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Abstract17

Climate models serve as indispensable tools to investigate the effect of anthropogenic emis-18

sions on current and future climate, including extremes. However as low dimensional ap-19

proximations of the climate system, they will always exhibit biases. Several attempts have20

been made to correct for biases as they affect extremes prediction, predominantly focused on21

correcting model-simulated distribution shapes. In this study, the effectiveness of a recently22

published quantile-based bias correction scheme, as well as a new subset selection method23

introduced here, are tested out-of-sample using model-as-truth experiments. Results show24

that biases in the shape of distributions tend to persist through time, and therefore correcting25

for shape bias is useful for past and future statements characterising the probability of ex-26

tremes. However, for statements characterised by a ratio of the probabilities of extremes be-27

tween two periods, we find that correcting for shape bias often provides no skill improvement28

due to the dominating effect of bias in the long-term trend. Using a toy-model experiment,29

we examine the relative importance of the shape of the distribution versus its position in re-30

sponse to long-term changes in radiative forcing. It confirms that the relative position of the31

two distributions, based on the trend, is at least as important as the shape. We encourage the32

community to consider all model biases relevant to their metric of interest when using a bias33

correction procedure and to construct out-of-sample tests that mirror the intended applica-34

tion.35

1 Introduction36

Observations and climate models show an increase in the frequency and intensity of37

hot and wet extremes and a decrease in the frequency and intensity of cold extremes, as asso-38

ciated regional mean temperatures increase [Alexander et al., 2006; Seneviratne et al., 2012;39

Hartmann et al., 2013; Collins and Knutti, 2013; Lewis and King, 2015]. These changes co-40

incide with a period of rapid increase in atmospheric CO2 concentrations as a consequence41

of anthropogenic industrialisation. Given the current state of rapid change, the climate sci-42

ence community, governments, the public, and news media have become interested in how43

human interference with the climate system has affected various characteristics of extreme44

weather. This includes current changes in occurrence probability [Peterson et al., 2012,45

2013; Herring et al., 2014, 2015, 2016]—a field known as ‘event attribution’—as well as46

21st century (and beyond) projections of extremes [Sillmann et al., 2013] and the impacts47

associated with them [Patz et al., 2005]. Since the 2015 Paris Agreement, which aims to pur-48

sue efforts to limit warming to 1.5◦C above pre-industrial levels, and hold the increase in the49

global average temperature to well below 2◦C, studies comparing projections of future ex-50

tremes between 1.5◦C and 2◦C worlds have grown in popularity [King and Karoly, 2017;51

King et al., 2017; Perkins-Kirkpatrick and Gibson, 2017; Lewis and King, 2017; Sanderson52

et al., 2017a].53

For both event attribution and projections of extremes, climate model simulations are54

widely used as they encapsulate our understanding of how human interference might affect55

the climate system. Because models exhibit a range of biases [Ehert et al., 2012] including56

their ability to reproduce the observed frequency distribution of extreme events and/or long-57

term trends [Sippel et al., 2016; Angélil et al., 2016; Bellprat and Doblas-Reyes, 2016], the58

accuracy of model-derived statements pertaining to extremes is not always clear. This has59

been demonstrated in sensitivity studies where attribution results can change in their sign de-60

pending on the model, observational dataset, or method used. For example the likelihood of61

occurrence of specific rainfall extremes can either be found to be more likely (positive attri-62

bution statement), less likely (negative statement), or hardly changed (neutral statement) as a63

consequence of anthropogenic emissions depending on the approach taken [Angélil et al.,64

2017b; Hauser et al., 2017]. For temperature extremes, the sign of the attribution state-65

ment may not change, but the actual attribution statement in terms of the quantification of66

how much anthropogenic climate change has altered the likelihood of the event, can vary67

by an order of magnitude [Angélil et al., 2017b]. Furthermore, model-simulated extremes68

may be systematically biased across various models compared to observations/reanalyses69
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[Christensen et al., 2008; Wang et al., 2014; Angélil et al., 2016; Donat et al., 2017; Bellprat70

and Doblas-Reyes, 2016], and therefore taking the median or mean of the metric of inter-71

est across ensemble members can be unreliable [King and Karoly, 2017; King et al., 2017;72

Perkins-Kirkpatrick and Gibson, 2017; Lewis and King, 2017]. Such biases are not neces-73

sarily reduced after the poorest performing models have been removed from an ensemble,74

indeed this process can reinforce model biases if metrics are not carefully chosen, since the75

best performing models might have common biases due to shared model development history76

(so-called model interdependence) [Herger et al., 2017].77

One way to mitigate some of these issues is to constrain the regional changes in fre-78

quency and intensity of hot temperature extremes by the shape of the model’s present-day79

temperature distribution [Borodina et al., 2017]. Other studies have developed statistical bias80

correction schemes, the vast majority focusing on correcting for distribution shapes when81

they are not representative of the distribution shapes of observational data. Many of these82

studies involve a procedure in which a ‘transfer function’ is derived by matching percentiles83

between simulated and observed cumulative distribution functions (sometimes also referred84

to as ‘quantile mapping’ or ‘histogram equalisation’) and have been expanded on and re-85

fined in the last decade [Piani et al., 2010b; Li et al., 2010; Piani et al., 2010a; Hempel et al.,86

2013; Sippel et al., 2016; Jeon et al., 2016]. The aim of such methods is to also improve87

‘out-of-sample’ results (a term used throughout this paper to describe time periods which88

have not been used to apply bias corrections and will be used to test their effectiveness).89

A fundamental issue with most of these bias correction techniques is that they are of-90

ten applied and tested on the same data (’in-sample’), but not in the period of their intended91

application (for example, because no observational data exist in the later 21st century). There92

is the risk that while the correction works perfectly in-sample (where observations are avail-93

able), it may actually degrade predictability out-of-sample. This may be because not all rel-94

evant model biases for the metric of interest were considered in the calibration. In statistics,95

the equivalent might be that when we see success at interpolation, it by no means guarantees96

success at extrapolation.97

A solution is out-of-sample testing using long observational records or model-as-98

truth experiments, which are common in some areas of climate science [Abramowitz and99

Bishop, 2015; Sanderson et al., 2017b; Knutti et al., 2017; Herger et al., 2017] but appear100

to be sparse in others such as in the extremes community where they are critically needed.101

