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abstract of the dissertation

Data-driven approaches for assessing hydroclimate change across scales
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Gavin Dayanga Madakumbura

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2024

Professor Alexander D. Hall, Co-Chair

Professor J. David Neelin, Co-Chair

The hydrologic cycle is significantly impacted by climate change, affecting both human soci-

eties and ecosystem health. Climate change-driven changes in the hydrological cycle can be

subtle and difficult to identify, due to noise arising from natural climate variability and un-

certainties in the tools used to understand this forced change, such as climate models. This

dissertation investigates these changes across different scales, to discern the effects of climate

change amidst inherent variability and modeling challenges. It explores the complex inter-

play between climate change, climate variability, and their impacts on the hydrological cycle,

with a particular focus on precipitation patterns, wildfires, and droughts. Central to this

research is the application of machine learning (ML) techniques to dissect and understand

these phenomena on various spatial and temporal scales.

The first main research theme focuses on enhancing the understanding of the climate

change signal within historical climate model simulations and future projections of precip-

itation on a global scale. In Chapter 2, utilizing ML methods and state-of-the-art climate

model simulations, we identify the anthropogenic fingerprints in historical records of an-

nual maximum daily precipitation across four observational and seven reanalysis datasets.

Chapter 3 is dedicated to understanding future changes in precipitation patterns and re-

ducing the uncertainty of these projections. We introduce an emergent constraint on the

ii



tropical atmospheric overturning circulation, a major contributor to model uncertainty in

future precipitation patterns. Using ML, we estimate the observational estimates of this

emergent constraint, yielding a constrained distribution of the future change in circulation

(from -1.41±1.06 %/K to -2.20±0.93 %/K). Through this approach, we provide constrained

spatial patterns of future precipitation changes, important for impact assessments.

The second main theme focuses on the regional and ecosystem-scale impacts of climate

change and climate variability, through changes in the hydrological cycle. In Chapter 4, we

focus on the historical fire season onset timing in 13 of California’s ecoregions, showing that

onset is primarily controlled by climate variability and change via altering fuel moisture.

Through this mechanistic knowledge, we quantify the contribution of climate change to the

advancing trend in onset. We use an ML-based dynamical adjustment technique to separate

the effects of climate change and variability on climatic drivers. We show that climate change

has contributed to an advancement of onset by 5-55 days during the 1992-2020 period, across

11 out of 13 ecosystems. Chapter 5 focuses on the impact of droughts on California’s forests,

particularly the severe 2012-2015 drought, which led to massive tree die-offs in the Sierra

Nevada forests. We investigate the vulnerability of forests to drought, with a special interest

in why certain areas were more affected and in the drought resistance of southern versus

northern Sierra forests. Utilizing remote sensing and climate data, the research identifies

a drought sensitivity timescale and examines the interaction between this timescale and

drought severity to understand the spatial and temporal patterns of tree mortality. ML

is employed to analyze factors contributing to tree mortality, revealing that forests in the

Northern Sierras would be susceptible if the drought severity were spatially uniform. The

study also explores potential future impacts of climate change on drought severity and forest

vulnerability, using global climate simulations to predict changes in drought patterns and

their effects on forest die-offs.

There has been a vast uptake of machine learning methods in climate science research

over the last few years. The variety of data-driven approaches used throughout this thesis

iii



highlights the wide range of ML applications for understanding hydroclimate change and its

impacts. These applications pave the way for future implementation of data-driven methods

in the climate sciences, especially in separating the impacts of climate change from internal

variability.
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CHAPTER 1

Overview

Understanding the variations and changes in the hydrologic cycle is of paramount impor-

tance to human and ecological systems (Intergovernmental Panel on Climate Change, 2022).

Climate change alters Earth’s hydrologic cycle, changing not only the global average amount

but also the regional patterns of rainfall (Allan et al., 2020). Understanding various char-

acteristics of this change is crucial for different aspects of human and ecological health, and

also for future mitigation and adaptation planning on different spatial and temporal scales.

However, the complex dynamical nature of the changes in hydroclimate makes it difficult

to isolate the climate signal from the noise arising from climate variability and, oftentimes,

from the tools that are used for the tasks, such as Earth system models (Hegerl and Zwiers ,

2011). This dissertation explores various aspects of changes in the global hydrological cy-

cle, specifically precipitation, across various spatial and temporal scales using data-driven

approaches to identify the influence of climate change and climate variability.

Among the methodological approaches available to separate the climate change signal

from the noise, data-driven, pattern-based machine learning (ML) methods have recently

gained popularity (Wills et al., 2020a). These machine learning approaches facilitate the

utilization of spatiotemporal changes associated with the forced response to better under-

stand the nonlinear evolution and the interactions between the signal and noise terms (Barnes

et al., 2020). In this thesis, I utilize ML methods ranging from linear, interpretable, reg-

ularized regression to non-linear neural networks, along with neural network visualization

techniques (Bach et al., 2015). Using these tools, this dissertation addresses two main re-

search themes. The first theme aims to enhance understanding of the climate change signal
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in historical climate model simulations and future climate model projections of precipita-

tion, from a global to a continental scale. Under this research theme, I explore the climate

change signal of extreme precipitation in historical records (Chapter 2; Madakumbura et al.

2020) and the possible constraints on future regional patterns of precipitation projections

(Chapter 3; Madakumbura et al. 2024a). The second theme is dedicated to understanding

the ecoregion-level impacts of historical climate change and climate variability on wildfire

characteristics (Chapter 4; Madakumbura et al. 2024b) and the impacts of drought on forests

(Chapter 5; Madakumbura et al. 2020) in California’s ecosystems.

Extreme precipitation significantly impacts society by causing disastrous conditions such

as flooding, erosion, crop damage, and indirect health impacts (Handmer et al., 2012; Crim-

mins et al., 2016). Anthropogenic climate change alters Earth’s hydrological cycle, inten-

sifying extreme precipitation events (O’Gorman and Schneider , 2009). Understanding the

climate change signal in historical observational records is crucial for a better understanding

of the Earth system’s response to anthropogenic forcing and for policy decision-making on cli-

mate change adaptation and mitigation efforts (Intergovernmental Panel on Climate Change,

2022). Previous studies in the subfield of Detection and Attribution, which focus on detecting

the climate change signal in observations, have utilized historical climate model simulations

and their multimodel mean trend (or the first principal component) as an anthropogenic fin-

gerprint (Hegerl and Zwiers , 2011). Projecting observations onto this fingerprint has helped

identify the presence of human influence in the observational record. However, a significant

limitation of these studies is their reliance on a single, quality-controlled but spatially in-

complete dataset, primarily due to the methodological dependence on long-term trends for

detection. Moreover, these studies have not accounted for climate model uncertainty (Ribes

et al., 2017). A recently introduced ML-based method overcomes these limitations by using

spatiotemporal variation in data to distinguish the signal from the noise caused by model

uncertainty and internal variability (Barnes et al., 2019, 2020). This approach, which does

not depend on long-term trends in historical records, is capable of incorporating nonlinear
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changes and the interactions of the forced signal with natural variability. Furthermore, un-

like traditional fingerprinting methods, the fingerprints identified through this method are

dynamic, varying over time. In Chapter 2, we apply this ML-based method, trained using

the CMIP6 ensemble, to global historical annual maximum daily precipitation data from four

observational and seven reanalysis products. Through this analysis, we efficiently generate

multiple lines of evidence of an anthropogenic signal in the various manifestations of the

observed record.

Future projections of precipitation contain significant climate model uncertainty (In-

tergovernmental Panel on Climate Change, 2022). This uncertainty primarily arises from

changes in the dynamical component of precipitation, which is associated with changes in

circulation (Bony et al., 2013). While energetics can impose a theoretical limit on the global

mean change in precipitation (Allen and Ingram, 2002), regional changes in precipitation

depend on this dynamical component, which has various competing factors contributing to

it and, therefore, has not been constrained before. Motivated by our previous work on con-

straining hydrological sensitivity (Norris et al., 2022a), and the latest advances in how SST

patterns can create similar sensitivity to the tropical (30S-30N) atmospheric overturning

circulation (ATOC) under natural variability and climate change (Zhang et al., 2023), in

Chapter 3, I investigate the dynamical response in precipitation and the circulation patterns

that drive this response. Through this analysis, I introduce an emergent relationship be-

tween future projected ATOC and that under natural variability. Constraining the future

ATOC spread using the emergent relationship and observations is challenging due to the lack

of vertical velocity observations and the uncertainty in reanalysis vertical velocity estimates

(Chemke and Polvani , 2019), which are the closest we have to observations for this variable.

Therefore, I introduce an ML framework, where I model the ATOC of climate model sim-

ulations representing only natural variability, using spatial maps of surface air temperature

and sea level pressure. The idea is that an ML model trained on GCMs can be applied

to observations, similar to Madakumbura et al. (2021). This approach allows us to obtain
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observational estimates for the historical climate and, therefore, obtain the constrained fu-

ture ATOC distribution using the above-identified emergent relationship. Finally, we use

this constrained future ATOC to obtain future changes in regional precipitation, yielding a

constrained regional precipitation projection.

Impact-relevant spatial and temporal scales have been studied during this dissertation

research, particularly related to ecohydrology and wildfires. One aspect of wildfires that has

received less attention is the temporal aspects of the fire season, particularly the onset of

the fire season, which has practical implications for fire risk forecasts (National Interagency

Coordination Center , 2021). In Chapter 4, we attempt to understand the historical vari-

ability and changes in fire season onset and the drivers behind these aspects. By utilizing

a comprehensive fire occurrence dataset, I demonstrate that the fire season onset has been

predominantly controlled by the climate, rather than by fuel variability and changes in hu-

man ignitions. Once we have developed a predictive model for fire season onset, based on

physical understanding and climate drivers, we decompose the climate change and climate

variability components of historical climate records to quantify the contributions from nat-

ural variability and climate change to fire season onset. For this, I use an ML-based version

of the signal separation technique known as dynamical adjustment (Smoliak et al., 2015).

