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Sufficient conditions for forward invariance and contractivity in

hybrid inclusions using barrier functions

Mohamed Maghenem and Ricardo G. Sanfelice ∗

Abstract

This paper studies set invariance and contractivity in hybrid systems modeled by hybrid inclusions
using barrier functions. After introducing the notion of a multiple barrier functions, we investigate
the tightest possible sufficient conditions to guarantee different forward invariance and contractivity
notions of a closed set for hybrid systems with nonuniqueness of solutions and solutions terminating
prematurely. More precisely, we consider forward (pre-)invariance of sets, which guarantees solutions
to stay in a set, and (pre-)contractivity, which further requires solutions that reach the boundary
of the set to evolve (continuously or discretely) towards its interior. Our conditions for forward
invariance and contractivity involve infinitesimal conditions in terms of multiple barrier functions.
Examples illustrate the results.

Keywords. Forward invariance, contractivity, barrier functions, hybrid dynamical systems.

1 Introduction

Forward invariance of sets for dynamical systems is a property that requires the solutions starting the
considered set to remain in it along their entire domain of definition. The main challenge when studying
forward invariance consists in providing the tightest possible sufficient conditions while avoiding explicit
computation of the system solutions.

The study of set invariance for dynamical systems is an important step towards analyzing its stability
a safety properties. Indeed, forward invariance has a close relationship to safety, which is a property that
requires the system solutions starting from a given set of initial conditions to remain in a desired safe
region [1]. Safety, also named conditional invariance in [2], is equivalent to forward invariance of a set,
known as inductive invariant in [3], which contains the set of initial conditions and not intersecting with
the unsafe region [4]. Furthermore, the study of set invariance can be a key step to conclude stability
properties for the system via relaxed Lyapunov conditions including the well-known invariance principle
[5] and Matrosov Theorem [6]. In addition to safety, the study of set invariance has also been extended
in order to guarantee some closely related notions such as quasi-invariance, conditional quasi-invariance
[7], and contractivity [8]. The contractivity property is a strong form of forward invariance. Indeed, a
contractive set is forward invariant and whenever a solution starts from its boundary, it immediately
leaves the boundary and evolves towards its interior. Contractivity is also named strict invariance in [9]
and is very useful, for example, when computing set-induced Lyapunov functions [10–12].

1.1 Background

The interest in the study and characterization of forward invariance, while avoiding the computation of
the system’s solutions, dates back to the seminal work of Nagumo in [13]. In this reference, conditions
involving the contingent cone and the system’s dynamics on the boundary of a closed set are shown to be
necessary and sufficient to conclude, from each point in the set, the existence of at least one solution that
remains in the set. This last property defines what is known as weak forward invariance [14], which is
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equivalent to forward invariance when the system’s solutions are unique. Extensions of this result, using
similar type of cone conditions, are presented in [9] to conclude weak forward invariance1 for differential
inclusions, in [15] for impulse differential inclusions, and in [16] for hybrid inclusions. For systems with
continuous-time dynamics, when all the solutions starting from a closed set are required to remain in it,
as stressed in [9], the invariance conditions concern the system’s dynamics outside the set rather than
on its boundary. As a consequence, the external contingent cone is introduced and used in [9].

The relatively stronger form of invariance called contractivity is characterized in [8] in terms of the
Minkowski functional, both for differential and difference equations, for the particular case of convex
and compact sets. For general closed sets and for systems modeled as differential inclusions, sufficient
conditions are proposed in [9] using, roughly speaking, the interior of the contingent cone and the system’s
dynamics at the boundary of the considered closed set. In general, the computation of the tangent cones
is not a trivial task. However, when the considered set is defined as the zero-sublevel of a vector function,
named barrier function candidate, it is possible, under appropriate assumptions, to formulate invariance
and contractivity conditions using only the barrier function candidate and the system’s dynamics.

The latter approach has been adopted in [17] and [18] for differential equations and inclusions, re-
spectively, and in [19] for hybrid automata. In [17], a scalar barrier function candidate that is positive
and locally bounded on the interior of the considered set, and approaches infinity as its argument con-
verges to the boundary of the set is also considered. When using the latter notion of barrier functions,
solutions starting from the interior of the set to render invariant are not allowed to reach its boundary.
In [18], sufficient conditions for invariance in terms of nonsmooth but locally Lipschitz barrier functions
are considered with application to safe navigation for networks of vehicles in the presence of obstacles.
Finally, in [19], methods to synthesize barrier functions are investigated. The latter work is extended in
[20, 21] by relaxing the conditions constraining the continuous-time evolution of the hybrid automata.

1.2 Motivation

A hybrid inclusion is defined as a differential inclusion with a constraint, which models the flow or
continuous evolution of the system, and a difference inclusion with a constraint, modeling the jumps or
discrete events. In particular, handling nonuniqueness of solutions in hybrid inclusions and solutions
terminating prematurely lead to particular forms of forward invariance and contractivity properties that
we call forward pre-invariance and pre-contractivity, respectively, where the prefix “pre” indicates that
some solutions may have a bounded (hybrid) time domain. The aforementioned notions have not been
covered in the literature using barrier functions. Furthermore, having sufficient conditions for forward
invariance in terms of barrier functions is useful especially when control inputs are used to force such
conditions [1, 17], or when the invariance, or the contractivity, task is to be combined with a a stabilization
task to be achieved inside a safety set [22]. Furthermore, in many applications, it is often the case that
the closed set to be rendered forward invariant or contractive corresponds to the region where multiple
scalar functions are nonpositive simultaneously. In such a case, it is typically difficult to find a single
scalar function that defines the set of interest and, at the same time, is sufficiently smooth. This fact
motivates the development of sufficient conditions guaranteeing forward invariance and contractivity
when multiple scalar candidates define the considered set.

1.3 Contributions

In this paper, we introduce barrier functions and tools to certify forward invariance and contractivity
in hybrid systems modeled as hybrid inclusions. We define a barrier function candidate as a vector
function of the state variables. Sufficient conditions in terms of infinitesimal inequalities – namely,
without using information about solutions – are proposed to guarantee that the set of points on which
all the components of the barrier function candidate are nonpositive is forward invariant or contractive.
More precisely, under mild conditions on the data defining the hybrid inclusion, we present conditions
such that a barrier function candidate guarantees forward pre-invariance. The proposed conditions can
be decomposed into flow and jump conditions that restrict the continuous and the discrete evolution of
the hybrid system, respectively.

In Section 3, we formulate sufficient conditions for forward invariance. Our results in Theorems 1
and 4 apply when the barrier function candidate is either continuously differentiable or only locally

1Weak forward invariance is named viability in [9].
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Lipschitz. Furthermore, under a condition on the gradient of the barrier function candidate, known as
transversality condition which is typically assumed in the literature (see, e.g.,[9, 23]), plus some extra
regularity conditions on the flow dynamics, in Theorem 2, we relax the flow conditions to hold only on
a restrained region of the state space which is the boundary of the considered set.

In Section 4, we analyze contractivity properties for hybrid systems. After a brief overview of the
case of sets that are compact and convex, which itself extends to hybrid inclusions the results in [8]
for differential and difference equations, we introduce a notion of contractivity for general closed sets.
Furthermore, it extends to hybrid inclusions what is proposed in [9] for differential inclusions only. The
proposed notion essentially requires the system’s solutions to evolve from points on the boundary of K
towards its interior via a flow or a jump. Sufficient conditions for contractivity in terms of the barrier
function candidates defining the set are established when the latter candidate is either continuously
differentiable or only locally Lipschitz, see Theorems 5 and 6.

The results in this paper extend what was proposed in [17–21] to the more general context of hybrid
systems modeled by hybrid inclusions. That is, hybrid inclusions offers many technical challenges that
have not been handled in the existing literature. Those challenges are mainly due to the fact that the
continuous-time evolution of the hybrid inclusion is not necessarily defined on an open set. Moreover,
the considered set is defined as the zero-sublevel set of a barrier function candidate restricted to the set
where the dynamics are defined; namely, the union of the flow and the jump sets. Since the latter sets
can be closed, elements around the intersection between the two boundaries; namely, the zero-level set
of the barrier candidate and the boundary of the flow set, needs a particular treatment. Our sufficient
conditions using barrier functions are alternatives to those proposed in [16] and [9] using tangent cone-
based conditions. Indeed, our conditions exploit the fact that the set is the intersection of zero-sublevel
sets of scalar functions; hence, the obtained conditions avoid as much as possible the computation of
tangent cones. The latter task is known to be numerically expensive in some cases. It is also to be noted
that some of our results build upon the well-known cone-based conditions in [9] and [14].

To the best of our knowledge, this is the first time in the literature where the concept of barrier
functions is used for hybrid inclusions to analyze different set-invariance properties. Preliminary parts
of this work are in the conference papers [24, 25]. However, only scalar barrier functions are considered
in [24] and many proofs, explanations, and examples are omitted in both submissions. Furthermore,
compared with [24, 25], new results are proposed in Theorem 2, Theorem 3, Theorem 4, Proposition 1,
and Theorem 6.

The remainder of the paper is organized as follows. Preliminaries and basic conditions are presented
in Section 2. Sufficient conditions of forward pre-invariance and invariance using barrier functions are
in Section 3. Sufficient conditions for pre-contractivity and contractivity using barrier functions are in
Section 4, respectively. Examples are included at each step in order to illustrate the proposed statements.

Notation. Let R≥0 := [0,∞), N := {0, 1, . . .}, and N∗ := {1, 2, . . . ,∞}. For x, y ∈ Rn and
a nonempty set K ⊂ Rn, x> denotes the transpose of x, |x| the norm of x, |x|K := infy∈K |x − y|
defines the distance between x and the set K, 〈x, y〉 = x>y denotes the inner product between x and
y, and 〈x,K〉 = x>K :=

{
x>z : z ∈ K

}
. The inequalities x ≤ 0 and x < 0 mean that xi ≤ 0 and,

respectively, xi < 0 for all i ∈ {1, 2, . . . , n}. The opposites, namely, x � 0 and x ≮ 0 mean that there
exists i ∈ {1, 2, . . . , n} such that xi > 0 and, respectively, xi ≥ 0. For a set K ⊂ Rn, we use int(K) to
denote its interior, ∂K to denote its boundary, cl(K) to denote its closure, and U(K) to denote an open
neighborhood around K. For a set O ⊂ Rn, K\O denotes the subset of elements of K that are not in
O. By B, we denote the closed unit ball in Rn centered at the origin. For a continuously differentiable
function B : Rn → R, ∇B(x) denotes the gradient of the function B evaluated at x. By C1, we denote the
set of continuously differentiable functions. Finally, F : Rn ⇒ Rn denotes a set-valued map associating
each element x ∈ Rn into a subset F (x) ⊂ Rn.

2 Preliminaries and basic conditions

2.1 Hybrid inclusions

We consider hybrid systems modeled by

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x),

(1)
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with the state variable x ∈ Rn, the flow set C ⊂ Rn, the jump set D ⊂ Rn, the flow and the jump
set-valued maps, respectively, F : Rn ⇒ Rn, G : Rn ⇒ Rn. A solution x to H is defined on a hybrid
time domain denoted domx ⊂ R≥0 × N. The solution x is parametrized by the ordinary time variable
t ∈ R≥0 and the discrete jump variable j ∈ N. Its domain of definition domx is such that for each

(T, J) ∈ domx, domx ∩ ([0, T ]× {0, 1, . . . , J}) = ∪Jj=0 ([tj , tj+1], j) for a sequence {tj}J+1
j=0 , such that

tj+1 ≥ tj for each j ∈ {0, 1, . . . , J} and t0 = 0; see [26].
A solution x to H, as defined in Definition 12 , starting from xo is said to be complete if it is defined

on an unbounded hybrid time domain; that is, the set domx is unbounded. Furthermore, it is said to
be maximal if there is no solution y to H such that x(t, j) = y(t, j) for all (t, j) ∈ domx with domx a
proper subset of dom y. Finally, it is said to be nontrivial if domx includes at least two points.

2.2 Anatomy of sets

Different types of cones have been used in the study of differential inclusions. In the following, we recall
from [9] the definition of some of them, for a set K ⊂ Rn, that are used in this paper.

Definition 1 The contingent cone of K at x is given by

TK(x) :=

{
v ∈ Rn : lim inf

h→0+

|x+ hv|K
h

= 0

}
. (2)

We also recall the equivalence [27, Page 122]

v ∈TK(x)⇔
∃{hi}i∈N → 0+ and {vi}i∈N → v : x+ hivi ∈ K ∀i ∈ N. (3)

Definition 2 The Dubovitsky-Miliutin cone of K at x is given by

DK(x) := {v ∈ Rn : ∃ε, α > 0 : x+ (0, α](v + εB) ⊂ K} . (4)

We, also, recall from [9] the following useful property

DK(x) =Rn\TRn\K(x) = TK(x)\TRn\K(x) ∀x ∈ ∂K. (5)

Definition 3 The external contingent cone of K at x is given by

EK(x) :=

{
v ∈ Rn : lim inf

h→0+

|x+ hv|K − |x|K
h

≤ 0

}
. (6)

2.3 Basic assumptions

Our results are obtained under the following standing assumptions.
Standing assumptions. The data of the hybrid inclusion H = (C,F,G,D) is such that the flow map
F : Rn ⇒ Rn is outer semicontinuous and locally bounded with nonempty and convex images on C, and
G(x) is nonempty for all x ∈ D. •

We notice that, in addition to these standing assumptions, the hybrid basic conditions in [28, Chapter
6], which are not imposed here, also require the sets C and D to be closed and the jump map G to be
locally bounded.

Before going further, consider the hybrid inclusion H = (C,F,D,G) and a closed set K ⊂ C ∪ D.
Starting from xo ∈ K, if a solution x leaves the set K, then it has to be under one of the two following
scenarios:

(Sc1) The solution x leaves the set K after a jump. It implies the existence of (t, j) ∈ domx such that
x(t, j) ∈ K ∩D and (t, j + 1) ∈ domx with x(t, j + 1) /∈ K and x(t, j + 1) ∈ G(x(t, j)).

