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ABSTRACT OF THE THESIS

Measuring the Robustness of the National Basketball Association

Home Court Advantage Effect

by

Wesley Cheng

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Chad J. Hazlett, Chair

Home court advantage is an often confused term in sports literature that encompasses a

variety of factors. Our goal is to identify and quantify home court advantage in the National

Basketball Association within a causal framework, and to conduct an extended sensitivity

analysis to measure the robustness of our estimated effect. The traditional omitted variable

bias framework succeeds in providing an interpretable way of approaching sensitivity analysis,

however it also introduces subjectivity in interpreting sensitivity plots and does not extend

to multiple confounders very well. By reparameterizing the omitted variable bias framework

in terms of R2 we can use expert knowledge to formally bound the strength of unobserved

confounders and provide a more systematic way to conduct sensitivity analyses. We use the

imbalance in number of rest days between home and away teams to gauge the robustness of

our estimated home court advantage effect.
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CHAPTER 1

Introduction

Home court advantage in professional sports is a topic that has been well debated within

sports literature and media. A FiveThirtyEight article suggests that after a Cleveland Cav-

aliers loss in a critical Game 5 to the Boston Celtics even LeBron James, one of the greatest

NBA players of all time, could not overcome Boston’s home court advantage (Paine, 2018).

The Cavaliers would go on to win that playoff series anyways, but this exemplifies the

common belief that the home court advantage in sports is very real. In three of the top

professional sports leagues in America, the home team wins about 63% (NBA), 54% (MLB),

and 58% (NFL) of the time (Moskowitz and Wertheim, 2012). A common guideline in sports

betting for the NBA and NFL is that simply playing at home adds about three points to

the point spread in favor of the home team. However, while the effect’s existence seems be

certain, determinations of its constituents and to what extent the effect actually has, is much

more unclear.

There has been many studies done to determine what causes home court advantage to

exist. Referee bias has been commonly hypothesized as one of the main contributors to home

court advantage. Observed goal differentials between home and away teams in the English

Premier League were found to be partly due to subjective refereering (Boyko, R Boyko,

and G Boyko, 2007) and referees in the NBA have been found to typically make calls in

favor of the home team (Price, Remer, and Stone, 2019). Crowd effects have also frequently

been pointed to when discussing home court advantage, as it might be natural to conjecture

players’ performance is enhanced when given positive visual and verbal support. Increased

game efficiency (Yi, 2017) and likelihood of wins (Boudreaux, Sanders, and Walia, 2017) by

the home team have been found to be attributed to crowd effects.
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For the NBA in particular, there has also been much debate regarding the evolution and

trend of the home court advantage. An ESPN article in 2015 pointed to the downward

trend in home win percentage since 1975 as evidence that the effect was gradually dwindling

over time (Haberstroh, 2015). One possible explanation was that an increased reliance on

the 3-pointer, which inherently leads to less contact, leaves less room for referee influence.

Technology is also pointed to as a potential culprit, as it becomes more common for fans

to be immersed with their phones rather than the game itself. Shortly after however, an

article from The Economist quickly supplied a retort, suggesting that this purported trend

misinterpreted statistical noise for a true signal, going as far to claim that home court

advantage in the NBA was actually ‘as sweet as ever’ (economist.com, 2015).

While there has been much work in the area of determining what home court advantage

entails, potential confounders to the effect have been much less studied. Once two teams

begin a game, factors such as the crowd engagement and referee subjectivity can help the

the home team perform better, but perhaps at a baseline level, away teams are already at a

disadvantage when compared to home teams. Travel fatigue (Stefani, 2008) and lack of rest

(Moskowitz and Wertheim, 2012) have often been mentioned as competitive obstacles that

put away teams at a disadvantage. The imbalance in number of rest days between home and

away teams has been quantitatively examined in an attempt to determine what proportion

of the home court advantage in the NBA can actually be attributed to rest (Entine and

Small, 2008). It was shown that visiting teams play a disproportionate percentage of games

on zero days rest compared to home teams (33% to 15%) and that the overall imbalance in

rest accounts for about 0.3 points of the 3.24 point home court advantage that home teams

enjoyed in the 2004-05 and 2005-06 seasons. This finding serves as the primary motivation

for this thesis. For if rest can account for a significant portion of the home court advantage

in the NBA, then is it plausible that there potentially exists some unmeasurable confounder

that could problematically change our estimated effect?

The goal of this thesis is twofold. First, we estimate the NBA home court advantage effect

within a causal framework. Second, we apply an extended sensitivity analysis to measure

the robustness of our estimated effect. This thesis is then organized as follows. Chapter
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2 provides an overview of the causal model and sensitivity analysis which will serve as the

theoretical backbone for the application portion of this thesis. Chapter 3 takes a dive into

our NBA data and demonstrates how it fits within the causal and sensitivity frameworks.

Chapter 4 examines and discusses the results. Concluding remarks are made in the final

chapter.
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CHAPTER 2

Sensitivity Analysis for Causal Inference

2.1 Potential Outcome Model

The potential outcome model, also known as the Neyman-Rubin model, is a framework for

causal inference that relies on the idea of observed outcomes and unobserved counterfactuals.