For each climate variable, the time series is modeled using a proxy for circulation variability

(in our case, spatial maps of sea level pressure). This circulation-driven component is iden-

tified as the dynamical component or the internal variability component, while the residual

is considered as the thermodynamic change or the climate change component. Through this

approach, we quantify the impact of climate change and climate variability on fire season

onset across all ecoregions of California.

Droughts can have profound effects on ecosystems and human societies (Mishra and

Singh, 2010). Forests are particularly vulnerable to severe droughts in a warming world,

as drought stress on vegetation can be exacerbated by warming driven by climate change

(McDowell et al., 2019). An improved understanding of how forests respond to droughts
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on an ecosystem scale can provide valuable information for forest managers to anticipate

patterns of tree vulnerability and to plan adaptation strategies. During 2012-2015, Cali-

fornia experienced a severe multi-year drought that contributed to the die-off of millions of

trees in the Sierra Nevada forests (Fettig et al., 2019). This massive forest die-off exhibited

distinct spatiotemporal patterns. One research question explores why different regions ex-

perienced varying levels of drought stress and whether there is a particular drought duration

to which some trees are more vulnerable. Furthermore, it examines whether forests in the

Southern Sierras, which were particularly affected by the drought, are less drought-resistant

compared to northern forests. In Chapter 5, using remote sensing-based vegetation stress

metrics—Normalized Difference Moisture Index, Normalized Difference Vegetation Index,

and Canopy Water Content, along with high-resolution climate data (Flint et al., 2013), we

attempt to answer these questions. We used data from before 2012 to identify the duration

of drought that was best correlated with anomalies in vegetation condition time series, intro-

ducing a drought sensitivity timescale (DST). We then investigated how the pre-2012 DST

interacted with drought severity to produce the observed spatial and temporal patterns of

die-off during the 2012-2015 drought. Utilizing machine learning (ML), specifically a random

forest model (Breiman, 2001), we modeled the 2012-2015 forest die-off using physically based

drivers of tree mortality. This ML model demonstrates that forests in the Southern Sierras

were most affected by the severity of the drought. Moreover, had the drought been spatially

uniform in severity, the Northern Sierra forests could also have experienced a severe tree

mortality episode. Finally, we use output from state-of-the-art global climate simulations to

examine how changes in multi-year droughts may amplify future die-off episodes.
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CHAPTER 2

Anthropogenic influence on extreme precipitation over

global land areas seen in multiple observational

datasets

[Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N., Hall, A. (2021).

Anthropogenic influence on extreme precipitation over global land areas seen in multiple

observational datasets Nature Communications, 12(1), 3944. https://doi.org/10.1038/

s41467-021-24262-x]

Abstract

Global climate models produce large increases in extreme precipitation when subject to

anthropogenic forcing, but detecting this human influence in observations is challenging.

Large internal variability makes the signal difficult to characterize. Models produce diverse

precipitation responses to anthropogenic forcing, mirroring a variety of parameterization

choices for subgrid-scale processes. And observations are inhomogeneously sampled in space

and time, leading to multiple global datasets, each produced with a different homogenization

technique. Thus, previous attempts to detect human influence on extreme precipitation have

not incorporated internal variability or model uncertainty, and have been limited to specific
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regions and observational datasets. Using machine learning methods, we find a physically

interpretable anthropogenic signal that is detectable in all global datasets. Detection occurs

even when internal variability and model uncertainty are taken into account. Machine learn-

ing efficiently generates multiple lines of evidence supporting detection of an anthropogenic

signal in extreme precipitation.

2.1 Introduction

Extreme precipitation can have devastating direct societal impacts such as flooding, soil

erosion, agricultural damages (Handmer et al., 2012) and indirect health risks and impacts

(Crimmins et al., 2016). Anthropogenic warming acts to intensify Earth’s hydrologic cycle

(Allen and Ingram, 2002; O’Gorman and Schneider , 2009). This intensification is mani-

fested in part through increased extreme precipitation as a result of greater atmospheric

moisture with warming following the Clausius-Clapeyron relationship. However, circulation

changes can act to enhance or reduce this increase (O’Gorman and Schneider , 2009; Tren-

berth et al., 2003; Held and Soden, 2006; Norris et al., 2019). If current warming trends

continue, climate models project that the Earth’s atmosphere overall will move towards a

more intense precipitation regime (Sun et al., 2006; Fischer et al., 2013; Kharin et al., 2013;

Sillmann et al., 2013). Moreover, increased variation between wet and dry extremes is pro-

jected, which could have devastating societal impacts (Madakumbura et al., 2019; Swain

et al., 2018). These changes in extreme precipitation may have already become apparent on

a regional basis (Allan and Soden, 2008; Min et al., 2011; Donat et al., 2016, 2019).

Recent studies have detected anthropogenic influence in historical changes to extreme

precipitation across North America (Kirchmeier-Young and Zhang , 2020) and Northern

Hemisphere land areas (Min et al., 2011). These attempts are part of a larger category

of studies known as Detection and Attribution (D&A). Often, they initially extract the spa-

tial or spatiotemporal patterns of climate-system response to anthropogenic forcing (so-called
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fingerprints) from an ensemble of global climate models (GCMs) (Stott et al., 2010; Bindoff

et al., 2013). Projection of observations onto these fingerprints allows for signal detection

as the trend of the projection (Marvel et al., 2019). The presence of a signal that can be

statistically distinguished from internal variability confirms the influence of anthropogenic

forcing. Thus, traditional D&A methods rely on long term observations (Hegerl and Zwiers ,

2011; Easterling et al., 2016). In the case of extreme precipitation, traditional methods

may be difficult to apply globally due to inordinately short records and large observational

uncertainty, reflected in multiple global datasets produced with very different assumptions

(Herold et al., 2017; Sun et al., 2018; Roca et al., 2019). Another key difficulty with tra-

ditional methods is that the models produce a large spread in the extreme precipitation

response to anthropogenic forcing (O’Gorman, 2012). This spread occurs alongside large in-

ternal variability in the models’ simulations of the historical period. These two effects create

significant uncertainty in the character of the “true” anthropogenic signal. In past research,

spread in the response have been suppressed by assuming the anthropogenic fingerprint can

be derived from the ensemble-mean change in extreme precipitation (Ribes et al., 2017).

Here we aim to take these uncertainties fully into account, by making no assumptions about

how to derive the anthropogenic signal from GCM data.

A machine-learning-based method for the detection of anthropogenic influence (DAI) has

been shown to overcome the reliance on trends (Barnes et al., 2019, 2020) and is even capable

of detecting the human influence from weather data on a single day (Sippel et al., 2020). An

artificial neural network (ANN) is trained to predict a proxy of external forcing (e.g., the

year of the data) based on the spatial maps of the target variable from an ensemble of GCM

simulations. Then a forced signal can be confirmed despite the presence of internal climate

variability and inter-model variability (Barnes et al., 2019, 2020). This ANN DAI method

can identify the non-linear combinations of the forced signal, internal climate variability and

inter-model variability (Barnes et al., 2020). This method also has the advantage of being

able to explicitly include internal variability and model uncertainty. It does not assume that
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any model or any model-derived quantity, such as the ensemble-mean of the models, is the

“true” anthropogenic signal. And it uses the raw GCM data, with GCM internal variability

included. In addition, ANN visualization techniques also allow for the interpretability of the

models formerly considered as “black boxes”, making them explainable (Ebert-Uphoff et al.,

2019; Toms et al., 2020), or interpretable in terms of physical processes or system behavior.

Use of these visualization techniques alongside the ANN DAI method allows one to capture

the time varying dynamic fingerprints of each input and evaluate their physical credibility

(Barnes et al., 2020; Wills et al., 2020a).

In this study, we apply the ANN DAI method and the ANN visualization technique

known as Layerwise Relevance Propagation (LRP) (Bach et al., 2015; Montavon et al., 2018)

to global maps of annual daily maximum precipitation (Rx1day) over land. Using Coupled

Model Intercomparison Project, phase 5 (CMIP5) (Taylor et al., 2012) and phase 6 (CMIP6)

(Eyring et al., 2015) model ensembles, we first aim to understand how the ANN is detecting

the anthropogenic signal and interpret it physically. Then we use the ANN to detect the

anthropogenic influence on Rx1day in several land-only observational and reanalysis datasets.

Thus, we are agnostic about which GCM is correct, and which gridded data set is a true

representation of the observed record. In this way we efficiently generate multiple lines of

evidence as to the presence of an anthropogenic signal in the various instantiations of the

observed record.

2.2 Data and Method

2.2.1 Data

We use daily precipitation rate output from a collection of climate models participating in

CMIP5 and CMIP6 (Table 2.1). Data from each ensemble’s historical forcing scenario is

combined with future projections following a high-emissions scenario to create a time-series

from 1920 to 2099 for each model. Future projections from CMIP5 follow the Representative
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Concentration Pathway 8.5 (RCP 8.5) (Meinshausen et al., 2011), while CMIP6 projections

follow the Shared Socioeconomic Pathway 5–8.5 (SSP 5-8.5) (O’Neill et al., 2016). To in-

crease our sample size, we combine both CMIP5 and CMIP6 model subsets into one ensem-

ble, which is justifiable considering the very similar time evolution of the total anthropogenic

forcing in RCP 8.5 and SSP 5-8.5 scenarios (O’Neill et al. 2016, their Figure 3c). We regrid

all daily precipitation data to a 2o x 2o spatial grid and compute the Rx1day value for each

year at each land grid point.