In this study we test one quantile-based bias correction method [Jeon et al., 2016] (here-102

inafter referred to as ‘the Jeon method’). Their bias correction was applied to the standard103

event attribution method, which utilises two model-simulated distributions of weather, each104

forced under a different climate scenario: a counter-factual ‘natural’ world without indus-105

trialisation (commonly termed ‘NAT’) and the ‘real world’ forced with all known natural106

and anthropogenic boundary conditions (commonly termed ‘ALL’ or ‘RW’). Of the bias cor-107

rection methods already mentioned [Piani et al., 2010b; Li et al., 2010; Piani et al., 2010a;108

Hempel et al., 2013; Sippel et al., 2016], the Jeon method is the most simple. It adjusts the109

event magnitude which is being attributed, by ensuring its percentile (relative to the simu-110

lated distribution) equals the percentile of the observed event (relative to the observed dis-111

tribution). For example if the simulated tail is longer than the observed tail (as is the case112

in their study), the observed event magnitude is shifted further out into the tail until the two113

percentiles (each relative to their own distributions) are equal. However, such a correction,114

although perfect in-sample by definition, may not reduce biases out-of-sample which also115

depends on the probability of extremes in a world with different forcings. We test for this116

possibility below.117

Apart from testing the out-of-sample skill of the Jeon method, we also detail a new118

method to correct for biased model distribution shapes in multi-model ensembles. The tech-119

nique selects the subset of climate simulations from a multi-model ensemble that reduces120

distribution biases (when compared to a model-as-truth), following the flexible approach in-121

troduced in Herger et al. [2017]. Here, a modelled distribution is obtained by pooling data122

from a collection of climate models. Similarly to previous methods [Hempel et al., 2013;123

Sippel et al., 2016], it corrects for the entire distribution shape, allowing it to be used for124
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any distribution-based problem of interest, rather than just exceedance probabilities (which125

the Jeon method is limited to). The two methods (Jeon and the subset selection approach126

introduced here) can also be used in combination, providing a third bias correction option.127

Using long model runs (1870–2100), we test and compare the effectiveness of these three128

approaches for assessing the probability of extremes in a changing climate, relative to a base-129

line where no correction is performed. We then compare the relative influence of tail bias on130

attribution statements versus another relevant source of uncertainty—the bias of response to131

changes in long-term radiative forcing. Finally we discuss what type of bias correction and132

model evaluation strategies should be prioritised to determine whether models are fit for pur-133

pose in assessing extremes in a changing climate.134

2 Data135

We use one Coupled Model Intercomparison Project Phase 5 (CMIP5) [Taylor et al.,136

2012] simulation per modelling institute (21 simulations). The simulations cover the 1870–137

2100 period (RCP8.5 after 2005) and can be found in Table S1 in the Supplementary In-138

formation (SI). We split the 231 years into seven 33-year periods to explore out-of-sample139

testing. The seven Time Periods (TPs) are hereinafter referred to as TP1 (1870–1902), TP2140

(1903–1935), TP3 (1936–1968), TP4 (1969–2001), TP5 (2002–2034), TP6 (2035–2067),141

and TP7 (2068–2100).142

One model per institute is chosen from the CMIP5 archive in order to reduce model143

interdependency. Reducing model interdependency is an important step before performing144

model-as-truth experiments (see e.g., Abramowitz and Bishop [2015] and Sanderson et al.145

[2017b]) as it helps avoid artificial skill improvements due to the ‘truth’ model being too146

similar to the remaining model simulations (increasing the risk of over-fitting). Choosing one147

model per institute removes multiple initial condition members of the same model as well as148

similar, or similarly calibrated models. By doing this the average model-to-model distances149

are expected to become more similar to the average model-to-observation distances [Herger150

et al., 2017]. Indeed Figure S1a shows that for surface air temperature, the average KS test151

statistic between these 21 simulations and the land-only gridded observational product CRU-152

TS, v4.00 [Harris et al., 2014] is generally smaller than the mean model-model KS value.153

Results for total precipitation (Figure S1b) are similar, with model-obs KS values varying154

slightly more within the spread of model-model KS values across regions.155

Distributions of monthly mean surface air temperature (tas) and total precipitation156

(pr) are analysed over 58 WRAF2-v3.0 regions (see Figure 1). The regions are on average157

2·106 km2 in size. We apply the WRAF masks to the model data and calculate area-weighted158

monthly spatial averages over each region, covering the 231-year period. Note, the analyses159

could equally be performed on daily data, however this would reduce the model pool size.160

This work also primarily serves as a proof of concept and we thus decided against higher161

temporal resolution.162

No observational products were used in this study, except for in Figure S1. Instead,163

each model is removed from the ensemble and used as if it were observations, commonly164

referred to as either model-as-truth experiment or perfect model setup (see section 3.1).165

With this, we avoid the problem with long observational records having inconsistent qual-166

ity through time as a consequence of varying station density [Macias-Fauria et al., 2014], yet167

are still able to test the fidelity of the bias correction approaches.168
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Figure 1. This map shows the 58 WRAF2-v3.0 regions used in this study. Each region is roughly
2·106 km2 on average. The regions are colour-coded according to their continents.

169

170
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3 Methods171

In this study we define extreme events as the 1-in-1-year and 1-in-5-year return value172

based on monthly temperature and precipitation data. Even though extremes are often anal-173

ysed on a daily time scale, the concept itself can be well demonstrated using 1-in-1-year and174

1-in-5-year thresholds using monthly averages as done here. Furthermore, the sensitivity175

of extremes metrics such as the Probability Ratio (PR; looked at in this study and discussed176

later) to the temporal scales of the events (daily, 5-day, and monthly) have already been docu-177

mented [Angélil et al., 2017a]. The 1-in-1-year return value is the 91.67 percentile for warm178

and wet months, and the 8.33 percentile for cold months from the distribution of 33 years (12179

x 33 = 396 points) in the middle time period (TP4). Note, that this is roughly (but not ex-180

actly) the climatology of the locally warmest/coldest/wettest month in the year. The 1-in-5181

year return value is the 98.33 percentile for warm and wet months, and the 1.67 percentile182

for cold months. Given that results for 1-in-1-year events are ‘cleaner’ than those for 1-in-5-183

year events (for the latter, exceedance probabilities of zero were frequent enough to render184

results indistinguishable between some TPs) and since key findings are similar between both,185

results for 1-in-5-year extremes are shown in the SI. Results for 1-in-1-year and 1-in-5-year186

wet months are also only shown in the SI.187

3.1 Models-as-truth experiment188

Model-as-truth experiments as conducted in this study involve removing one of the en-189

semble members and treating it as if it were observations, or ‘truth’. The remaining ensemble190

is then calibrated (using either the Jeon method or the subset selection method introduced in191

section 3.3) to try to better estimate the truth member, using data from the middle TP (TP4).192

