed sites 

(n=518) 

Diversity 0.29*** 1007.98 0.29*** 1138.65 0.39*** 943.53 0.42*** 935.22 0.20*** 1162.20 0.46*** 972.55 

Total Richness 0.39*** 1045.72 0.32*** 1119.29 0.46*** 998.24 0.48*** 992.78 0.26*** 1238.62 0.55*** 991.63 

Native 

Richness 

0.38*** 1061.43 0.29*** 1148.05 0.45*** 1017.02 0.47*** 1012.18 0.26*** 1252.15 0.54*** 1011.42 

Most disturbed 

sites 

(n=324) 

Diversity 0.20*** 723.10 0.39*** 649.20 0.43*** 630.47 0.47*** 619.39 0.37*** 697.27 0.58*** 577.59 

Total Richness 0.29*** 743.00 0.40*** 700.00 0.48*** 654.78 0.53*** 642.08 0.39*** 746.81 0.60*** 618.10 

Native 

Richness 

0.31*** 758.68 0.44*** 704.20 0.53*** 652.03 0.56*** 646.62 0.43*** 747.89 0.64*** 613.98 

Estuarine 

woody (n=70) 

Diversity 0.12** 119.39 0.26** 120.52 0.31** 116.60 0.35** 118.26 0.38*** 102.24 0.39** 112.29 

Total Richness 0.13** 134.88 0.32** 130.97 0.42** 119.97 0.50** 116.00 0.50*** 103.12 0.52*** 110.66 

Native 

Richness 

0.12* 135.63 0.31** 132.03 0.41** 121.54 0.46** 121.45 0.47*** 108.23 0.50*** 114.83 

Estuarine 

herbaceous 

(n=270) 

Diversity 0.12*** 459.88 0.14*** 470.08 0.20*** 450.15 0.20*** 464.40 0.11*** 477.20 0.29*** 433.18 

Total Richness 0.23*** 535.94 0.17*** 572.93 0.32*** 518.33 0.35*** 520.92 0.14*** 582.37 0.39*** 504.00 

Native 

Richness 

0.18*** 538.42 0.16*** 559.59 0.27*** 521.51 0.33*** 513.53 0.12*** 570.21 0.34*** 510.49 

Inland 

herbaceous 

(n=350) 

Diversity 0.05*** 717.28 0.07** 724.33 0.10*** 716.83 0.11*** 728.78 0.11** 757.30 0.21*** 730.48 

Total Richness 0.13*** 686.43 0.11*** 721.11 0.20*** 687.46 0.22*** 695.97 0.16*** 747.42 0.30*** 697.63 

Native 

Richness 

0.17*** 734.22 0.13*** 767.35 0.21*** 734.02 0.24*** 735.7 0.22*** 775.06 0.36*** 790.97 

Inland woody 

(n=425) 

Diversity 0.07*** 621.03 0.14*** 602.38 0.18*** 582.95 0.21*** 585.13 0.14** 672.52 0.29*** 603.79 

Total Richness 0.10*** 660.04 0.12*** 666.40 0.18*** 634.26 0.20*** 639.73 0.18*** 703.37 0.31*** 640.56 

Native 

Richness 

0.15*** 666.99 0.12*** 692.67 0.22*** 642.42 0.25*** 643.87 0.22*** 710.55 0.35*** 643.74 
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