4



(Sc2) The solution x leaves the set K by flowing. It implies the existence of t′2 > t′1 ≥ 0 and j′ ∈ N
such that ([t′1, t

′
2] × {j′}) ⊂ domx and x((t′1, t

′
2), j′) ⊂ (U(∂K)\K) ∩ C, with x(t′1, j

′) ∈ ∂K and
x(t′2, j

′) /∈ K.

When the set K is not closed, the case in (Sc2) is replaced by the following more general scenario:

(Sc3) The solution x leaves the set K by flowing. It implies the existence of t′2 > t′1 ≥ 0 and j′ ∈ N such
that ([t′1, t

′
2]× {j′}) ⊂ domx and either

(a) x((t′1, t
′
2), j′) ⊂ (U(∂K)\K) ∩ C, with x(t′1, j

′) ∈ ∂K and x(t′2, j
′) /∈ K; or

(b) x([t′1, t
′
2), j′) ⊂ K, with limt→t′2

− x(t, j′) ∈ cl(K)\K.

In the second case, the solution is maximal and dies on the boundary ∂K\K.

In fact, when the set K is closed, under (Sc2), x(t′1, j
′) ∈ ∂K ∩K and since the solution leaves the set

K, under Definition 12, x((t′1, t
′
2), j′) is a subset of C\K for some t′2 > t′1 sufficiently close to t′1.

3 Sufficient conditions for forward pre-invariance and invari-
ance using barrier functions

Given a hybrid system H = (C,F,D,G), for a set K ⊂ C ∪D, following [16] and [28, Definition 6.25],
we introduce the two following forward invariance notions.

Definition 4 (Forward pre-invariance) The set K is said to be forward pre-invariant for H if, for
each xo ∈ K and each maximal solution x starting from xo, x(t, j) ∈ K for all (t, j) ∈ domx.

Definition 5 (Forward invariance) The set K is said to be forward invariant for H if it is forward
pre-invariant and for each xo ∈ K, each maximal solution x starting from xo is complete.

Furthermore, we assume that the set K is defined as points in C∪D at which multiple scalar functions
are simultaneously nonpositive. These scalar functions form a barrier function candidate defining the
set K.

Definition 6 A function B : Rn → Rm is said to be a barrier function candidate defining the set K if2

K = {x ∈ C ∪D : B(x) ≤ 0} , (7)

where B(x) := [B1(x) B2(x) . . . Bm(x)]>.

If B is continuous, the set K is closed relative to C ∪D. If, in addition, C ∪D is closed, then K is
automatically closed.

We introduce the following sets that we use in some statements and proofs. For a set K given as in
(7), we define

Ke := {x ∈ Rn : B(x) ≤ 0} , (8)

and, for each i ∈ {1, 2, . . . ,m},

Kei := {x ∈ Rn : Bi(x) ≤ 0} , (9)

Mi := {x ∈ ∂K : Bi(x) = 0} . (10)

It is useful to notice thatKe = ∩mi=1Kei, K = Ke∩(C∪D), and that ∂K = ∪mi=1Mi∪(∂K ∩ ∂(C ∪D)).
Note that in general Mi 6= ∂Kei.

Remark 1 In the literature (see, e.g.,[29], [17]) mainly motivated by barrier methods for optimization
[30], barrier function candidates3 are defined as scalar functions that are positive, locally bounded on
int(K), and approach infinity as their argument converges to ∂K. The key difference between the notions
therein and the one in Definition 6 is that, in the former case, solutions that start in int(K) cannot reach
the boundary ∂K, which in turn renders int(K) invariant (in the appropriate sense).

2B(x) ≤ 0 means that Bi(x) ≤ 0 for all i ∈ {1, 2, . . . ,m}.
3Barrier functions are also called potential functions in [31].
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Remark 2 In the case of hybrid systems modeled using hybrid automata, the concept of barrier functions
is used to conclude forward invariance, or safety in general, in [19–21]. According to the latter references,
for a hybrid automata with m operating modes, a closed set Kq ⊂ Rn, q ∈ {1, 2, . . . , Q}, is associated
to each mode (typically determined by the logic variable q) and must be forward invariant for the state
variable (typically denoted ζ) only during the corresponding mode. The sets Kq can be different for each
mode. Furthermore, since each mode is governed by a differential equation and the state variable ζ is
allowed to jump only when the mode switches, a barrier function candidate Bq is associated to each mode
and defines the corresponding set Kq as K in Definition 6. In the case of hybrid inclusions, the state may
include variables other than those used in hybrid automata models, such as timers and memory states,
and unlike hybrid automata, its variables may not necessarily jump at the same time. Consequently, the
closed set K to be rendered forward invariant cannot be decomposed according to different flowing modes.
Our approach to define a barrier function candidate is more general. Indeed, if we remodel the hybrid
automata as H while incorporating the mode as a new discrete state variable q ∈ {1, 2, . . . , Q}, then, in

the augmented space Rn × {1, 2, . . . , Q}, we can define the set K := ∪Qq=1 (Kq × {q}) and the candidate
B(ζ, q) := Bq(ζ). It is easy to see that the latter scalar candidate B defines the set K according to
Definition 6.

Remark 3 In our approach, we do not restrict the barrier function candidate to be a scalar function.
In general, one is interested in considering a forward invariant set K that is given by multiple inequality
constraints being satisfied simultaneously. Also, we notice that it is always possible from (7) to construct
a scalar barrier function candidate that defines the closed set K according to Definition 6 as

B̄(x) := max
i∈{1,2,...,m}

Bi(x). (11)

However, by doing so, if the vector function B is C1, the resulting barrier function candidate B̄ is not
guaranteed to be C1 and it can be only continuous. Indeed, at points x where multiple Bi’s are equal, if
their gradients are not identical, then B̄ is not differentiable at those elements.

3.1 Pre-invariance under standing assumptions

The results we present in this section are extensions to what has been proposed in [19–21] for general
hybrid inclusions while handling the possible noncomplete solutions and using multiple barrier functions
instead of only a scalar one. For general differential inclusions (the continuous part of a hybrid inclusion),
as pointed out in [9], forward invariance of a set is a property that depends on the system’s dynamics
outside the set. Therefore, in the following results, our flow conditions concern only a neighborhood of
the boundary ∂K relative to the complement of K.

Theorem 1 Given a hybrid system H = (C,F,D,G) and a C1 barrier function candidate B defining
the set K in (7), suppose the set K is closed. Then, the set K is forward pre-invariant for H if, for all
i ∈ {1, 2, . . . ,m},

〈∇Bi(x), η〉 ≤ 0 ∀x ∈ (U(Mi)\Kei) ∩ C and

∀η ∈ F (x) ∩ TC(x), (12)

B(η) ≤ 0 ∀η ∈ G(x), ∀x ∈ D ∩K, (13)

G(x) ⊂ C ∪D ∀x ∈ D ∩K, (14)

where Kei and Mi are defined in (9)-(10).

Proof. To prove the statement we proceed by contradiction. Let us assume that (12) and (14) hold and
the set K is not forward pre-invariant for H. That is, there exists a maximal solution x starting from
xo ∈ K that leaves the set K following one of the scenarios (Sc1) and (Sc2). First, suppose that the
solution x leaves the set K after a jump from K to Rn\K following the scenario (Sc1). This implies,
using (14) and the definition of B, the existence of k ∈ {1, 2, . . . ,m} and (t, j) ∈ domx such that
(t, j + 1) ∈ domx and Bk(x(t, j + 1)) > 0 with x(t, j + 1) ∈ G(x(t, j)). However, x(t, j) ∈ K ∩D, hence
using (13), it follows that B(x(t, j+1)) ≤ 0; in fact B(ζ) ≤ 0 for all ζ ∈ G(x(t, j)). The latter fact yields
a contradiction. Next, suppose that the solution x leaves the set K by flowing under scenario (Sc2).

6



We conclude in this case that there exists k ∈ {1, 2, . . . ,m} such that x((t′1, t
′
2], j′) ⊂ (U(∂Kk)\Kk)∩C,

where t′1, t′2, and j′ are as in (Sc2). Next, since the function B is assumed to be continuously differentiable
and the solution x(·, j′) is absolutely continuous on the interval [t′1, t

′
2], it follows that B(x(·, j′)) is also

absolutely continuous on that interval. By integration, it follows that

Bk(x(t′2, j
′))−Bk(x(t′1, j

′)) =∫ t′2

t′1

〈∇Bk(x(t, j′)), ẋ(t, j′)〉dt > 0 (15)

since Bk(x(t, j′)) > 0 for all t ∈ [t′1, t
′
2] and Bk(x(t′1, j

′)) = 0. However, x((t′1, t
′
2], j′) ⊂ (U(∂K)\K) ∩ C

and, using Lemma 2, we conclude that ẋ(t, j′) ∈ TC(x(t, j′)) for almost all t ∈ [t′1, t
′
2]. Moreover, using

(12), we conclude that, for almost all t ∈ (t′1, t
′
2), 〈∇Bk(x(t, j)), η〉 ≤ 0 for all η ∈ F (x(t, j))∩TC(x(t, j)).

Hence, Bk(x(t′2, j))−Bk(x(t′1, j)) ≤ 0. Hence, the contradiction with (15) follows. �

Example 1 Consider the hybrid system H with the data

C :=
{
x ∈ R2 : x2 ≥ 0, x1 ∈ [−1, 1]

}
,

F (x) :=

[
−x2

2

x2x1 − x2([2, 4]− |x|2)

]
∀x ∈ C,

D :=
{
x ∈ R2 : x2 ≤ 0, |x| < 1

}
,

G(x) := [0, 1]

[
x2

|x1|

]
∀x ∈ D.

We establish forward pre-invariance for the closed set K :=
{
x ∈ C ∪D : |x|2 ≤ 1, x2 ≥ 0

}
using The-

orem 1. To this end, we start noticing that the set K can be written as in (7) using the C1 bar-
rier function candidate B(x) = [B1(x) B2(x)]> := [(|x|2 − 1) − x2]>. Furthermore, we notice that
D∩K = (−1, 1)×{0} and, for all x ∈ D∩K, that G(x) = [0 [0, 1]|x1|]> ⊂ C∪D; hence, (14) holds. More-
over, for every x ∈ K ∩D and η ∈ G(x), there exists ε ∈ [0, 1] such that B(η) = [(ε|x|2− 1) − ε|x1|]> ⊂
R≤0 × R≤0; thus, (13) holds. Next, we notice that the set (U(M2)\Ke2) ∩ C = ∅ and one can choose
(U(M1)\Ke1) ∩ C = {x ∈ C : |x| ∈ (1, 2)}. Consequently, for all η ∈ F (x), there exists ε ∈ [0, 2] such
that 〈∇B1(x), η〉 = −x2

2(2 + ε − |x|2) ≤ 0 for all x ∈ U(M1)\Ke1) ∩ C. Hence, (12) holds and forward
pre-invariance for H of the set K defined by B follows. Note that (12) does not hold on the entirety of
C\K. Hence, forward pre-invariance of the set K for H follows.

In the following example, we apply Theorem 1 on a hybrid system including explicit logic variables.

Example 2 (Thermostat) Consider the hybrid model of the thermostat system proposed in [28, Ex-
ample 1.9] and given by

x := [q z]> ∈ R2,

C := ({0} × C0) ∪ ({1} × C1) ,

C0 := {z ∈ R : z ≥ zmin} , C1 := {z ∈ R : z ≤ zmax} ,
F (x) := [0 − z + zo + z∆q]

> ∀x ∈ C,
D := ({0} ×D0) ∪ ({1} ×D1) ,

D0 := {z ∈ R : z ≤ zmin} , D1 := {z ∈ R : z ≥ zmax} ,
G(x) := [1− q z]> ∀x ∈ D,

where z is the temperature of the room, zo represents the natural temperature of the room when the
heater is not used, z∆ the capacity of the heater to raise the temperature in the room by always being
on, and q the state of the heater, which is 1 (on) or 0 (off). We want to keep the temperature between
zmin and zmax satisfying zo < zmin < zmax < zo + z∆. Using Theorem 1, we will show that the set
K :=

{
[q z]> ∈ C ∪D : z ∈ [zmin, zmax]

}
= {0, 1}× [zmin, zmax] is forward pre-invariant. To do so, we

propose the barrier function candidate B(x) = [B1(x) B2(x)]> := [z − zmax zmin − z]>. In order to
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verify (14), we notice that C∪D = {0, 1}×R and that [1−q z]> ∈ C∪D for all [q z]> ∈ C∪D; hence, (14)
is satisfied. Moreover, B(G(q, z)) = B([(1− q) z]>) = B([q z]>) ≤ 0 for all [q z]> ∈ K ∩D, the latter
inequality holds by definition of the barrier candidate B. Hence, (13) is also satisfied. Finally, in order
to verify (12), we notice that Ke1 = R× (−∞, zmax], Ke2 = R× [zmin,+∞), Mi = ∂Kei∩ (C∪D) for all
i ∈ {1, 2}. Furthermore, for some ε > 0, (U(M1)\Ke1)∩C = {0}×(zmax, zmax+ε), (U(M2)\Ke2)∩C =
{1} × (zmin − ε, zmin),
〈∇B1(x), F (x)〉 = zo − z ≤ 0 for all x ∈ (U(M1)\Ke1) ∩ C, and 〈∇B2(x), F (x)〉 = z − zo − z∆ ≤ 0 for
all x ∈ (U(M2)\Ke2) ∩ C.

Remark 4 When the set K is defined as the zero sub-level set of a scalar barrier function candidate B;
namely, K = {x ∈ C ∪D : B(x) ≤ 0} with m = 1, condition (12) in Theorem 1 reduces to

〈∇B(x), η〉 ≤ 0 ∀x ∈ (U(∂K)\K) ∩ C and

∀η ∈ F (x) ∩ TC(x). (16)

Example 3 (Boucing ball) Consider the bouncing ball hybrid model H = (C,F,D,G) with x =
[x1 x2]> ∈ R2,

F (x) := [x2 − γ]> ∀x ∈ C,
C :=

{
x ∈ R2 : x1 > 0, or x1 = 0 and x2 ≥ 0

}
,

G(x) := [0 − λx2]> ∀x ∈ D,
D :=

{
x ∈ R2 : x1 = 0, x2 ≤ 0

}
.