The calibrated ensemble can then be tested out-of-sample in the remaining six TPs against193

the ‘truth’ member. The ability of each technique to offer an improvement over the default194

ensemble (the 20 remaining ensemble members) is then assessed. The process is repeated195

with each of the 21 models playing the role as ‘truth’, and results aggregated to provide an196

uncertainty estimate of the ability of each bias correction approach. Ensuring that model-197

model distances are at least that of model-observation distances (as explained in Section 2198

above) gives us some confidence that success in model-as-truth experiments should translate199

to effective application of these techniques when adjusting climate projections.200

3.2 Jeon method201

As briefly mentioned in the introduction, the ‘Jeon method’ [Jeon et al., 2016] ac-202

counts for the discrepancy between the probabilities of extreme weather events derived from203

the ‘truth’ and the model dataset by mapping the ‘truth’ quantile to the modelled quantile.204

We then calculate temperature and precipitation thresholds in the model-as-truth and remain-205

ing 20 model datasets in TP4 (simply using the same percentile in the ‘truth’ and model dis-206

tributions to define thresholds is the essence of the Jeon method), rotating through each of207

the 21 models-as-truth and for each region separately.208

For a real application, we usually start with an observed event which can be described209

as a certain percentile of the observational record. Here, however, we start with a given per-210

centile (e.g., 91.67 percentile for warm events or 8.33 percentile for cold events) and cal-211

culate a model-derived threshold using that percentile. Exceedance Probabilities (EPs; for212

warm or wet events) or Probabilities of Falling Below (PsFB; for cold events) are computed213

relative to this threshold. When applying the Jeon method, the threshold is obtained from the214

pooled model distribution rather than from the model-as-truth. For a graphical representation215

of the Jeon method we refer to Figure 3 in their paper.216

3.3 Ensemble-based subset-selection method217

In Herger et al. [2017], an optimal subset of model runs is chosen to minimise the Root218

Mean Squared Error (RMSE) of global temperature or precipitation fields between a ‘truth’219
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(either observational product or model-as-truth) and an ensemble average for a given subset220

size. Here, we tailor the method to extremes by finding the optimal subset of CMIP5 model221

runs that when pooled (i.e. not averaging but rather concatenating all the data into one long222

vector) minimises the two-sample Kolmogorov-Smirnov (KS; Stephens [1970]) test statistic223

compared to a given ‘truth’ (model-as-truth in this studx). Different to the subset selection224

in Herger et al. [2017], here we are pooling rather than averaging model runs and we are225

minimising the KS test statistic for temperature and rainfall distributions over regions rather226

than the global RMSE.227

We also note that the meaning of ‘optimal’ is not general and can vary depending on228

the specific application. When we refer to an optimal subset we are talking about the subset229

that minimises the cost function for a specific variable, region, TP, model-as-truth, metric230

and so on. A globally optimal subset does not exist and would not be very meaningful.231

The KS test statistic is defined as the maximum vertical distance between the ‘true’232

Empirical Survival Functions (ESF) and the ESF of the pooled model runs. The maximum233

vertical distance is the same as the maximum vertical distance between two Empirical Cumu-234

lative Distribution Functions (ECDFs; ECDF=1-ESF). Examples of ESFs are shown in Fig-235

ure 3. Since there can be any number of members (between 1 and 20) in the optimal subset,236

we use K to denote the number of pooled model runs found to minimise the KS test statistic.237

We note that the Anderson Darling (AD; Anderson and Darling [1954]) test presents238

an alternative metric that is more sensitive to the tails of distributions than the KS test [Heo239

et al., 2013]. We attempted to select a subset to minimise the AD test statistic; however the240

optimisation was not feasible due to computational constraints, given the more complex cost241

function which had to be rewritten for the mathematical solver.242

A workflow of the novel methodology is shown in Figure 2, illustrated for one partic-243

ular region and one model-as-truth. The same procedure is then repeated for the remaining244

WRAF regions and models-as-truth.245

As noted above, the optimal subset is only calculated using TP4. Each implementation256

of the optimisation approach finds an optimal subset for a given ensemble size K, so in ad-257

dition to selecting an optimal subset, we need a mechanism to choose the ensemble size best258

suited across different TPs. To do this, we use a cross-validation approach using the mid-259

dle three 33-year TPs (TP3–TP5). We optimally select ensemble members for all ensemble260

sizes using one of these TPs and test the skill of these optimal ensembles on the other two261

periods. This process is repeated for all three TPs, and results averaged to find the best out-262

of-sample cross-validated optimal subset size KCV—see Figure 2. We refer to the period we263

train on (that is, derive the optimal ensemble) as ‘in-sample’ and the periods we test on—264

periods never seen by the subset-selection algorithm—as ‘out-of-sample’. The advantage of265

this approach is of course that we have models-as-truth both in- and out-of-sample and we266

can thus test the degree to which our bias correction methods degrade out-of-sample. We can267

also go much further out-of-sample had we just relied on long observational records. We use268

the term ‘optimal ensembles’ to denote the ensembles that are selected for a given ensemble269

size. ‘Optimal subset’ is used for the overall best (lowest KS test statistic) subset across all270

ensemble sizes.271

Consider case 1 in Figure 2 (red rectangle), where we train on TP4 and test on TP3 and272

TP5. For each ensemble size between 1 (single best simulation) and 20 (all runs pooled), we273

find the subset of ensemble runs which when pooled minimise the KS test statistic in the in-274

sample period (TP4) compared to the model-as-truth—see ECDF inset Figure 2a. This is a275

non-trivial task as there are for example 184756 possible ensembles of size 10. Due to time-276

constraint issues, a ‘brute-force’ approach is therefore simply not possible for each model-277

as-truth, over each of the 58 regions, for three TPs, and two variables. Instead, we use the278

state-of-the-art mathematical programming solver Gurobi [Gurobi, 2015] to minimise the279

