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Sequential selection of economic good
and action in medial frontal cortex of
macaques during value-based decisions
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Baltimore, United States; 2Department of Neuroscience, Johns Hopkins University
School of Medicine, Baltimore, United States; 3Zanvyl Krieger Mind/Brain Institute,
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Abstract Value-based decisions could rely either on the selection of desired economic goods or

on the selection of the actions that will obtain the goods. We investigated this question by

recording from the supplementary eye field (SEF) of monkeys during a gambling task that allowed

us to distinguish chosen good from chosen action signals. Analysis of the individual neuron activity,

as well as of the population state-space dynamic, showed that SEF encodes first the chosen gamble

option (the desired economic good) and only ~100 ms later the saccade that will obtain it (the

chosen action). The action selection is likely driven by inhibitory interactions between different SEF

neurons. Our results suggest that during value-based decisions, the selection of economic goods

precedes and guides the selection of actions. The two selection steps serve different functions and

can therefore not compensate for each other, even when information guiding both processes is

given simultaneously.

DOI: 10.7554/eLife.09418.001

Introduction
Value-based decision-making requires the ability to select the reward option with the highest avail-

able value, as well as the appropriate action necessary to obtain the desired option. Currently it is

still unclear how the brain compares value signals and uses them to select an action (Gold and Shad-

len, 2007; Cisek, 2012). The goods-based model of decision-making (Padoa-Schioppa, 2011) sug-

gests that the brain computes the subjective value of each offer, selects one of these option value

signals, and then prepares the appropriate action plan (Figure 1A). Support for this model comes

from recording studies in orbitofrontal cortex (OFC) during an economic choice task (Padoa-

Schioppa and Assad, 2006; Cai and Padoa-Schioppa, 2012). In contrast, the action-based model

of decision making (Tosoni et al., 2008; Cisek and Kalaska, 2010; Christopoulos et al., 2015a)

suggests that all potential actions are represented in the brain in parallel and compete with each

other (Figure 1B). This competition is influenced by a variety of factors including the value of each

actions’ outcome. According to this model, option value signals should not predict the chosen

option, since these signals only serve as input into the decision process, which is determined by the

competition among the potential actions. Support for this model comes primarily from recording

studies in parietal and premotor cortex (Platt and Glimcher, 1999; Sugrue et al., 2004;

Shadlen et al., 2008; Cisek and Kalaska, 2010; Christopoulos et al., 2015b ).

As there is evidence supporting both theories, it is unlikely that either the goods-based or the

action-based model in their pure form are correct. However, the exact role of goods- and action-

based selection processes in decision making is not known. The distributed consensus model

(Cisek, 2012) combines elements of the goods-based and the action-based model (Figure 1C). It is

Chen and Stuphorn. eLife 2015;4:e09418. DOI: 10.7554/eLife.09418 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.09418.001
http://dx.doi.org/10.7554/eLife.09418
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


characterized by strong reciprocal interactions between the goods and the action representation lev-

els that allow the action selection to influence the simultaneous ongoing value selection and vice

versa. This model predicts therefore that the selection of the chosen good and action are closely

integrated and proceed in parallel.

Here, we test these different models by recording neuronal activity in the supplementary eye field

(SEF). Previous research indicates that neurons in the SEF participate in the use of value signals to

select eye movements (So and Stuphorn, 2010). Its anatomical connections make the SEF ideally

suited for this role. It receives input from areas that represent option value, such as OFC, ACC, and

the amygdala (Huerta and Kaas, 1990; Matsumoto et al., 2003; Ghashghaei et al., 2007), and

projects to oculomotor areas, such as frontal eye field (FEF) and superior colliculus (Huerta and

Kaas, 1990).

We designed an oculomotor gamble task, in which the monkey had to choose between two gam-

ble options indicated by visual cues. The monkeys indicated their choice by making a saccade to the

cue indicating the desired gamble option. Across different trials, the visual cues were presented in

different locations and required saccades in different directions to be chosen. This allowed us to dis-

tinguish the selection of gamble options or economic goods from the selection of actions. We found

that the activity of SEF neurons predicted the monkey’s choice. Importantly, this decision process

unfolded sequentially. First, the chosen gamble option was selected and only then the chosen

action. The saccade selection process seemed to be driven by competition between directionally

tuned SEF neurons. Our findings are not in agreement with any of the previously suggested models

(Figure 1A–C). Instead, they support a new sequential decision model (Figure 1D). According to

this model, at the beginning of the decision two selection processes start independently on the

goods and action level. Our data indicate that the SEF activity is part of the action selection process.

eLife digest Much of our decision making seems to involve selecting the best option from

among those currently available, and then working out how to attain that particular outcome.

However, while this might sound straightforward in principle, exactly how this process is organized

within the brain is not entirely clear.

One possibility is that the brain compares all the possible outcomes of a decision with each other

before constructing a plan of action to achieve the most desirable of these. This is known as the

’goods-based’ model of decision making. However, an alternative possibility is that the brain instead

considers all the possible actions that could be performed at any given time. One specific action is

then chosen based on a range of factors, including the potential outcomes that might result from

each. This is an ’action-based’ model of decision making.

Chen and Stuphorn have now distinguished between these possibilities by training two monkeys

to perform a gambling task. The animals learned to make eye movements to one of two targets on a

screen to earn a reward. The identity of the targets varied between trials, with some associated with

larger rewards or a higher likelihood of receiving a reward than others. The location of the targets

also changed in different trials, which meant that the choice of ’action’ (moving the eyes to the left

or right) could be distinguished from the choice of ’goods’ (the reward).

By using electrodes to record from a region of the brain called the supplementary eye field,

which helps to control eye movements, Chen and Stuphorn showed that the activity of neurons in

this region predicted the monkeys’ decision-making behavior. Crucially, it did so in two stages:

neurons first encoded the reward chosen by the monkey, before subsequently encoding the action

that the monkey selected to obtain that outcome.

These data argue against an action-based model of decision making because outcomes are

encoded before actions. However, they also argue against a purely goods-based model. This is

because all possible actions are encoded by the brain (including those that are subsequently

rejected), with the highest levels of activity seen for the action that is ultimately selected. The data

instead support a new model of decision making, in which outcomes and actions are selected

sequentially via two independent brain circuits.

DOI: 10.7554/eLife.09418.002
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The action selection process receives input from the goods selection. However, due to the absence

of recurrent feedback, the goods selection process does not receive input from the action selection

process. Once the competition on the goods level is resolved, the value signals for the chosen gam-

ble option increase in strength and the ones for the non-chosen one decrease in strength. This activ-

ity difference cascades downward to the action level and determines the outcome of the action

selection.

Results

Behavior
Two monkeys (A and I) were trained to perform a gambling task in which they chose between two

different gamble options with different maximum reward and/or reward probability (Figure 2A,B).

The maximum and minimum reward amounts were indicated by the color of the target. The portion

of a color within the target corresponded to the probability of receiving the reward amount (see

experimental procedures). We estimated the subjective value for each target based on the choice

preference of the monkeys for all combinations of options (Figure 2C) (Maloney and Yang, 2003;

Kingdom and Prins, 2010). The subjective value estimate (referred to in the rest of the paper as

‘value’) is measured on a relative scale, with 0 and 1 being the least and most preferred option in

our set. Consistent with earlier findings (So and Stuphorn, 2010), the mean saccade reaction times

Figure 1. Architecture of different decision models. (A, B) Goods- and action-based models envision the

important selection step during value-based decisions to be either at the value (A) or action (B) representation

stage. (C, D) The other two models presume that important selection processes occur at both the value and the

action representation stage. However, they differ in their underlying architecture and in the resulting pattern of

activity across the network as it unfolds in time. (C) The distributed consensus model assumes reciprocal

interactions between the value and the action representation. These reciprocal interactions allow the action

selection to influence the simultaneous ongoing value selection. The selection of the chosen good and action

proceeds therefore in parallel. (D) In contrast, the sequential model assumes that there are no meaningful

functional reciprocal connections from the action to the value representation. Because of this the action value

representations cannot influence the value selection process, which has to finish first, before the action selection

can begin. Thus, this decision architecture by necessity implies a sequential decision process. Red arrows indicate

excitatory connections. Green buttons indicate inhibitory connections. Thickness of the connection indicates

relative strength of the neural activity.