The concept of potential outcomes was first introduced within the context of randomized

experiments (Neyman, 1923). It was further popularized by its application to the estimation

of casual effects (Rubin, 1974) and extensions to observational studies when randomization

is not possible (Rubin, 1977). We first go over potential outcomes and its general notation,

then move into a discussion of when causal effects can be identified in experimental and

observational settings.

2.1.1 Potential Outcomes

Potential outcomes can be thought of from a factual and counterfactual point of view. Let Di

denote the treatment assignment for unit i, with Di = 1 when a unit is assigned to treatment,

and Di = 0 when a unit is assigned to control. Let Yi denote the observed outcome and Xi

denote the pre-treatment covariates for unit i. We then define the potential outcomes for

unit i as follows.

Yi(Ti) =


Yi(1) Potential outcome for unit i when they receive treatment

Yi(0) Potential outcome for unit i when they receive control
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We can then define the unit treatment effect as

τi = Yi(1)− Yi(0)

With the potential outcomes framework we are outlining, we are also implying a set of

assumptions known as SUTVA (Stable Unit Treatment Value Assignment). We first assume

there is a single version of the treatment. In addition, we also assume there is no interference

between the units. This means that the potential outcomes for one unit is not affected by the

treatment assignment for other units. Take for example the case where our sample consists

of two units. If interference exists between the two units, each unit now has four potential

outcomes (Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1)). The result is that the causal effect for each unit

now depends on the treatment assignment of the other unit (Rubin, 2003), which can be

problematic especially as our sample size increases.

Given this, the primary quantity that we are interested in measuring is the sample average

treatment effect

τ =
1

n

n∑
i=1

(Yi(1)− Yi(0))

= E[Yi(1)]− E[Yi(0)]

This average treatment effect is unidentifiable without further assumptions as we cannot

calculate these quantities directly given our inability to observe both potential outcomes for

any given unit i.

2.1.2 Randomization and Observational Data

The usage of randomization as the foundation for causal inference was popularized by Fisher’s

work in the early 20th century (Fisher, 1925; Fisher, 1937). The idea is that if the treatment

assignment mechanism is random, then any underlying characteristics that could also ex-

plain variation in the outcome variable are uncorrelated with the treatment. With potential

outcomes, this implies {Yi(0), Yi(1)} |= Di, which is known as the ignorability assumption.

This means our units’ potential outcomes are independent of their treatment assignment. A
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result of proper randomization is that we can recover our average treatment effect. Consider

Neyman’s difference in means estimator (Neyman, 1923)

τ̂ = Ȳ obs
t − Ȳ obs

c

=
1

nt

∑
i:Di=1

Yi −
1

nc

∑
i:Di=0

Yi

= E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0]

Under randomization, E[Yi(1)|Di = 1] = E[Yi(1)|Di = 0] = E[Yi(1)] and similarly for

E[Yi(0)|Di = 0]. This implies

τ̂ = E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0] = E[Yi(1)]− E[Yi(0)] = τ

In most real world data however, we have no control over the treatment assignment

mechanism, with the primarily implication being that our ignorability assumption no longer

holds. A particularly common problem with observational data is that our treatment variable

of interest is now correlated with other variables which also account for a proportion of the

variance in the outcome variable. This leads to unreliable biased estimates of our average

treatment effect. Because of this we need additional assumptions to draw causal inferences

from observational data. Imagine if we looked within a specific slice of our sample by fixing

a set of covariates. Upon controlling for these covariates, perhaps it could be argued that

our original ignorability assumption holds, in that the treatments are randomly assigned.

Then we could treat this particular strata as a randomized experiment and simply weight

these strata effects by the probability density of our covariates to estimate our average

treatment effect. This new assumption states {Yi(0), Yi(1)} |= Di | Xi and is known as the

conditional ignorability assumption. An additional and often overlooked assumption needed

is the common support assumption which states that within any strata, there is a nonzero

probability of receiving treatment, i.e., P (Di = 1|Xi = x) > 0 ∀ x ∈ X. This is needed to

prevent improper comparisons between treatment and control groups that have little to no

overlap.

We can show that our average treatment effect within each strata is identified in a similar

fashion above by using the conditional ignorability assumption. That is, τ(X) = E[Yi(1) −
6



Yi(0)|Xi = x] = E[Yi(1)|Xi = x,Di = 1] − E[Yi(0)|Xi = x,Di = 0]. Using common support

and the law of iterated expectations allows us to recover the overall average treatment effect.