We use four datasets of observational estimates of daily precipitation rate with global

coverage: Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP) (Beck et al.,

2018), Global Precipitation Climatology Centre (GPCC) version 2018 (Ziese et al., 2018),

and Rainfall Estimates on a Gridded Network (REGEN) (Contractor et al., 2020), including

both REGEN ALL and REGEN LONG. MSWEP is a hybrid reconstruction using in situ,

satellite and reanalysis data, whereas GPCC and the REGEN datasets are developed from

ground-based measurements. REGEN ALL is developed by interpolating all considered sta-

tion data whereas REGEN LONG is developed using only the stations with a data record

of 40 years or longer. We further use seven widely used reanalysis products for comparison

: ECMWF ERA5 (Hersbach et al., 2020), Japanese 55-year Reanalysis (JRA55) (Kobayashi

et al., 2015), Modern-Era Retrospective analysis for Research and Applications, Version 2

(MERRA2) (Gelaro et al., 2017), NCEP Climate Forecast System Reanalysis (CFSR) (Saha

et al., 2010), Global Soil Wetness Project Phase 3 (GSWP3) (Kim, 2017), NCEP-DOE Re-

analysis 2 (NCEP2) (Kanamitsu et al., 2002) and NOAA-CIRES-DOE Twentieth Century

Reanalysis version 3 (20CRv3) (Slivinski et al., 2019). These observational and reanalysis

datasets are selected considering the availability of full global land coverage and data for at

least three decades (Table 2.2). All observation and reanalysis data were regridded to the

same 2o x 2o spatial grid as the models, and then Rx1day was calculated at each grid point

for each year.
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2.2.2 Neural network based detection method

Here we apply the method in Barnes et al. (2019) (see their Figure 1a) to predict the year

with which given annual Rx1day maps from GCMs are associated, a regression task. This

requires the ANN to learn the signature of the forced response in simulated Rx1day. By

feeding the ANN multicentury data from forced simulations, it learns to distinguish the

forced signal from internal climate variability. The use of multiple GCMs helps the ANN

learn the common elements of the forced response most relevant to the prediction task, a

process that fully considers model uncertainty as well as internal climate variability. Input

to the ANN from each model is a vectorized spatial map of Rx1day (2o x 2o spatial grid

= 16200 grid values) for each year from 1920 to 2099. Our primary goal is to detect the

anthropogenic signal in extreme precipitation over land. Thus, we mask out data over the

ocean at this stage, resulting in 6082 land grid values. The ANN architecture consists of two

hidden layers with ten nodes each. The Rectified Linear Unit activation function is used for

all hidden units.

Approximately 80% of the models (35) are used for training the ANN, while the rest

(9) are used for testing. K-fold validation is applied to split the initial training dataset into

training and validation datasets. Here we set K=2. The mean squared error between the

actual and predicted year of Rx1day is used as the loss function to be minimized during the

training. For the optimizer which updates the ANN based on the gradient of the loss, we

select rmsprop. Climate variables inherently contain spatial autocorrelation. To account for

this dependence among adjacent input data points, we use L2 regularization between inputs

and the first hidden layer, which adds the sum of squared weights as a penalty term to the

loss function. By iterating over L2 values of leading order of magnitudes and inspecting the

tradeoff between low prediction error and generalizability (Figure 2.1), we found L2=0.001

to be a suitable value for our analysis.

We could have made the ANN more complex to achieve higher accuracy. But we elected

not to do so, partly because Increasing the number of hidden units or changing the other
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hyperparameters (except for L2 regularization) did not result in a substantial increase in

accuracy. More importantly, we aimed to keep the ANN simple, with a reasonable degree of

accuracy. This is because the main goal is not to obtain a perfect prediction, but rather to

reveal the forced patterns the ANN learns (e.g., Barnes et al. 2019, 2020). As we show in

Section 3, imperfections in the prediction also can be physically interpreted within the D&A

research framework.

2.2.3 Neural network interpretation using Layerwise Relevance Propagation

(LRP)

Assume that for a given input map, x, we get an output f(x), in our case, the predicted year.

LRP conservatively back-propagates this value through hidden layers until it reaches the

input map. This process generates a relevance heatmap, indicating the areas of importance

influencing the value f(x). The conservation property is shown in Eq. 2.1, for relevance

propagation between two hidden layers j and k, where k is the higher layer (i.e., closer to

the output). The summation operation for each layer (e.g.,
∑

k Pk) is the summation of the

relevance (P ) of all hidden units in that layer. The activation, ak (Eq. 2.2) is the information

coming from all units in layer j, to a target unit in layer k. In Eq. 2.2, aj values are the

individual activations of each unit in the layer j, wjk values are the weights associated with

the relationship between each unit in layer j and the target unit k, and bk is the bias of that

target unit.

d∑
i=1

Pi = · · · =
∑
j

Pj =
∑
k

Pk = · · · = f(x) (2.1)

ak = ReLU

(∑
j

(ajwjk + bk)

)
(2.2)

Pj =
∑
k

(
α

ajw
+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)
(2.3)
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The relevance propagation rule from layers j to k is given in Eq. 2.3. This general form

is also known as the αβ-rule (Bach et al., 2015; Montavon et al., 2018). The components ()+

and ()− indicate only positive and negative weights are being considered, respectively. The

α and β coefficients represent the relative amount of positive and negative relevance to be

propagated, respectively. As shown in Eq. 2.3, positive relevance (i.e., excitatory influence)

and negative relevance (i.e., inhibitory influence) are associated with positive and negative

weights, respectively. The α and β coefficients are to be chosen with the constraints α−β = 1

and β ≥ 0. The combination α = 2 and β = 1 (LRPα2β1) have been experimentally inferred

as suitable values, and have been adopted in previous research (Bach et al., 2015; Montavon

et al., 2018; Böhle et al., 2019; Dobrescu et al., 2019; Grigorescu et al., 2019). Here we adopt

the LRPα2β1 rule.

The αβ-rule with α = 1 and β = 0 (LRPα1β0, also known as the Deep Taylor Decomposi-

tion) is a special case where for each input, the sum of LRP relevance heatmaps is equivalent

to f(x). This is a valuable property for the interpretation of results. As β = 0, LRPα1β0

only considers the information which positively contributes to the final decision. For regres-

sion tasks such as the problem at hand here, inputs which contribute to a decrease in f(x)

(i.e., an earlier predicted year; negative relevance) are equally as important as inputs which

contribute to an increase (i.e., a later predicted year; positive relevance) to understand what

the ANN has learned. Moreover, when α > 1, the αβ-rule does not conserve the relevance

from the output value back to the input layer. For these reasons, Toms et al. (2020) pointed

out that caution should be exercised when applying the αβ-rule with 1) α = 1 for regression

and 2) α > 1 in general. We find that for our simple ANN, applying LRPα2β1 results in a

1:1 relationship between the resultant relevance heatmaps and f(x) for each input (Figure

2.1d and Figure 2.2d). This allows the visualization of input that contributes to a decrease

in f(x) while maintaining a direct relationship between the ANN predicted value and LRP

heatmaps. Therefore, we proceed with rescaled relevance heatmaps derived from LRPα2β1

for interpreting our ANN. More details on LRP can be found in previous work (Toms et al.,
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2020; Bach et al., 2015; Montavon et al., 2018, 2019).

2.3 Results

2.3.1 ANN-identified fingerprints of anthropogenic influence

We first discuss the ability of the ANN to predict the year of occurrence for a series of

simulated annual Rx1day maps. Predictions of the simulated Rx1day year (Figure 2.2) show

that the ANN struggles during roughly the first seven to eight decades of the analysis period.

But prediction accuracy gradually increases, noticeably starting from the late 20th century.

Thus, compared to when this technique is applied to global-mean temperature (Barnes et al.,

2019) there is a lag in the emergence of the anthropogenic signal in extreme precipitation.

This delay is likely due to larger internal and inter-model variability in extreme precipitation.

We estimate this time of emergence (departure year) as the year when the ANN prediction

continuously exceeds a selected base period (1920-1949) (see Barnes et al. 2019, and Mora

et al. 2013 for more details). Some maps of simulated terrestrial Rx1day drawn from various

populations of GCM training and testing data sets depart from the base period in the 1970s,

but the departures mostly occur later, with lower and upper quartiles of 1991 and 2014,

respectively (Figure 2.2c). According to the models, the anthropogenic signal has probably

already emerged in Rx1day, consistent with traditional statistical methods (King et al.,

2015).

Figure 2.2d shows the relevance pattern identified by the ANN, averaged over the period

1920-1949. Positive (negative) values in the relevance pattern correspond to an increase

(decrease) in the predicted year. Therefore, areas of positive relevance can be interpreted

as the regions with an advancing tendency on the prediction (i.e. the year) and negative

values are the regions with a retreating tendency. The sum of each grid cell value is equal

to the predicted year (Figure 2.2d). These relevance patterns can be considered as the

ANN-identified fingerprints of anthropogenic influence (e.g., Sippel et al. 2020).
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The regions with positive relevance include the East Asian and African monsoon regions,

and the North Pacific and Atlantic storm tracks (Figure 2.3). The regions with negative

relevance include arid and semi-arid subtropical zones such as Northern African and Mid-

dle Eastern deserts, Southern South Africa, Australian arid and semi-arid regions, and wet

regions such as central and northwestern parts of South America. Regions with negative

relevance also coincide with areas exhibiting a large negative dynamical component of the

Rx1day trend (Pfahl et al. 2017, their Figure 3b). These regions show a significant anthro-

pogenic reduction of vertical velocities associated with Rx1day. This offsets the Rx1day

increase stemming from the thermodynamic contribution, and produces only a weak and

inconsistent increase in Rx1day (Pfahl et al., 2017). The uncertainty associated with the

dynamical component has been identified as a major concern for D&A of precipitation (Shep-

herd , 2014). As suspected, negative relevance of the forced response is associated with lower

signal to noise ratios than the regions with positive relevance (Figure 2.2, 2.2). The signal to

noise ratios are lower for both internal variability and model variability. This reflects both

the higher uncertainty regarding the change in extreme precipitation projected by GCMs

for a majority of global arid land regions, as well as larger internal variability in those re-

gions. Here we examined the time-averaged relevance patterns, but further examination of

time-varying fingerprints shows that the ANN is also able to identify the time-varying nature

of the signal and noise, which cannot be obtained directly by linear models (Wills et al.,

2020a).