The constants γ > 0 and λ ∈ [0, 1] are the gravity acceleration and the restitution coefficient, respectively.
Consider the closed set
K := {x ∈ C ∪D : 2γx1 + (x2 − 1)(x2 + 1) ≤ 0}. The set K can be seen as the sublevel set where the
total energy of the ball is less or equal than 1/2. Hence, B(x) := 2γx1 + (x2 − 1)(x2 + 1) is a barrier
function candidate defining the set K as in Definition 6. To conclude forward pre-invariance of the set
K using Theorem 1, we start noticing that 〈∇B(x), F (x)〉 = 0 for all x ∈ C; hence, (16) is satisfied.
Moreover, for every x ∈ K ∩D, we have B(G(x)) = 2γx1 +λ2x2

2−1 ≤ 2γx1 +x2
2−1 ≤ 0 since λ ∈ [0, 1];

hence, (13) is satisfied. Finally, (14) is satisfied since G(D) = {0} × R≥0 ⊂ C ∪D.

Example 4 Consider the hybrid system H = (C,F,D,G) with C and G as in Example 1, and F and
D given by

F (x) :=

[
−x2x1

−(|x|2 − [0, 1])(|x|2 − 1
4 )(2− |x|2)

]
∀x ∈ C,

D :=
{
x ∈ R2 : x2 = 0, |x| ≤ 1

}
.

We employ Theorem 1 to verify forward pre-invariance for the closed set
K :=

{
x ∈ C ∪D : |x|2 − 1 ≤ 0, x2 ≥ 0

}
. This set admits the scalar C1 barrier function candidate

B(x) := x2(|x|2−1). According to Remark 4, the set (U(∂K)\K)∩C can be chosen as (U(∂K)\K)∩C =
{x ∈ C : |x1| < 1, |x| ∈ (1, 2)}. Furthermore, it is easy to show that 〈∇B(x), η〉 ≤ 0 for all η ∈ F (x)
provided that 0 ≤ |x|2 ≤ 2; hence (16) holds. Furthermore, for any x ∈ D∩K, G(x) ⊂ C∪D; hence, (14)
holds. Moreover, for any x ∈ K∩D and for any η ∈ G(x), there exists α ∈ [0, 1] such that η = [0 α|x1|]>
and B(η) = α|x1|(α2|x1|2 − 1), however, since x1 ≤ 1 for all x ∈ K ∩D, (13) follows.

Remark 5 The flow condition (12) in Theorem 1 is more general than the one in [19–21] in the sense
that the inequality in (12) does not need to hold on the entire set C. In [20, 21], the flow condition (12)
is expressed as

〈∇B(x), η〉 ≤ ρ(B(x)) ∀x ∈ C ∀η ∈ F (x),

where ρ : R→ R is a locally Lipschitz function. The function ρ is allowed to be positive provided that its
growth is bounded locally by a linear function. We consider this type of relaxation in Section 3.4.

Remark 6 From conditions (12) in Theorem 1, it is straightforward to conclude that it is enough, for
each barrier function candidate Bi to be of class C1 only on a neighborhood of the boundary Mi.
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Remark 7 In Theorem 1 (as well as in upcoming results), the jump condition (13) in Theorem 1 can be
formulated using a different barrier function candidate than the one used to formulate the flow condition
(12) in Theorem 1. However, the two different barrier function candidates still need to define the same
set K, according to (7). In this paper, for simplicity, we present results using the same barrier function
candidate in the flow and the jump conditions, but extensions to the case where they are different are
straightforward.

3.2 Pre-invariance under Lipschitz-like Flow Map

In Theorem 1, the inequality in (12) needs to be satisfied on a neighborhood outside the set K rather
than just on ∂K. This is also the case for m = 1 for which (16) is required; see Remark 4. To assess the
possibility of relaxing such requirement, suppose that

〈∇Bi(x), η〉 ≤ 0 ∀x ∈Mi ∩ C, ∀η ∈ F (x). (17)

When this condition and (13)-(14) hold, the closed set K ⊂ C ∪D can fail to be forward pre-invariant
for the reasons enumerated below, where we assume without loss of generality that m = 1 (i.e., B is a
scalar function).

1) Assume the existence of xo ∈ ∂K ∩ int(C) such that ∇B(xo) = 0. Assume also that F (xo) ⊂
DRn\K(xo). In this case, condition (17) is satisfied at xo. However, according to Theorem 8 , there
exists a nontrivial solution starting from xo and flowing outside the set K. Hence, the set K is not
forward pre-invariant although (17) is satisfied; cf. [17, Proposition 1]. To handle this situation, one
needs to assume that the gradient of B is non-degenerate on ∂Ke ∩ C; namely,

∇B(x) 6=0 ∀x ∈ ∂Ke ∩ C. (18)

2) When the solutions starting from xo ∈ ∂K∩C are nonunique, even if∇B(xo) 6= 0, when 〈∇B(xo), η〉 =
0 for any η ∈ F (xo), we can always consider the existence of a solution starting from xo ∈ ∂K ∩ C
with a speed that is tangent to ∂K but leaving the set K. Such a scenario is illustrated in Example
5 below. We also notice that this pathology does not occur when ẋ ∈ F (x) for all x ∈ C has unique
solutions.

The following example is inspired by [8, Page 1751].

Example 5 Consider the two-dimensional differential equation

ẋ =

[
1√
|x2|

]
=: F (x)

and K :=
{
x ∈ R2 : x2 ≤ 0

}
. This system can be interpreted as a hybrid system with C = R2, D empty,

and G arbitrary. The set K can be defined using the barrier function candidate B(x) := x2 satisfying
|∇B(x)| = 1 6= 0 and 〈∇B(x), F (x)〉 = 0 for all x ∈ ∂K. However, the set K is not forward pre-invariant
since x(t) = [t (1/4)t2]> defined for all t ≥ 0 is a solution starting from x(0) = 0 ∈ K that leaves the
set K.

The latter example confirms the fact that, for differential inclusions, forward pre-invariance of a
closed set K is a property of the system outside the set K rather than on its boundary or in its interior.
However, when the flow map F satisfies extra regularity conditions outside the set K, it is possible to
restrict the conditions in (12) and (16) to hold only on the boundary ∂K. This is possible, for example
when F is locally Lipschitz as shown in [13, 32, 33] for differential equations and in [9] for differential
inclusions. In the aforementioned references, contingent-cone-based conditions are used and shown to be
necessary as well as sufficient, provided that the system’s dynamics is defined on an open set containing
the closed set K. For differential equations defined in Rn with locally Lipschitz right-hand side, the
latter contingent-cone-based conditions are expressed in terms of a scalar barrier function candidate in
[17].

On the other hand, in order to be able to conclude forward pre-invariance using flow conditions
satisfied only on the boundary of the set K, the Lipschitz regularity of the flow map F can be relaxed
by modifying the right-hand side in (68) using uniqueness functions. The latter is shown in [34] for
differential equations.
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Definition 7 (Uniqueness function) A function ρ : R→ R is said to be a uniqueness function if for
any δ : R≥0 → R with δ(0) = 0, there exists a constant ε > 0 such that

lim sup
h→0+

δ(t+ h)− δ(t)
h

≤ ρ(δ(t)) for a.a. t ∈ [0, ε]

implies that δ(t) = 0 for all t ∈ [0, ε].

In the following statement, we propose the tightest possible flow and jump conditions that are suf-
ficient and need to be satisfied only on elements of the set K provided that the following assumption
holds.

Assumption 1 For every x ∈ ∂Ke ∩ C,

∃v ∈ Rn : 〈∇Bi(x), v〉 < 0

∀i ∈ {1, 2, . . . ,m} s.t. Bi(x) = 0.
(19)

Assumption 1 is known as transversality condition in [27] and allows to define the contingent cone TK
at the intersection between different zero-level sets — see Lemma 3 below . Furthermore, Assumption 1
reduces to (18) when the barrier function B is scalar.

Theorem 2 Given a hybrid system H = (C,F,D,G) and a C1 barrier function candidate B defining
the set K in (7), suppose the set K is closed. Furthermore, assume that, for each x ∈ (U(∂K)\K) ∩ C
and each y ∈ ∂(K ∩ C),

(x− y)>F (x) ⊂(x− y)>F (y) + |x− y|ρ(|x− y|)B (20)

with ρ : R → R a uniqueness function. Then, the closed set K is forward pre-invariant provided that
(13)-(14), (17), Assumption 1, and one of the following conditions holds:

(a) For any x ∈ (U(∂Ke ∩ ∂C) ∩ ∂Ke) \C, (19) holds and

〈∇Bi(x), η〉 ≤ 0 ∀η ∈ F (x) and

∀i ∈ {1, 2, . . . ,m} s.t. Bi(x) = 0.
(21)

(b) For any x ∈ U(∂Ke ∩ ∂C) ∩ ∂K ∩ ∂C,

F (x) ⊂ TK∩C(x). (22)

(c) The set C is convex and (22) holds for all x ∈ ∂Ke ∩ ∂C.

Proof. The proof that the solutions starting from the set K cannot jump outside according to (Sc1),
under (13)-(14), is the same as in the proof of Theorem 1. Next, we prove that the solutions starting from
∂Ke∩C cannot leave the set K by flowing as in scenario (Sc2). For this purpose, we adapt the steps of the
proof presented in [34, Proof of Theorem 1] to our more general setting. Let t′1 ≥ 0 and t′2 > t′1 be such
that there exits a solution flowing from xo := x(t′1, 0) ∈ ∂K∩C and satisfying x(t, 0) ∈ (U(∂K)\K)∩C for
all t ∈ (t′1, t

′
2). We use y1 to denote the projection of x(t, 0) on the set Ke and y2 to denote the projection

of x(t, 0) on the set K ∩ C. Furthermore, we define δ1(t) := |x(t, 0) − y1| and δ2(t) := |x(t, 0) − y2|. It
follows that δi(t

′
1) = 0 and δi(t) > 0 for all t ∈ (t′1, t

′
2), since x(t, 0) ∈ (U(∂K)\K) ∩C for all t ∈ (t′1, t

′
2),

for each i ∈ {1, 2}. Using the identity a− b = (a2− b2)/(a+ b) for a and b nonnegative and for any h > 0
such that t and t+ h in (t′1, t

′
2), we derive the inequality

δi(t+ h)− δi(t) =
|x(t+ h, 0)− yi|2 − |x(t, 0)− yi|2

|x(t+ h, 0)− yi|+ |x(t, 0)− yi|
(23)

for each i ∈ {1, 2}. Furthermore, for almost all t ∈ (t′1, t
′
2), we replace x(t+ h, 0) by

x(t+ h, 0) = x(t, 0) + hẋ(t, 0) + o(h) (24)

10



with o(h) the remainder of the first order Taylor expansion of h 7→ x(t+h) around h = 0, which satisfies
limh→0 o(h)/h = 0. Using the previous limit and the inequality

|x(t+ h, 0)− yi| ≤ |x(t, 0)− yi|+ h|ẋ(t, 0) + o(h)/h|,

we obtain that, for all i ∈ {1, 2} and for almost all t ∈ (t′1, t
′
2),

lim sup
h→0+

δi(t+ h)− δi(t)
h

≤ (x(t, 0)− yi)>ẋ(t, 0)

|x(t, 0)− yi|
. (25)

Next, we have the following claim:

Claim 1 Under (17) and (19), that

(cl1) if (a) holds, then (x(t, 0)− y1)>ηy ≤ 0 for all ηy ∈ F (y1), and

(cl2) if (b) or (c) hold, then (x(t, 0)− y2)>ηy ≤ 0 for all ηy ∈ F (y2).

To prove the claim, we proceed as follows:

• Under (a), F (y1) ⊂ TKe
(y1). Indeed, under (17) and (19) and using Lemma 3, it follows that

F (y1) ⊂ TKe
(y1) when y1 ∈ ∂Ke ∩ C. Similarly, using the same argument under (a), when

y1 ∈ (U(∂Ke ∩ ∂C) ∩ ∂Ke) \C, we also have F (y1) ⊂ TKe(y1). Finally, we use the fact that when
t′2 is sufficiently small, the element y1 corresponding to the projection of x(t, 0) ∈ (U(∂K)\K)∩C
on the set Ke belongs necessarily to either ∂Ke ∩ C or (U(∂Ke ∩ ∂C) ∩ ∂Ke) \C.

• Under (b) or (c), F (y2) ⊂ TK∩C(y2). Indeed, under (17), Assumption 1 and using Lemma 3,
it follows that F (y2) ⊂ TKe

(y2) = TK∩C(y2) when y2 ∈ ∂Ke ∩ int(C). Next, under (b), when
y2 ∈ U(∂Ke ∩ ∂C)∩ ∂K ∩ ∂C, we also have F (y2) ⊂ TK∩C(y2). Finally, we use the fact that when
xo ∈ ∂Ke ∩ C and for t′2 > 0 sufficiently small, the element y2 corresponding to the projection of
x(t, 0) on the set K ∩C belongs necessarily to either (∂Ke ∩ int(C)) or (U(∂Ke ∩ ∂C)∩ ∂K ∩ ∂C.
Furthermore, under (c), the set C is convex and we show that y2 ∈ ∂Ke ∩ C. Hence, it becomes
enough to have F (y2) ⊂ TK∩C(y2) when y2 ∈ ∂Ke ∩ ∂C, which is true under (c). Finally, to show
that y2 ∈ ∂Ke∩C when C is convex, we use the fact that y2 corresponds to a projection on the set
K ∩ C. Hence, either y2 ∈ ∂Ke ∩ C or y2 ∈ ∂C ∩ int(Ke). We propose to exclude the latter case
using contradiction. That is, assume that y2 ∈ ∂C ∩ int(Ke) and consider the line segment relating
y2 to x(t, 0) denoted by [y2, x(t, 0)]. Since both y2 and x(t, 0) lie in the set C and since the set C is
convex it follows that the segment [y2, x(t, 0)] also belongs to C. Furthermore, since x(t, 0) ∈ C\Ke

and y2 ∈ int(Ke) it follows the existence of yo belonging to the open segment (x(t, 0), y2) such that
yo ∈ ∂Ke ∩ C = ∂K ∩ C. Hence |x(t, 0) − yo| < |x(t, 0) − y2| = minz∈K∩C {|x(t, 0)− z|}, which
yields to a contradiction.