DOI: 10.7554/eLife.09418.003
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Figure 2. Oculomotor gambling task and behavioral results. (A) Visual cues used in the gambling task. Four

different colors (cyan, red, blue, and green) indicated four different reward amounts (increasing from 1, 3, 5 to 9

units of water, where 1 unit equaled 30 ml). The expected value of the gamble targets along the diagonal axis was

the same. For example, the expected value of the bottom right green/cyan target is: 9 units (maximum reward) x

0.2 (maximum reward probability) + 1 unit (minimum reward) x 0.8 (minimum reward probability) = 2.6 units. (B)

Sequence of events during choice trials (top) and no-choice trials (bottom). The lines below indicate the duration

of various time periods in the gambling task. The black arrow is not part of the visual display; it indicates the

monkeys’ choices. (C–E) Behavioral results for monkey A (top) and monkey I (bottom). (C) The mean subjective

value of the seven gamble options is plotted as a function of expected value. Different colors indicate different

amounts of maximum reward. (D) The mean reaction times in no-choice trial as a function of subjective value. (E)

The mean reaction times in choice trial as a function of subjective value differences between chosen and non-

chosen targets.

DOI: 10.7554/eLife.09418.004

The following figure supplement is available for figure 2:

Figure supplement 1. Recording locations in SEF.

DOI: 10.7554/eLife.09418.005
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during no-choice trials were significantly negatively correlated with the value of the target

(Figure 2D, monkey B: t(5) = 8.40, p = 0.03; monkey I: t(5) = 27.35, p = 0.003). On choice trials, the

mean reaction times were significantly correlated with the signed value difference between chosen

and non-chosen targets (Figure 2E, monkey A: t(40) = 159.23, p<10 –14; monkey I: t(38) = 16.18,

p<10–4). Please note that there were a small number of trials with very negative value differences

indicating that during these trials the monkey chose a normally non-preferred option. The unusually

short reaction time in these trials suggests that the choices were not driven by the normal value-

based decision process. These other mechanisms may include history effects, spatial selection bias,

express saccades, lapse of attention to the task, and other factors. For this reason, these trials were

excluded from the analysis and are marked by a separate color.

SEF neurons predict chosen option and chosen action sequentially
We recorded 516 neurons in SEF (329 from monkey A, 187 from monkey I, Figure 2—figure supple-

ment 1). In the following analysis, we concentrated on a subset of 128 SEF neurons, whose activity

was tuned for saccade direction (see experimental procedures).

First, we asked whether SEF activity predicted the chosen gamble option or saccade direction.

We performed a trial by trial analysis using linear classification to decode the chosen direction and

chosen value from the spike density function with 1 ms temporal resolution. Figure 3A shows the

classification accuracy across all 128 directionally-tuned SEF neurons. Single neuron activity clearly

predicted both chosen gamble option and chosen direction better than chance, but sequentially,

not simultaneously. The activity began to predict chosen gamble option around 160 ms before sac-

cade onset and reached a peak around 120 ms before saccade onset, after which it gradually

decreased. The activity started to predict saccade direction only around 60 ms before saccade

onset. The same pattern is shown by the number of neurons showing significant classification accu-

racy as a function of time (Figure 3B).

This result indicates a sequence of decisions, whereby first an economic good, here a gamble

option, is chosen and only later the action that will bring it about. To confirm this finding, we

employed an independent information theoretic analysis to study how SEF activity encoded the cho-

sen and non-chosen gamble option, as well as the chosen and non-chosen direction throughout the

decision process (Figure 3C). We used 106 neurons which were tested with at least 8 out of 12 pos-

sible target position combinations. We assumed that the onset of significantly more information

about the chosen than the non-chosen variable in the neural firing rate indicated the moment at

which the selection process had finished and the choice could be predicted. This moment was

reached 66 ms earlier for gamble option information (113 ms before saccade onset; permutation

test adjusted for multiple comparison, p�0.05) than for saccade direction information (47 ms before

saccade onset; permutation test adjusted for multiple comparisons, p�0.05). Thus, the onset and

timing of the information representation in SEF is consistent with the results of the classification anal-

ysis and also indicates a sequential decision process.

In our gamble task, the monkey was free to indicate his choice as soon as he was ready. Because

of this design feature, the saccade onset is likely to be closer aligned with the conclusion of the deci-

sion process than target onset. The fact that reaction time reflected chosen value and value differ-

ence (i.e. choice difficulty), as indicated in Figure 2, also supports this idea. We analyzed therefore

the neural activity aligned on movement onset, because it likely reflects the dynamic of the decision

process more accurately. The analysis of the neural activity aligned on target onset further confirms

this conclusion (Figure 3—figure supplement 1).

SEF neurons reflect the value of both choice options in an opposing
way
Our findings indicated that SEF neurons show signs of a sequential decision process, whereby first a

desired economic good is chosen and only then the action that is necessary to obtain the good.

Next, we investigated the neural activity in the SEF neurons more closely to test if the SEF only

reflects the outcome of the decision, or whether it also reflects one or both of the selection steps.

Specifically, we searched for opposing contributions of the two choice options to the activity of SEF

neurons, which would indicate a competitive network that could select a winning option from a set

of possibilities.
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The directionally tuned SEF neurons represented the value of targets in the preferred direction

(PD) (Table 1). The PD is the saccade direction for which a neuron is maximally active, irrespective of

reward value obtained by the saccade. We estimated each neuron’s PD using a non-linear regression

analysis of activity for saccades to all four possible target locations. We defined here PD as the tar-

get direction that is closest to the estimated PD. Figure 4A,B shows the activity of the SEF neurons

during no-choice trials, that is, when only one target appears on the screen. Although the SEF neu-

rons are strongly active for PD targets and show value-related modulations (Figure 4A), they are not

active for saccades into the non-preferred direction (NPD), independent of their value (Figure 4B;

regression coefficient = 0.013, t(5) = 1.324, p=0.243). The SEF neurons encode, therefore, the value

of saccades to the PD target, confirming previous results (So and Stuphorn, 2010).

There are a number of subtypes of value signals that are associated with actions, such as sac-

cades. These signals are related to different stages of the decision process (Schultz, 2015; Stup-

horn, 2015). First, there are signals that represent the value of the alternative actions irrespective of

Figure 3. Time course of chosen gamble option and saccade direction representation in SEF. (A) Significant

classification accuracy for chosen gamble option (red) and chosen saccade direction (black) across 128 neurons.

We excluded values that were not significantly different from chance (permutation test; p�0.05). (B) Number of

neurons showing significant classification accuracy for chosen gamble option (red) and chosen saccade direction

(black). (C) Average mutual information between SEF activity and chosen and non-chosen gamble option (top

panel; dark and light red) and saccade direction (bottom panel; dark and light grey). The time period when the

amount of information about chosen and non-chosen option/direction was significantly different (paired t-test

adjusted for multiple comparisons, p�0.05) are indicated by the thick black line at the bottom of the plots. The

onset of a significant difference is indicated by the vertical dashed line. SEF, supplementary eye field.

DOI: 10.7554/eLife.09418.006

The following figure supplement is available for figure 3:

Figure supplement 1. Time course of value and saccade direction representation in SEF aligned on target onset.