τ = E[Yi(1)− Yi(0)]

= E[E[Yi(1)− Yi(0)|Xi]]

=

∫ (
E[Yi(1)|Xi = x,Di = 1]− E[Yi(0)|Xi = X,Di = 0]

)
p(x)dX

2.1.3 Regression Adjustment

To estimate the average treatment effect in the observational setting, we need a method

to perform the conditioning and weighting as described above. Matching is a commonly

used technique particularly with propensity scores, which rely only on covariates and not

the outcomes (Rosenbaum and Rubin, 1983), however in this thesis we will use regression

adjustment as a model-based approach because it dovetails nicely with the sensitivity frame-

work that will be applied. With this model we can define our outcome as

Yi = β0 + β1Di + αTXi + εi

We can show that β1 is an unbiased estimator of the average treatment effect if we make

two additional assumptions. If we assume the specification of our model is correct, then in

conjunction with the conditional ignorability assumption,

E[β1] = E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi]

= E[Yi(1)|Xi]− E[Yi(0)|Xi]

= τ(X)

From here, to recover the average treatment effect, the second assumption needed is that

the treatment effect across the various strata is constant, i.e. τ(X) = τ .

One caveat with using a regression based method is that since it is a parametric method,

it imposes a functional form on the potential outcomes. This can cause problems if overlap

between treatment and control groups is poor as the model will extrapolate counterfactuals

for treatment/control observations if the other does not exist (Gelman and Hill, 2006).

7



Therefore if the model is poorly specified, misspecification bias can render the treatment

effect estimate unreliable.

2.2 An Extended Sensitivity Analysis Framework

Sensitivity analyses are used to better understand the relationship between outcome and

input variables. This is particularly important in the case where we may have immeasurable

confounding variables that could change the estimate of our quantity of interest. In a causal

setting, the main concern is how confounding variables may change our treatment effect

estimate, which relies on the absence of unobserved confounders. Traditional sensitivity

analysis typically involves the investigation of omitted variable bias. This framework can

be extended by reparameterizing the omitted variable bias formula in terms of partial R2

and introducing bounds to the strength of potential confounders by utilizing the researcher’s

knowledge of observed covariates (Cinelli and Hazlett, 2018). In particular, this thesis is

focused on applying Cinelli and Hazlett’s work to NBA home court data. For this portion,

a brief introduction to omitted variable bias is given, then key highlights and results from

Cinelli and Hazlett’s extended framework are noted.

2.2.1 Omitted Variable Bias

Omitted variable bias allows the researcher to investigate the effect of unaccounted for vari-

ables in the context of their existing model. More concretely, suppose the following restricted

regression was run

Y = τ̂resD + Xβ̂res + ε̂res

where τ̂res is our estimated constant treatment effect across all the strata in our data and D is

a vector of treatment indicator variables. However, while we have controlled for the covariate

set X, suppose there is also a confounding variable Z (or set of confounding variables) that

we are not able to measure, whether it be for ethical, monetary, or feasibility reasons. The

8



fully specified model that we did not run can be written as

Y = τ̂fullD + Xβ̂full + γ̂Z + ε̂full

If we can make the argument that upon controlling for X and Z, the treatment as-

signment is as-if random, our conditional ignorability assumption would be satisfied, i.e

{Yi(0), Yi(1)} |= Di | Xi, Zi, and if our regression assumptions hold, then τ̂full is an unbiased

estimate of our sample average treatment effect. Conversely, this implies that our realized

estimate τ̂res is a biased estimate. While it would be impossible to recover τ̂full unless we

explicitly measure Z, omitted variable bias allows us to precisely quantify how much our

estimate of τ would change depending on the hypothetical influence of Z. Formally we can

write the bias of our estimate as

b̂ias = γ̂δ̂ where δ̂ =
cov(D⊥X, Z⊥X)

var(D⊥X)

The ⊥X notation denotes removing the proportion linearly explained by X from the afore-

mentioned variable. Note δ̂ is equivalent to the coefficient for our treatment indicator if we

regressed Z on D and X,

Z = δ̂D + Xη̂ + ε̂Z

Both coefficients γ̂ and δ̂ then have a traditional regression interpretation. γ̂ represents

the marginal effect Z has on Y holding D and Z constant, and δ̂ represents the marginal

effect D has on Z holding X constant. This means bias can be interpreted as the product

of the confounder’s various relationships with both the treatment and outcome variables.

Sensitivity plots for our causal quantity of interest could then easily be made by plugging

in hypothetical values for γ̂ and δ̂ and adding or subtracting this bias from our original

estimate.

However, Cinelli and Hazlett note multiple limitations of the omitted variable bias frame-

work. From the current formulation it is difficult to measure the changes multiple con-

founders would have on the treatment coefficient. The current formulation also does not

allow us to gauge the sensitivity of the treatment coefficient’s standard errors, which is im-

portant in determining the statistical significance of any treatment effect estimate we may
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find. In addition, when interpreting the sensitivity plots, the intuition is clear, but deter-

mining plausible hypothetical values needed to calculate the bias is challenging and can be

subjective.

2.2.2 Extension of Omitted Variable Bias

Cinelli and Hazlett primarily the extend the preexisting sensitivity analysis framework by

introducing two new sensitivity measures and a method to bound the strength of confounders

with observed covariates. Altogether this allows for a more complete illustration of our quan-

tity of interest’s robustness. To do so, the omitted variable bias formula is reparemetrized

in terms of partial R2. For detailed derivations for some of the following results, please refer

to Cinelli and Hazlett’s appendix section (Cinelli and Hazlett, 2018).