Now, to conclude (cl1) and (cl2), we introduce the inequalities

|x(t, 0)− y1| ≤|x(t, 0)− y1 − hηy|+ |y1 + hηy1|Ke
, (26)

|x(t, 0)− y2| ≤|x(t, 0)− y2 − hηy|+ |y2 + hηy2|K∩C , (27)

where (ηy1, ηy2) ∈ F (y1) × F (y2). By taking the square in both sides of the inequalities (26) and (27),
dividing by h, and letting h→ 0+ through a suitable sequence, (cl1) and (cl2) are proved using the fact
that lim infh→0+ |y1 +hηy1 |Ke

/h = 0 and lim infh→0+ |y2 +hηy2 |K∩C/h = 0 since we already showed that
ηy1 ∈ TKe(y1) under (a) and ηy2 ∈ TK∩C(y2) under (b) or (c).

Using the claim, for all ηy ∈ F (yi), the term − (x(t,0)−yi)>ηy
|x(t,0)−yi| can be added to the bound in inequality

(25) which then can be rewritten as

lim sup
h→0+

δi(t+ h)− δi(t)
h

≤ (x(t, 0)− yi)>(ẋ(t, 0)− ηy)

|x(t, 0)− yi|
, (28)
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where i = 1 if (a) holds and i = 2 if (b) or (c) hold. Since ẋ(t, 0) ∈ F (x(t, 0)), using (20) with x = x(t, 0)
and y = yi, it is always possible to find η∗y ∈ F (yi) such that

(x(t, 0)− yi)>(ẋ(t, 0)− η∗y)> ≤ |x(t, 0)− yi|ρ(|x(t, 0)− yi|).

Applying this inequality to (28) and replacing ηy therein by η∗y , we obtain

lim sup
h→0+

δi(t+ h)− δi(t)
h

≤ρ(|x(t, 0)− yi|) = ρ(δi(t)) (29)

for almost all t ∈ (t′1, t
′
2) with i = 1 if (a) holds and i = 2 (b) or (c) hold. Hence, the contradiction

follows since (29) implies that δi(t) = 0 for all t ∈ (t′1, t
′
2) due to the fact that δi(t

′
1) = 0. �

Remark 8 Note that condition (20) holds for free when F is locally Lipschitz. In fact, every locally
Lipschitz map F satisfies (20) with ρ(ω) = kω for some k > 0. Condition (20) is more general than
Lipschitzness and allows for functions ρ that are not necessarily linear. In particular, when F is such
that (20) holds for ρ(ω) := ω logω, then ρ is a uniqueness function [35]. The latter function belongs
to the more general class of Osgood functions that are uniqueness functions but not necessarily locally
Lipschitz.

Remark 9 The flow condition (21) in Theorem 2 is a reinterpretation, in terms of barrier functions, of
the well-known contingent cone-based condition used in [9, 13, 32, 33] provided that Assumption 1 holds.

In Example 6, we show that when none of the conditions (a)-(c) in Theorem 2 is satisfied, there exist
situations where K fails to be forward pre-invariant. Also, we show that the aforementioned conditions
are only sufficient.

Example 6 Consider the differential inclusion H = (C,F, ∅, ?),

C :=
{
x ∈ R2 : |x2| ≥ x2

1

}
∪
{
x ∈ R2 : x1 ≤ 0

}
∪
{
x ∈ R2 : x2 = 0

}
,

F (x) := [1 0]> ∀x ∈ C.

Furthermore, consider the scalar C1 barrier function candidate

B(x) :=

{
x2 if x1 ≤ 0

x2 + x3
1 otherwise

}
defining a closed set K according to (7). We will show that (17)-(18) are satisfied, but sine none of the
conditions (a)-(c) is satisfied, the set K is not forward pre-invariant. Indeed,

∇B(x) =

{
[0 1]> if x1 ≤ 0

[2x2
1 1]> otherwise

}
6= 0 ∀x ∈ R2;

hence, (18) is satisfied. Furthermore, for any x ∈ ∂Ke ∩ C =
{
x ∈ R2 : x2 = 0, x1 ≤ 0

}
, we have

〈∇B(x), F (x)〉 = 〈[0 1]>, [1 0]>〉 ≤ 0; hence, (17) is satisfied. Moreover, (13)-(14) are trivially sat-
isfied since D = ∅. Next, it is easy to see that the set C is not convex; hence, condition (c) is not
satisfied. Furthermore, when x ∈ (U(∂Ke ∩ ∂C) ∩ ∂Ke) \C =

{
x ∈ R2 : x2 = −x3

1, x1 ∈ (0, ε], ε > 0
}

,
〈∇B(x), F (x)〉 = 〈[2x2

1 1]>, [1 0]>〉 = 2x2
1 > 0; hence, (a) is not satisfied. Next, for any x ∈

U(∂Ke ∩ ∂C)∩ ∂K ∩ ∂C =
{
x ∈ R2 : x2 = −x2

1, x1 ∈ [0, ε], ε > 0
}

, if x = 0, F (0) ∈ TK∩C(0), however,

if x 6= 0, we notice that F (x) /∈ TC(x) because F (x) points outside the set
{
x ∈ R2 : |x2| ≥ x2

1

}
that

defines C when x1 > 0. Hence, (b) is also not satisfied. Finally, the constrained differential inclusion
H = (C,F, ∅, ?) admits the solution x(t) = [t 0]>, t ≥ 0, starting from xo = 0 ∈ K, which leaves the set
K.

Now, in order to show that none of the conditions (a)-(c) is necessary, we slightly modify the set C
in order render the set K forward pre-invariant while maintaining (a)-(c) unsatisfied. That is, consider
the new flow set

C1 :=
{
x ∈ R2 : |x2| ≥ x2

1

}
∪
{
x ∈ R2 : x1 ≤ 0

}
.
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It is easy to see in this case that the unique solution starting from each xo := [xo1 xo2]> ∈ K satisfies
x(t) = [xo1 + t xo2]>, t ≥ 0 and cannot leave the set K while remaining in C. However, using the same
arguments as in the previous paragraph, it is easy to conclude that conditions (a)-(c) remain unsatisfied.

Example 7 Consider the hybrid system H with the data

C :=
{
x ∈ R2 : |x1| ≤ 1

}
, F (x) :=

[
1

−[0, x2 log |x2|]

]
,

D :=
{
x ∈ R2 : x1 = 1

}
, G(x) := [−1 x2]>.

To conclude forward pre-invariance of the set K := {x ∈ C ∪D : x2 ≤ 0} admitting the C1 barrier func-
tion candidate B(x) := x2, we notice that conditions (13)-(14) are satisfied since G(x) ∈ C for all x ∈ D
and B(G(x)) = B(x) ≤ 0 for all x ∈ K. Furthermore, conditions (17)-(18) are also satisfied since
∇B(x) = [0 1]> for all x ∈ R2 and 〈∇B(x), F (x)〉 = −[0, x2 log |x2|] ≤ 0 for all x ∈ ∂Ke. More-
over, condition (a) is also satisfied due to the previous fact. Finally, it remains to show that for any
x ∈ (U(∂K)\K) ∩ C and y ∈ ∂(K ∩ C), (20) is satisfied. Indeed, y := [y1 y2]> ∈ ∂K ∩ C implies
that y2 = 0. At the same time, having x ∈ (U(∂K)\K) ∩ C implies that x2 > 0 which can be chosen
sufficiently small such that:

(x− y)>F (x) = (x1 − y1) + [0, 1]x2
2 log(|x2|)

⊂(x1 − y1) + [−1, 1]|x2
2 log(|x2|)|

=(x1 − y1) + [−1, 1](x2 − y2)2| log(|x2 − y2|)|
⊂(x− y)>F (y) + [−1, 1]|x− y|2| log(|x− y|)|
=(x− y)>F (y) + [−1, 1]|x− y|ρ(|x− y|) (30)

where ρ(w) := w logw, for all ω ≥ 0. The function ρ is Osgood [34]; hence, a uniqueness function.

3.3 Pre-invariance using locally Lipschitz barrier functions

Another approach to conclude forward pre-invariance using cone conditions without restricting the reg-
ularity of the flow map, consists of replacing the flow condition (12) in Theorem 1 by a cone condition
to be satisfied on the external part of a sufficiently small neighborhood of the set ∂Ke ∩ C. Inspired by
[9, Theorem 5.2.1], the flow condition in the following statement uses the external contingent cone EK
defined in (6).

Theorem 3 Given a hybrid system H = (C,F,D,G) and a barrier function candidate B defining the
set K in (7), suppose the set K is closed. The set K is forward pre-invariant if (13)-(14) hold, and

η ∈ EK(x) ∀η ∈ F (x) ∩ TC(x) and

∀x ∈ (U(∂K)\K) ∩ C.
(31)

Proof. The proof that the solutions, under (13)-(14), cannot leave the set K after a jump according to
scenario (Sc1) is the same as in the proof of Proposition 1. Next, as in [9, Theorem 5.2.1], we show that
the trajectories starting from the set ∂K ∩ C cannot leave the set K by flowing according to scenario
(Sc2). Indeed, assume that a solution x starting from ∂K ∩ C leaves the set K by flowing according
to scenario (Sc2). Then, there exists j ∈ N, such that, for t′2 small enough and for all t ∈ (t′1, t

′
2],

x(t, j) ∈ (U(∂K)\K) ∩ C, where t′1 and t′2 are as in (Sc2). Furthermore, using Lemma 2, we conclude
that ẋ(t, j) ∈ TC(x(t, j)) for almost all t ∈ [t′1, t

′
2]. Next, since the distance function with respect to

the set K is locally Lipschitz and the solution x(·, j) is absolutely continuous on the interval [t′1, t
′
2], it

follows that δK(·) := |(x(·, j)|K is also absolutely continuous on that same interval. Hence, for almost
all t ∈ [t′1, t

′
2], the time derivative δ̇K(t) exists and satisfies

lim
h→0+

δK(t+ h)− δK(t)

h
=

lim inf
h→0+

|x(t, j) + hẋ(t, j)|K − |x(t, j)|K
h

. (32)
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Since ẋ(t, j) ∈ F (x(t, j))∩TC(x(t, j)) for almost all t ∈ [t′1, t
′
2] and x((t′1, t

′
2], j) ⊂ (U(∂K)\K)∩C, using

(31), we conclude that ẋ(t, j) ∈ EK(x(t, j)) for almost all t ∈ (t′1, t
′
2), which implies that δ̇K(t) ≤ 0 for

almost all t ∈ (t′1, t
′
2). Thus, |x(t′2, j)|K − |x(t′1, j)|K ≤ 0. The contradiction follows since x(t′2, j) ∈ C\K

and x(t′1, j) ∈ K which means that |x(t′2, j)|K − |x(t′1, j)|K > 0. �

Remark 10 The flow condition (31) in Theorem 3 is similar to the flow condition (16) in Remark 4.
Indeed, in (31), we are using the distance function B(x) := |x|K as a barrier function candidate defining
the set K according to Definition 6. However, since the distance function to a set is only locally Lipschitz,
the gradient-based inequality in (16) is replaced by the limit in (6) that has the same implication on the
monotonic behavior of t 7→ B(x(t, 0)) on the neighborhood (U(∂K)\K) ∩ C. Furthermore, according to
[9, Corollary 5.2.3], the external cone condition (31) in Theorem 3 is satisfied provided that, for any
x ∈ (U(∂K)\K) ∩ C, F (x) ∩ TC(x) ⊂ F (y) ⊂ TK(y), where y is the projection of x on the set K.

Inspired by the discussion in Remark 10, in the following statement, we replace the flow condition
(31) in Theorem 3 by a condition involving a general locally Lipschitz barrier function candidate instead
of only the distance function.

Theorem 4 Given a hybrid system H = (C,F,D,G) and a scalar locally Lipschitz barrier function
candidate B defining the set K in (7), suppose the set K is closed. The set K is forward pre-invariant
if (13)-(14) hold, and

max
ζ∈∂B(x)

〈ζ, η〉 ≤ 0 ∀η ∈ F (x) ∩ TC(x) and

∀x ∈ (U(∂K)\K) ∩ C,
(33)

where ∂B is the Clarke generalized gradient of B, see Definition 16.

Proof. The proof that the solutions, under (13)-(14), cannot leave the set K after a jump according to
scenario (Sc1) is the same as in the proof of Proposition 1. Next, as in the proof of Theorem 3, we show
that the trajectories starting from the set ∂K∩C cannot leave the set K by flowing according to scenario
(Sc2). Indeed, assume that a solution x starting from ∂K ∩ C leaves the set K by flowing according
to scenario (Sc2). Then, there exists j ∈ N, such that, for t′2 small enough and for all t ∈ (t′1, t

′
2],

x(t, j) ∈ (U(∂K)\K) ∩ C, where t′1 and t′2 are as in (Sc2). Next, since B is locally Lipschitz and the
solution x(·, j) is absolutely continuous on the interval [t′1, t

′
2], it follows that B(x(·, j)) is also absolutely

continuous on that same interval. Hence, the time derivatives Ḃ(x(t, j)) and ẋ(t, j) exist for almost all
t ∈ [t′1, t

′
2] and satisfy

Ḃ(x(t, j)) = lim
h→0+

B(x(t+ h, j))−B(x(t, j))

h

= lim
h→0+

B(x(t, j) + hẋ(t, j))−B(x(t, j))

h

≤ max
ζ∈∂B(x(t,j))

〈ζ, ẋ(t, j)〉. (34)

The latter inequality is true since B is locally Lipschitz, see [5, Page 7] and [23] for more details. Further-
more, using Lemma 2, we conclude that ẋ(t, j) ∈ F (x(t, j)) ∩ TC(x(t, j)) for almost all t ∈ [t′1, t

′
2]. The

latter implies, under (33), that Ḃ(x(t, j)) ≤ 0 for almost all t ∈ [t′1, t
′
2]; thus, B(x(t′2, j))−B(x(t′1, j)) ≤ 0.

Hence, the contradiction follows since x(t′2, j) ∈ C\K, x(t′1, j) ∈ K, and B(x(t′2, j))−B(x(t′1, j)) > 0. �

Remark 11 In Theorem 4, we considered only the case of scalar barrier function candidates defining
the set K. Conveniently, when the set K is defined via multiple locally Lipschitz candidates according to
(7), we can then use (11) to construct a scalar barrier function that is locally Lipschitz and at the same
time defines the set K according to (7).