DOI: 10.7554/eLife.09418.007
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Figure 4. SEF neurons represent the difference in action value associated with targets in the preferred and non-

preferred direction. The neural activity of 128 directionally tuned SEF neurons was normalized and compared

across trials with different values of targets in the preferred or non-preferred direction. (A) The neural activity in

no-choice trials, when the target was in the preferred direction. (B) The neural activity in no-choice trials, when the

target was in the non-preferred direction. (C, D) The neural activity in choice trials. To visualize the contrasting

effect of targets in the preferred or non-preferred direction on neural activity, the value of one of the targets was

held constant, while the value of the other target was varied. Activity was sorted by target value, but not by

saccade choice. (C) The neural activity, when the value of the target in the preferred direction varied, while the

value of the target in the non-preferred direction was held constant at a medium value. (D) The neural activity,

when the value of the target in the non-preferred direction varied, while the value of the target in the preferred

direction was held constant at a medium value. The color of the spike density histograms indicates the target

value [high value = 6–7 units (red line); medium value = 3–5 units (orange line); low value = 1–2 units (yellow line)].

(E-H) The regression analysis corresponding to (A-D). A t-test was used to determine whether the regression

Figure 4 continued on next page
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the choice. These signals represent the decision variables on which the decision process is based

and are commonly referred to as ‘action value’ signals. Second, there are signals that encode the

central step in the decision process, namely the comparison between the values of the alternative

actions. Such ‘relative action value’ signals represent a combination of different ‘action value’ signals.

They should be positively correlated with the action value of one alternative and negatively corre-

lated with the action value of the other alternatives. Third, there are signals that indicate the value of

the chosen action. These ‘chosen action value’ signals represent the output of the decision process.

Single target trials do not allow to distinguish between these functionally very different signals, but

choice trials do.

On their own, NPD targets did not evoke neural activity. However, the value of NPD targets

clearly modulated the response of the SEF neurons to the PD targets in choice trials (Figure 4D;

Table 1). To isolate the effect that targets in the two directions have on the neural activity, we first

held the value of the NPD target constant at a medium amount and compared the SEF population

activity across trials with PD targets of varying value (Figure 4B). The neural activity clearly increased

with the value of the PD target (regression coefficient = 0.119, t(5) = 10.629, p<0.001; Figure 4E).

Next, we held the value of the PD target constant at a medium value and compared the population

activity across trials with NPD targets of varying value (Figure 4C). The neural activity clearly

decreased with the value of the NPD target (regression coefficient=-0.058, t(5)=-4.345, p=0.007;

Figure 4F). Thus, the SEF neurons represented a relative action value signal. The value of the PD tar-

get influences the SEF activity about twice as large as the value of the NPD target. This means that

Table 1. Average value effect on neural activity across all directional SEF neurons. The upper two

rows show the effect of preferred and non-preferred direction target value on normalized neuronal

activity in no-choice trials, and the lower two rows show their effect in choice trials. Within each set,

the upper row (VPD) shows the effect of the preferred direction target value on normalized neural

activity, whereas the lower row shows the effect of the non-preferred direction target value on

normalized neural activity. Significance was calculated using a t-test, which shows whether the

regression coefficient is significant difference from zero. The analysis corresponds to the results

presented in Figure 4.

All neurons
(n = 128)

Regression
coefficient

Lower confidence
bound

Upper confidence
bound t(5) p

No-
choice

VPD 0.057 0.020 0.095 3.945 0.011

VNPD 0.013 -0.012 0.039 1.324 0.243

Choice VPD 0.119 0.090 0.148 10.629 <0.001

VNPD -0.058 -0.093 -0.0238 -4.345 0.007

SEF, supplementary eye field.

DOI: 10.7554/eLife.09418.013

Figure 4 continued

coefficients were significantly different from 0. The regression coefficients, confidence intervals, t-values, and p-

values are listed in Table 1. SEF, supplementary eye field.

DOI: 10.7554/eLife.09418.008

The following figure supplements are available for figure 4:

Figure supplement 1. SEF neurons represent the difference in value of targets in the preferred and non-preferred

direction.

DOI: 10.7554/eLife.09418.009

Figure supplement 2. SEF neurons represent the difference in value of targets in the preferred (PD) and non-

preferred direction (NPD) independent of the chosen saccade direction.

DOI: 10.7554/eLife.09418.010

Figure supplement 3. SEF neurons represent the difference in action value associated with targets in the

preferred and non-preferred direction.

DOI: 10.7554/eLife.09418.011

Figure supplement 4. Neural activity modulated by the relative angle and position of the two targets.

DOI: 10.7554/eLife.09418.012
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the SEF neurons do not encode the exact value difference. Nevertheless, the opposing influence of

the targets indicates that SEF represents the essential step in decision-making, namely a comparison

of the relative value of the available actions. All these effects were present well before saccade onset

(Figure 4—figure supplement 1) and did not depend on the chosen saccade direction (Figure 4—

figure supplement 2). Similar activity pattern can also be observed if pooling together all task

related neurons (N=353, Figure 4—figure supplement 3). In contrast, the neurons were not signifi-

cantly influenced by the relative spatial location of each target (Figure 4—figure supplement 4).

We used a regression analysis to further quantify the relative contribution of the chosen and non-

chosen gamble option and saccade to the neural activity during the decision. In modeling the neural

activity in choice trials, we used each neurons’ activity in no-choice trials as a predictor of its

response in choice trials. Specifically, we modeled the neural activity as a weighted sum of the activ-

ity in no-choice trials for saccades to targets with the same gamble option or direction as the chosen

and non-chosen targets in the choice trials. The strength of the coefficients is a measure of the rela-

tive influence that each target has on the neural activity in a particular time period during the deci-

sion process. Figure 5 shows the time course of the coefficient strength for the chosen and non-

chosen target when we sorted trials either by gamble option or saccade direction. In both cases, the

correlation coefficients for the two targets were initially of equal value, indicating that the SEF

Figure 5. Relative influence of chosen and non-chosen target on SEF activity. (A) Regression coefficients for

chosen and non-chosen gamble options (dark and light red). (B) Regression coefficients for chosen and non-

chosen saccade directions (dark and light grey). Time periods in which the regression coefficients for chosen and

non-chosen option/direction are significantly different (paired t-test adjusted for multiple comparisons, p�0.05)

are indicated by a thick black line. The onset of a significant difference is indicated by a vertical dashed line. All

panels are aligned on saccade onset. The shaded areas represent SEM. SEF, supplementary eye field; SEM,

standard error of the mean.
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neurons reflected each target equally during this time period. However, 110 ms before saccade

onset (permutation test adjusted for multiple comparisons, p�0.05) the strength of the chosen gam-

ble option coefficient started to rise, while the non-chosen gamble coefficient strength stayed the

same. Later in the trial, 60 ms before saccade onset (permutation test adjusted for multiple compari-

sons, p�0.05) the coefficient strength for the chosen saccade direction increased. Simultaneously,

the coefficient strength for the non-chosen saccade direction decreased. The results of the regres-

sion analysis allow a number of conclusions about the mechanism underlying decision-making and

the role of SEF in it. First, the results confirm the findings of the decoding and encoding analysis

(Figure 3) and indicate that the decision process involves a sequence of two different selection pro-

cesses. Second, the opposing pattern of influence on neural activity in the case of saccade direction

suggests that the latter action selection step could involve at least partially the SEF. The mechanism

underlying this selection involves competition between the action value signals associated with the

two saccade targets. Thus, the increasing influence of one target leads simultaneously to a decreas-

ing influence of the other target. However, the neural activity associated with the earlier gamble

option selection step does not show such a pattern of competing influences. Instead, the influence

of the chosen option just increases. That indicates that the choice of an economic good does not

involve competitive interactions between SEF neurons. Instead, only the output of the gamble

option selection is represented in SEF. This signal could reflect input from other brain regions.

Relative action value map in SEF reflects competition between
available saccade choices
Each directionally tuned SEF neuron represents the relative action value of saccades directed toward

its PD. Together these neurons form a map encoding the relative value of all possible saccades dur-

ing the decision process. Our analysis of the activity pattern in individual neurons suggested that the

action selection relied on competition between different relative action value signals. In that case,

the relative action value map in SEF should contain different groups of neurons that represent the

competing relative action values of the two saccade choices. If the activities of these two groups of

neurons indeed reflect inhibitory competition, the selection of a particular action should lead to

increased activity of the neurons representing the chosen and decreased activity in the neurons rep-

resenting the non-chosen saccade. Furthermore, the inhibition that the winning neurons can exert

on the losing neurons should depend on their relative strength. We should therefore see differences

in the dynamic of the neural activity within the relative action value map if we compare trials with

small or large value differences.