KS test statistic for a given ensemble size. Details, including a link to a simplified Python280

script used to do this can be found in the SI. Note that Gurobi is only ever used to obtain the281

optimal ensembles in the training periods. We end up with a curve similar to the schematic282

in Figure 2a: the KS test statistic of the optimal ensemble as a function of ensemble size.283
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Figure 2. Methodological workflow of the study. The analysis period is split into seven 33-year periods
(TP1–TP7). Only TP3–TP5 are used to obtain the cross-validated optimal subset size. (a) For a given model-
as-truth (could equally be observations in practice), we obtain the optimal ensembles in the training set (case
1) for subset sizes 1–20. Those ensembles are then tested out-of-sample (in TP3 and TP5), see (b). Perfor-
mance of the optimal ensembles are tested out-of-sample in a total of six test periods (grey lines in blue box
(c)). To account for noise generally at small ensemble sizes, these functions are smoothed using a running
mean of three ensemble sizes. To obtain the cross-validated optimal subset size (KCV ), we average across
all six smoothed test cases (blue line in (c)). The subset size at the minimum of this function for a particular
region and model-as-truth is then used for the remainder of this study. A different size is obtained depending
on the chosen region and model-as-truth.

246

247

248

249

250

251

252

253

254

255

Note that the KS test statistic can vary between 0 and 1. Here, Ktrain,TP4 is the number of284

simulations in the optimal subset for TP4.285

Using only Ktrain,TP4 to go out-of-sample may be risky, as we do not know if the286

members of this optimal subset are still optimal in the two testing periods when climate forc-287

ing is different. It is possible that a different value of K would be best out-of-sample. The288

next step in the process is therefore to use the in-sample ensembles for each K found in (a),289

to calculate the KS test statistics in the two out-of-sample periods (see Figure 2b). Those KS290

values will likely be higher than the in-sample values. For each TP that we test on out-of-291

sample, we obtain a slightly different curve. Ideally we want the K with the minimum KS292

value for those curves (Ktest,TP3 and Ktest,TP5) to be close to the K with the minimum KS293

value found in-sample (Ktrain,TP4), but this is not always the case. To avoid overfitting we294

search for the optimal K across all three cases (termed ‘cross-validation’ (CV) in the litera-295

ture).296

We repeat the steps described above for cases 2 and 3, where the training and testing297

periods are changed. The curves for the six out-of-sample tests are shown in Figure 2c. Grey298

curves illustrate the smoothed functions using a moving window that averages the KS test299

statistics across three ensemble sizes. The reason we smooth those curves is because the grey300
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lines can be very noisy at small ensemble sizes. Failure to address this might lead to overfit-301

ting in an ensemble subset size that is small.302

Next, we average across the six grey curves to obtain the blue one. The cross-validated303

ensemble size, KCV—the size used for the remainder of the study (for a given region and304

model-as-truth), is the subset size with the overall smallest KS test statistic across these six305

out-of-sample tests. We refer to it as ‘cross-validated optimal subset size’. An example of in-306

and out-of-sample KS values for WRAF region 38, the Southern European Economic Area307

(EEA) and CSIRO-Mk3.6.0 r2i1p1 as the truth, can be found in the SI (Figures S3 and S4).308

This is an example where it is particularly important to execute the smoothing step. Without309

it we would end up with a small subset size, where the curves are noisy. For this region, we310

end up with a KCV subset size larger than the in-sample optimal subset sizes. The optimal311

ensemble in TP4 for KCV then becomes the ‘CV optimal subset’. A larger ensemble size312

means that we are relying on a wide range of climate models rather than betting on a small313

subset of models to perform well out-of-sample. Note that TP3 and TP5 may now not be314

considered as truly out-of-sample for testing the ability of our bias correction approaches,315

since they are used to find the optimal cross-validated subset size K (this is why they are in316

boldface in Figure 2).317

The pooling of model runs from the CMIP5 archive for each 33-year period mitigates318

the effect of internal variability (each run being in a different state of internal variability).319

What remains is therefore primarily the forced response, being the main difference between320

the TPs.321

3.4 Calculation of extremes metrics322

After correcting for shape bias, whether it be with the Jeon or sub-selection approach,323

we calculate EPs (for warm and wet events), PsFB (for cold events), and PRs—the ratio of324

two EPs or PsFB characterising the change in probability of the event between two periods of325

different forcings, in TP1–TP3 and TP5–TP7.326

The PR is typically used by the event attribution community between ALL and NAT327

forced climates to characterise the anthropogenic contribution to the chance of an extreme,328

but is unconventionally used in this study between two 33-year periods within the 1870–2100329

period. This allows out-of-sample testing forward and backward in time and so includes a330

broader range of forcing changes with which to test the bias correction techniques. The EPs,331

PsFB, and PRs obtained from the reference distribution of all 20 models pooled when using332

the truth to define the threshold (in TP4) are shown against EPs, PsFB, and PRs (again in333

the distribution of all 20 models pooled) obtained when using the Jeon method to calculate334

the threshold (light and dark green markers in Figures 5 and 6). The same procedure is also335

applied to the CV optimal subset (yellow and orange markers in Figures 5 and 6). The skill336

of both methods is gauged by comparing them to the ‘true’ EPs, PsFB, and PRs derived from337

using each model as truth.338

4 Results339

4.1 Obtaining the cross-validated optimal subset340

Cross-validated optimal subsets for each of the 58 WRAF regions are obtained as de-341

scribed in Section 3.3. Here, we illustrate the ensemble-based subset-selection method in342

TP4 using WRAF region 38, which is the Southern EEA. ESFs and normalised histograms343

are shown in Figure 3. The ‘truth’ (CSIRO-Mk3.6.0, r2i1p1) is shown in black and the re-344

maining 20 CMIP5 simulations in grey. The model run closest to the ‘truth’ in terms of the345

KS test statistic is shown in cyan. Note that the warm tails of most of the CMIP5 runs are346

too short relative to the ‘truth’. This tail bias persists in other TPs (seen in Figure 5a and dis-347

cussed later). The ESFs for precipitation are shown in Figure S2.348

Simply pooling all 20 model runs will not solve this problem, as shown with the light349

green line. This is where the subset-selection comes into play. The red line is the optimal350
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subset in the in-sample period (here: TP4), with K= 7. The cross-validated optimal subset is351

shown in yellow, with KCV= 9. Both the red and yellow lines are closer to the observations352

than the green line. Note, that any subset selection approach can only be successful if the353

original ensemble spans the entire distribution of the ‘true’ conditions, as it does in this case.354