2.2.2.1 Relevant Quantities and Measures

By using the Frisch-Waugh-Lovell theorem to partial out the effects of X and D, and useful

identities of the R2 measure, it can be shown that the bias of our estimate can be rewritten

as

| ˆbias| = se(τ̂res)

√√√√R2
Y∼Z|X,DR

2
D∼Z|X

1−R2
D∼Z|X

(df)

Here, df denotes the number of degrees of freedom in the restricted regression model without

the confounder. The estimated standard error of τ̂ can be expressed as

se(τ̂) = se(τ̂res)

√√√√1−R2
Y∼Z|X,D

1−R2
D∼Z|X

(
df

df − 1

)
By rearranging terms for our standard error expression, the sensitivity of the variance

can be written as the relative change

var(τ̂)

var(τ̂res)
=
(
1−R2

Y∼Z|X,D
)( 1

1−R2
D∼Z|X

)(
df

df − 1

)
10



Two new sensitivity measures are introduced to provide a systematic way to quickly

asses the overall sensitivity of our estimate. The first is a robustness value which considers

a confounder that has equal partial R2 values with both the treatment and outcome. Define

this partial R2 as the robustness value RVq. This robustness value can be written as

RVq =
1

2

(√
f 4
q + 4f 2

q − f 2
q

)
where fq := q|fY∼D|X|

and tells the researcher how strong the partial R2 would have to be between the confounder

and both the treatment and outcome. Confounders that have partial R2 values that exceed

this robustness value would be strong enough to change the estimated effect by (100× q)%.

Hypothesis testing can also be incorporated into this robustness value by specifying a

significance level α. For the null hypothesis H0 : τ = (1 − q)|τ̂res| to not be rejected, the

partial R2 between the confounder and both the treatment and outcome would need to

exceed RVq,α which is defined as

RVq,α =
1

2

(√
f 4
q,α + 4f 2

q,α − f 2
q,α

)
where fq,α := q|fY∼D|X| −

|tαdf−1|√
df− 1

and tαdf−1 denotes the critical value at the α significance level and df − 1 degrees of freedom.

The second sensitivity measure proposed is R2
Y∼D|X, which conveniently also describes

how strong the association between confounder and treatment would have to be in the case

where the confounder explained all the remaining residual variance of Y . By including this

measure it is easy to use this value as a quick benchmark. If R2
Y∼D|X is very low, it is

possible that a confounder having weak association with treatment, would be enough to

change our conclusions regarding the estimated treatment effect. A more formal sensitivity

analysis would need to be done, however, this measure can help guide the direction of such

an analysis.

11



2.2.2.2 Bounding Confounder Strength

With bias reparameterized in terms of partial R2’s of the confounder, sensitivity contour

plots could be made, however it would be difficult to hypothesize plausible partial R2 values

without further information. A key result from Cinelli and Hazlett’s paper is the usage of

observed covariates to bound these partial R2 values. Denote Xj as one particular covariate

(although these results also extend to multiple covariates) that will be used to bound the

confounders’ strength. Then define the following quantities

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

These quantities describe the relative strength of the confounder with respect to the treat-

ment and outcome when compared to Xj. Then the strength of the confounders can be

expressed as

R2
D∼Z|X = kDf

2
D∼Xj |X−j

R2
Y∼Z|X,D] ≤ η2f 2

Y∼Xj |X−j ,D

where η =

√
kY + |fKD

× fD∼Xj |X−j
|√

1− f 2
KD
× f 2

D∼Xj |X−j

and fKD
:=

√
kDRD∼Xj |X−j√

1− kDR2
D∼Xj |X−j

Together this allows the researcher to bound the strength of unobserved confounders by

using their knowledge of the data and subject matter at hand. If the researcher can make

strong educated guesses regarding the strength of the confouder relative to the strength

of an observed covariate, these formal bounds can then be used to calculate the bias and

relative change in variance of our estimate. This allows for the investigation of whether the

conclusions regarding the estimated treatment effect would be changed significantly.
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CHAPTER 3

Research Design

3.1 Data Collection

Individual NBA player game log data for the 2013-14 through 2017-18 seasons is collected

from https://www.basketball-reference.com/. These years were selected as they repre-

sent the most recently completed NBA seasons. The Python module basketball

reference web scraper is used to scrape the data.1 Player data is aggregated up to the

team and day level to obtain team matchup results.

There were two potential choices for the outcome variable. One option was to leave the

grain of the dataset at the matchup level and have the outcome variable Yij represent the

point margin for the home team i against visiting team j.

home team away team year home days rest home travel away days rest away travel point margin

CHICAGO BULLS NEW YORK KNICKS 2013 1 -1 0 -1 1

LOS ANGELES CLIPPERS GOLDEN STATE WARRIORS 2013 1 0 0 0 11

Table 3.1: Data with Point Margin as Outcome

The alternative option was to use each individual team’s points scored as the outcome Yi

and split the matchup data into two individual rows. This latter option allows for the usage

of a treatment variable to indicate whether a team was home or away which fits within our

particular causal and sensitivity framework favorably. Keeping the data at the matchup level

means the home court advantage estimate would be returned as an intercept rather than

coefficient.