To reconstruct the SEF relative action value map, we combined the activity of all directionally

tuned neurons in both monkeys (Figure 6). We sorted each SEF neuron according to its PD and nor-

malized their activity across all trial types (choice, no-choice trials). We then smoothed the matrix by

linear interpolation at a bin size of 7.2˚ and plotted the activity. For each successive moment in time,

the resulting vector represented the relative action value of all possible saccade directions, because

all task-relevant saccades were equidistant to the fixation point. The succession of states of the map

across time represented the development of relative action value-related activity in SEF over the

course of decision making.

In choice trials, activity started to rise in two sets of neurons (Figure 6B). One was centered on

the chosen target (indicated by the red dot), while the other one was centered on the non-chosen

target (indicated by the black dot). The initial rise in activity was not significantly different between

choice and no-choice trials (onset time on no-choice trial: 44 ms, choice trial: 40 ms; permutation

test adjusted for multiple comparisons, p�0.05). However, there was a longer delay between the ini-

tial rise in activity and saccade onset (onset time on no-choice trial: 141 ms before saccade onset,

choice trial: 185 ms before saccade onset; permutation test adjusted for multiple comparisons,

p�0.05), in keeping with the fact that reaction times were longer when the monkey had to choose

between two response options (Figure 2E). At the beginning, the activity associated with both pos-

sible targets was of similar strength, but 70 ms before saccade onset (permutation test adjusted for

multiple comparisons, p�0.05), a significant activity difference developed between the two sets of

cells that predicted which saccade would be chosen. The activity centered on the chosen saccade

became much stronger than the one centered on the non-chosen saccade. This differentiation

reflected the decision outcome within the SEF relative action value map.
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Figure 6. Action value maps showing population activity in SEF during decision making. Each neuron’s activity was

normalized across all trial conditions. The maps in the left column are aligned on target onset and the panels in

the right column on saccade onset. In each map, horizontal rows represent the average activity of cells whose

preferred direction lies at a given angle relative to the chosen target (red circle on left). Color indicates change in

normalized firing rate relative to the background firing rate (scale on the right). (A) Population activity during no-

choice (A) and choice trials (B). Population activity in choice trials divided into trials with small (C) and (D) large

value differences between the reward options. The subplots above the action value maps show the time course of

the neural activity associated with the chosen (45–135˚) and non-chosen (225–315˚) target. The brown lines

underneath show the time when population activities were significantly different than the baseline (permutation

test adjusted for multiple comparisons). The blue lines underneath show the time when the neural activities

associated with the chosen target were significantly different from those associated with the non-chosen target

(permutation test adjusted for multiple comparisons). SEF, supplementary eye field.

DOI: 10.7554/eLife.09418.015
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The chosen saccade was often also the one with the larger value. We therefore performed a sepa-

rate analysis of those choice trials were the monkeys made different choices for the same pair of

gambles, which allowed us to differentiate between the representation of action value and choice. A

comparison of the trials when the larger (‘correct’) or smaller (‘error’) value targets were chosen

shows a strong increase of neural activity for the chosen target regardless of its average value (Fig-

ure 6—figure supplement 1). This confirmed that neural activity in SEF represented not only the rel-

ative action value of the competing saccades, but also the final choice.

We hypothesized that the action selection process is driven by competition between the action

values of the two targets. If that were true, we would expect the reduction in non-chosen saccade

related activity to be less pronounced and to occur later because of weaker inhibition, when the dif-

ferences in action values were less pronounced. We divided therefore the choice trials into two

groups with small (value difference smaller than 0.4) and large value differences (value difference

larger or equal to 0.4), while controlling that the mean chosen value in both conditions was the same

(Figure 6C,D). As predicted, the neural activity associated with the non-chosen target was stronger

and lasted longer, when the value differences were small (onset of significant activity difference for

chosen target and non-chosen target was 68 ms before saccade onset for small value difference trial

and 42 ms before saccade onset for large value difference trials; permutation test adjusted for multi-

ple comparisons, p � 0:05, Table 2). This longer lasting activity was consistent with the longer reac-

tion time for smaller value difference trials (Figure 2E). In contrast, the activity for the chosen target

was weaker, when the value differences were small, especially early on (100–150 ms after target

onset). The stronger activity associated with the non-chosen target in these trials was likely better

able to withstand the competition of the activity associated with the chosen target and in turn

reduced this activity more strongly.

On choice trials, there is a simultaneous onset of activity in the two areas of the relative action

value map that correspond with the location of the two target options (Figure 6B). Throughout the

task, there is a robust representation of both options maintained in SEF, even after the divergence

of activity that indicates the chosen option and action (Figure 4C,D; Figure 6B,C). However, during

the initial rise in activity the SEF population does not indicate the value of the target in its PD. At the

time, when the neurons start to differentiate their activity according to the value of the target in the

preferred direction they also reflect the value of the target in the NPD. This can be seen very clearly

in Figure 4D showing the activity of SEF neurons for PD targets of medium value. Depending on the

value of the NPD target, the activity starts to change ~110–120 ms after target onset. However, it

took this much time for the SEF neurons to indicate value even during no-choice trials, when there

was no competing target. It seems therefore that the SEF neurons always indicate relative action

value. There is no time period in which two populations of SEF neurons represent the absolute

action value of a target independent of the value of any competing target. Nevertheless, there is

clear evidence of a succession of an initial undifferentiated state to a more and more differentiated

state in which the influence of the chosen action value on the neuronal activity increases and the

influence of the non-chosen one decreases (Figure 4D; Figure 6B,C). This indicates a dynamic pro-

cess as would be expected by a decision mechanism driven by competition via inhibitory

interactions.

Our results therefore support the idea that an ongoing process of inhibitory competition under-

lies the action selection. SEF neurons might directly participate in this action selection process, or at

least reflect it.

Instantaneous changes in SEF activity state space reflect decision
process
So far, all analysis have been performed using individual SEF neurons or comparisons of specific sub-

sets of neurons. However, the decision process should also manifest itself in the dynamic changes in

the instantaneous activity distribution across the entire SEF population. To study how the SEF

Figure 6 continued

The following figure supplement is available for figure 6:

Figure supplement 1. Action value maps for trials with variable choices.
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population dynamically encodes the task variables underlying the monkeys’ behavior, we analyzed

the average population responses as trajectories in the neural state space (Yu et al., 2009;

Shenoy et al., 2011). As the previous analyses show, the activity pattern of individual SEF neurons

during the decision process is not completely independent from each other, but follows particular

pattern. The movement of SEF activity state trajectories in a lower-dimensional sub-space captured

therefore most of the relationship between the SEF activity state and the behaviorally relevant task

variables (Figure 7). We estimated this task-related subspace by using linear regression to define

three orthogonal axis: chosen saccade direction along the horizontal and vertical dimension, and

value of the chosen option (Mante et al., 2013).

First, we compare only trajectories for saccades in two different directions and three different

value levels in a simplified two-dimensional space spanned by the value and the vertical movement

direction axis (Figure 7A). The trajectories of upward and downward saccades (as indicated by the

different color) are clearly well separated along the direction axis. In addition, the trajectories for dif-

ferent chosen value are also separate from each other along the value axis (as indicated by different

line style). Thus, the trajectories move in an orderly fashion with respect to the two task-related axis.

As a result of the separation across both axis, the trajectories reach six different points in state

space, when the respective saccade is initiated.