The ANN-based relevance patterns are consistent with the idea that previously observed

long-term trends of terrestrial Rx1day are anthropogenic in origin (e.g., Min et al. 2011,

their Figure 1e). Many wet land regions of the world have experienced a robust increase in

Rx1day to date, whereas in dry regions no such trend can be seen (Donat et al., 2016, 2019).

The selection of regions in these previous studies seems to overlap with the high relevance

regions in Figure 2.2d.
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2.3.2 Origins of the spread in the predicted year

We next investigate why the ANN predicts such a large range of years depending on the data

of the underlying GCM used to predict the year. This inter-model spread in the predicted

year is especially pronounced before the warming signal emerges (Figure 2.2). Here, we select

four GCMs with the highest average predicted year, and four GCMs with the lowest average

predicted year, during the baseline period (1920-1949). We obtain the relevance heatmaps for

each year of the baseline period for these eight models and calculate the composite difference

(i.e. high value minus low value) between two sets (Figure 2.4). Large positive values are

seen in the African and Asian monsoon regions. The models predicting later years also

have larger 20th century mean state Rx1day values in these regions (Figure 2.3). Thus, the

models that predict a higher value in the baseline period have more future-like patterns of

Rx1day in their baseline climatologies compared to other models. When projected onto the

fingerprints identified by the ANN, these patterns result in a later predicted year compared

to the opposite subset. This exercise suggests a potential use of ANN-based DAI methods

to understand how biases in historical simulations project onto future changes.

2.3.3 Detected anthropogenic signal in historical Rx1day records

With these physical interpretations of the ANN results and relevance patterns, we use the

GCM-trained ANNs to detect whether there is a forced signal in observations. First, we

calculate the globally-averaged Rx1day trends in each dataset using a modified Mann-Kendall

trend test (Hamed and Rao, 1998). Only seven out of the eleven datasets show a significant

trend (p<0.01) in globally-averaged Rx1day for the historical period, ranging from 0.05 to

0.09 mm/day/year (Table 2.2). Taken at face value, this suggests that the evidence for

anthropogenic influence on recent changes in extreme precipitation is weak. However, when

we apply the ANN, based on Rx1day data from GCMs, to four datasets of observational

precipitation estimates and seven reanalyses, a different story emerges.

16



If an observational dataset exhibits the same forced response as the GCMs, the predicted

year time series from that dataset should have a statistically significant positive correlation

with the actual year (r) and a linear regression of these two variables should produce a statis-

tically significant positive slope (Marvel et al., 2019; Barnes et al., 2020). Figure 2.5 shows

these two metrics for observations, reanalysis and testing GCMs, from 51 random iterations

of the ANN with different training/testing model sets. All observations and reanalysis have

high r values (Figure 2.5, 2.6), even in datasets that do not show a significant positive trend

in global Rx1day record (Table 2.2). The r values for all observational data sets are substan-

tially larger than those expected by chance (grey shaded area in Figure 2.5e,f). The slope is

a measure of signal strength (or the rate of change) in the Rx1day record. Two observational

datasets (MSWEP and GPCC) are in line with GCMs, along with four reanalyses (JRA55,

MERRA2, NCEP2 and 20CRv3). The two REGEN datasets, ERA5 and CFSR show lower

slopes, whereas GSWP3 has the highest slope among the datasets considered here. In gen-

eral, observational and renalysis products show similar correlations and slopes as the GCMs

for the same historical time period (compare the blue dots and the pink bands in Figure

2.5e, f.) This indicates that the observational and reanalysis products show anthropogenic

influence on Rx1day that is comparable to what is expected from GCMs.

These results demonstrate that the absence of a significant linear trend in globally av-

eraged Rx1day cannot be taken to mean there is no evidence of anthropogenic signal in

Rx1day. This underscores the importance of exploiting the spatial pattern of the response

to external forcing to extract the forced signal in observations, as opposed to the trend-based

analysis (Sippel et al., 2020; Wills et al., 2020a,b). In particular, areas of negative relevance,

defined previously, can act to suppress the trend in the global mean. Further evidence of the

importance of spatial patterns can be seen in the fact that the average ANN-predicted values

vary widely and systematically across the observational datasets (Figure 2.5a-d, Figure 2.6).

This is an indicator of systematic and large relative biases in the Rx1day climatologies of

the various data sets (as pointed out above in the discussion of ANN applied to the GCMs,
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the average predicted value of the year depends on the magnitude of the Rx1day in the

climatology (Figure 2.3). Yet it is significant that the ANN can put the years in close to the

correct order, as demonstrated by the significant correlations between actual and predicted

years, even if the absolute value of the years is incorrect. This is a strong indicator that

the subtle patterns and time variations of the simulated anthropogenic signal are present

in the observational data sets and are shared among them, despite the fact that they are

systematically biased relative to one another and likely the real world (Bador et al., 2020;

Alexander et al., 2020).

2.3.4 Time varying fingerprints

One of the main advantages of using an ANN to detect anthropogenic signals over traditional

D&A methods and newly introduced variants (Sippel et al., 2020) is that time varying signals

can be accounted for (Barnes et al., 2020). Such signals could be due to the nonlinear evo-

lution of the climate system or temporal and spatial variations in the forcing itself. Figure

2.7a shows the difference between the relevance maps for our baseline period (1920-1949)

and the end of the 21st century (2070-2099). While the sum of the relevance maps derived

using LRP is larger for later years compared to early years, local differences will explain

the redistribution of the importance with time. This ability to aggregate over regions and

different samples has been identified as an advantage of using LRP to interpret deep learn-

ing models (Lapuschkin, 2019; Montavon et al., 2018). The relevance increases with time

across Africa and Asia, which is likely to be associated in part with the enhancement of the

monsoon systems. A similar increase in relevance can be seen in North Pacific and North At-

lantic land regions, possibly associated with the poleward shift of storm tracks (Yin, 2005).

South African and South American Mediterranean climate regions also show an increase in

relevance, associated with subtropical drying, a robust pattern of climate change (Lu et al.,

2007; Scheff and Frierson, 2012). This indicates that even though dry regions have a smaller

signal-to-noise ratio compared to wet regions in terrestrial Rx1day (Figure 2.3), some dry
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regions show an increase of signal and/or decrease in noise with time, yielding an increase in

the relevance (Figure 2.7). Among the regions with decreasing relevance, a majority of South

America and the Western US stand out, possibly due to an increase in model uncertainty in

future projections of Rx1day.

To assess the physical validity of the change in relevance determined by the ANN, we

break the terrestrial Rx1day record down into its forced signal and changes in noise com-

ponents between the two periods. Results show that grid cells with increasing relevance

have a comparable change in Rx1day, but much less increase in both internal variability

and inter-model variability compared to grid cells with decreasing relevance (Figure 2.7b).

Therefore, the change of relevance over time is in accord with the tradeoff between increasing

noise/intermodel spread and increasing signal with time.

2.3.5 Role of model uncertainty in detecting the anthropogenic influence

To assess the influence of model uncertainty in detecting the signal, we redid the analysis,

but including a widely used highly quality controlled HadEX3 dataset (Dunn et al., 2020),

which along with its predecessors have been used in traditional detection and attribution

of extreme precipitation (Min et al., 2011; Paik et al., 2020). HadEX3 and its predecessors

are considered a more reliable dataset than the other observational estimates used in this

study, but do not provide full global coverage. Therefore, analyses were done for all GCMs

and observations, just over the regions with a continuous data coverage in HadEX3 for the

period 1979-2018 (Figure 2.8). Two separate analyses were conducted. The first analysis

was similar to the main analysis, using multimodel simulations to train the ANN (Figure

2.9) to include the model uncertainty. The second was done only using the multimodel mean

of each training model set to train the ANN (Figure 2.10). When the model uncertainty

is included, observations and reanalysis fail to identify the anthropogenic influence for the

selected domain (Figure 2.9), whereas when the model uncertainty is not included signal

is detected in 11 out of 13 datasets (Figure 2.10). This suggests that when the model
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uncertainty is considered, the power of detecting the anthropogenic influence decreases.

Similar behavior in reanalysis and observations and the difference compared to testing

data in these results (Figure 2.9, 2.10) also justifies the use of reanalysis as an alternative

observation in assessing the anthropogenic influence, as argued in previous studies (e.g., Shiu

et al. 2012).

2.3.6 Sources of the spread in the signal of observations

For observations, the absolute value of the predicted year shows a wide range of values, with

an overall underestimation compared to GCMs (Figure 2.5). A composite difference of the

relevance and Rx1day between observations and testing models reveal that different regions

contribute to this result (Figure 2.11). In observations, a lower relevance compared to GCMs

can be seen over Asia and North America (Figure 2.11a,c,e,g). These patterns correspond

to an underestimation of Rx1day in the historical observational record compared to GCMs

(Figure 2.11b,d,f,h). Among the observations, the predicted year for GPCC is the highest,

which is due to having higher Rx1day over India and Africa.