1https://github.com/jaebradley/basketball reference web scraper
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team opponent year team days rest team travel opp days rest opp travel treatment points

CHICAGO BULLS NEW YORK KNICKS 2013 1 -1 0 -1 1 82

LOS ANGELES CLIPPERS GOLDEN STATE WARRIORS 2013 1 0 0 0 1 126

NEW YORK KNICKS CHICAGO BULLS 2013 0 -1 1 -1 0 81

GOLDEN STATE WARRIORS LOS ANGELES CLIPPERS 2013 0 0 1 0 0 115

Table 3.2: Data with Points Scored as Outcome

In addition to a home/away treatment indicator variable, the number of rest days and

time zones traveled are recorded for the team and opponent. These variables serve as covari-

ates that will be included in the model. The number of rest days and time zones traveled

requires looking at teams’ prior games in relation to their current game. The direction of

travel is also taken into account with + corresponding to eastwardly travel and - denoting

westwardly travel. The season start year and team names are included in the dataset to allow

for the incorporation of fixed effects into our model. Playoff games and games where at least

one of the teams were playing their first game of the season (no rest data) are removed from

the dataset. Altogether the final dataset contains 6067 games and 12134 observations.

3.2 A Look Into NBA Matchup Data

Creation of the NBA schedule is a sophisticated and opaque process that takes into account

various factors. Aside from scheduling 82 games within a restricted time window, other

factors must also be taken into consideration. For example, some NBA teams share an arena

with NHL team and if a NHL team is not using the arena, the venue is often being used for

concerts or other non-sports related events, raising arena availability constraints. Teams are

also required to play other teams a certain number of times depending on the year, division,

and conference. Schedules with national TV channels like ESPN and TNT must also be

taken into account. Given these multitude of circumstances, it would not be surprising to

see certain systematic patterns arise with the NBA schedule.
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0 1 2 3+

Away 1763 3237 808 259

Home 822 3943 943 359

Table 3.3: Imbalance in Rest Days between Home and Away Teams

Back-to-back games refer to situations where a NBA team is required to play games

on consecutive days. The impact of rest on NBA team performances has been previously

studied (Steenland and Deddens, 1997; Entine and Small, 2008) and naturally this variable

seems to call for further investigation given its potential impact of team performance. Table

3.3 shows the imbalance in rest days between home and away teams. It is immediately

clear that away teams play almost twice the number of back-to-backs compared to home

teams. When considering the time associated with air travel, it is not necessarily surprising

to see visiting teams play on a more condensed schedule. Allowing for more rest with away

teams would prolong already taxing road trips that often consist of multiple consecutive road

games. There has been evidence that implies that the NBA league office schedules back-to-

back games in order to minimize travel time and costs (Kelly et al., 2008). Regardless of

such motives, the result is that on average home teams are entering matchups more rested

than their visiting counterparts.

Home teams certainly seem to exhibit some type of advantage over visiting team as seen

in Figure 3.1. A five year boxplot of the distributions in points scored for home and away

teams show an uptick in points scored for home teams and an overall upward trend in points

scored over the past couple of NBA seasons. In an era where there is an increasingly heavier

focus on ‘space and pace’ in the modern NBA offense, an overall increase in total number

of points scored is expected. As with most panel data it makes sense to model these time

effects by incorporating fixed effects to produce time-invariant estimates.
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Figure 3.1: Home and away team point discrepancy

3.3 Methodology

In order to incorporate the NBA data within the theoretical framework explained in Chapter

2, three key components must be established. We first define a causal quantity of interest and

associated identification strategy. A model specification is then proposed to generate an un-

biased estimate of the quantity of interest. Finally we evaluate the robustness of our estimate

by conducting a sensitivity analysis. The following sections outline these components.

3.3.1 Identification Strategy

The causal quantity of interest is the effect of playing at home on points scored. Define Ti

as the binary indicator variable treatment, as illustrated in Table 3.2. For teams playing at

home we only see Yi(1), that is their potential outcome when Ti = 1. A quick glance at the

data might suggest that this resembles a type of natural experiment in that whether a team

plays at home versus away seems to be essentially random. However, Table 3.3 highlights the

lack of balance in rest days between home and away teams and it is reasonable to hypothesize

16



that this imbalance might be correlated with our observed outcomes, given the strenuous

nature of professional sports. This suggests that any estimate from a simple difference in

means estimator would be biased as our potential outcomes are not independent of the

treatment assignment. A rest variable then seems to serve as a sensible control. Another

factor that could be associated with the number of points scored is a travel variable. Travel

is similar to rest in that teams that travel across a greater number of time zones could be at

a disadvantage in terms of fatigue. Deviations in points scored due to travel differences are

not a primary quantity of interest, however controlling for travel prevents their effects from

potentially confounding with our treatment effect estimate.