Similarly, in the full three-dimensional (3-D) task space, the trajectories for all four directions and

the different chosen values are also well separated from each other and do not converge

(Figure 7B). As a result, the trajectories reach different positions in 3-D task space at the moment of

saccade initiation, and their distance is significantly correlated with the difference in chosen value for

all four different saccade directions (Figure 7C). Our previous analysis suggests that the neurons

encoding the relative action value of saccades in different direction compete through mutual inhibi-

tion. This mutual inhibition should change the direction and endpoint of the different trajectories, so

that they should not only depend on the saccade direction and subjective value of the chosen target,

but also on the value of the non-chosen target. To test this, for a fixed direction and chosen value,

we computed the distance between the trajectory with the largest non-chosen value and all other

trajectories with decreasing non-chosen values. The regression analysis shows that, when saccade

direction and chosen value is fixed, the distance between trajectories is significantly modulated by

non-chosen value (Figure 7D). The larger the non-chosen value difference is the further apart the

trajectories are when the saccade is initiated. This can also be observed by comparing population

activity trajectories in the state space (Figure 7—figure supplement 1). Thus, the trajectories in

Table 2. The onset times in time-direction maps. The first main column shows the onset time

calculated from trials aligned on target onset and the second main column shows the onset time

calculated from trials aligned on saccade onset. Within each main column, the first minor column

shows the time when the neural activity was significantly different from background activity (-20 to 0

before target onset). The second minor column shows the time when the neural activity represented

the choice. In no-choice trials, this corresponds to the time when the activity of neurons with a

preferred direction within � 30˚ of the target was significantly different from the activity of neurons

where no target was presented (the neurons with preferred direction within 240–300˚). For choice
trial, it corresponds to the time when the activity for the chosen target was significant different form

the activity for the non-chosen target (in both cases the neurons with preferred direction within � 30˚
of their respective target). A permutation test with multiple comparison correction was used to

calculate the onset times.

Time from target onset Time from saccade onset

Activity vs
background

Chosen vs non-
chosen

Activity vs
background

Chosen vs non-
chosen

No-choice 44 ms -141 ms

Choice 40 ms 105 ms -185 ms -70 ms

Choice
(dV>=0.4)

44 ms 92 ms -129 ms -68 ms

Choice (dV<0.4) 41 ms 139 ms -169 ms -42 ms

DOI: 10.7554/eLife.09418.017
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Figure 7. Dynamics of SEF population activity trajectories in state space during decision making. The average population response for a given

condition and time period (10 ms) is represented as a point in state space. Responses are shown from 200 ms before to 10 after saccade onset. The

time of saccade initiation is indicated by the larger dot. The four different chosen saccade directions are indicated by different colors (up right: red;

down right: orange: up left: black; down left: blue) and the value of the chosen target by line style (high value (value>=0.7): solid line, medium value

(value<0.7 and value >0.3): dashed line, low value dotted line). (A) Trajectories of up-left and down-right movement in value and horizontal (left/right)

subspace for three different values. (B) Trajectories of movements in value and action subspace. (C) The effect of the chosen option value on the state

space trajectory at saccade onset. The subjective value of each chosen option was measured relative to the option with the smallest chosen value. The

Euclidian distance in 3-D task space between the state vectors of each pair of chosen options increased as a function of their difference in subjective

value. The significance of the relationship between difference in Euclidian distance and value was tested using a regression analysis (t-test; the p-value

indicates the probability that the regression slope is significantly different from zero). (D) The effect of the non-chosen option value on the state space

trajectory at saccade onset. For trajectories with fixed saccade direction and chosen option value, the difference in Euclidian distance increased as a

function of difference in subjective value of each non-chosen option relative to the option with the largest non-chosen value. SEF, supplementary eye

field.
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state space reflect both the chosen and the non-chosen target values. In this context, no-choice trials

could be considered as choice trials with zero non-chosen value. In this case, one would expect the

trajectory to be similar to the trials with large chosen and small unchosen value. However, this is not

the case (Figure 7—figure supplement 1). Although trajectories for no-choice trials are also modu-

lated by both value and direction, they always reach a point along both the value and direction axis

that is less extended than during choice trials.

Lastly, we asked whether the sequential value and action selection can be observed in the state

space analysis. An indication of this can be seen in Figure 7A. The trajectories first start to separate

along the value axis, before they separate along the direction axis. Consistent with this observation

and the single neuron analysis, the variance explained by value axis increased earlier than the vari-

ance explained by saccade direction axis (Figure 7—figure supplement 2).

Discussion
Our results indicate that SEF represents the relative action value of all possible saccades, forming a

relative action value map. During value-based decisions, the SEF population first encodes the chosen

gamble option and only later the chosen direction. Our data suggest that neural activity in SEF

reflects the action selection, the second step in the decision process. This selection process occurs

likely through a process of competitive inhibition between groups of neurons carrying relative action

value signals for different saccades. This inhibition could occur locally between SEF neurons, either

through mutual inhibition between different SEF neurons within the relative action value map, or

through a global pool of inhibitory neurons that receive input from excitatory neurons in SEF

(Schlag et al., 1998; Wang, 2008; Nassi et al., 2015). Alternatively, the neural activity in SEF and

the competitive process manifested by it could reflect shared signals within the more distributed

action selection network that SEF is part of. Similar action value signals have been reported in lateral

prefrontal cortex (Matsumoto et al., 2003; Wallis and Miller, 2003), anterior cingulate cortex

(Matsumoto et al., 2003), and basal ganglia (Samejima et al., 2005; Lau and Glimcher, 2008). Of

course, it is also possible that the action selection involves both interactions between neurons in a

larger network and local inhibitory interactions. Future perturbation experiments will be required to

test whether SEF plays a causal role in decision making and also if the relative action value encoding

is at least partly the result of local inhibitory mechanism or whether it reflects only input from con-

nected brain regions. Independent of these considerations, our results allow us to draw some con-

clusions about the basic functional architecture of decision making in the brain. Specifically, they

invalidate a number of previously suggested decision models and instead support a new sequential

model of decision making.

Currently, three major hypotheses about the mechanism underlying value-based decision making

have been suggested: the goods-based model (Figure 1A), the action-based model (Figure 1B),

and the distributed consensus model (Figure 1C). Our gamble experiment design allows us to test

these models by dissociating the value selection process from the action selection process. Due to

the uncertainty of reward for each individual gamble, the large number of the gamble option pairs,

and the fact that each gamble option pairing could be presented in multiple spatial configurations,

the task design prevent the subjects from making direct associations between the visual representa-

tion of the gamble options and action choice. Therefore, the task required on each trial a good-

based, as well as an action-based selection.

Our findings support none of the previously suggested models. First, the pure good-based model

of decision making would predict that action-related representations are downstream of the decision

Figure 7 continued
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Figure supplement 2. Fraction of variance in state vector position explained by task-related axes of chosen direction (pink and purple) and chosen

value (green).
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stage and should therefore only represent the decision outcome (i.e. the chosen action; see

Figure 1A). However, we found evidence for competition between relative action value-encoding

neurons in SEF that is spatially organized, that is, in an action-based frame of reference (Figure 4).

This fact, together with the fact that we find activity corresponding to both response options (Fig-

ure 6) clearly rules out the pure good-based model (Figure 1A). Second, the pure action-selection

model B would predict that the competition would only happen in the action value space. In

Figure 1B, this is indicated by the absence of inhibitory connections between the nodes represent-

ing the reward options (or goods). This model therefore predicts that information about chosen sac-

cade direction should appear simultaneously with or even slightly earlier than information about

chosen reward option, since the selected action value signal contains both direction and value infor-

mation. However, this prediction is contradicted by our observation that the chosen value informa-

tion is present earlier than the chosen action information (Figure 3, Figure 5 and Figure 7). Thus,

there is a moment during the decision-making process (100–50 ms before saccade onset), when the

SEF neurons encode which option is chosen, but not yet, what saccade will be chosen. This could

clearly never happen in an action-selection model of decision-making. Lastly, the distributed consen-

sus model (Figure 1C) suggests strong recurrent connections from the action selection level back to

the option selection level. The reciprocal interaction should lead to a synchronization of the selection

process in both stages and the chosen gamble option and chosen action should be selected simulta-

neously. This prediction is clearly not supported by our findings, given the robust 100 ms time differ-

ence in the onset of chosen option and direction information.