The horizontal dashed lines show the 1-in-1-year warm and cold month events (91.67355

and 8.33 percentiles respectively). The vertical lines refer to the corresponding thresholds356

of the different distributions. The thresholds for the optimal subset and cross-validated opti-357

mal subset are now positioned closer to the ‘true’ thresholds, which is not guaranteed in all358

cases since we are optimising for the shape of the entire distribution, not specifically the tails.359

Thresholds for the ‘20 runs pooled’ distribution (light green) and the ‘CV optimal subset’360

(yellow) are later used for the Jeon method.361

Figure 3. Empirical survival function of monthly surface temperature in period TP4 over WRAF region
38 (Southern EEA) for CSIRO-Mk3.6.0 r2i1p1 as truth. The raw (no correction for mean bias) individual
CMIP5 model distributions are shown in grey, and the truth in black, each distribution consisting of 396 (33
years × 12 months) points. The cyan curve is the single best performing run (in terms of the lowest KS-test
statistic compared to the model-as-truth). The green curve is the 20 CMIP5 runs pooled. The red curve is
the optimal subset of CMIP5 runs which results in the lowest KS-test statistic compared to the truth derived
within TP4 (happens to be K = 7), and the yellow curve is the optimal subset when K = 9, being the subset
size best suited across TP3–TP5 (tuned via cross-validation). Vertical lines show the 1-in-1 year cold (8.33th
percentile) and warm (91.67th percentile) thresholds derived from the various distributions.

362

363

364

365

366

367

368

369

370

Figure 4a confirms that the sub-selection is working in-sample (TP4) for all regions,371

showing the in-sample KS test statistic values based on absolute surface temperature. The372

marker colours are consistent with what was used in Figure 3. Region 38 is highlighted in373

grey as this is the region used to illustrate results in (b) and subsequent panels. The smaller374

the KS test statistic, the closer the corresponding distribution is to the ‘truth’. There are even375

some regions where all the model distributions are significantly different (p < 0.05) from the376

‘true’ distribution (black border around markers).377

We observe that simply pooling all 20 available model runs (green marker) already378

seems to bring the distribution closer to the ‘truth’. It is usually better than most individual379

model runs. However, choosing ensemble members optimally can improve our pooled distri-380

bution even further. As before, the red marker is the subset which is optimal in-sample (here:381

TP4) and the yellow marker is the optimal subset in TP4 for size K chosen across TP3–TP5.382

Results for precipitation are similar (Figure S5a).383
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The CV optimal subset size is usually larger than the in-sample subset size (not shown).384

This tendency towards larger ensemble sizes is consistent with findings by Reifen and Toumi385

[2009] who suggest that having a ‘portfolio’ of climate models is better than relying on a386

small subset when making predictions as there is a risk associated with small ensemble sizes.387

In Figure 4b, which shows results only for WRAF region 38, we test whether the sub-388

set selection improves skill, measured as the KS test statistic, in the remaining six TPs. Here,389

each model is used as the ‘truth’, so there are 21 points in each of the boxplots. By definition,390

the bias correction improves skill in-sample (TP4) relative to the case where no correction is391

performed (all runs pooled). We note that it also improves skill out-of-sample as far as TP1392

and TP7 (biases in the shape tend to persist), although the skill gradually diminishes (yellow393

and red boxplots form a V-shape) the further away in time (and forcing) we move from the394

training period. Results in this format for the other 57 regions are similar (not shown here),395

as well as for precipitation (Figure S5b). Given that skill of the optimal subset and CV opti-396

mal subset are fairly similar, we only show results using the CV optimal subset in the remain-397

der of the study.398

4.2 Application of bias correction to extremes410

Now that we have confirmed that the ensemble-based subset-selection successfully411

improves the shape of the distribution in- and out-of-sample, we can focus our attention on412

extreme events. We start with EPs and PsFB (section 4.2.1) for warm and cold events re-413

spectively before we test its skill on PRs (section 4.2.2). For extremes, we are of course only414

interested in the tails of the distribution even though we calibrated the whole distribution to415

be similar to the ‘truth’. However, calibrating on the whole distribution still makes sense as416

we are not fixing usage to a particular extreme and can thus explore a range of thresholds for417

extremes in a consistent way. Moreover, we ensure that the mean climate (i.e., the bulk of418

the distribution) is right, and avoid an unrealistically truncated distribution (by e.g. solely419

optimising the tail of the distribution).420

4.2.1 Probabilities of exceeding or falling below a threshold421

Calibrating on the shape of the distribution in-sample does not guarantee that we sub-422

sequently get better estimates of PsFB or EPs. This is an assumption of metric transitivity,423

meaning that we expect an improvement in one metric—the shape of the distribution, to in-424

crease skill of another metric—EPs or PsFB—as though they were dependent. If this were425

not the case, testing the metric out-of-sample on anything other then what it was calibrated426

on in-sample would likely give poor results. In this section we test if metric transitivity holds427

for temperature extremes. Results for wet events can be found in the SI.428

Panels 5a and b show the probabilities of exceeding the 91.67 percentile in TP4 (1-in-429

1-year warm events; left column) or falling below the 8.33 percentile in TP4 (1-in-1-year430

cold events; right column) over Southern EEA using CSIRO-Mk3.6.0 as the ‘truth’. Re-431

sults for 1-in-5-year warm and cold month events are shown in Figure S6. We see that the432

probability of warm events decreases towards earlier TPs and increases towards later TPs433

(vise versa for cold events). We do not see such clear changes in EPs for precipitation (Fig-434

ure S7a for 1-in-1-year events and Figure S8a for 1-in-5-year wet month events). For warm435

events, the increase in EPs towards TP7 is significantly larger than the decrease in EPs to-436

wards TP1, indicating the stronger change in forcing towards the end of the 21st century.437

There are two additional markers compared to Figure 4. Dark-green markers refer to the438

case when all 20 runs are pooled and the threshold was based on this pooled distribution in439