Example 8 Consider the hybrid system H = (C,F,D,G) with C and G as in Example 1, and F and
D given by

F (x) :=

[
−x2

2x1

−(|x|2 − [0, 1])(2− |x|2)

]
∀x ∈ C,
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D :=
{
x ∈ R2 : x2 = 0, |x| ≤ 1

}
.

We employ Theorem 3 to verify forward pre-invariance of the closed set K :=
{
x ∈ C ∪D : |x|2 − 1 ≤ 0

}
.

This set admits the scalar barrier function candidate B(x) := x2(|x|2 − 1). That is, for any x ∈ D ∩K,
G(x) ⊂ C ∪D; hence, (14) is satisfied. Moreover, for every x ∈ K ∩D and for every η ∈ G(x), there
exists α ∈ [0, 1] such that η = [0 α|x1|]> and B(η) = α|x1|(α2|x1|2 − 1), however, since x1 ≤ 1 for
all x ∈ K ∩ D, (13) follows. Furthermore, the set (U(∂K)\K) ∩ C can be chosen to be the open set
(U(∂K)\K) ∩C = {x ∈ C : |x1| < 1, |x| ∈ (1, 2)}. Next, we notice that, for every x ∈ (U(∂K)\K) ∩C,

|x|K = |x|−1 which is differentiable on the latter set. Hence, lim infh→0+
|x+hv|K−|x|K

h = 〈[x1 x2]>, v〉/|x|
and EK(x) =

{
v ∈ R2 : 〈[x1 x2]>, v〉 ≤ 0

}
for all x ∈ (U(∂K)\K) ∩ C. The latter implies (31) since,

for every η ∈ F (x) and for every x ∈ (U(∂K)\K)∩C, 〈[x1 x2]>, η〉 = −x2
1x

2
2−x2(|x|2− ε)(2−|x|2) ≤ 0

for some ε ∈ [0, 1].

3.4 Pre-invariance using a relaxed flow condition

Inspired by the property of the uniqueness functions in Definition 7, we are able to relax the sign of
the inequality in (12) provided that a growth condition involving a uniqueness function and the barrier
function candidate is satisfied. Such a relaxation follows the lines of what is proposed in [20, 21] for
hybrid automata as discussed in Remark 5.

Proposition 1 Given a hybrid system H = (C,F,D,G) and a C1 barrier function candidate B defining
the set K in (7), suppose the set K is closed. The set K is forward pre-invariant if (13)-(14) hold and

〈∇Bi(x), η〉 ≤ ρ(Bi(x)) ∀x ∈ (U(Mi)\Kei) ∩ C and

∀η ∈ F (x) ∩ TC(x), (35)

where ρ : R→ R is a uniqueness function.

Proof. Under (13)-(14), the proof that the solutions starting from the set K cannot jump outside the set
K following scenario (Sc1) is the same as in the proof of Theorem 1. The only remaining way to leave the
setK is by flowing according to scenario (Sc2). We conclude in this case, for t′2 small enough, the existence
of k ∈ {1, . . . ,m} such that Bk(x(t, j)) > 0 for all t ∈ (t′1, t

′
2] and x((t′1, t

′
2], j) ⊂ (U(∂Kk)\Kk)∩C, where

t′1 and t′2 are as in (Sc2). Furthermore, using Lemma 2, we conclude that ẋ(t, j) ∈ TC(x(t, j)) for almost
all t ∈ [t′1, t

′
2]. Hence, using (35), we conclude that

dBk(x(t, j))

dt
≤ ρ(Bk(x(t, j))) for. a. a t ∈ [t′1, t

′
2]

with Bk(x(t′1, j)) = 0. Since ρ is a uniqueness function, we conclude that Bk(x(t, j)) = 0 for all t ∈ [t′1, t
′
2]

and the contradiction follows. �

Remark 12 As in Theorem 4, when the barrier function candidate B is scalar and locally Lipschitz, the
statement of Proposition 1 holds true if we replace (35) therein by

max
ζ∈∂B(x)

〈ζ, η〉 ≤ ρ(B(x)) ∀x ∈ (U(K)\K) ∩ C and

∀η ∈ F (x) ∩ TC(x). (36)

Furthermore, when the set C is open and K ⊂ C, condition (36) reduces to what is proposed in [18,
Theorem 2] for unconstrained differential inclusions.

3.5 From pre-invariance to invariance

A forward pre-invariant set K ⊂ C ∪ D is forward invariant if, in addition, all the maximal solutions
starting from that set are forward complete. Hence, one has to exclude the case of non-complete maximal
solutions dying on the set (K ∩ ∂C)\D, as well as the case of maximal solutions escaping in finite time
inside the set K ∩ C.
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Proposition 2 A forward pre-invariant set K ∈ C ∪ D is forward invariant if the solutions cannot
escape in finite time inside K ∩C and, for any initial condition in the set (K ∩∂C)\D, a nontrivial flow
exists.

Proof. We first recall that having the set K forward pre-invariant implies that all the solutions starting
from the set K cannot flow in C\K and cannot neither jump outside the set K. Moreover, since for all
y ∈ K\C, G(y) is nonempty, then G(y) ⊂ K, the solutions starting from K cannot die in the set K ∩D.
Hence, the only way for a solution to be forward noncomplete is either by dying in the set (K ∩ ∂C)\D,
which is avoided by assumption, or by escaping in finite time inside the set K ∩ C which is also not
possible by hypothesis. Hence, all the maximal solutions starting from the set K remain in K and are
defined on an unbounded hybrid time domain. �

Remark 13 One can guarantee that the solutions do not have a finite escape time inside the set K ∩C
when, for example, the set K ∩ C is compact or when the flow map F is globally bounded in K ∩ C.

Example 9 Using Proposition 2, we are able to extend the conclusions in Example 1 and conclude
forward invariance of the set K. Indeed, in Example 1, we showed that the set K is forward pre-invariant
and since it is compact, the solutions starting from K cannot blow-up in finite time. Hence, the forward
invariance follows if we show that, for every initial condition in the set (K∩∂C)\D =

{
[1 0]>, [−1 0]>

}
,

a nontrivial flow exits. Indeed, F (x) = {0} for all x ∈ (K ∩ ∂C)\D; hence, the system admits nontrivial
constant solutions of the form x(t, 0) = xo for all t ≥ 0 and xo ∈ (K ∩ ∂C)\D.

Example 10 (Thermostat) Using Proposition 2, we also extend the conclusions in Example 2 and
show that the set K introduced therein is forward invariant. Indeed, we already showed that the set K
is forward pre-invariant. Furthermore, since it is compact, it follows that there is not a possibility of
finite escape time inside K ∩ C. Hence, forward invariance follows since (K ∩ ∂C)\D = (K ∩ C)\D =
{0} × (zmin, zmax] ∪ {1} × [zmin, zmax) and, by explicitly solving the flow dynamics, we conclude that,
when xo ∈ {0} × (zmin, zmax], the nontrivial flow is given by

q(t, 0) = 0, z(t, 0) = (z(0, 0)− zo)e−t + zo.

and, when xo ∈ {1} × [zmin, zmax), the nontrivial flow is given by

q(t, 0) = 1, z(t, 0) = (z(0, 0)− zo − z∆)e−t + zo + z∆

for all t ∈ [0, t1].

In the following result, when the set K is forward pre-invariant, we propose a qualitative condition
implying the existence of a nontrivial solution starting from each element in the set (K ∩ ∂C)\D.

Proposition 3 A forward pre-invariant set K ∈ C ∪ D is forward invariant if the solutions cannot
escape in finite time inside the set K ∩ C and

F (x) ∩ TK∩C(x) 6=∅ ∀x ∈ U(xo) ∩ (K ∩ ∂C) and

∀xo ∈ (K ∩ ∂C)\D.
(37)

Proof. To conclude the proof in this case, we propose to show that

TK∩C(x) ∩ F (x) 6=∅ ∀x ∈ U(xo) ∩ ∂(K ∩ C) and

∀xo ∈ (K ∩ ∂C)\D.
(38)

Indeed, using (38) and Proposition 8 with the set K therein replaced by K ∩ C, we conclude the ex-
istence of a nontrivial flow starting from each xo ∈ (K ∩ ∂C)\D. Hence, the forward invariance of
the set K follows using Proposition 2. Now, in order to show (38), we distinguish two complementary
situations.First, when x ∈ ∂(K ∩ C) ∩ ∂C = K ∩ ∂C, in this case, (38) follows from (37). Second, when
x ∈ ∂(K ∩C)∩ int(C), in this case, since the set K is forward pre-invariant and since there exist always
a nontrivial solution flowing from each x ∈ int(C) under the standing assumptions, we conclude the
existence of a nontrivial solution flowing from x and remaining in K for a nontrivial interval of time.
Hence, using Proposition 7 , (38) follows also when x ∈ ∂(K∩C)∩ int(C), which completes the proof. �
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Example 11 We propose to extend forward pre-invariance of the set K, in Example 4, in order to
conclude forward invariance using Proposition 3. That is, the set K is compact and (K ∩ ∂C)\D =
{(−1, 0), (1, 0)}. Furthermore, for any xo ∈ (K ∩ ∂C)\D,

U(xo) ∩ (K ∩ ∂C) =

{
[3/4, 1]× {0} if xo = (1, 0)
−[1, 3/4]× {0} if xo = (−1, 0)

Next, for any x ∈ U(xo) ∩ (K ∩ ∂C), there exits δx ∈ [0, 1/2) with δxo = 0 such that |x|2 = 1 − δx and
F (x) ∈ [0 [δx − 1, δx](3/4− δx)(1 + δx)]>, hence, the element v(x) := [0 δx(3/4− δx)(1 + δx)]> belongs
to F (x) ∩ TC∩K(x), hence (37) is satisfied.

4 Sufficient conditions for pre-contractivity and contractivity
using barrier functions

A pre-contractive set is a forward pre-invariant set such that whenever a solution starts from its boundary,
it immediately leaves it and evolves towards its interior. The study of contractive sets is very important
since several techniques to derive Lyapunov functions are based on the construction of contractive sets,
the resulting Lyapunov function are known as set-induced Lyapunov functions, see [8, 10–12]. A definition
of contractivity for the particular sets named C−sets is proposed in [8] using the Minkowskii functional,
also named gauge function, for both differential and difference equations, see Definitions 3.3 and 3.4
in [8], respectively. The latter approach can be extended for general hybrid inclusions to define pre-
contractivity and contractivity for C−sets. Indeed, we start recalling that a set K ⊂ C ∪ D is said to
be a C−set if it is compact, convex and includes the origin in its interior. Moreover, the corresponding
Minkowskii functional ΨK : Rn → R≥0 is given by

ΨK(x) := inf {µ ≥ 0 : x ∈ µK} . (39)

Definition 8 (Pre-contractivity for C−sets) A C-set K ⊂ C ∪D is said to be pre-contractive if

lim sup
h→0+

ΨK(x+ ηh)− 1

h
< 0 ∀x ∈ ∂K ∩ C and

∀η ∈ F (x) ∩ TC(x), (40)

ΨK(η) < 1 ∀x ∈D ∩K, ∀η ∈ G(x). (41)

Definition 9 (Contractivity for C−sets) A C-set K ⊂ C ∪ D is said to be contractive if it is pre-
contractive and, in addition, starting from each element in the set (K ∩ ∂C)\D, a nontrivial solution
exists.

The following lemma establishes important consequences of the contractivity properties, in Definitions
8 and 9, on the behavior of the system’s solutions. Based on these consequences, we will define pre-
contractivity and contractivity for general closed sets that are not necessarily C−sets.

Lemma 1 If a C−set K ⊂ (C ∪D) is pre-contractive (respectively, contractive) according to Definition
8 (respectively, Definition 9), then it is forward pre-invariant (respectively, forward invariant) and, for
any xo ∈ ∂K and any nontrivial solution x starting from xo, there exists T > 0 and J ∈ N∗ such that
x(t, j) ∈ int(K) for all (t, j) ∈ domx ∩ [([0, T ]× {0}) ∪ ({0} × {0, 1, . . . , J})], (t, j) 6= (0, 0).

Proof. Given a pre-contractive C-set K ⊂ C ∪D, we first establish its forward pre-invariance. Indeed,
under (41), all the solutions staring from the set K cannot jump outside the set K. Next, we will show
that all the solutions starting from ∂K cannot flow in C\int(K). To this end, we show, using (40), that

∀x ∈ ∂K ∩ C, F (x) ∩ TC\int(K)(x) = ∅. (42)

Indeed, this latter fact combined with Proposition 7 implies that there are no solutions starting from
∂K∩C that flow into C\int(K). Thus, forward pre-invariance of the set K follows. To prove (42), we use
(40) to conclude that for each x ∈ ∂K∩C and each η ∈ F (x)∩TC(x) there exists a sequence hk → 0, k ∈
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N, such that ΨK(x+ηhk)−1 < 0 for all k ∈ N. This property implies that x+ηhk ∈ int(K). Hence, there
exists ε > 0 such that x+h0(η+εint(B)) ⊂ K. Furthermore, using the convexity of the set K, we conclude
that x+h(η+εint(B)) ⊂ K for all h ∈ (0, h0] which implies that η ∈ Dint(K)(x) for all η ∈ F (x)∩TC(x).

Hence, for each x ∈ ∂K ∩ C and η ∈ F (x), either η /∈ TC(x) thus η /∈ TC\(int(K)∩C)(x) = TC\int(K)(x),

or η ∈ Dint(K)(x) which implies that η /∈ TRn\int(K)(x), thus, η /∈ TC\int(K)(x), which concludes (42).
Hence, the C-set K is forward pre-invariant.

Next, we show that for any nontrivial solution x starting from xo ∈ ∂K, there exists T > 0 and
J ∈ N∗ such that x(t, j) ∈ int(K) for all (t, j) ∈ domx ∩ [([0, T ]× {0}) ∪ ({0} × {0, 1, . . . , J})], (t, j) 6=
(0, 0). Indeed, under (41), all the possible jumps from ∂K satisfy x(t, j) ∈ int(K) for all (t, j) ∈
(domx ∩ ({0} × {0, 1}))\(0, 0). Moreover, since we have already shown, under (40), the non existence
of flows in C\int(K), it follows that all the possible flows from ∂K satisfy x(t, 0) ∈ int(K) for all
(t, 0) ∈ domx ∩ ([0, T ]× {0}) \ {(0, 0)} for some T > 0, which concludes the proof when the C-set K is
pre-contractive. Now, given a contractive C-set K ⊂ C ∪D, it is already pre-contractive, hence, forward
pre-invariant, and, for each solution x starting from xo ∈ ∂K, if domx\ {(0, 0)} 6= ∅, then there exists
T > 0 and J ∈ N such that, for all (t, j) ∈ domx ∩ ([0, T ]× {0, 1, ..., J}) \ {(0, 0)}, x(t, j) ∈ int(K).