Instead, our data are most consistent with a model that predicts selection both on the option and

the action representation level, but with asymmetric connections between them, so that the option

selection level influences the action selection level, but not vice versa. This is the sequential model

of decision making (Figure 1D). According to this model, value-based decisions require two differ-

ent selection processes within two different representational spaces. First, a preferred option has to

be chosen within an offer or goods space by comparing their value representations (Padoa-

Schioppa, 2011). Second, within an action space the response has to be chosen that most likely will

bring about the preferred option. A similar sequence has been found, when initially only information

relevant for the selection of an economic good is provided, and information relevant for the selec-

tion of an action is only given after a delay (Cai and Padoa-Schioppa, 2014). Here, we show that

this sequence is obligatory, since it even occurs, when information guiding the selection of goods

and actions is given simultaneously. This suggests that these two selection steps are related, but

functionally independent from each other and involve different brain circuits. This explains why evi-

dence for decision-related neural activity has been found at both selection stages (Shadlen et al.,

2008; Cisek and Kalaska, 2010; Wunderlich et al., 2010; Padoa-Schioppa, 2011; Cisek, 2012). A

similar separation between stimulus categorization and action selection has been also found in other

decision processes (Schall, 2013). The competition between subjective value representations takes

most likely place in OFC (Padoa-Schioppa and Assad, 2006) and vmPFC (Wunderlich et al., 2010;

Lim et al., 2011; Strait et al., 2014), while the competition between action value representations

takes place in SEF and DLPFC (Wallis and Miller, 2003; Kim et al., 2008). The selection of action

value signals in turn can influence the neural activity in primarily motor-related areas, such as FEF

and SC that encode the final commitment to a particular course of action (Schall et al., 2002;

Brown et al., 2008; Thura and Cisek, 2014).

It has been suggested that different neural and functional architectures underlie different types of

value-based decisions making (Hunt et al., 2013). In contrast, our sequential decision model pre-

dicts that decisions are always made using the same decision architecture: an initial goods-based

selection, followed by action-based selection, because both stages are necessary and not function-

ally interchangeable. Nevertheless, the relative importance of each selection stages likely depends

on the behavioral context. To understand strictly economic behavior (such as savings behavior or

consumption of goods) the goods selection is the more important step. Preferred options can be

selected without knowledge about the action necessary to indicate the chosen option (Gold and

Shadlen, 2003; Bennur and Gold, 2011; Grabenhorst et al., 2012; Cai and Padoa-Schioppa,

2014). In such situations, there is no evidence of ongoing competition between potential actions

(Cai and Padoa-Schioppa, 2012, 2014). Obtaining a desired good is typically considered to be a

trivial act in a well-functioning market (Padoa-Schioppa, 2011). On the other hand during perceptual

or rule-based decision making, the action selection is the most important step in the decision
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process, because only one type of good can be achieved by engaging in the task. An example are

competitive games such as chess, were the goal (checkmate) is clear and implicitly chosen when a

player starts a game, but were the player still has to find the most appropriate actions to achieve

this goal. This implies that within different behavioral contexts, different elements of the decision cir-

cuit become critical. Altogether, we think that actual behavior under a wide range of different condi-

tions is best understood by a model that respects that behavioral choices are the result of two

independent and functionally different selection mechanisms.

Materials and methods
Two rhesus monkeys (both male; monkey A: 7.5 kg, monkey I: 7.2 kg) were trained to perform the

tasks used in this study. This study was performed in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the

animals were handled according to approved institutional animal care and use committee (IACUC)

protocols (PR13A337) of Johns Hopkins University.

Behavioral task
In the gambling task, the monkeys had to make saccades to peripheral targets that were associated

with different amounts of reward (Figure 2A). The targets were squares of various colors,

2.25�2.25˚ in size. They were always presented 10˚ away from the central fixation point at a 45, 135,

225, or 315˚ angle. There were seven different gamble targets (Figure 2B), each consisting of two

colors corresponding to the two possible reward amounts. The portion the target filled with each

color corresponded to the probability of receiving the corresponding reward amount. Four different

colors indicated four different reward amounts (increasing from 1, 3, 5 to 9 units of water, where 1

unit equaled 30 ml). The minimum reward amount for the gamble option was always 1 unit of water

(indicated by cyan), while the maximum reward amount ranged from 3 (red), 5 (blue) to 9 units

(green), with three different probabilities of receiving the maximum (20, 40, and 80%). This resulted

in a set of gambles, whose expected value on the diagonal axis was identical, as shown in the matrix

(Figure 2B).

The task consisted of two types of trials - choice trials and no-choice trials. All the trials started

with the appearance of a fixation point at the center of the screen (Figure 2B), on which the mon-

keys were required to fixate for 500–1000 ms. In choice trials, two targets appeared on two ran-

domly chosen locations across the four quadrants. Simultaneously, the fixation point disappeared

and within 1000 ms the monkeys had to choose between the gambles by making a saccade toward

one of the targets. Following the choice, the non-chosen target disappeared from the screen. The

monkeys were required to keep fixating on the chosen target for 500–600 ms, after which the target

changed color. The two-colored square then changed into a single-colored square associated with

the final reward amount. This indicated the result of the gamble to the monkeys. The monkeys were

required to continue to fixate on the target for another 300 ms until the reward was delivered. Each

gamble option was paired with all other six gamble options. This resulted in 21 different combina-

tions of options that were offered in choice trials. The sequence of events in no-choice trials was the

same as in choice trials except that only one target was presented. In those trials, the monkeys were

forced to make a saccade to the given target. All seven gamble options were presented during no-

choice trials.

We presented no-choice and choice trials mixed together in blocks of 28 trials that consisted of

21 choice trials and 7 no-choice trials. Within a block, the order of trials was randomized. The loca-

tions of the targets in each trial were also randomized, which prevented the monkeys from preparing

a movement toward a certain direction before the target appearance.

For reward delivery, we used an in-house built fluid delivery system. The system was based on

two syringe pumps connected to a fluid container. A piston in the middle of the two syringes was

connected with the plunger of each syringe. The movement of the piston in one direction pressed

the plunger of one syringe inward and ejected fluid. At the same time, it pulled the plunger of the

other syringe outward and sucked fluid into the syringe from the fluid container. The position of the

piston was controlled by a stepper motor. In this way, the size of the piston movement controlled

the amount of fluid that was ejected out of one of the syringes. The accuracy of the fluid amount

delivery was high across the entire range of fluid amounts used in the experiment, because we used
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relatively small syringes (10 ml). Importantly, it was also constant across the duration of the experi-

ment, unlike conventional gravity-based solenoid systems.

Estimation of subjective value of gamble options
We used Maximum Likelihood Difference Scaling (MLDS) (Maloney and Yang, 2003; Kingdom and

Prins, 2010) to estimate the subjective value of different targets. The algorithm is an optimization

algorithm which gives the best estimation of the subjective value and internal noise based on the

maximum across-trial likelihood, which is defined as:

L
�

 ð1Þ; ð2Þ; . . . ðNÞ;sdjr
�

¼
XT

k¼1
logep

�

rkjDk; ð1Þ; ð2Þ; . . . ðNÞ;sd

�

(1)

where  ðiÞ are the subjective value for all the targets, sd is the internal noise, rk is the response (cho-

sen:1 or non-chosen:0) on the kth trial, and Dk is the estimated subjective value difference between

two targets in the kth trial given the set of subjective value and internal noise,r the full set of

responses across all trials and T the number of trials. We performed the MLDS using the Matlab

based toolbox ’Palamedes’ developed by Prins and Kindom (Kingdom and Prins, 2010).