TP4 (Jeon method) rather than the truth distribution. Orange markers refer to the CV opti-440

mal subset with threshold derived from this subset itself in TP4 (again Jeon method) rather441

than the truth. The closer the coloured markers are to the truth (black marker with horizontal442

line) outside of TP4, the more skillful the given bias correction procedure. Both the Jeon and443

subset selection methods appear to improve EPs and PsFB relative to when no correction is444

performed (light green marker).445
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a

b

Figure 4. (a) The in-sample KS (TP4) test statistics for all WRAF regions are shown based on CSIRO-
Mk3.6.0 r2i1p1 as truth. TP4 is used as our training period, and the KS-test statistics (compared to the
model-as-truth) of the individual and pooled runs are shown within the same period. We show results of
absolute surface temperature from the individual CMIP5 simulations (grey), the single best run (cyan), all 20
runs pooled (green), the optimal subset (red), and the cross-validated optimal subset (yellow). Markers have
a black border if the corresponding distribution is significantly different (p < 0.05) from the distribution of
the ‘truth’. WRAF region 38 (Southern EEA), is highlighted in grey. (b) Results for WRAF region 38 are
aggregated across all models-as-truth and for the seven time periods. In all cases, the subset is obtained in
TP4 and applied to the other time periods. Boxplots for the optimal subset (red), CV optimal subset (yellow)
and all 20 runs pooled (green) are shown. For the boxplots, the centerline is the median, the box spans the
25th–75th percentile range, and the whiskers span the 10th–90th percentile range.
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400
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404
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406

407

408

409

Panels (c) and (d) show the absolute error between each of the coloured markers and446

the ‘truth’, still over Southern EEA, using each model-as-truth, allowing us to present a range447

of skill. By definition, the absolute error for the methods based on the Jeon method are zero448
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in the in-sample period (TP4). Again, we observe that both methods improve EPs and PsFB449

as far from the training period as TP1 and TP7. Both methods also improve skill in the EP450

for precipitation events going back to TP1 and forwards to TP7 (Figures S7b and S8b). The451

significant reduction in the size of the absolute error in panel (d) towards the end of the 21st452

century is due to the reduction in the probabilities of cold extremes in a rapidly warming453

climate.454

Panels (e) and (f) show results averaged within the six continents: absolute errors for455

each model-as-truth are averaged across all WRAF regions that fall within a given continent.456

We summarise results by only showing results for TP1, TP4 (in-sample), and TP7 for a given457

continent. As for the Southern EEA, the bias correction strategies generally improve skill458

out-of-sample. The exception being the Jeon method in TP7 over South America and Africa459

for warm events (panel (e)), where the absolute error of the dark green marker is higher than460

for the light green marker. Applying the Jeon method on top of optimally selecting ensemble461

members usually leads to marginal improvements in skill beyond only optimally selecting462

ensembles members. Similar conclusions can be made for precipitation (Figures S7c and463

S8c) and 1-in-5-year temperature events (Figure S6c).464

So, calibrating on the shape of the distribution leads to improved EPs and PsFB, even478

when training and testing periods are several decades apart. These findings are consistent479

with a study by Borodina et al. [2017], who found a strong correlation between the modelled480

present-day temperature distribution and the projected frequency of warm extremes (defined481

as future exceedance of today’s 95th percentile), which they then use to constrain changes482

in the intensity of warm extremes in various regions. The reason the Jeon method and our483

subset selection method are successful (relative to no bias correction) is because shape bias484

tends to persist through time, as already mentioned, and EPs are strongly influenced by the485

shapes of the tails which can be strikingly biased in many cases. Although EPs improve sub-486

stantially with the bias correction methods, they are still imperfect, one reason likely being487

another model bias which is discussed next.488

4.2.2 Probability ratios489

In the event attribution community, it is not the EP or PFB but rather the PR that is of490

interest, being the ratio of two EPs or PsFB, typically between NAT and ALL forced simu-491

lations. The NAT scenario would refer to the same TP but under a forcing scenario repre-492

sentative of a world without anthropogenic influences. However, here the PR is calculated493

by dividing the EP or PFB in each TP, by the EP or PFB in TP4 (PRx = EP(TPx)/EP(TP4)).494

In Figure 6 (same as Figure 5 but for PRs) we test the effectiveness of the different bias cor-495

rection strategies on the PR by comparing the ratio of two EPs (warm events; left column)496

or PsFB (cold events; right column) in the bias corrected distributions against the ‘true’ PR.497

Results for 1-in-5-year warm and cold month events are shown in Figure S9.498

Panel (a), over Southern EEA using CSIRO-Mk3.6.0 as the ‘truth’, indicates that the499

EP in TP1–TP3 is lower than in TP4 (PR < 1; log2(PR)<0); and the EP in TP5–TP7 is500

higher than in TP4 (log2(PR)>0), when defining the threshold in TP4. The bias correction501

strategies appear to help as we move towards TP7: dark green, yellow, and orange markers502

lie closer to the black marker than the light green marker does. However, the bias correction503

methods do not appear to help going back to TP1, which can be considered most similar to504

what would be done in event attribution. In panel (b), we see that cold events in TP1–TP3505

are more common than in TP4 (log2(PR)>0) and cold events in TP5–TP7 are much less506

common than in TP4 (log2(PR)<0). It appears (going back to TP1 or forwards to TP7) that507

the bias correction strategies hardly help.508

Panels (c) and (d) provide more complete results for Southern EEA, as they show the509

spread when using each model-as-truth (each boxplot consisting of 21 points). Arrow-up510

markers in (d) indicate PRs of infinity as cold events defined in TP4 never occur in TP7511

where the forcing conditions are very different. Again, we see that it is only for warm events512

going into the future that the Jeon and subset selection methods help, which is even more ap-513

parent for 1-in-5-year warm events (Figure S9c). The reason for this is most likely because514
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a Warm Events b Cold Events

c d

e f

Figure 5. EPs for 1-in-1-year warm month thresholds are shown in the left column and PsFB for 1-in-1-
year cold month thresholds are shown in the right column. (a) EPs for CSIRO-Mk3.6.0 r2i1p1 as truth and
WRAF region 38 (Southern EEA) are shown for TP1–TP7. The threshold is defined in TP4 and its EP is
plotted for the remaining time periods. EPs of the truth (black dot and line) are compared to the distribution
of all 20 runs pooled without (light green dot) and with applying the Jeon method (dark green); and the cross-
validated optimal subset without (yellow) and with applying the Jeon method (orange). (b) is the same as (a)
but for cold events. (c) For the same WRAF region 38, we aggregate absolute errors of EP across all models-
as-truth. The errors are obtained by calculating the absolute distances between the truth and the remaining
ensembles. For the boxplots, the centerline is the median, the box spans the 25th–75th percentile range, and
the whiskers span the 10th–90th percentile range. (d) is the same as (c) but for cold events. (e) aggregates the
results shown in (c) across six continents by averaging results within those continents. Absolute errors of EP
in TP1, TP4 and TP7 are shown. The lines span from the 10th to the 90th percentile and the dot indicates the
median. (f) is the same as (e) but for cold events.
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warm events are very well-sampled as we move towards TP7; far more than cold events go-515

ing towards TP7 or warm events going back to TP1 (both of which decrease in likelihood).516