It remains only to show that the set K is forward invariant. Since the C−set K is compact, there
is not a possibility of finite-time escape inside K; thus, using Proposition 2, it is enough to show that
all the maximal solutions starting from the set K have a nontrivial hybrid time domain. To this end,
we distinguish three complementary situations. First, when solutions start from K ∩D, we use the fact
that G(x) is nonempty for all x ∈ D to conclude that there is always a possibility of jumps from K ∩D.
Second, when the solutions start from (K\D)∩ int(C) there is always a possibility of flowing in C under
the standing assumptions; hence, the maximal solutions starting from (K\D)∩ int(C) cannot be trivial.
Third, when a solution starts from xo ∈ (K\D) ∩ ∂C, in this case, using Definition 9 and the fact that
(K\D) ∩ ∂C = (K ∩ ∂C)\D, we conclude that the maximal solutions starting from (K\D) ∩ ∂C are
nontrivial. Consequently, all the maximal solutions starting from the set K have a nontrivial hybrid
time domain, which concludes the forward invariance of the set K. �

For general closed sets, we cannot use the Minkowskii functional to define the contractivity notions
since K may not be convex. Consequently, a trajectory-based definition, in the case of differential
inclusions, is proposed in [9] under the name of strict invariance. In this section, we propose definitions
of contractivity and pre-contractivity for hybrid systems that are based on the behavior of the solutions
after reaching the boundary of the considered set. The aim of the proposed definitions is to preserve
the properties established in Lemma 1. Furthermore, sufficient conditions in terms of barrier function
candidates defining the (closed) set K are proposed.

Definition 10 (Pre-contractivity for general sets) A closed set K ⊂ C ∪ D is said to be pre-
contractive if it is forward pre-invariant and for every xo ∈ ∂K and every nontrivial solution x start-
ing from xo, there exists T > 0 and J ∈ N∗ such that x(t, j) ∈ int(K) for all (t, j) ∈ domx ∩
[([0, T ]× {0}) ∪ ({0} × {0, 1, . . . , J})], (t, j) 6= (0, 0).

Definition 11 (Contractivity for general sets) A closed set K ⊂ C ∪D is said to be contractive if
it is pre-contractive and forward invariant.

Remark 14 It is useful to notice that, in the particular case of differential inclusions, the pre-contractivity
of a closed set K ⊂ Rn reduces to the nonexistence of a (non-hybrid) solution t 7→ x(t) starting from any
xo ∈ ∂K such that x([0, T ]) ⊂ Rn\int(K) for some T > 0.

4.1 Pre-contractivity

Next, we propose to characterize contractivity notions using barrier functions defining general closed
sets. Our approach is mainly based on Lemma 4 , which characterizes the Dubovitsky-Miliutin cone
Dint(K) at the boundary of the considered closed set in terms of the barrier function candidate defining
the set. Furthermore, the latter fact is combined with Theorem 8 in order to conclude contractivity.
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Theorem 5 Given a hybrid system H = (C,F,D,G) and a C1 barrier function candidate B defining
the set K in (7), suppose the set K is closed. The set K is pre-contractive if, for all i = {1, 2, . . . ,m},

〈∇Bi(x), η〉 < 0 ∀x ∈Mi ∩ C
∀η ∈ F (x) ∩ TC(x),

(43)

F (x) ∩ T∂C∩∂K(x) = ∅ ∀x ∈ ∂K ∩ ∂C, (44)

B(η) < 0 ∀x ∈ K ∩D ∀η ∈ G(x), (45)

G(x) ⊂ C ∪D ∀x ∈ K ∩D, (46)

G(x) ⊂ int(C ∪D) ∀x ∈ ∂K ∩D. (47)

Proof. We consider, without loss of generality, the hybrid extension of H denoted by He := (Ce, Fe, D,G)
where Ce := U(C) ⊂ Rn and Fe : Ce ⇒ Rn is any extension of F to Ce that preserves the standing
assumptions. Also, we recall that Ke = {x ∈ Rn : B(x) ≤ 0} and Kei := {x ∈ Rn : Bi(x) ≤ 0}; hence,
Ke = ∩mi=1Kei. We start noticing that for each xo ∈ ∂Ke∩C there exists Ixo ⊂ {1, 2, ...,m} such that xo ∈
Mi if and only if i ∈ Ixo

. That is, we have xo ∈ ∩i∈Ixo
(∂Kei ∩C) and, also, xo ∈ ∩i∈Ixo

(∂Kei ∩ int(Ce)).
Next, using Lemma 4 under (43), it follows that Fe(xo)∩TC(xo) ⊂ Dint(Kei)

(xo) for all i ∈ Ixo
. Moreover,

when i /∈ Ixo
, we also have Fe(xo)∩TC(xo) ⊂ Dint(Kei)

(xo) since in this case Dint(Kei)
(xo) = Rn. Hence,

we conclude that Fe(xo) ∩ TC(xo) ⊂ Dint(Ke)(xo) since ∩mi=1Dint(Kei)
(xo) = Dint(∩m

i=1Kei)
(xo).

As a second step, we show that F (xo) ∩ TC\int(Ke)(xo) = ∅. Indeed, for each x ∈ ∂Ke ∩ C and

η ∈ F (x), either η /∈ TC(x), hence η /∈ TC\(int(Ke)∩C)(x) = TC\int(Ke)(x), or η ∈ Dint(Ke)(x) which

implies that η /∈ TRn\int(Ke)(x) thus η /∈ TC\int(Ke)(x). Now, using Proposition 7 , we conclude the

non existence of any solution x to He starting from xo and flowing in C\int(Ke) along a nontrivial
time interval. Hence, if a nontrivial flow x exists starting from xo, then x(t, 0) ∈ Ce\(C\int(Ke)) for
all (t, 0) ∈ domx ∩ ([0, T ]× 0) \(0, 0) and for some T > 0. That is, for each solution x to He flow-
ing from xo, either there exists T > 0 such that x((0, T ], 0) ⊂ int(Ke) or, there exists T > 0 such
that x((0, T ], 0) ⊂ Ce\C. Particularly, when xo ∈ ∂Ke ∩ int(C) = ∂K ∩ int(C), a nontrivial flow
always exists, hence, x((0, T ], 0) ∈ int(K) for some T > 0. Furthermore, when xo ∈ ∂C ∩ ∂K, us-
ing Proposition 7 under (44), we conclude that x((0, T ], 0) ∩ (∂K ∩ ∂C) = ∅ for some T > 0. In
other words, the set ∂K ∩ ∂C is not weakly forward invariant under (44). Hence, using the fact that
∂K ∩ C = (∂Ke ∩ C) ∪ (∂K ∩ ∂C), it follows that each solution x flowing from xo ∈ ∂K ∩ C there
exits T > 0 such that either x((0, T ], 0) ⊂ int(Ke)\(∂C ∩ ∂K) ∩ C, or x((0, T ], 0) ⊂ Ce\C. Going back
to H, the latter scenario is excluded; hence, for any solution flowing from xo ∈ ∂K ∩ C, there exits
T > 0 such that, if domx\(R≥0, 0) 6= ∅, then x(t, 0) ⊂ int(K) for all (t, 0) ∈ domx∩ ([0, T ]× {0}) \(0, 0).
On the other hand, under (45), (46), and the continuity of B, we conclude that for any xo ∈ K ∩ D,
G(xo) ⊂ int(Ke) ∩ (C ∪ D) ⊂ K; hence, all the possible jumps from K ∩ D maintain the solution in
the set K. Furthermore, using (47), we conclude that, for each xo ∈ ∂K ∩ D and after any possible
jump, the solutions jump to the interior of the set K. Hence, if a jump is possible when starting from
xo ∈ ∂K ∩D, then x(t, j) ∈ int(K) for all (t, j) ∈ domx∩ ({0} × {0, 1}) \(0, 0) 6= ∅; which completes the
proof. �

Example 12 Consider the hybrid system

F (x) :=

[
−(x2 + 1)

−2(x2 + 1) + x1

]
∀x ∈ C,

C :=
{
x ∈ R2 : x2 ∈ [0, 1], |x1| ≤

√
3
}
,

G(x) :=
1√
3

[
x1√

3
2

]
∀x ∈ D,
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D :=
{
x ∈ R2 : x2 = 0, |x1| ≤

√
3
}
.

We show that the set
K :=

{
x ∈ R2 : x2

1 + (x2 + 1)2 ≤ 4, x2 ≥ 0
}

, which is not a C-set, is pre-contractive. The set K can be
defined using the C1 barrier function candidate B(x) := [x2

1 + (x2 + 1)2 − 4 − x2]>. In order to check
conditions (45)- (47) in Theorem 5, we notice that, for each x ∈ K ∩D, G(x) = [ x1√

3
1
2 ]> ∈ int(C ∪D)

since (1/
√

3)x1 ≤ 1 for all x ∈ K ∩D =
{
x ∈ R2 : x2 = 0, |x1| ≤

√
3
}

; hence (46)-(47) hold. Moreover,

we notice that B(G(x)) = [x2
1/3 − 7/4 − 1/2]> < 0 since |x1| ≤

√
3 for all x ∈ K ∩ D; hence, (45)

also follows. Furthermore, we notice that 〈∇B1(x), F (x)〉 = −4(x2 + 1)2 < 0 for all x ∈ C ∩M1 ={
x ∈ R2 : x2 ≥ 0, |[x1 x2 + 1]| = 2

}
. Next, for every

x ∈M2∩C =
{
x ∈ R2 : x2 = 0, |x1| ≤

√
3
}

, F (x) = [−1 −2+x1]> /∈ TC(x) since F2(x) = −2+x1 < 0
for all x ∈ M2 ∩ C; hence, (43) is satisfied. Furthermore, to show (44), we notice that ∂K ∩ ∂C ={

[0 1]>
}
∪ M2. Moreover, when x = [0 1]>, F (x) = [−2 − 4]> /∈ T∂K∩∂C(x) = 0, and, when

x ∈M2, we have already shown that F (x) /∈ TC(x). The two latter facts together allow to conclude that
F (x) /∈ T∂C∩∂K(x) for all x ∈ ∂K ∩ ∂C. Hence, pre-contractivity of the set K follows from Theorem 5.

When the set K is defined using a scalar barrier function candidate, Theorem 5 reduces to the
following statement.

Corollary 1 Consider a C1 scalar barrier function candidate defining the closed set K as in (7). The
set K is pre-contractive if (44)-(47) hold and

〈∇B(x), η〉 < 0 ∀x ∈ ∂Ke ∩ C ∀η ∈ F (x) ∩ TC(x), (48)

The following result extends Theorem 5 when the barrier function candidate defining the closed set
K is only locally Lipschitz.

Theorem 6 Given a hybrid system H = (C,F,D,G) and a scalar locally Lipschitz barrier function
candidate B defining the set K in (7), suppose the set K is closed. The set K is pre-contractive if
(44)-(47) hold and

max
ζ∈∂B(x)

〈ζ, η〉 < 0 ∀x ∈ Ke ∩ C, ∀η ∈ F (x) ∩ TC(x), (49)

Proof. Using Theorem 4 under (45)-(46) and (49), we conclude that the set K is forward pre-invariant.
Furthermore, the proof that, under (45) and (47), the solutions jumping from ∂K ∩D, jump to int(K)
and that, under (44), the solutions cannot flow in ∂K ∩ ∂C for a nontrivial interval of time is the same
as in the proof of Theorem 5. Hence, it remains to show, under (49), that every nontrivial solution,
flowing from Ke ∩ C, flows immediately to the interior of the set Ke. Indeed, assume that the opposite
is true; namely, there exist t′2 > t′1 ≥ 0, j ∈ N, and a solution x such that ([t′1, t

′
2] × {j}) ⊂ domx and

x([t′1, t
′
2], j) ⊂ ∂Ke. Next, as in the proof of Theorem 4, since B is locally Lipschitz and the solution

x(·, j) is absolutely continuous on the interval [t′1, t
′
2], it follows that B(x(·, j)) is also absolutely continu-

ous on that same interval. Hence, the time derivative Ḃ(x(t, j)) and ẋ(t, j) exist for almost all t ∈ [t′1, t
′
2]

and satisfy (34). Furthermore, using Lemma 2 , we conclude that ẋ(t, j) ∈ F (x(t, j)) ∩ TC(x(t, j)) for
almost all t ∈ [t′1, t

′
2]. The latter implies, under (49), that Ḃ(x(t, j)) < 0 for almost all t ∈ [t′1, t

′
2];

thus, B(x(t′2, j)) − B(x(t′1, j)) < 0. Contradiction follows since x(t′2, j) ∈ Ke and x(t′1, j) ∈ Ke yields
B(x(t′2, j))−B(x(t′1, j)) = 0. �

4.2 From pre-contractivity to contractivity

In the sequel, we complement the sufficient conditions in Theorem 5 and Theorem 6 to conclude con-
tractivity rather than only pre-contractivity.

Proposition 4 A pre-contractive closed set K ⊂ C ∪D is contractive provided that its solutions from
K do not escape in finite time inside K ∩C and, starting from each initial condition in (K ∩ ∂C)\D, a
nontrivial flow exists.
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Proof. Having the set K pre-contractive, thus forward pre-invariant, we use Proposition 2 to conclude
that, in the absence of finite-time blow up inside K ∩ C and under the existence of a nontrivial flow
starting from each initial condition in (K ∩ ∂C)\D, the set K is forward invariant. The contractivity is
proved, since the set K is already pre-contractivity. �

In the following statement, the existence of a nontrivial flow starting from (K ∩∂C)\D is guaranteed
provided that a qualitative tangentiality condition holds.