Neurophysiological methods and data analysis
After training, we placed a hexagonal chamber (29 mm in diameter) centered over the midline, 28

mm (monkey A) and 27 mm (monkey I) anterior of the interaural line. During each recording session,

single units were recorded using 1–4 tungsten microelectrodes with an impedance of 2–4 MWs

(Frederick Haer, Bowdoinham, ME). The microelectrodes were advanced, using a self-built micro-

drive system. Data were collected using the PLEXON system (Plexon, Inc., Dallas, TX). Up to four

template spikes were identified using principal component analysis. The time stamps and local field

potential were then collected at a sampling rate of 1,000 Hz. Data were subsequently analyzed off-

line to ensure only single units were included in consequent analyses. We used custom software writ-

ten in Matlab (Mathworks, Natick, MA), which are available at the following GitHub respository:

https://github.com/XMoChen/Sequential-good-and-action-selection-during-decision-making.

Recording location
To determine the location of the SEF, we obtained magnetic resonance images (MRI) for monkey A

and monkey I. A 3-D model of the brain was constructed using MIPAV (BIRSS, NIH) and custom Mat-

lab codes. As an anatomical landmark, we used the location of the branch of the arcuate sulcus. The

locations of neural recording sites are shown in (Figure 2—figure supplement 1). In both monkeys,

we found neurons during the saccade preparation period in the region from 0 to 11 mm anterior to

the genu of the arcuate branch and within 5 mm to 2 mm of the longitudinal fissure. We designated

these neurons as belonging to the SEF, consistant with previous studies from our lab and existing lit-

erature (Tehovnik et al., 2000; So and Stuphorn, 2010).

Task-related neurons
We used several criteria to determine whether a neuron was task related. To test whether a neuron

was active while the monkey generated saccades to the targets, we analyzed the neural activity in

the time period between target onset to saccade initiation. We performed a permutation test on the

spike rate in 50 ms intervals throughout the saccade preparation time period (150–0 ms before sac-

cade onset or 50–200 ms after target onset) to compare against the baseline period (200–150ms

prior to target onset). If p value was �0.05 for any of the intervals, the cell was determined to have

activity significantly different form baseline. Out of 516 neurons, 353 were classified as task-related

using these criteria.

Furthermore, we used a more stringent way to define the task related neuron by fitting a family

of regression models to the neural activity and determining the best-fitting model (So and Stup-

horn, 2010).

The influence of value (V) on neuronal activity was described using a sigmoid function

fðV Þ ¼
b1

1þ e�sðV�tÞ
(2)

Chen and Stuphorn. eLife 2015;4:e09418. DOI: 10.7554/eLife.09418 18 of 24

Research article Neuroscience

https://github.com/XMoChen/Sequential-good-and-action-selection-during-decision-making
http://dx.doi.org/10.7554/eLife.09418


where b1 is the weight coefficient, s (s 2 ð0; 1Þ) is the steepness, and t (t 2 ð0; 1Þ) is the threshold

value. Often, the influence of expected value on neuronal activity is described using a linear function.

However, SEF neurons are better described using a sigmoid function. The reasons for this are two-

fold: 1) Many SEF neurons actually had a ‘curved’ relationship with increasing value (So and Stup-

horn, 2010). 2) The more important reason is that a substantial number of value-related SEF

neurons showed floor or ceiling effects, that is, they showed no modulation for value increases in a

certain range, but started to indicate value above or below a certain threshold. In addition, the sig-

moid function is flexible enough to easily approximate a linear value coding. In Equation 2, by set-

ting t=0.5, b1>1, the relatively linear part of the sigmoid function can be used for value coding.

Thus, the sigmoid function is flexible enough to fit the behavior of a large number of neurons with

monotonically increasing or decreasing activity for varying value (including linearly related ones).

The influence of saccade direction (D) on neuronal activity was described using a circular Gaussian

function

gðDÞ ¼ b2 � e
fw�½cosðD�pÞ��1g (3)

where b2 is the weight coefficient, w (w 2 ð0; 4 p �) is the turning width, p (p 2 ½0; 2 p �) is the PD of

the neuron.

The interaction of value and direction was described using the product of fðVÞ and gðDÞ

h V ; Dð Þ ¼ f Vð Þ � g Dð Þ ¼ b3 �
1

1þ e�sðV�tÞ
� efw�½cos D�pð Þ��1g

(4)

where b3 is the weight coefficient.

For each neuron, we fitted the average neuronal activity before saccade (50ms before saccade

onset to 20 ms after saccade onset) on each no-choice trial with all possible linear combinations of

the three terms fðV Þ, gðDÞ, hðV ;DÞ as well as with a simple constant model (b0). We identified the

best fitting model for each neuron by finding the model with the minimum Bayesian information cri-

terion (Burnham and Anderson, 2002; Busemeyer and Diederich, 2010)

BIC ¼ n� log
RSS

n

� �

þ k� logðnÞ (5)

where n is the number of trials (a constant in our case), and RSS is the residual sum of squares after

fitting. We used a loosely defined BIC in order to include more neurons into analysis, where k is the

number of independent variables in the equation rather than the number of parameters in the

regression model. A lower numerical BIC value indicates that the model fit the data better: with a

lower residual sum of squares indicating better predictive power and a larger k penalizes less parsi-

monious models. All neurons with lower BIC value than the baseline model containing only a con-

stant (b0) were considered task related. Among the 353 task-related neurons, 128 neurons were

further classified as directionally tuned and were used in the following analyses.

All neurons were tested with all 21 gamble option combinations and at least four diagonal direc-

tional combinations in which two targets where 180 degree away. One hundred and six neurons (26

from monkey A and 80 from monkey I) were tested with no less than 8 out of 12 direction combina-

tions (4 diagonal and 4 ninety degree away in the same hemi-visual field direction combinations),

and 86 neurons (6 from monkey A and 80 from monkey I) were tested with all 12 direction-

combinations.

Averages of neural activity across the entire population of all 128 directionally-tuned SEF neurons

were performed after the individual neurons activity was normalized by searching for the minimum

and maximum activity across all choice and no-choice trial conditions and setting the minimum activ-

ity to 0 and the maximum activity to 1. The only exception is the construction of the relative action

value map, were we used a slightly different definition of the zero reference point.

Relative action value map
The normalized time-direction maps show the population activity of all directional SEF neurons

based on their preferred direction relative to the chosen and non-chosen target (Cisek and Kalaska,

2005). For each neuron, we generated the mean firing rate separately for all 16 combinations of
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choices and target configurations (choice trials: 12; no-choice trials: 4). The neuron’s firing rate was

normalized by setting the baseline activity (mean activity between 50 to 0 before target onset across

16 conditions) to 0 and the maximum activity across all 16 conditions to 1. Each cell’s preferred

direction was defined by the circular Gaussian term in the best fitting model in the BIC analysis. Pop-

ulation data were displayed as a 2D color plot, in which the spike density functions of each neuron

were sorted along the vertical axis according to their preferred direction with respect to the location

of the selected target. This resulted in a matrix in which the PD distribution within the relative action

value map was unevenly sampled. The sorted matrix was therefore smoothed by linear interpolation

at an angle of 7.2˚. The horizontal axis showed the development of the population activity across

time aligned to either target or movement onset. For all population maps, the same baseline activity

and maximum activity were used for each neuron.

Neural decoding of chosen reward option and direction
Binary linear classification was performed using Matlab toolboxes and custom code. The analysis

was performed on neural activity 200 ms before till 20 ms after movement onset at a 1 ms time reso-

lution. For each neuron, we used the neural activity in those choice trials in which the monkey chose

a particular value or direction to train the classifier (around half of the trials for direction, and differ-

ent numbers of trials for different values depending on the monkeys’ choice behavior). We then

used the classifier to predict either the direction or the value of the chosen target for each trial.

When predicting the chosen direction, for example, there are two target locations in a choice trial.

We used the neural activity in all choice trials when the monkey chose either one of the target loca-

tions to train the classifier, and then used the optimized classifier to predict the chosen saccade

direction based on the observed neural activity in a particular trial. The overall classification accuracy

was calculated by averaging across all trials for each neuron. We used a permutation test, in which

we shuffled the chosen and non-chosen target value and direction, to test whether the classification

accuracy was significant (1000 shuffle; p�0.05).