Days of Rest

0 1 2 3+

-3 0 (0) 31 (40) 7 (16) 9 (13)

-2 1 (1) 130 (128) 38 (57) 12 (24)

-1 151 (319) 354 (608) 88 (176) 25 (53)

Time Zones Traveled 0 548 (1140) 3004 (1543) 640 (330) 260 (90)

+1 127 (303) 319 (686) 103 (170) 33 (61)

+2 0 (0) 88 (185) 47 (39) 14 (13)

+3 0 (0) 17 (47) 20 (20) 6 (5)

Table 3.4: Number of home (away) teams by travel and rest

The conditional ignorability and common support assumptions are relied upon as key

elements of our identification strategy. For any given season (with the exception of lockout

years), teams in the league are required to play 82 games split evenly between at home and

on the road. Teams also play every team in the league at least once as both a host and

visitor. While we cannot definitively prove that conditional ignorability holds, controlling

for both rest and travel would seem to encapsulate most key confounders, given the relatively

random nature of the NBA schedule. Table 3.4 shows the number of home and away games

per rest/travel combination. The common support assumption does not seem to pose a

serious problem in this case as there are an adequate number of treated and control units in
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each cell that contains units. Note the NBA essentially never schedules a back-to-back if a

team is required to travel more than one time zone.

3.3.2 Modeling

A least squares regression model is used to estimate the treatment effect of playing at home,

while controlling for confounders like rest and travel. The number of points scored for team

i against team j during season t, can be modeled as

Yijt = µ+ αit + γjt + λt + τDi

+ β1 · 1[resti = 0]− β1 · 1[restj = 0]

+ β2 · 1[resti = 1]− β2 · 1[restj = 1] + β3 · 1[resti = 2]− β3 · 1[restj = 2]

+ β4 · 1[traveli = −3]− β4 · 1[travelj = −3]

+ · · ·+ β9 · 1[travelj = +3]− β9 · 1[travelj = +3] + εijt

where αit and γjt represent team-year fixed effects for teams i and j and λt represents

league wide season fixed effects. Including these fixed effects allows for the estimation of

τ to be based off the within-team variation in points scored rather than the league-wide

variation (Mummolo and Peterson, 2018). Rest and travel variables are converted into

dummy variables and these coefficients for team i and team j are constrained to be equal.

This structure is motivated by Entine and Small (2008) who show that this constraint on

the rest coefficient does not impact the error sum of squares greatly compared to when the

coefficients are left unconstrained. By constraining these coefficients, this model is also more

intuitive to interpret. Teams that enter games on the same number of days of rest and time

zones traveled, would mean the model for Yijt is reduced to

Yijt = µ+ αit + γjt + λt + τDi + εijt

which also means the only way team j would enter the equation is through its fixed effects.
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3.3.3 Sensitivity Analysis

While factors like rest and travel are controlled for in the model, it is possible there exists

unmeasured confounders that could still affect our home court treatment effect estimate

and violate our conditional ignorability assumption. Such a scenario would imply that our

original causal effect estimate is biased.

One possible confounder is the quality of practice leading up to a game. Due to the limited

access nature of the NBA it is difficult to collect data and information on these closed door

practices. Some coaches like Clippers coach Doc Rivers prefer lighter practices2 while others,

like former Bulls coach Tom Thibodeau3, are notorious their high intensity practices. For

teams on the road, fitting team activities let alone full practices, into the schedule could

be challenging. Given the nature of back-to-backs it simply seems not feasible for teams to

run consistent comprehensive practices aside from film studies and shootarounds. Perhaps

visiting teams are at a disadvantage compared to home teams because they are unable to

practice certain plays tailored for their upcoming opponent, or only have time to break down

a limited number of strategies and fixes during their film studies due to time constraints.

A metric measuring the quality of practice might then be a valuable variable to control

for. Unfortunately there is no publicly available historical data on teams’ past practices.

We can then conduct our sensitivity analysis with practice as a hypothetical confounder and

evaluate how it might affect our original results, if its exclusion were to indeed violate our

absence of unobserved confounders assumption. The desired model to be run then becomes

2https://www.nba.com/clippers/clippers-dont-practice-often-save-energy

3https://sports.yahoo.com/richard-hamilton-on-playing-for-tom-thibodeau—practice-was-tough-
181655127.html?y20=1
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Yijt = µ+ αit + γjt + λt + τDi

+ β1 · 1[resti = 0]− β1 · 1[restj = 0]

+ β2 · 1[resti = 1]− β2 · 1[restj = 1] + β3 · 1[resti = 2]− β3 · 1[restj = 2]

+ β4 · 1[traveli = −3]− β4 · 1[travelj = −3]

+ · · ·+ β9 · 1[travelj = +3]− β9 · 1[travelj = +3]

+ δ · practicei − δ · practicej + εijt

We can use our rest variable, which we do have measurements for, to help us bound

the strength of the unobservable practice variable. Although this is a potential model that

includes practice as a confounder, practice does not need to be specified in this particular

linear functional form. The extended sensitivity analysis that will be carried out also allows

for confounders that act non-linearly (Cinelli and Hazlett, 2018).
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CHAPTER 4

Results

4.1 Model Results

Table 4.1 shows results for the adjusted and unadjusted regression models. The estimated

average treatment effect is 2.33 points scored and is significant at the α = .05 level. This

means that home teams entering a game on equal rest and equal travel, on average, score

an additional 2.33 points than if they would have played as a visiting team. Compared

to the model that does not take into account the rest and travel control variables, the

unadjusted model has an upwardly biased estimate of 2.59 points due in part to the difference

in distributions for rest between home and visiting teams as described in the previous section.