To investigate the differences in the anthropogenic signal in the four observations, we first

calculated the linear trend of Rx1day for each grid cell and weighted that by the normalized

relevance for grid cells with a positive relevance (Figure 2.12). A simple explanation for this

difference is that when more pixels with a positive relevance show an increase in Rx1day

there is an increase in the predicted year, weighted by the relevance. Confirming this,

datasets with a greater anthropogenic signal (GPCC and MSWEP, as shown in Figure 2.5)

have a higher number of grid cells with an increasing relevance-weighted trend in Rx1day

(Figure 12) compared to the datasets with a smaller anthropogenic signal (REGEN ALL

and REGEN LONG).

20



2.4 Conclusions

Detecting anthropogenic signals in observations of extreme precipitation has been a challeng-

ing task due to large internal variability of rare events, as well as climate model uncertainty.

The limited sampling in observations adds additional uncertainty, due in part to a dataset

development process that involves a variety of homogenization, extrapolation, and interpola-

tion techniques to produce global gridded products. Using a recently introduced ANN DAI

method which utilizes the time evolution of spatial maps of Rx1day in GCMs, subject to

realistic radiative forcing, we find fingerprints of anthropogenic signals that are physically

consistent with the time evolution of the forced signal. The fingerprints can be distinguished

from internal variability, and emerge despite substantial model uncertainty. Using this ANN

DAI method, we show that the anthropogenic signal can be detected in all global terres-

trial Rx1day records considered in this study. This robust detection occurs despite large

systematic biases and large discrepancies in data sources and homogenization methods.

While previous trend-based D&A assessments of Rx1day have demonstrated the human

influence in this variable in some regions, those studies assume the ensemble-mean of the

GCMs is the anthropogenic signal. This leads to questions as to whether further steps

are needed to fully consider model uncertainty (Ribes et al., 2017). We made a simple

attempt to examine this issue by applying the ANN DAI method to the same widely-used,

quality-controlled Rx1day record used in the previous trend-based D&A assessments. We

applied the method twice, once using the same multi-model approach discussed elsewhere

in this study, and once assuming the ensemble-mean time series represents the true forced

response. Our results show that including internal variability and model uncertainty in the

forced response reduces the power of detection (supplementary text). Therefore, the detected

signal in multiple datasets in this study, with internal variability and model uncertainty

being taken fully into account (Figure 2.5) is a definitive affirmation of a human influence

on extreme precipitation in the historical record. Note that while all observations show this

anthropogenic influence, the signal magnitude varies considerably, on par with that seen
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in the GCMs. This large observational uncertainty underscores a difficulty in constraining

future projections of extreme precipitation with historical climate model simulations and

observations (O’Gorman, 2012; Borodina et al., 2017).

A limitation of the ANN DAI method presented here is the inability to directly quantify

the detected anthropogenic influence in terms of physical units. This is especially important

when comparing the influence of individual external forcings (e.g., greenhouse gases, aerosols,

land use and land cover change, etc.). We also note that different ANN visualization tech-

niques are available (Samek et al., 2019), and those should be explored to understand the

sensitivity of the extracted fingerprints to the ANN visualization technique. Despite these

limitations, it is clear that ANN DAI methods with ANN visualization techniques are very

useful and efficient in identifying the human influence on variables that are highly uncertain

in GCMs, and poorly characterized in observations, such as extreme precipitation.
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2.5 Figures

Figure 2.1: Training and testing results of the ANN. (a-c) Mean Absolute Error (MAE)

for different L2 regularization values from 51 different ANNs with different training/testing

sets. MAE for training data (a), testing data (b) and absolute difference of testing minus

training (c). (d) Predicted year vs sum of the relevance heatmap grid cell values obtained

from LRPα2β1 for all models for a single ANN.
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Figure 2.2: Fingerprint of external forcing in simulated Rx1day learned by the ANN. (a,b)

Actual year vs predicted year for training data derived from CMIP5 and CMIP6 GCMs (a)

and testing data derived from CMIP5 and CMIP6 GCMs (b) for a single ANN. Each GCM is

represented by a different color. (c) The year of departure from the base period, 1920-1949,

obtained from 51 different ANNs with different training/testing sets. Whiskers represent the

5th-95th percentiles, while blank circles represent outliers. (d) Multimodel, ensemble-mean,

layerwise-relevance-propagation-based relevance maps for Rx1day input for the period 2070-

2099 from all models. (e,f) Signal to noise ratio density plots for grid cells with a positive

relevance (e) and negative relevance (f) in panel (d). Signal is defined as the multi-model

mean change in Rx1day between the base period and 1920-1949. Noise is defined in two

ways: The first stems from internal variability and is calculated as the multimodel ensemble

mean of the standard deviation in Rx1day during the base period. The second pertains to

inter-model variability, and is calculated as the inter-model standard deviation of the signal

from each GCM. Each dot in (e-f) corresponds to one grid cell.
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Figure 2.3: Simulated changes in Rx1day. Multimodel mean difference of Rx1day between

1920-1949 and 2070-2099. (b) Climatology of Rx1day for 1920-1949 calculated as the mul-

timodel mean and the time mean. (c-d) Signal to noise ratios (S:N) for noise from internal

variability (c) and inter-model variability (d). Signal is calculated as the multimodel mean of

the Rx1day difference between the periods 2070-2099 and 1920-1949. Noise from the internal

variability is calculated as the multimodel mean of the standard deviation during 1920-1949.

Noise from the model variability is calculated as the inter-model standard deviation of the

signal of each model.
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Figure 2.4: Differences between subsets of models with high and low predicted years by the

ANN during the baseline period (1920-1949). (a,b) The difference in their relevance maps

(a) and Rx1day (b) between the four models with the highest mean predicted year and the

four models with lowest mean predicted year, (as shown in Figure 1a-b). The models from

each subset are determined by combining the training and testing data.
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Figure 2.5: Metrics of the forced signal in observation-based estimates of precipitation since

1979. (a-d) Actual year vs predicted year obtained from 51 different ANNs with different

training/testing sets, for four observational datasets, MSWEP (a), GPCC (b), REGEN ALL

(c) and REGEN LONG (d). Green lines show results from each ANN and the black line

shows the mean predicted value from all ANNs. The blue line is the best fit line of the mean

predicted value. The red dashed line is the 1:1 line. (e) Correlation (r) between the actual

years and predicted years, (f) slope of the regression line between actual years and predicted

years for observational and reanalysis data (blue circle with black line), and testing models

(red and grey shaded regions). Grey shading illustrates the values obtained from testing

models after randomly shuffling, for each iteration of training/testing sets. Slope is obtained

using the Theil–Sen method (Theil , 1950; Sen, 1968).
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Figure 2.6: Same as Fig. 2.5(a-d), extended for reanalysis. For datasets MSWEP (a), GPCC

(b), REGEN ALL (c), REGEN LONG (d), ERA5 (e), JRA55 (f), MERRA2 (g), CSFR (h),

GSWP3 (i), NCEP2 (j),20CRv3 (k).

29



Figure 2.7: Change in the relevance learned by the ANN with time. (a) Multimodel average

change of relevance maps between 2070-2099 and 1920-1949. (b) Multimodel ensemble mean

change in Rx1day vs change in internal variability of Rx1day (left panels), change in Rx1day

vs change in inter-model variability of Rx1day, (right panels), between 2070-2099 and 1920-

1949. Top panels show results for grid cells with increasing relevance with time in panel (a)

and bottom panels show results for grid cells with decreasing relevance. Internal variability

is calculated as the standard deviation of Rx1day and inter-model variability is calculated as

the standard deviation of mean Rx1day from all models for each time period. The Rx1day

trend at each grid cell was removed by fitting a 4th order polynomial prior to calculation of

internal variability. For visualization purposes, grid cells outside the threshold ±0.1 years

were selected.
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Figure 2.8: Northern hemisphere HadEX3 data coverage considered in the analysis. Only

grids with a continuous data record for the period 1979-2018 (black) were selected and

regridded to the common 2o x 2o spatial grid prior to the analysis.

Figure 2.9: Same as Fig. 2.5 but for the domain in Fig. 2.8 and with HadEX3 based results

(e-g).
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Figure 2.10: Same as Fig. 2.9 but using multimode mean to train the ANN.
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Figure 2.11: Differences of Rx1day and relevance between observations and models. (a,c,e,g)

Difference of time average relevance (unit: years) between observations and testing data.

(b,d,f,h) Difference of time average Rx1day (unit: mm/day) between observations and testing

data. For testing data, an average from all testing models of 51 different ANNs with different

training/testing sets was obtained.
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Figure 2.12: Histograms of the relevance-weighted linear trends (mm/day/year) in observed

Rx1day for grid cells with positive relevance in Figure 1c. Bin width is 0.005 mm/day/year.

Relevance value of each grid cell is first normalized by the global maximum and then used

to weight the trend. Median of the distribution is depicted in a red vertical line. As shown

by the median, datasets with a greater anthropogenic signal (GPCC and MSWEP, as shown

in Fig. 2.5) have a higher number of grid cells with an increasing relevance-weighted trend

in Rx1day compared to the datasets with a smaller anthropogenic signal (REGEN ALL and

REGEN LONG).
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Table 2.1: CMIP models and the ensemble variant used in this study.