Even though cold events going back to TP1 increase in likelihood, the effect of the Jeon and517

subset selection methods is not as strong as for warm events as we move to TP7; the reason518

being that anthropogenic climate change is non-linear. Therefore, for warm events going for-519
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wards, we are essentially no longer in the tails, but rapidly moving towards the centre of the520

distribution, increasing the importance of the shape of the distribution, which we have opti-521

mised for. Error in the PR becomes increasingly larger for warm events as we move back to522

TP1 (similar to what is done in event attribution), or cold events as we move to TP7, since523

the events become poorly sampled. Therefore, correcting for the shape of the distribution524

does not appear to improve skill in the PR, allowing for the influence of another bias (long-525

term regional temperature response to changing CO2 concentrations) to begin to dominate526

(discussed later).527

Panels (e) and (f) reinforce that what we found for Southern EEA is valid over other re-528

gions too: the bias correction methods mostly improve skill in the PR for warm events as we529

move towards TP7. There also appears to be a noticeable improvement in the skill of the PR530

for cold events going back to TP1. This finding is consistent with our reasoning discussed531

in the previous paragraph: as for warm events going towards TP7, cold events going back to532

TP1 become more frequently sampled, increasing the importance of the shape of the distri-533

bution as opposed to just the poorly sampled tails. Arrow-up markers in panels (e) and (f)534

indicate errors of infinity. The effectiveness of the bias correction approaches on the PR for535

precipitation vary depending on the continent (Figure S10c for 1-in-1-year events and Figure536

S11c for 1-in-5-year events).537

4.3 Toy model552

To test if the PR is more sensitive to the trend or the shape of the distribution, we use553

a toy model experiment, shown in Figure 7. Using Gaussian distributions, we calculate PRs554

with different shapes of the distribution (figure columns: too narrow, correct, too wide) and555

different trends (figure rows: underestimated, correct, overestimated). Red represents the556

ALL world and blue the NAT world. To illustrate the idea, we use a 1-in-1-year warm month557

(91.67 percentile; see black dashed line in centre panel) event threshold in panel (a), and a558

1-in-1-year cold month (8.33 percentile) event threshold in panel (b) for the calculation of559

the PR. Results for 1-in-5-year warm and cold month events are shown in the supplementary560

information (Figure S13).561

The standard deviation (σ) and location (µ) of these distributions are derived from the562

same 21 CMIP5 simulations as used for the previous figures, for WRAF region 38 (Southern563

EEA). Standard deviations for each run are calculated based on monthly mean surface tem-564

perature data in TP4 (January averages for cold events and July averages for warm events).565

The regional temperature response to changing CO2 concentrations (and thus location dif-566

ference between the red and blue distributions) was derived by regressing the regional an-567

nual average surface temperature against global annual CO2 concentrations from 1870–568

2001 (TP1–TP4). We then obtain estimates of ‘too narrow’/‘too wide’ and ‘underestimated569

trend’/‘overestimated trend’ by using the 5th and 95th percentiles of distributions consisting570

of 21 standard deviations or trends (one value per model simulation in each of the distribu-571

tions). The 50th percentile was used as our target (middle panel in both panel (a) and (b)).572

The difference in CO2 between a natural world ( 280ppm) and a recently observed world in573

2015 ( 400ppm) is 120ppm. We therefore multiply the slope of the regression by 120 to ap-574

proximate the temperature change between the NAT and ALL distributions. Note that we575

make the assumption that we only observe a shift in the mean and the distributions remain576

Gaussian. Results for a low-latitude region (region 27; the Democratic Republic of Congo)577

with lower internal variability are similar and are shown in the supplementary information578

(Figure S12).579

In addition to the traditional calculation of the PR, being the probability of exceeding589

the event threshold in the ALL scenario divided by the probability of exceeding the event590

threshold in the NAT scenario (first line of text within each panel in Figure 7), we obtain591

PR estimates using the Jeon method (second line within each panel). The asterisk indicates592

which of the two PR estimates is closer to the target PR (100.77 for the warm extreme and593

10−0.38 for the cold extreme). Correcting for tail bias, e.g. with the Jeon method, does not594

always lead to an improved PR estimate.595
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a Warm Events b Cold Events

c d

e f

Figure 6. Probability ratios (PRs) for 1-in-1-year warm months are shown in the left column and for 1-in-
1-year cold months in the right column. The threshold is defined in TP4. (a) log2(PRs) for CSIRO-Mk3.6.0
r2i1p1 as truth and WRAF region 38 (Southern EEA) are shown for TP1–TP7. The PR in time period x is de-
fined as PRx = EP(TPx)/EP(TP4). PRs of the truth (black dot and line) are compared to the PRs of all 20 runs
pooled without (light green dot) and with applying the Jeon method (dark green); the cross-validated optimal
subset without (yellow) and with applying the Jeon method (orange). (b) is the same as (a) but for cold events.
(c) For the same WRAF region 38, we aggregate absolute errors of log2(PR) across all models-as-truth. The
errors are obtained by calculating the absolute distances between the truth and the remaining ensembles. For
the boxplots, the centerline is the median, the box spans the 25th–75th percentile range, and the whiskers span
the 10th–90th percentile range. (d) is the same as (c) but for cold events. (e) aggregates the results shown in
(c) across six continents by averaging results within those continents. Absolute errors of log2(PR) in TP1,
TP4 and TP7 are shown. The lines span from the 10th to the 90th percentile and the dot indicates the median.
The arrow-up markers indicate that at least four out of 21 values for a given time period and continent are
infinity. (f) is the same as (e) but for cold events.
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As mentioned in Section 4.2.2, we hypothesise that the reason we hardly see an im-596

provement in skill when calculating the PR for warm events is because the bias correction597

strategies only consider biases in the shapes of the distributions, without consideration of598
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other biases such as response bias; for example, how sensitive is the regional long-term tem-599