This 10% difference is inline with Entine and Small’s findings, even though they use point

margin as the dependent variable rather than points scored.

Of the various categorical dummy variables, only the binary variable indicating if a team

was on zero days rest (playing a back-to-back) was found to be significant. The reference

level for the rest variable was set at three days of rest, which suggests that holding all other

factors equal, a team that plays a back-to-back, on average, scores 1.10 points less than if

they had three or more days of rest. Coefficients for variables corresponding to one and

two days of rest were also negative, suggesting an overall disadvantageous position when

teams do not get three or more days of rest, although these coefficients were not statistically

significant, so any meaningful interpretation for these particular coefficients is limited.

Coefficients for the travel dummy variables were relative to no time zones traveled. How-

ever, none of these of these coefficients were found to be statistically significant.
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Table 4.1: Regression Adjustment Results

Dependent variable:

points

(1) (2)

treatment 2.332∗∗∗ 2.591∗∗∗

(0.215) (0.194)

rest0 −1.096∗∗∗

(0.395)

rest1 −0.363

(0.373)

rest2 −0.245

(0.405)

travelwest3 −0.536

(0.739)

travelwest2 0.434

(0.430)

travelwest1 0.181

(0.225)

traveleast3 −0.921

(0.724)

traveleast2 −0.161

(0.405)

traveleast1 −0.159

(0.216)

Observations 12,134 12,134

R2 0.249 0.247

Adjusted R2 0.230 0.229

Residual Std. Error 10.687 (df = 11829) 10.693 (df = 11838)

F Statistic 12.892∗∗∗ (df = 304; 11829) 13.194∗∗∗ (df = 295; 11838)

Note: made with stargazer Hlavac, 2018 package in R ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.2 Sensitivity Analysis Results

An initial minimal reporting table that summarizes and highlights some simple robustness

measures is shown in Table 4.2. Commonly reported regression results are shown alongside

quantities that allow the researcher to quickly gain a rough understanding of the sensitivity

of their quantity of interest. Looking at the estimate, standard error, and t-value would

quickly lead most to suspect that the existence home court effect is indeed evident, though

the additional measures provide a more granular view. The robustness value (RV) tells

us that a confounder explaining 9.44% of the residual variance in treatment and outcome

would be strong enough to bring our home court effect estimate to zero. The quantity

R2
Y∼D|X considers the worst case scenario where some unmeasured confounder explains all

the residual variance in the outcome variable. In this case, R2
D∼Z|X would need to be at least

as large as R2
Y∼D|X, or 0.98% in order to bring our estimated effect down to zero.

Treatment: Est. SE t-value R2
Y∼D|X RV RVα=0.05

home 2.332 0.215 10.83 0.98% 9.47% 9.46%

df = 11829, Bound (Z as strong as rest): R2
Y∼Z|X,D = 1.22%, R2

D∼Z|X = 3.03%

Table 4.2: Minimal Reporting Table for Sensitivity Analysis

If we consider a confounder as strong as our observed covariate rest, we can bound the

strength of such a confounder by using the bounds described at the end of Chapter 2. It can

be easily seen that our bounds for R2
Y∼Z|X,D and R2

D∼Z|X both fall short of the robustness

value, meaning such a confounder would not be strong enough to reduce our point estimate

to zero.

To visualize the strengths of these hypothetical confounders, a contour plot similar to

those used in traditional sensitivity analyses can be made by using the partial R2 values

of our confounder on the axes and representing the adjusted estimated treatment effect

on the contour lines. Figure 4.1 shows the adjusted treatment effect estimate at varying

combinations of partial R2 values. By bounding the partial R2 of hypothetical unobserved
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Figure 4.1: Sensitivity contour plot of home treatment variable point estimate

confounders k times stronger than our rest variable, we can see that even though a confounder

three times stronger would reduce our estimate by about 40%, it would not be nearly enough

to completely eliminate our point estimate.

It is also possible to conduct a similar type of sensitivity analysis on the t-statistic of

our treatment variable to see if unmeasured confounders would cause inferential concerns.

In this particular case, the contour line of interest is the one that corresponds to the critical

value for our particular t-distribution. Given our large sample, this critical value roughly

corresponds to a value of 2. The t-statistic is sensitive to changes to both the point estimate

and variance and we can see this enlarged sensitivity in Figure 4.2 where a confounder three

times stronger reduces the t-statistic by over 50% from 10.83 to 4.73. While this percentage

reduction is larger than that of the point estimate’s and the new value comes closer to our

contour line of interest, the statistical significance of estimate is still clearly robust to a

confounder three times as strong as our rest variable. In fact, it would take a confounder a

little more than four times as strong as rest before statistical significance is threatened.