 CMIP 
version 

Model name Ensemble  
variant 

1 CMIP6 ACCESS-CM2 r1i1p1f1 
2 CMIP6 ACCESS-ESM1-5 r1i1p1f1 
3 CMIP6 CNRM-CM6-1-HR r1i1p1f2 
4 CMIP6 CNRM-CM6-1 r1i1p1f2 
5 CMIP6 CNRM-ESM2-1 r1i1p1f2 
6 CMIP6 CanESM5 r1i1p1f1 
7 CMIP6 EC-Earth3-Veg r1i1p1f1 
8 CMIP6 EC-Earth3 r1i1p1f1 
9 CMIP6 GFDL-CM4 r1i1p1f1 
10 CMIP6 GFDL-ESM4 r1i1p1f1 
11 CMIP6 HadGEM3-GC31-LL r1i1p1f3 
12 CMIP6 NM-CM4-8 r1i1p1f1 
13 CMIP6 NM-CM5-0 r1i1p1f1 
14 CMIP6 IPSL-CM6A-LR r1i1p1f1 
15 CMIP6 MIROC-ES2L r1i1p1f2 
16 CMIP6 MIROC6 r1i1p1f1 
17 CMIP6 MPI-ESM1-2-HR r1i1p1f1 
18 CMIP6 MPI-ESM1-2-LR r1i1p1f1 
19 CMIP6 MPI-ESM2-0 r1i1p1f1 
20 CMIP6 NorESM2-LM r1i1p1f1 
21 CMIP6 NorESM2-MM r1i1p1f1 
22 CMIP6 UKESM1-0-LL r1i1p1f2 
23 CMIP5 ACCESS1-3 r1i1p1 
24 CMIP5 CanESM2 r2i1p1 
25 CMIP5 CMCC-CESM r1i1p1 
26 CMIP5 CMCC-CM r1i1p1 
27 CMIP5 CNRM-CM5 r1i1p1 
28 CMIP5 CSIRO-Mk3-6-0 r1i1p1 
29 CMIP5 EC-EARTH r1i1p1 
30 CMIP5 GFDL-CM3 r1i1p1 
31 CMIP5 HadGEM2-AO r1i1p1 
32 CMIP5 HadGEM2-CC r1i1p1 
33 CMIP5 HadGEM2-ES r1i1p1 
34 CMIP5 inmcm4 r1i1p1 
35 CMIP5 IPSL-CM5A-LR r1i1p1 
36 CMIP5 IPSL-CM5A-MR r1i1p1 
37 CMIP5 IPSL-CM5B-LR r1i1p1 
38 CMIP5 MIROC5 r1i1p1 
39 CMIP5 MIROC-ESM-CHEM r1i1p1 
40 CMIP5 MIROC-ESM r1i1p1 
41 CMIP5 MPI-ESM-LR r1i1p1 
42 CMIP5 MPI-ESM-MR r1i1p1 
43 CMIP5 MRI-CGCM3 r1i1p1 
44 CMIP5 NorESM1-M r1i1p1 
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Table 2.2: Observations and reanalysis used in this study. Starting year of the time period

was chosen as 1979 (or the closest) to be consistent with satellite era. The final year of

the analysis period was chosen as the latest year with data. Trend estimates are the global

terrestrial area averaged Rx1day linear trend and the statistical significance, obtained by

using the Theil-Sen estimator and modified Mann-Kendall trend test Hamed and Rao (1998),

respectively.

 dataset Time period 
considered 

trend estimates 

trend (at 99%) slope (mm/day/yr) p value 
1 MSWEP 1979-2014 Increasing 0.07 1.7 x 10-5 

2 GPCP FDD 2018 1982-2016 No trend 0.03 0.38 

3 REGEN_ALL 1979-2016 Increasing 0.06 6.5 x 10-8 

4 REGEN_LONG 1979-2016 Increasing 0.05 2.6 x 10-6 

5 ERA5 1979-2019 Increasing 0.07 6.2 x 10-11 

6 JRA55 1979-2017 No trend 0.02 0.072 

7 MERRA2 1980-2017 Increasing 0.09 < 2 x 10-16 

8 CFRS 1979-2017 Increasing 0.085 0.017 

9 GSWP3 1979-2010 No trend -0.018 0.41 

10 NCEP2 1979-2019 No trend 0.003 0.8 

11 20CRv3 1979-2015 Increasing 0.05 1 x 10-13 
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CHAPTER 3

Emergent Constraint on Future Changes in the

Tropical Atmospheric Circulation

[Madakumbura, G. D., Norris, J., Thackeray, C., Po-Chedley, S., Ahmed, F., Hall, A.

(in revision at Nature Climate Change). Emergent Constraint on Future Changes in the

Tropical Atmospheric Circulation. preprint available at Research Square. https://doi.

org/10.21203/rs.3.rs-3908042/v1]

Abstract

Intensification of the hydrological cycle manifests through a global increase in precip-

itation at a rate lower than the increase in water vapor, and a consequent weakening in

the atmospheric tropical overturning circulation (ATOC). This circulation change shapes

future precipitation patterns, but is highly uncertain across Earth System Models (ESMs),

complicating efforts seeking to constrain projected changes in regional precipitation. Using

two ESM ensembles, we present an emergent relationship between the ATOC’s response to

anthropogenic warming, and the ATOC’s variability associated with interannual tempera-

ture anomalies. Models simulating the largest future ATOC weakening per degree warming

also tend to simulate the largest weakening in association with an internally-generated warm

anomaly. Observational estimates of ATOC sensitivity suggest that future ATOC weakening
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due to climate change is likely larger than expected from a simple multimodel mean (from

-1.41±1.06 %/K to -2.20±0.93 %/K). Lastly, we show how this enhanced ATOC weakening

impacts regional precipitation patterns. These constrained circulation and precipitation es-

timates provide a better understanding of how tropical hydroclimate will respond to future

warming and associated regional climate impacts.

3.1 Introduction

Anthropogenic climate change intensifies the global hydrological cycle (Intergovernmental

Panel on Climate Change, 2022; Allan et al., 2020; Madakumbura et al., 2019). This in-

tensification manifests as an increase in global mean precipitation of about 2-3%/K, a rate

limited by radiative processes (Allen and Ingram, 2002). Water vapor also increases, at a

rate of about 7%/K, in accord with the Clausius-Clapeyron relationship (O’Gorman and

Muller , 2010)5. The difference between atmospheric moistening and precipitation change

implies a decrease in the convective mass flux, through a weakening of the atmospheric

tropical overturning circulation (ATOC) (Held and Soden, 2006; Vecchi and Soden, 2007).

The weakening of the ATOC tends to make historically wet regions drier and historically

dry regions wetter, thus altering the spatial pattern of future precipitation change from a

wet-gets-wetter, dry-gets-drier pattern (Seager et al., 2010; Norris et al., 2019). Further-

more, this dynamical change in mean precipitation is the largest source of uncertainty in

the regional patterns of future projections (Bony et al., 2013). Therefore, constraining the

response of the ATOC to future warming has significant societal and ecological implications.

Weakening of the ATOC can manifest in both the zonally asymmetric circulation com-

ponent known as the Walker cell and the zonal mean circulation known as the Hadley cell

(Vecchi and Soden, 2007). Earth System Models (ESMs) exhibit these circulation changes

in future projections (Vecchi and Soden, 2007; Duffy and O’Gorman, 2023; Fan and Dom-

menget , 2024) and historical simulations with realistic climate forcings (Chemke and Yuval ,

38



2023; Chemke and Polvani , 2019), though the magnitude of weakening varies across ESMs.

Moreover, historical reanalysis estimates of ATOC trends have indicated both weakening

(Shrestha and Soden, 2023) and strengthening (Chemke and Polvani , 2019), differences that

may arise from factors such as reanalysis forcings biases and internal variability (Shrestha and

Soden, 2023; L’Heureux et al., 2013). Meanwhile, analysis of mechanistic drivers, based on

moist static energy balance, have shown competing influences on anthropogenic changes in

the ATOC. Gross moist stability (a metric of atmospheric stability), changes in the radiative

and surface energy fluxes into the atmosphere, and advection of moisture and heat, all can

have large contributions to the ATOC response, and each has a large ESM spread (Duffy and

O’Gorman, 2023; Fan and Dommenget , 2024; Chou et al., 2013). This bottom-up approach

also suggests different dominant mechanisms of ATOC change in different regions (Chadwick

et al., 2013; Chou et al., 2009; Chou and Chen, 2010). These gaps in mechanistic knowledge

have hindered a comprehensive understanding of how the ATOC responds to climate change

and, therefore, efforts to constrain the large ESM uncertainty in future ATOC changes (Ma

et al., 2018, 2020).

Changes in the ATOC can be associated with the overall pattern of surface temperature

change. Uniform sea surface warming can weaken both the Walker and Hadley cells, but

spatially non-uniform changes can dampen or enhance these circulation features (Chadwick

et al., 2013; Ma et al., 2012; Zhang et al., 2023). The latter is widely known as the sea

surface temperature (SST) pattern effect. Changes to SST gradients can modulate the

thermally driven components of the Walker and Hadley circulation (Zhang et al., 2023;

Corvec and Fletcher , 2017; Gastineau et al., 2009). This pattern effect can also change the

ATOC under internal variability, of which the dominant contributor is El-Nino Southern

Oscillation (ENSO) (Zhang et al., 2023). Recent work has implied that the hydrological

sensitivity (HS) linked to ATOC under internal variability can be a surrogate of the ESM

spread in HS under climate change (Norris et al., 2022a). Disagreements in the SST pattern

response to greenhouse gas forcing are likely the result of ESM structural differences (e.g.,
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coupled model SST biases; He and Soden 2016 and convective parameterization; Maher et al.

2018). Therefore, understanding how the ESM spread under climate change and internal

variability are related, has the potential to reduce such structural uncertainty in future

ATOC projections.