perature to changes in global CO2 concentrations?600

In this toy model setup, the effect of response bias on the PR is roughly the same as601

that of shape bias for cold events. But for warm events, the effect of response bias is at least602

an order of magnitude larger than the effect of shape bias: given a correct trend, the PR603

varies from 100.4 for ‘too wide’ distributions to 101.17 for ‘too narrow’ distributions (factor604

of 6; 101.17−0.4). However, given a correct standard deviation, the PR varies from 100.25 for605

an ‘underestimated trend’ to 102.9 for an ’overestimated trend’ (factor of 447). For 1-in-5-606

year warm month extremes the PR changes by a factor of 11 when keeping the trend correct607

and by a factor of 1820 for a correct distribution width. So, the importance of response bias608

relative to shape bias increases the rarer the event.609

When the standard deviation is underestimated, the sensitivity to the trend is further in-610

creased, resulting in a difference of four orders of magnitude between ‘underestimated trend’611

and ‘overestimated trend’. The toy model therefore suggests that narrower distributions exac-612

erbate the influence of trend bias on the PR, and vice versa for overestimated standard devi-613

ations. This is because the ratio of the anthropogenic warming signal to the noise of natural614

variability increases or decreases as the width of the distribution decreases or increases re-615

spectively [Angélil et al., 2017a].616

5 Discussion and Conclusions617

This study examines two bias correction approaches which account for biases in the618

shape of distributions of surface air temperature and total precipitation. The Jeon method ar-619

tificially adjusts the threshold in the model distribution to match the percentiles in the ‘true’620

distribution. As an approach that optimises for the whole distribution shape, we introduce a621

novel subset-selection method which optimally chooses ensemble members that when pooled622

have a distribution most similar to observations or a target ‘truth’ simulation. Overall results623

based on the Jeon method were found to be quite similar to the ensemble-based subset se-624

lection approach. This is interesting as both methods are fundamentally quite different in625

their underlying philosophy and technical implementation. Biases in the shape were found to626

persist through time based on a series of model-as-truth experiments. A subset calibrated to627

have a distribution shape similar to a model-as-truth in-sample was found to lead to improved628

out-of-sample skill when calculating EPs or PsFB, even though those probabilities are only629

sensitive to the tail of the distributions. This is because EPs and PsFB are strongly influenced630

by shape bias.631

However, when calculating the PR, which is by definition the ratio of two EPs or PsFB,632

the bias correction methods were found to provide little to no identifiable improvement in633

skill (except for PRs characterising the change in probability of warm extremes into the fu-634

ture). When taking the fraction of two EPs or PsFB, biased tail shapes play less of a role635

(one can consider the tail bias present in both the numerator and denominator to cancel) and636

the relative importance of trend bias begins to dominate, as confirmed by the toy model ex-637

periment. It is therefore theoretically possible for a PR to be fairly close to the ‘truth’ even638

if their EPs or PsFB are not. This study explores an example where out-of-sample testing639

is highly beneficial and metric transitivity cannot simply be assumed. While evaluating the640

shapes of simulated distributions is clearly important, it is likely not the most important641

source of uncertainty around PR-based attribution statements and many metrics pertaining642

to extremes in a changing climate. Therefore, bias correction approaches that solely aim to643

correct for shape bias are likely to lead to only minor if not any reductions in biases in PR644

estimates, particularly for attribution statements pertaining to warm extremes. Note that the645

bias in temperature response to long-term changes in radiative forcing becomes increasingly646

important with increasing GHG forcing, while the shape bias is relatively static. The impor-647

tance of a ‘correct’ distribution shape only decreases as more rare extremes are analysed, for648

example for 1-in-5-year events (see Figure S9 and the toy model in Figure S13 in which PRs649

are even more sensitive to the trend than the shape when compared to 1-in-1-year events).650
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Since evaluating response bias to long-term changes in radiative forcing using multi-651

ple observational products is not common practice in the event attribution community, we652

suggest that the long term response to forcing be evaluated and should be part of the optimi-653

sation process if this characteristic of the raw model output is deemed unfit for purpose (in654

addition to distribution properties). The difficulty here however is that the nature of the long-655

term temperature response in-sample does not seem to persist out-of-sample (see e.g. Figure656

4 in Herger et al. [2017]). Note that calibrating on the PR itself will not necessarily help as657

the correct PR value could be obtained due to compensating errors (e.g., an appropriate com-658

bination of an overly narrow distribution and an underestimated trend). The toy model results659

could feed into the debate whether simulated trends should be preserved as they are (as e.g.660

in Hempel et al. [2013]) or bias corrected using observations [Maraun, 2016].661

Future studies could test the sensitivity of results to different temporal resolutions and662

return periods of events. We additionally encourage the use of out-of-sample testing using663

long observational records and/or model-as-truth experiments to test bias correction ap-664

proaches. It is critical that we identify whether there is in fact a gain in our ability to make665

out-of-sample predictions (i.e. does the nature of the bias being corrected persist or does666

it break down in the projection period? Will the bias correction performed reduce bias in667

the metric we are interested in, only partly, or not at all?). As we have seen here, this is not668

guaranteed (also see Reichler and Kim [2008]; Reifen and Toumi [2009]). Fundamentally,669

bias correction is a statistical calibration exercise that will work in-sample by definition. As-670

sessing whether or not it works out-of-sample is a critical step for evaluating the nature of671

extremes in a changing climate.672
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a 1-in-1-Year Warm Event

b 1-in-1-Year Cold Event

Figure 7. (a) Toy model experiments to demonstrate the relative importance of biases in the shape of the
distribution and biases in the trend when calculating the PR. Location (µ) and shape (σ) for the Gaussian
distributions were derived from 21 CMIP5 simulations for WRAF region 38 (Southern EEA). The red distri-
butions represent the ALL forcing world and the blue distributions represent the NAT world. The 1-in-1-year
warm month (91.67 percentile) of the ALL distribution in the middle panel was used as a threshold for cal-
culating the PR. When applying the Jeon method (relevant only when distribution shapes are too narrow or
too wide), the threshold is defined from each ‘too narrow’ or ‘too wide’ ALL distribution. The asterisk in-
dicates which of the two PR estimates is closer to the target PR (middle panel). (b) same as panel (a) but for
1-in-1-year cold month events (8.33 percentile).
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