Recall the quantity R2
Y∼D|X, which corresponds to the value that R2

D∼Z|X would need
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Figure 4.2: Sensitivity contour plot of home treatment variable t-statistic

to be in order to eliminate our point estimate if a confounder explained all the residual

variance in the outcome variable. The extreme scenario plot in Figure 4.3 helps visualize

how our treatment effect estimate is changed in various scenarios where the confounder

explains a large proportion of the residual variance in the outcome. The vertical dotted line

corresponds precisely with R2
Y∼D|X. As we consider less extreme scenarios, higher values

of R2
D∼Z|X are needed to bring the treatment effect estimate down to the same value when

compared to the most extreme scenario. This plot is particularly useful when we do not

have a good barometer of the potential strength of unobserved confounders relative to our

observed covariates. By considering these extreme scenarios, we can gauge the plausibility of

the corresponding R2
D∼Z|X to see how robust our treatment effect estimate is. Determining

the plausibility of the events discussed in this section depends on the context of the research

problem at hand.
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Figure 4.3: Extreme scenario plot of an unobserved confounder

4.3 Discussion

From the results, there indeed seems to be evidence of a significant home court advantage

effect that is robust to strong confounders. It would take a confounder four times as strong

as rest to change our inferential conclusions. One important question to consider is how

likely it would be for such a confounder to exist. With sports literature to date, there has

been little evidence to suggest that there exists other strong systematic biases built into the

NBA’s scheduling formula. On the surface, the highlighted imbalance of rest in favor of the

home team would seem to play a significant role in contributing to home court advantage,

yet its exclusion only contributes a slight upwardly bias in the home court effect.

We previously mentioned a practice variable measuring the quality of practice proceeding

a particular game as a potential unobserved confounder. The discussion that remains is

if such a hypothetical confounder could possibly be four to five times stronger than our
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baseline pre-treatment covariate rest. While it might be strategically optimal for teams to

fit in complete practice sessions before each game in order to best prepare themselves for

their upcoming opponent’s strategy and key players, it simply seems physically unlikely that

either team would be running full practices on a consistent basis given the rigors of the

NBA’s 82 game regular season. Even if home teams were to run more complete practices,

with the preexisting high skill level of these professional athletes, the utility to be gained

from these sessions over simply watching game film and going over key game plan strategies

would seem to be limited. Using rest as a comparison, which has more tangible physical

impact on athletes’ bodies and a more direct connection to their performance during a game,

it seems unreasonable to claim that a practice variable confounder would be over four times

as strong as rest.

Examining extreme case scenarios for this particular analysis is not as insightful when

compared to other potential sensitivity analyses for a couple of reasons. Considering these

scenarios are important when the researcher is not able to make clear comparisons to observed

covariates. In our particular case, there is reasonable evidence to suggest that unobserved

confounders could not be much stronger than the rest variable. In addition, there is a

significant amount of noise associated with the outcome variable. The number of points

scored by a team in a particular game is affected by a wide range of variables, some being

very difficult to measure such as the day-to-day mentality of a team, and is in general fairly

difficult to predict. Our treatment variable home has a very low partial R2 of less than

1%, so considering potential confounders that explain a significant proportion of the residual

variance in outcome, let alone 100%, would not be very practical for this study.
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CHAPTER 5

Concluding Remarks

This thesis discusses the concept of home court advantage in the NBA within a causal frame-

work. In conjunction with assuming the correct specification of our causal model, conditional

ignorability is used as an identification technique. This provides an initial unbiased estimate

of the casual effect that playing at home has on the number of points scored, given that the

absence of unobserved confounders assumption holds true. A detailed sensitivity analysis

allows us to investigate how hypothetical confounders, such as practice, would affect our

original home court advantage estimate if their exclusions did indeed threaten the validity

of our prior assumption.

Overall, we find that playing at home is worth about an extra 2.3 points scored, upon

controlling for factors such the teams’ strength, rest, and travel. Our sensitivity analysis

reveals that our treatment effect estimate is robust to confounders that are up to four times

as strong as our rest covariate. When considering other possible unmeasured variables such

as the quality of practice leading into a matchup, it does not seem likely that there exists

a confounder strong enough to come close to eliminating our point estimate for the home

court advantage effect. Confounders one to two times as strong as our rest variable would

slightly decrease our treatment effect estimate, although the presence of such confounders

seems unlikely given the physical importance of rest in competitive basketball.

There are numerous potential next steps to build on this study. To better understand

what leads to the existence of such an effect, even after controlling for the aforementioned

variables, it would be interesting to also control for the referees as they are indeed observ-

able for each game. The addition of such a covariate would control for any variations and

inconsistencies in home bias by the referees. It also isolates the home court advantage effect
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estimate to other factors such as those relating to the psychological aspect of playing on the

road, which is often what one thinks of when considering home court advantage.

A detailed study regarding the factors considered when creating the NBA schedule would

be extremely beneficial in identifying potential factors that could affect our estimated effect.

Intricate information regarding the construction of the NBA schedule remains scarce. Ex-

tending this study to other professional sports leagues would help paint a more complete

image of the competitive landscape in professional sports. Applications from this study in-

clude its effect within the sports betting sphere. Modeling the impact that findings from

this study have on long term betting strategies could be a potentially rewarding and exciting

investigation.
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