Emergent constraints (ECs) are a common approach to reduce uncertainty in climate

projections (Hall et al., 2019; Williamson et al., 2021; Cox et al., 2018; Williamson et al.,

2018). The EC technique uses a physically based, statistically significant relationship be-

tween the climate change response and an observable analog from the historical climate,

across an ensemble of ESMs. ECs can identify underlying mechanisms that link the ESM

spread in a response to climate change to the spread in an analogous response to short-term

variability, such as the seasonal cycle or the interannual variability. ECs have successfully

constrained the snow albedo feedback (Hall and Qu, 2006), sea-ice albedo feedback (Thack-

eray and Hall , 2019), change in tropical precipitation extremes (O’Gorman, 2012), change in

tropical ocean primary production (Kwiatkowski et al., 2017), and equilibrium climate sen-

sitivity (Cox et al., 2018; Williamson et al., 2018). Since SST pattern effects drive changes

in the ATOC and tropical precipitation on both interannual and climate change timescales

(Zhang et al., 2023; Norris et al., 2022a), we seek to develop an EC that links future, long-

term changes in the ATOC to internal variability in the tropical overturning circulation.

Our underlying hypothesis is that there are commonalities in the sensitivity of the ATOC

to internally-generated tropical temperature anomalies, on the one hand, and the ATOC re-

sponse to anthropogenic warming, on the other. Because of these commonalities, the realism

of the simulated ATOC response to warming can be evaluated from observations of internal

ATOC variability.
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3.2 Data and Methods

3.2.1 CMIP5 and CMIP6 simulations

We use monthly mean precipitation, near-surface air temperature (tas), pressure velocity (ω),

zonal and meridional winds, surface air pressure, and specific humidity data from 18 CMIP5

(Taylor et al., 2012) and 31 CMIP6 (Eyring et al., 2016) models (Supplementery Table 1,

Figure 3.A.2). To examine the temperature-mediated changes due to climate change, we

use Abrupt4xCO2 simulations. To represent the internal variability, pre-industrial control

(piControl) simulations are used.

To investigate if the emergent relationship identified in this study depends on the ocean-

atmospheric coupling and temperature gradients, we use tas and ω from CMIP historical

and Atmospheric Model Intercomparison Project (AMIP) simulations (for the period 1979-

2014). Historical simulations use atmosphere-ocean coupled ESMs and incorporate realistic

historical natural forcings (volcanic eruptions and solar variability), and human-induced

forcings, such as CO2 concentration, aerosols, and land use changes. The AMIP simulations

are atmosphere-only simulations using prescribed observed sea surface temperature and sea

ice concentrations, while other forcings are similar to the historical simulations.

Historical simulations are also used for the cross-validation of the statistical learning-

based estimation of the ω+ (see the section Estimation of the simulated and observed ω+

below). For this, tas and sea level pressure (slp) data from CMIP6 historical simulations are

used.

3.2.2 Reanalysis and observations

ω and slp data from three reanalysis products are used in this study; NOAA/CIRES/DOE

20th Century Reanalysis (20Crv3) (Slivinski et al., 2019) for the period 1900-2014, ERA5 Re-

analysis (Hersbach et al., 2020) for the period 1940-2014, and MERRA2 Reanalysis (Gelaro
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et al., 2017) for the period 1980-2014. Observed tas is obtained from the Berkeley Earth

Land/Ocean Temperature Record (Rohde and Hausfather , 2020).

3.2.3 Decomposition of the thermodynamic and dynamic components of pre-

cipitation

Following refs. Norris et al. (2019); Seager and Henderson (2013); Norris et al. (2022b), the

atmospheric moisture budget is decomposed as below.

P − E = MC (3.1)

where P is the Precipitation, E is the Evaporation and MC is the Moisture Flux Con-

vergence. The MC can be written as Eq. 3.2 below.

MC = − 1

ρwg
∇.

∫ ps

0

(uq)dp (3.2)

here u is the horizontal winds, q is the specific humidity and p is the pressure. ρw and

g are the density of water and the gravitational constant, respectively. ∇ is the gradient

operator and
∫ ps
0

()dp is the pressure integral from the surface ps to the top of the atmosphere.

MC can be further decomposed as below.

MC ≈ − 1

ρwg
∇.

∫ ps

0

(u+∆u)(q +∆q)dp (3.3)

where u, q are the piControl monthly climatology of u and q, respectively. ∆ denotes the

change from the monthly climatology. This allows us to define the thermodynamic change,

which is associated with the changes in the q as

P (TH) = − 1

ρwg
∇.

∫ ps

0

(u∆q)dp (3.4)

The dynamical change is associated with the changes in the u and can be written as
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P (DY ) = − 1

ρwg
∇.

∫ ps

0

(q∆u)dp (3.5)

3.2.4 Estimation of the Walker and Hadley circulation

To represent the Walker circulation, the zonal streamfunction (ΨZ) (Yu and Zwiers , 2010;

Yu et al., 2012) is calculated as

ΨZ = 2πa

∫ p

0

uD
dp

g
(3.6)

where uD is the divergent component of the zonal wind and a is the radius of the earth.

The average zonal wind for the latitudinal band 5oS and 5oN is used. The Hadley cell is

estimated using the meridional mass streamfunction (ΨM) is calculated as

ΨM =
2πacosϕ

g

∫ p

0

v dp (3.7)

where is the ϕ latitude and v is the zonal mean meridional wind.

3.2.5 Estimation of the simulated and observed ω+ using pressure velocity

Following ref.Vecchi and Soden (2007), ω+ is calculated as the upward monthly pressure

velocity, over all model grid points that have ascending motion in the tropics (30oS-30oN).

Considering the ESM uncertainty that spans the whole troposphere, the vertical average

of ω+ from surface to 200hPa value of (ω+) is used in the analysis. For the emergent

relationship, the tropical average ω+ and surface temperature (T ) are calculated for each

year. The ω+ normalized by the temperature change is estimated as the regression coefficient

between ω+ and T . This provides sensitivity of ω+ to temperature change under climate

change (ωCC
+) and the internal variability (ωIV

+).

For historical and AMIP simulations, first, a trend removal is conducted using a lowess
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smoothing and the ωIV
+ is calculated using detrended historical and detrended AMIP ω+

and T (Figure 3.A.5).

3.2.6 Estimation of the observed ω+ using tas and psl

Uncertainties in the representation of forced changes of ATOC in reanalysis could affect

the observed ωIV
+ estimates using reanalysis. For an independent estimation of ωIV

+, a

statistical learning model of ω+, using piControl tas and slp, is developed. This is motivated

by 1) the strong link between slp and ATOC (Chemke and Yuval , 2023), 2) the availability

of robust observational records for tas and slp, 3) the robustness of the climate change

signal in tas and slp (Hawkins et al., 2020; Gillett et al., 2003). Having a robust climate

change signal in the predictor variables allows a robust estimation of the observed internal

variability component, which will be ultimately used with the trained statistical learning

model to estimate the observed ωIV
+. Following previous machine learning-based approaches

to disentangle climate change and internal variability (Madakumbura et al., 2021; Barnes

et al., 2020; Sippel et al., 2020; Po-Chedley et al., 2022), we use partial least square (PLS)

regression to model the ESM simulated tropical average annual ω+ timeseries, using spatial

maps of annual mean tas and slp of each model year as predictors. Using the PLS inferred

timeseries of ω+, the sensitivity to internal variations in temperature (i.e., the x-axis of

the emergent relationship), ωIV
+
modeled, is calculated and compared with the actual value

of ωIV
+ (Figure 3.A.6). The number of PLS components was selected by using historical

CMIP6 simulations, as this is analogous to the observational record. Therefore, historical

simulations essentially serve as out-of-sample testing data. Following ref. (Hawkins et al.,

2020), the internal variability component of the historical simulations and observations are

estimated by removing the low-frequency component, estimated with a lowess filter. As ωIV
+

for each model should be the same for piControl and historical simulations (Figure 3.A.5),

the ωIV
+
modeled from historical simulations are compared with the corresponding ωIV

+. The

number of PLS components is selected by considering the r value and the mean squared
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error between ωIV
+
modeled and ωIV

+ (Figure 3.A.6). Finally, the observed internal variability

components of tas and psl are fed to the selected PLS model and observed ωIV
+ are estimated

(Figure 3.3).

3.2.7 Estimation of the uncertainty of the observationally constrained estimate

To obtain the uncertainty by taking the errors in both the x and y-axis variables of the

emergent relationship, a bootstrapping-based approach is used following ref. (Simpson et al.,

2021). The emergent relationship can be written as

∆yi = α + βxi + ϵ(i) (3.8)

where x is the present-day quantity, ∆y is the future change, α and β are the regression

coefficient and the intercept of the linear fit, and ε is the residuals. i refers to individual model

data points. ε has a component arising from the internal variability (εIV ) and a component

due to the intermodel differences that are not explained by the emergent constraint (δ).

ε = εIV + δ (3.9)

The true values of ∆y (∆y) and x (x) can be written as

∆yi = α + βxi + ϵIV (i) + δ(i) (3.10)

The variance (σ) of the modeled ∆y can be partitioned into the component that is ex-

plained by the emergent relationship (σ2
EC) and the remainder (σ2

ε). σ
2
ε include contributions

from internal variability (σ2
IV ) and the intermodel differences that are not explained by the

EC (σ2
δ )

σ2(∆y) = σ2
EC + σ2

IV + σ2
δ (3.11)

45



To obtain the constrained value (∆yE)) from the observations (xE)

∆yE = α + βxE + ϵIV + δ (3.12)

To obtain the constrained distribution of ∆yE, Probability density functions (PDFs) of

each component of the right-hand side in eq. (4) are constructed. 1000 combinations of

α and β are estimated with distinct total least square regressions by bootstrapping with

replacement. For xE, the PDFs are created as normal distributions centered around the

observational estimates, with the standard deviation σx that represents the internal vari-

ability. σx is estimated as the error in x. To account for the internal variability (εIV ) and

other forced contributions that are unrelated to the emergent constraint (δ), ∆yIV + δE is

estimated as the σ2
ε −β2σ

2
x. This results in 10003 = 1 billion values of ∆yE. The constrained

mean and the spread (±1 standard deviation) are calculated from this distribution.