Proposition 5 Consider a C1 barrier function candidate defining the closed set K as in (7). The set
K is contractive if conditions (43)-(47) hold and

F (x) ∩ TC(x) 6=∅ ∀x ∈ U(xo) ∩K ∩ ∂C,
∀xo ∈ (K ∩ ∂C)\D.

(50)

Proof. To conclude the proof, we show that

TK∩C(x) ∩ F (x) 6= ∅ ∀x ∈ U(xo) ∩ ∂(K ∩ C)

∀xo ∈ (K ∩ ∂C)\D.
(51)

Using Proposition 8 , (51) implies the existence of a nontrivial flow starting from each xo ∈ (K ∩∂C)\D.
Under the stated assumptions, the latter fact allows to conclude contractivity of the set K using
Proposition 4. Now, to prove (51), we distinguish three complementary situations. First, when x ∈
∂(K ∩ C) ∩ ∂C ∩ int(Ke) = ∂C ∩ int(Ke). In this case, (51) follows from (50) since in this case
TC(x) = TK∩C(x). Second, when x ∈ ∂(K ∩ C) ∩ ∂C ∩ ∂Ke = ∂C ∩ ∂Ke, in this case, we use (50)
to conclude the existence of η ∈ F (x) such that η ∈ TC(x). Furthermore, we use (43) under Lemma 4
, to conclude that η ∈ int(TKe

(x)) = Dint(Ke)(x), which implies, using Lemma 5 , that η ∈ TK∩C(x).

Finally, consider x ∈ ∂(K ∩ C) ∩ int(C). In this case, using Theorem 5, the set K is pre-contractive,
hence, forward pre-invariant. Combining the latter fact to the existence of a nontrivial flow starting from
each x ∈ int(C) under our standing assumptions, the existence of a nontrivial flow starting from x and
remaining in K follows. Thus, under Proposition 7 , (51) follows when x ∈ ∂(K ∩ C) ∩ int(C). �

Example 13 We show that the closed set K introduced in Example 12 is contractive. To use Proposition
5, we need to show that there is not a possibility of finite-time escape inside K. This the case since the
set K is compact. Furthermore, it remains to show that (50) holds for all x ∈ (K ∩ ∂C)\D = {(0, 1)}.
Indeed, we notice that the neighborhood U(x) ∩K ∩ ∂C reduces to the element x = [0 1]> with F (x) =
[−2 − 4]> ∈ TC(x) since F2(x) = −4 < 0.

5 Conclusion

This paper proposed new sufficient conditions for forward invariance and contractivity of closed sets
for hybrid systems modeled as hybrid inclusions. The considered closed sets are defined using barrier
function candidates and the proposed sufficient conditions in terms of the latter barrier functions are
infinitesimal inequalities; namely, not involving any knowledge about the system’s solutions, guaranteeing
that the set of points on which all the components of the barrier function candidate are nonpositive is
forward invariant or contractive. Studying forward invariance and contractivity in the general context of
hybrid inclusions offered many technical challenges that have not been handled in the existing literature,
to the best of our knowledge. Those challenges are mainly due to the continuous-time evolution of the
hybrid inclusion being not necessarily defined on an open set. Hence, elements around the intersection
between the zero-level sets of the barrier candidate and the boundary of the set where the continuous-time
evolution is defined needed a particular treatment.

In the future, it would interesting to analyze the necessity of the different sufficient conditions pro-
posed in this paper or to propose new necessary and sufficient ones. Furthermore, this work constitutes
an important step to analyze the mixed safety plus convergence problem in hybrid systems. Indeed,
the latter problem is solved if we show forward invariance of the safety region plus contractivity of the
reachable set from the safety region towards a given target. Investigating the tightest possible sufficient
(infinitesimal) conditions to guarantee the latter mixed safety-convergence task in hybrid systems is put
of our current research efforts.
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les operateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble), 19(1):277–304, 1969.

[33] H. Brezis. On a characterization of flow-invariant sets. Communications on Pure and Applied
Mathematics, 23(2):261–263, 1970.

[34] R. M. Redheffer. The theorems of bony and brezis on flow-invariant sets. The American Mathemat-
ical Monthly, 79(7):740–747, 1972.

[35] R. P. Agarwal and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for ordinary dif-
ferential equations. World Scientific Publishing Company, 1993.

[36] R. T. Rockafellar and J. B. R Wets. Variational analysis, volume 317. Springer Science & Business
Media, 1997.

23



Appendix

5.1 Sufficient conditions for Pre-contractivity for C−sets

In the current section, we propose necessary and sufficient conditions for pre-contractivity in terms of
barrier function candidates defining a C-set.

Theorem 7 Given a hybrid system H = (C,F,D,G), a C−set K ⊂ int(C ∪D) is pre-contractive if and
only if there exists a Lipschitz continuous barrier function candidate B defining the C-set K as in (7)
such that

lim sup
h→0+

Bi(x+ ηh)

h
< 0 ∀x ∈Mi ∩ C

∀i ∈ {1, . . . ,m} ∀η ∈ F (x) ∩ TC(x),

(52)

B(η) < 0 ∀x ∈ K ∩D ∀η ∈ G(x), (53)

G(x) ⊂ C ∪D ∀x ∈ K ∩D. (54)

Proof. The necessary part of the proof is rather simpler as it relies on translating the Minkowskii
functional ΨK(x) to obtain a barrier function candidate satisfying (52)-(54). That is, the resulting
barrier function candidate is given by

B(x) :=ΨK(x)− 1, (55)

which is convex hence Lipschitz continuous.
To prove the sufficient part, we, first, pick x ∈ K ∩ D. Having B(η) < 0 for all η ∈ G(x) implies,

under the continuity of B and the fact that K ⊂ int(C ∪D), that either η ∈ int(K) or η /∈ C ∪D. The
latter case is not possible under (54). Hence, η ∈ int(K) which implies (41) since the C-set K is convex.

Finally, we prove that (52) implies (40) using a contradiction. Assume the existence of x ∈ ∂K ∩ C
and η ∈ F (x) ∩ TC(x) such that

lim sup
h→0+

ΨK(x+ ηh)− 1

h
≥ 0. (56)

On the other hand, let Ix ⊂ {1, ...,m} such that Bi(x) = 0 if and only if i ∈ Ix. Since B is continuous
and x ∈ ∂K ∩ C, then Bj(x) < 0 for all j /∈ Ix. Furthermore, using (52), we conclude the existence of a
sequence hk > 0, k ∈ N such that hk → 0 and Bi(x+ hkη) < 0 for all k ∈ N and i ∈ Ix. Since the set K
is convex, we conclude that Bi(x+hη) < 0 for all h ∈ (0, h0] and for all i ∈ Ix. Next using the continuity
of B, we conclude that for h0 sufficiently small, we also have Bj(x+hη) < 0 for all h ∈ (0, h0] and j /∈ Ix.
Thus, B(x+hη) < 0 for all h ∈ (0, h0], which implies that x+hη ∈ int(Ke) for all h ∈ (0, h0]. Furthermore,
since K ⊂ int(C ∪D), we conclude that for h0 small enough, x+hη ∈ int(Ke)∩ int(C ∪D) = int(K) for
all h ∈ (0, h0]. The latter fact implies that ΨK(x + ηh) < 1 for all h ∈ (0, h0]. Using (56), we conclude
that

lim sup
h→0+

ΨK(x+ ηh)− 1

h
= 0. (57)

Furthermore, since the set K is convex and using the first order homogeneity of the Minkowski functional,
we conclude the convexity of the function Ψo

K(h) := ΨK(x+ hη) on the interval h ∈ [0, h0]. That is,

lim sup
h→0+

ΨK(x+ ηh)− 1

h
= lim sup

λ→0+

Ψo
K(h0λ)− 1

h0λ

≤ lim sup
λ→0+

λΨo
K(h0) + (1− λ)− 1

h0λ
≤ Ψo

K(h0)− 1

h0
< 0 (58)

for all h ∈ [0, h0] and for λ := h/h0. Hence, the contradiction follows. �
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Remark 15 The equivalence in the previous statement is shown in the particular case where the C−set
K satisfies K ⊂ int(C ∪D). However, the same result remains valid, under the same proof, when K is
a C−set satisfying K ⊂ (int(C) ∪D)\(∂C ∩ ∂D) and the following extra jump condition holds:

B(η) ≮0 ∀η ∈ G(x) ∩ ∂(C ∪D), ∀x ∈ K ∩D. (59)

Indeed, having (59) satisfied is important to conclude that, under (53)-(54), the solutions starting from
∂K cannot jump towards ∂K ∩ int(Ke) ⊂ ∂(C ∪ D) since it is possible to have B(x) < 0 while x ∈
int(Ke) ∩ ∂(C ∪D) ⊂ ∂K.

Remark 16 In the general case where K 6⊂ (int(C)∪D)\(∂C∩∂D), we cannot guarantee for a nontrivial
solution flowing from xo ∈ K ∩∂C to satisfy x([0, ε], xo) ⊂ int(K), for some ε > 0, since the solution can
flow in ∂C while remaining in int(Ke). In other words, the barrier function candidate does not define
the set K on any neighborhood of C ∪D as opposed to the Minkowskii functional which defines the set
K in Rn. Therefore, in order to extend Theorem 7 to the general case where K ⊂ C ∪ D, we need to
guarantee, additionally, that there is not a possibility of flowing in ∂C ∩ ∂K while flowing in int(Ke).
The latter fact cannot be characterized in terms of a general barrier function candidate defining the set
according to (7).

Example 14 Consider the hybrid system

C :=
{
x ∈ R2 : x2 ≥ −1

}
,

F (x) :=

[
−[1, 2]x1 + (1/2)x2

−x2 − (1/2)x1

]
∀x ∈ C,

D :=
{
x ∈ R2 : x2 ≤ −1

}
\
{

[−1 − 1]>
}
,

G(x) :=[0, 1/2]

[
x1

−x2

]
∀x ∈ D.

We would like to study the pre-contractivity of the C-set K :=
{
x ∈ C ∪D : x2

1 + x2
2 ≤ 2, x2 ≥ −1

}
admitting the C1 multiple barrier function candidate B(x) := [|x|2 − 2 − (x2 + 1)]>. That is, we
start noticing that the C-set K satisfies K ⊂ int(C ∪D); hence, Theorem 7 is applicable. Indeed, since

the candidate B is continuously differentiable, we conclude that lim suph→0+
Bi(x+ηh)

h = 〈∇Bi(x), η〉 for
all i ∈ {1, 2}. Furthermore, 〈∇B1(x), η〉 ∈ [−x2

1 + x2
2,−2x2

1 + x2
2] ⊂ R<0 for all η ∈ F (x) and for

all x ∈ ∂K1 ∩ C = {x ∈ ∂K : x2 ≥ −1}. Similarly, 〈∇B2(x), η〉 = x2 + (1/2)x1 = −1 + (1/2)x1 ≤
−1/2 < 0 for all x ∈ ∂K2 ∩ C =

{
x ∈ R2 : x2 = −1, |x1| ≤ 1

}
and for all η ∈ F (x). Moreover,

G(x) = [0, 1/2][x1 1]> ⊂ [−1/2, 1/2] × [0, 1/2] for all x ∈ K ∩ D =
{
x ∈ R2 : x2 = −1, |x1| ≤ 1

}
;

hence, B1(η) < 0 and B2(η) < 0 for all η ∈ G(x) and for all x ∈ K ∩D. Thus, pre-contractivity of the
set K follows using Theorem 7.

A statement similar to Theorem 7 can be deduced using only a scalar barrier function candidate B.

Corollary 2 A C−set K ⊂ int(C∪D) is pre-contractive if and only if there exists a Lipschitz continuous
scalar barrier function candidate B defining the set K as in (7) such that (53)-(54) are satisfied and

lim sup
h→0+

B(x+ ηh)

h
< 0 ∀x ∈ ∂K ∩ C

∀η ∈ F (x) ∩ TC(x). (60)

Proof. the sufficient part of the statement is a straightforward consequence Theorem 7. Furthermore,
the necessary part is also true since the constructed barrier function in (55) in the proof of Theorem 7
is a scalar one. �

5.2 From pre-contractivity to contractivity in the case of C−sets

The previous sufficient conditions can be complemented in order to conclude contractivity rather than
only pre-contractivity. That is, in the following, we propose sufficient qualitative conditions allowing the
existence of nontrivial flows starting from any element in the set (K ∩ ∂C)\D as required in Definition
9.
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Proposition 6 A C-set K ⊂ C ∪D is contractive if it is pre-contractive and

F (x) ∩ TC(x) 6= ∅ ∀x ∈ U(xo) ∩K ∩ ∂C,
∀xo ∈ (K ∩ ∂C)\D.

(61)

Proof. In order to conclude the statement, we show that

TK∩C(x) ∩ F (x) 6= ∅ ∀x ∈ U(xo) ∩ ∂(K ∩ C) and

∀xo ∈ (K ∩ ∂C)\D.
(62)

Indeed, this latter fact, using Proposition 8 , implies the existence of a nontrivial flow starting from each
xo ∈ (K∩∂C)\D which in turn allows to conclude the contractivity of the set K using Definition 9. Now,
in order to prove (62), we distinguish three complementary situations. First, when x ∈ ∂(K∩C)∩ int(C),
in this case, using the forward pre-invariance of the set K, see Lemma 1, and the fact that there exists
always a nontrivial flow starting from x ∈ int(C) under the standing assumptions, we conclude the exis-
tence of a nontrivial flow starting from x and remaining in K. Hence, using Proposition 7 , (62) follows
when x ∈ ∂(K∩C)∩int(C). Second, when x ∈ ∂(K∩C)∩∂C∩int(Ke) = ∂C∩int(Ke). In this case, (62)
follows from (61) since in this case TC(x) = TK∩C(x). Third, when x ∈ ∂(K∩C)∩∂C∩∂Ke = ∂C∩∂Ke,
in this case under (61), we conclude the existence of η ∈ F (x) such that η ∈ TC(x). Furthermore, using
(40) and the convexity of K, we conclude that η ∈ Dint(K)(x), see the proof of Lemma 1 . Hence, using

Lemma 5 , it follows that η ∈ TK∩C(x). �

Example 15 We propose to build upon the pre-contractivity conclusions in Example 14 in order to
conclude contractivity using Proposition 6. To do so, it is enough to show that the set (K∩∂C)\D satisfies
(61). Indeed, the set (K∩∂C)\D reduces to the singleton

{
[−1 − 1]>

}
and one can take the neighborhood

U(x)∩K∩∂C =
{
x ∈ R2 : x2 = −1, x1 ∈ [−1,−1/2)

}
on which F (x) = [−[1, 2]x1−1/2 1−(1/2)x1]> ∈

TC(x) since its first component is F1(x) = 1− (1/2)x1 > 0, hence, (61) follows.