Mutual information
In order to compare the relative strength of the relationship between neural activity and saccade

value and direction, we calculated separately for each neuron the mutual information between neural

activity and chosen and non-chosen value or direction, respectively. To capture the dynamics of

value and direction encoding, we performed the calculation repeatedly for consecutive time periods

during saccade preparation using spike density at a 1 ms time resolution.

To reduce the bias in estimating the mutual information and let the estimated information compa-

rable between trial conditions, we discretized the neural activities in the same way. During no-choice

trials, we sampled the space of possible values and directions evenly, in contrast to choice trials

were the values and direction depended on the monkey’s preferences. We assumed that the neural

activity in no-choice trials allowed us to capture how this neuron encoded value and direction infor-

mation and we used neural activity in no-choice trial to determine the bins for neural activity for all

trial conditions. We set the number of bins for neural activity (NF) as four. At each particular time

window, we collected the mean neural firing rates (F) from every no-choice trial and divided them

into four bins so that each bin held equal number of no-choice trials. We then got Q1,Q2 and Q3 as

the boundaries for 4 quartiles. For all trial conditions, at the same time window, neural activity below

Q1 was classified as F1, between Q1 and Q2 as F2, between Q2 and Q3 as F3, and finally, neural activ-

ity above Q3 was classified as F4.

The mutual information between neural activity F and the variable X, which can be either chosen

or non-chosen value or chosen or no-chosen direction in our case, was approximated by the

following:

IðF;XÞ ¼
XNF

i¼1

XNX

j¼1

Mij

M
log

MijM

Mi�M�j

� �

�Bias (6)

here Mij is the number of trials having both Fi and Xj; is the number of trials having Fi, and M�j is

the number of trials having Xj. M is the number of total trials. As mentioned before, we set NF, the

number of distinct states of neural activity, to four. In the case of direction, we set Nx, the number of

distinct states of the relevant variable, to four, because we tested four different saccade directions.
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In the case of value, we tested seven different values. However, distinguishing seven different value

levels would have resulted in different maximum amounts of mutual information for the two variables

(direction: 2.00 bits; value: 2.81 bits). This would have led to an overestimation of value information

relative to directional information. In order to make the value and direction information estimations

directly comparable, we set Nx for value to four as well. In grouping the seven different values into

four bins, we followed the same binning procedure as we did for the neural activities. The chosen

values were divided into four quartiles so that each bin held an equal number of no-choice trials. We

computed a first approximation of the bias as follows:

Bias¼
1

2Mlog2
ðUFX �UF �UXþ 1Þ (7)

where UFX is the number of nonzero Mij’s for all i and j, UF is the number of nonzero M.i for all i, and

UX is the number of nonzero Mi. for all j. This procedure followed the approach described in (Ito and

Doya, 2009).

Finally, we performed a Bootstrap procedure to test whether the amount of mutual information

was significant, and to further reduce any remaining bias. We generated a random set of Fi and Xj

pairs, by permuting both F and X arrays, respectively. We calculated the mutual information between

F and X, using the same method described above, and repeated this process for 100 times. The

mean of the mutual information obtained from these 100 random processes represented remaining

bias and was subtracted from IðF; XÞ: To test whether the final estimated mutual information was

significant (p�0.05), we compared it with the sixth highest information obtained from the 100 ran-

dom processes. If it was non-significant, we set the mutual information to zero. The bias reductions

sometimes lead to negative estimates of mutual information. In that case, we also set the final esti-

mated information to be zero.

To determine when the SEF population carried different amounts of information about the chosen

and non-chosen direction or value, we compared the information about the chosen and non-chosen

option across all neurons in each time bin using a paired t-test. We defined the onset of differences

in information as the first time bin in which p-values were less than 0.05 for 10 or more consecutive

time bins.

Regression analysis
A linear regression was used to determine the temporally evolving contribution of the chosen and

non-chosen target to the neural firing rate in choice trials. First, for each neuron, we calculated the

mean firing rate on no-choice trials for each direction (Sno-choice(D,t) or value (Sno-choice(V,t)) for

sequential time steps in the trial, using a sliding time window with 20 ms width and 10 ms step size.

Then, in the regression analysis, the contribution of the chosen and non-chosen directions was

described as:

SchoiceðtÞ ¼ b1Sno�choiceðDchosen; tÞþ b2Sno�chocieðDnonchosen; t
�

(8)

The contribution of the chosen and non-chosen values was described as:

SchoiceðtÞ ¼ b1Sno�choiceðVchosen; tÞþ b2Sno�choiceðVnonchosen; t
�

(9)

The data were fitted with a linear least-square fitting routine implemented in Matlab (The Math

Works, Natick, MA).

To determine when the SEF population showed a significant (p�0.05) difference in the influence

of the chosen and non-chosen regression coefficients for direction and value, we performed paired

t-tests for each time bin. We defined the onset of differences in the strength of coefficients as the

first time bin in which p-values were less than 0.05 for 3 or more consecutive time bins.

State-space analysis
Population activity can be represented within the state space framework (Yu et al., 2009;

Shenoy et al., 2011). In this framework, the state of activity of all n recorded neurons (i.e. the activ-

ity distribution) is represented by a vector in an n-dimensional state space. The successive vectors

during a trial form a trajectory in state space that describes the development of the neural activity.
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Our state-space analysis follows generally the one described in Mante et al. (2013). The main differ-

ence is that we did not perform a principal component analysis to reduce the dimensionality of the

state space.

To construct population responses, we first computed the average activity of all recorded neurons

in both monkeys for each trial condition. Then, we combined the 128 average activity values to a

128-dimensional vector array representing the population activity trajectory in state space for each

trial condition. Next, we used linear regression to identify dimensions in state space containing task

related variance. For the z-scored responses of neuron i at time t, we have:

ri;t

�

kÞ ¼ bi;tð1Þchosen directionleft rightðkÞþbi;tð2Þchosen directionup downðkÞþ

bi;tð3Þchosen valueðkÞþbi;tð4Þþbi;tð4Þnonchosen directionleft rightðkÞþ

bi;tð5Þnonchosen directionup downðkÞþbi;tð6Þnonchosen valueðkÞþbi;tð7Þ

(10)

where ri;tðkÞ ¼ bi;t is the z-scored response of neuron i at time t on trial k,

chosen directionleft rightðkÞ and nonchosen directionleft rightðkÞ is the monkeys chosen

and nonchosen direction on trial k (+1: right; -1: left), chosen directionup downðkÞand

nonchosen directionup downðkÞ is the monkeys chosen and non-chosen direction on trial k (+1:

right; -1: left). There are six independent variables (var) that can influence the responses of neuron i

in function (10). To estimate the respective regression coefficients bi;tðvarÞ, for var=1 to 6, we define,

for each unit i, a matrix Fiof size Ncoef �Ntrial, where Ncoef is the number of regression coeffients to

be estimated and Ntrial is the number of trial recorded for neuron i. The regression coefficients can

be then estimated as:

bi;t ¼ ðFiF
T
i Þ

�1
Firi;t (11)

where bi;t is a vector of length Ncoef with elements bi;tðvarÞ, v=1–6. It corresponds to the regression

coefficient for task variable var, time t, and neuron i. For each task variable, we build a set of coeffi-

cient vectors bv;t whose entries is bi;tðvarÞ. The new vector bvar;t correspond to the directions in state

space along which the task variable are represented at the level of the population.

For each task variable var, we then determined the time, tmaxvar , for which the corresponding set of

vectors bvar;t. b
max
var ¼ bvar;tmaxvar

with tmaxvar ¼ argmaxtjjbvar;tjj. Last, we orthogonalized the axes of direc-

tion and value with QR-decomposition. The new axis b?
var span the same ‘regression subspace’ as

the original regression vectors; however, it each explains distinct portions of the variance in the

responses. Then at a specific time t, the projections of the population response on the time-indepen-

dent axes are defined by:

pv;arc ¼ b?
var

TXc (12)

where pvar;c is the set of time-series vectors over all task variable and conditions. Xc is the firing rate

matrix in different trial conditions with the size of Nunit � T .
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