5.3 Auxiliary Results

Lemma 2 Let x be a nontrivial solution to H such that [t′1, t
′
2] × {j} ⊂ domx for some j ∈ N. Then,

ẋ(t, j) ∈ TC(x(t, j)) for almost all t ∈ [t′1, t
′
2].

Proof. Let t ∈ (t′1, t
′
2) such that ẋ(t, j) exists thus ẋ(t, j) ∈ F (x(t, j)). Moreover, let a sequence {tn}n∈N ⊂

(0, t′2 − t) such that tn → 0. That is, for vn(t) := (x(tn, j)− x(t, j))/tn, we have limn vn(t) = ẋ(t, j) and
at the same time x(t, j)+tnvn(t) = x(tn, j) ∈ C. Hence, using (3), we conclude that ẋ(t, j) ∈ TC(x(t, j)).
�

The statement of the following Lemma can also be found in [27, Proposition 4.3.7], however, the
proof we propose in this paper is original and relatively simpler.

Lemma 3 Consider the set M ⊂ Rn and the closed K ⊂M , and a multiple barrier function candidate
B : Rn → Rm such that K := {x ∈M : B(x) ≤ 0}. Let x ∈ ∂K ∩ int(M) such that Bi(x) = 0 if and
only if i ∈ Ix ⊂ {1, ...,m}. Assume further that

(i) there exists a neighborhood U(x) such that Bi is C1(U(x)) for all i ∈ Ix,

(ii) there exists v ∈ Rn such that ∇Bi(x)>v < 0 for all i ∈ Ix.

Then
TK(x) =

{
w ∈ Rn : ∇Bi(x)>w ≤ 0, ∀i ∈ Ix

}
.

Proof. In the first step, we propose to show that for x ∈ ∂K∩ int(M) and w ∈ Rn, if 〈∇Bi(x), w〉 ≤ 0 for
all i ∈ Ix then w ∈ TK(x). To this end, we introduce the convex combination wβ := βv+(1−β)w with v
introduced in (ii). That is, it is easy to see that, for any β ∈ (0, 1], (ii) remains satisfied when we replace
v therein is replaced by wβ . Furthermore, since x ∈ int(M) we claim that wβ ∈ TK(x) for all β ∈ (0, 1].
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Finally, using the closeness of the contingent cone TK(x) we conclude that w = limβ→0 wβ ∈ TK(x).
Now, in order to prove the claim, we use the Taylor expansion of Bi(x+ hwβ), for all i ∈ Ix, given by

Bi(x+ hwβ) = 〈∇Bi(x), wβ〉h+ hεi(h),

where εi(h) → 0 as h → 0. The latter expansion implies the existence of α > 0 sufficiently small such
that Bi(x + hwβ) ≤ 0 for all h ∈ (0, α] and for all i ∈ Ix. Moreover, when i /∈ Ix, we already have
B(x) < 0, hence under the continuity of B and for α sufficiently small, we conclude that B(x+hwβ) ≤ 0
for all h ∈ (0, α]. Furthermore, since x ∈ ∂K ∩ int(M), we conclude the existence of α1 > 0 such that,
for each h ∈ (0, α1], x+ hwβ ∈M . Thus, for each h ∈ (0,min {α, α1}], x+ hwβ ∈ K, hence, v ∈ TK(x)
using (3).

In the second step, we show that if w ∈ TK(x) then ∇Bi(x)>v ≤ 0 for all i ∈ Ix. Indeed, having
K = M ∩Ke, implies that w ∈ TKe(x). Furthermore, having

Ke = ∩mi=1Kei, Kei = {x ∈ Rn : Bi(x) ≤ 0} ,

we conclude that w ∈ ∩mi=1TKei
(x). Moreover, since TKei

(x) = Rn for all i /∈ Ix, it follows that
w ∈ ∩i∈IxTKei(x). Finally, we show that, under (i)-(ii), ∇Bi(x)>v ≤ 0 for all i ∈ Ix using contradiction.
That is, for i ∈ Ix, assume that v ∈ TKei(x) and at the same time 〈∇Bi(x), v〉 > 0. Having v ∈ TKei(x)
is equivalent to the existence of a sequences hi → 0+ and vi → v such that x+hivi ∈ Kei. Furthermore,
using the Taylor expansion of Bi(x+ hivi) and using the fact that Bi(x) = 0 for all x ∈ ∂Kei, we obtain

Bi(x+ hivi) =〈∇Bi(x), v〉hi + 〈∇Bi(x), (vi − v)〉hi+
hiεi(hi) = 0,

where ε(h)→ 0 as h→ 0. However, since 〈∇Bi(x), v〉 > 0 we conclude the existence of j ∈ N such that,
for each i ≥ j, Bi(x+ hivi) > 0. Hence, x+ hivi ∈ Rn\Kei, which yields to a contradiction. �

The following corollary is a particular case of Lemma 3 where the barrier function candidate is scalar.
Furthermore, it provides a characterization of TK only at the elements of ∂K that are also in the interior
of the set M . Similar statement can be found in [4, Lemma 2.20].

Corollary 3 Consider closed sets M ⊂ Rn and K ⊂ M , let B : Rn → R a barrier function candidate
defining the set K ⊂M , K := {x ∈M : B(x) ≤ 0}, and let x ∈ ∂K ∩ int(M) such that

(i) B is C1 in an open neighborhood around x denoted U(x),

(ii) ∇B(x) 6= 0.

Then

TK(x) =
{
v ∈ Rn : ∇B(x)>v ≤ 0

}
. (63)

Lemma 4 Consider a closed set M ⊂ Rn and let B : Rn → Rm be a multiple barrier function candidate
defining the set K ⊂M as K := {x ∈M : B(x) ≤ 0}. Suppose x ∈ ∂K ∩ int(M) is such that

(i) B is C1 in an open neighborhood around x denoted U(x),

(ii) ∇Bi(x) 6= 0 ∀i ∈ Ix,

Ix := {i ∈ {1, ..,m} : Bi(x) = 0} .

Then
Dint(K)(x) =

{
v ∈ Rn : ∇Bi(x)>v < 0 ∀i ∈ Ix

}
.

Proof. We start noticing that since x ∈ int(M), then, Dint(K)(x) = Dint(Ke∩M)(x). Moreover, using (5)
and Lemma 5, we obtain

Dint(Ke∩M)(x) = Dint(Ke)(x) ∩Dint(M)(x) = Dint(Ke)(x).

27



Furthermore, since Ke = ∩mi=1Kei, it follows by repeating the previous reasoning that

Dint(K)(x) = Dint(∩m
i=1Kei)

(x) = ∩mi=1Dint(Kei)
(x).

Moreover, since Dint(Kei)
(x) = Rn for all i /∈ Ix, we obtain:

Dint(K)(x) = ∩i∈IxDint(Kei)
(x).

Hence, the lemma is proved if we show that, for all i ∈ Ix,

Dint(Kei)
(x) =

{
v ∈ Rn : ∇Bi(x)>v < 0

}
. (64)

Indeed, the proof of (64) is obtained by combining Corollary 3 with (5). Indeed, let us introduce the
closed set Rn\int(Kei). It is easy to see that

Rn\int(Kei) =
{
y ∈ Rn : B̄(y) := −B(y) ≤ 0

}
.

Hence, using Corollary 3 under the fact that x ∈ ∂(Rn\int(Kei)), we conclude that

TRn\int(Kei)
(x) = {v ∈ Rn : ∇B(x)v ≥ 0} .

Finally, applying (5), the statement follows. �

Lemma 5 Let v ∈ Rn satisfying v ∈ Dint(K1)(x) ∩ TK2
(x) for K1 and K2 closed subsets of Rn and

x ∈ K1 ∩K2. Then, v ∈ TK1∩K2
(x). Moreover, if v ∈ Dint(K2)(x), then v ∈ Dint(K1∩K2)(x).

Proof. The proof follows using the characterization of the contingent cone in (3). Indeed, v ∈ TK2
(x)

if and only if there exists sequences hi → 0+ and vi → v such that x + hivi ∈ K2. On the other
hand, using (4), we conclude the existence of α > 0 and ε > 0, such that x + (0, α](v + εint(B)) ⊂ K1.
Which implies the existence of j ∈ N such that for each i ≥ j, x + hivi ∈ x + (0, α](v + εint(B)) ⊂
K1, hence, x + hivi ∈ K1 ∩ K2 for all i ≥ j, which implies that v ∈ TK1∩K2

(x). Furthermore,
v ∈ Dint(K2)(x) implies the existence α1 > 0 and ε1 > 0 such that x + (0, α1](v + ε1int(B)) ⊂ K2.

Hence, x+ (0,min {α, α1}](v+ min {ε, ε1} int(B)) ⊂ K2 ∩K1 which implies that v ∈ Dint(K1∩K2)(x). �

5.4 Background from the literature

We start this section by recalling from [28, Definition 2.6] the concept of solutions to a hybrid system H.

Definition 12 (solution to H) A function x : domx → Rn defined on a hybrid time domain domx
and such that, for each j ∈ N, t 7→ x(t, j) is absolutely continuous is a solution to H if

(S0) x(0, 0) ∈ cl(C) ∪D;

(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domx } has nonempty interior

x(t, j) ∈ C for all t ∈ int(Ij),
ẋ(t, j) ∈ F (x(t, j)) for a.a. t ∈ Ij ; (65)

(S2) for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)). (66)

Next, we recall the regularity and the continuity notions used in this paper for a set-valued map F :
O ⇒ Rn with O ⊂ Rn.

Definition 13 (Continuity notions) F is upper semicontinuous at x ∈ O if for any neighborhood
U(F (x)) there exists ε > 0 such that, for any y ∈ x+εint(B), F (y)∩U(F (x)). It is upper hemicontinuous
at x ∈ O if, for any p ∈ Rn, the single-valued map y 7→ δ(F (y), p) := supz∈F (y)〈p, z〉 ∈ (−∞,+∞] is
upper semicontinuous at x. Furthermore, it is said to be upper semicontinuous or upper hemicontinuous,
respectively, if it is so for all x ∈ O.
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Definition 14 (Local boundedness) A set-valued map F : O ⇒ Rn is said to be locally bounded if
for any x ∈ O there exists U(x) and K > 0 such that

|ζ| ≤ K ∀ζ ∈ F (y) ∀y ∈ U(x). (67)

Definition 15 (Lipschitz regularity) A set-valued map F : O ⇒ Rm is said to be locally Lipschitz if
for any compact set V ⊂ O there exists k > 0 such that

F (y) ⊂ F (x) + k|x− y|int(B) ∀(x, y) ∈ V × V. (68)

On the other hand, we recall from the existing literature of differential inclusions some useful results
that will play an important role in proving our statements. That is, we recall from [9, Propositions
3.4.1 and 3.4.2] the following statements that allow the extension of the well-know Nagumo’s invariance
theorem under differential inclusions. Those results will play an important role precisely when providing
sufficient conditions for pre-contractivity and forward invariance using barrier functions.

Proposition 7 [9, Proposition 3.4.1] Let us assume that the set-valued map F : O ⇒ Rn, with O ⊂ Rn,
satisfies

(i) F is upper hemicontinuous on O,

(ii) F (x) is convex and compact for all x ∈ C ⊂ O.

Consider a solution x to the differential inclusion ẋ ∈ F (x) starting at xo and satisfying

∀T > 0, ∃t ∈ (0, T ] : x(t) ∈ K ⊂ C.

Then, F (xo) ∩ TK(xo) 6= ∅.

Proposition 8 [9, Proposition 3.4.2] Let us assume that the set-valued map F : O ⇒ Rn with O ⊂ Rn
satisfies

(i) F is upper semicontinuous on O,

(ii) F (x) is convex and compact for all x ∈ C ⊂ O.

Let the set K ⊂ C be locally compact and let Ko ⊂ K be a compact neighborhood of xo ∈ K such that

∀x ∈ Ko, F (x) ∩ TK(x) 6= ∅.

Then, there exists T > 0 and a solution to ẋ ∈ F (x) starting at xo such that x([0, T )) ⊂ K.

Remark 17 it is useful to notice that closed subsets of finite dimensional spaces are locally compact.

Furthermore, we recall the following result that will play an important role when proposing sufficient
conditions for pre-contractivity using using barrier functions.

Theorem 8 [9, Theorem 4.3.4] Consider a nontrivial upper semicontinuous set-valued map F : O ⇒ Rn
such that F (x) is convex and compact for any x ∈ C ⊂ O. Let K ⊂ C be closed with nonempty interior
and xo ∈ ∂K. If F (xo) ⊂ Dint(K)(xo), then, for each solution x starting from xo,

∃T > 0 : x((0, T ]) ⊂ int(K).

Remark 18 We stress that our standing assumptions on the flow map F are equivalent to the regularities
required in Propositions 7-8 and Theorem 8. Indeed, outer semicontinuous and locally bounded set-valued
maps are upper semicontinuous with compact images [36, Theorem 5.19], the converse is also true using
[28, Lemma 5.15] and the fact that upper semicontinuous set-valued maps with compact images are locally
bounded. Furthermore, upper semicontinuous set-valued maps are also upper hemicontinuous provided
that the images are closed, see [9, Corollary 2.4.1]. The converse is true provided that the images are
closed and convex, see [9, Remark. Page 67].
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When a scalar function B : Rn → R is locally Lipschitz, its generalized gradient, denoted by ∂B,
constitutes a useful tool to understand its behavior along the system’s solutions. We recall the following
definition which is valid due to the equivalence established in [14, Theorem 8.1].

Definition 16 Let B : Rn → R be locally Lipschitz. Let Ω be any subset of zero measure in Rn, and let
ΩB be the set of points in Rn at which B fails to be differentiable. Then

∂B(x) := co
{

lim
i→∞

∇B(xi) : xi → x, xi /∈ ΩB , xi /∈ Ω
}
. (69)
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