3.2.8 Constraining the regional pattern of precipitation change

Precipitation change in abrupt4xCO2 (Figure 3.1a) across ESMs is regressed on ωCC
+, for

each model grid cell. 100 regression models for each grid cell are created by sampling with

replacement. For each of these regression models, we construct a distribution of constrained

precipitation change by using 1000 randomly sampled values from the constrained ωCC
+

distribution, resulting in 105 constrained values for each grid cell. The constrained mean

and the spread are calculated from these values. To obtain the comparable original spread

(Figure 3.A.4), the above procedure is repeated with 1000 randomly sampled values from

unconstrained ωCC
+ distribution.

3.2.9 Normalizing variables by the change in temperature

The interannual variability of the target variable is regressed onto that of the global mean

near-surface temperature. The resulting regression coefficient is then used as the measure of
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the variable normalized by the change in temperature. To calculate uncertainty, the process

is repeated with random sampling using replacement.

3.3 Results

3.3.1 Precipitation change under climate change and internal variability

To isolate the circulation-mediated precipitation response under internal variability and cli-

mate change, we decompose precipitation change and variability into its thermodynamic and

dynamic components. We use 49 ESMs from Phases 5 and 6 of the Coupled Model Intercom-

parison Project (CMIP5 and 6). The future signal is derived from simulations with abrupt

quadrupling of atmospheric carbon dioxide from pre-industrial values (abrupt-4xCO2).

Future ensemble-mean changes in total precipitation, and its thermodynamic and dy-

namic components, are shown in Figure 3.1a,c,e. The thermodynamic component shows

the wet-gets-wetter, dry-gets-dryer pattern (Held and Soden, 2006). The total precipitation

response (Figure 3.1a) deviates significantly from this thermodynamic change due to a large

and dominant contribution from the dynamic component. This appears to be associated

with ATOC weakening (Bony et al., 2013): an increase in precipitation in the descending

branch of the Walker circulation over the central to eastern equatorial Pacific, and a de-

crease in precipitation in the ascending branches of the Walker circulation over Africa, the

Maritime continent, and South America. The ensemble-mean patterns in Figure 3.1 mask

significant diversity across individual ESMs, and the ESM spread of the globally averaged

total precipitation response is dominated by the dynamical contribution (Figure 3.A.1) and

therefore, the associated changes in the ATOC.

To investigate whether the spatial pattern of change in precipitation is similar under

internal variability, we also decompose its precipitation anomalies into thermodynamic and

dynamic components (Figure 3.1b,d,f). The piControl simulations from which these are

calculated have no changes in external forcing and therefore only represent the precipita-
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tion anomalies associated with internally-generated variations in climate. Total precipitation

anomalies are almost identical to the dynamical component, and the thermodynamic com-

ponent is nearly negligible. The dynamic component has a striking resemblance to that of

climate change (cf. Figure 3.1e,f). The dynamical component of internal variability reflects

the eastward shift and the weakening of the Walker circulation under El Niño, with decreased

precipitation over the ascending branch of the Walker circulation. The similarities between

future warming and internal variability of both the multimodel mean (Figure 3.1a.b) and

the ESM spread (Figure 3.A.1a,f) are consistent with the emergent relationship documented

in Norris et al. (2022a). Specifically, that study showed a relationship between HS under

ENSO versus climate change. These considerations motivate us to analyze the underlying

processes of the dynamical component under both climate change and internal variability.

3.3.2 Change in circulation under climate change and internal variability

We first examine the sensitivity of the Walker and Hadley Circulations to future warming and

internal temperature variability (Figure 3.2). Note that in this and all subsequent discussions

of the internal variability case, we emphasize internal variability’s warm phase, for simplicity

and because of its obvious analogy to climate change. However, all of our arguments apply (in

reverse) to the cold phase as well, and of course the cold anomalies contribute equally to the

statistics presented in all figures. The multimodel mean zonal (Walker) circulation response

at the equator to climate change (Figure 3.2a) bears a strong resemblance to that of internal

variability (Figure 3.2b), as previous studies have noted (Vecchi and Soden, 2007; Bayr et al.,

2014). Under climate change and the warm phase of internal variability (i.e., dominated by El

Niño), climatologically ascending regions (Africa, Maritime continent, and South America)

experience a descending anomaly, whereas climatologically descending regions (West Indian

Ocean, Pacific Cold tongue, and Atlantic Ocean) experience an ascending anomaly. This

indicates a weakening and eastward shift of the Walker circulation. The ESM spread shows a

remarkably similar pattern between climate change and internal variability, with the largest
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spread over the ascending branches of the Walker Cells. This suggests that the strength of an

individual model’s Walker circulation response under climate change, shaped by structural

and parametric choices, can be predicted from that model’s internal variability.

The Hadley cell response exhibits a complex interplay of similarities and differences

between climate change and internal variability (Figure 3.2e-f). A similarity is particularly

evident in the weakening in the Northern Hemisphere. Over the Southern Hemisphere (SH),

Hadley Cell strengthening is seen in the warm phase of internal variability, but the climate

change response shows both a weakening (in the deep tropics) and a strengthening (around

15oS). The strengthening of the Hadley cell under warm phases of internal variability can

be linked to atmospheric-ocean coupling (Chemke, 2022). As with the Walker Circulation,

the ESM spread (Figure 3.2g-h) shows very similar patterns between the two responses,

particularly over the rising Hadley Cell branches in both hemispheres. Thus the patterns

of the ESM spread in circulation response to climate change (Figure 3.2c,g) and internal

variability (Figure 3.2d,h), are very similar, especially in the rising branches of both Walker

and Hadley circulations. The fact that the same outcome can be seen in these two orthogonal

ATOC metrics encourages us to define an aggregated, representative metric of the ATOC,

which may be used in an emergent relationship.

3.3.3 An emergent constraint on ATOC

The upward monthly atmospheric vertical velocity, averaged over all grid points that have

ascending motion in the tropics (30oS-30oN), denoted here as ω+, has been widely used

to measure the ATOC response to climate change (Vecchi and Soden, 2007; Bony et al.,

2013; Merlis , 2015). Here we use the vertical average of ω+ over the troposphere (surface

to 200hpa), ωCC
+, as the large values of ESM uncertainty in Figure 3.2 span the whole

troposphere. The sensitivity of ωCC
+ to global-mean temperature under climate change

(ωCC
+) and internal variability (ωIV

+ ) are examined. A strong majority (43 out of 49) of

ESMs show a negative value for ωCC
+, indicating weakening of the ATOC under climate

49



change, with a mean±1 standard deviation of -1.41±1.06 %/K. The slightly positive values

seen in the rest of the models can arise from an increase in the height of convective outflow

with warming, and do not necessarily signify a strengthening of ATOC (Chadwick et al.,

2013). Looking across generations of ESMs, the models produced by Goddard Institute for

Space Studies (GISS) and Model for Interdisciplinary Research on Climate (MIROC) are

consistently among the ESMs with the least and most negative ωCC
+ values, respectively, in

CMIP6, CMIP5 (Figure 3.A.2) and CMIP3 (Vecchi and Soden 2007, their Figure 4). The

variables ωCC
+ and ωIV

+ are strongly correlated across 49 ESMs (Figure 3.3; r=0.73). This

relationship is apparent in both CMIP5 (r=0.83) and CMIP6 (r=0.74), which enhances our

confidence in its robustness (Hall et al., 2019).

ESMs show both positive and negative values for ωIV
+. As theWalker circulation weakens

during the warm phases of internal variability (Figure 3.2a-b), these positive values could

result from the strengthening of the SH Hadley Cell (Figure 3.2f). Models that show the

least weakening of the ATOC under climate change show the largest strengthening under the

warm phase of internal variability. Observational estimates of ωIV
+, based on de-trended

reanalyses vertical velocity, provide central estimates of -2.38, -1.35, and -0.95 %/K for

20Crv3, MERRA2, and ERA5, respectively (Methods). As reanalyses vertical velocity is

essentially model derived and may have biases in the ATOC response (Chemke and Polvani ,

2019; Mitas and Clement , 2005), we also estimate ωIV
+ using observed surface temperature

and reanalysis sea level pressure data, which is more directly constrained by observations

(Methods). Estimates of ωIV
+ produced with this method match with the reanalysis vertical-

velocity-based ATOC estimates reasonably well (dashed/dotted vertical lines in Figure 3.3).

The emergent constraint suggests a ωCC
+ value of -2.20±0.93 %/K, signifying a 55% greater

weakening of the ATOC than the mean of the unconstrained ensemble. This also represents

a 12% decrease in model uncertainty. Thus, the original ESM spread is substantially shifted

down and slightly constrained.

A number of factors may contribute to changes and variability in the ATOC, producing
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this emergent constraint (Ma et al., 2018). ESM cross correlation between ωCC
+ and pi-

Control meridional and zonal mass stream function sensitivities indicate that the descending

branch of the Pacific Walker cell and SH Hadley Cell, each has a large contribution to the

emergent relationship (p value<0.01, Figure 3.A.3a-b). Further cross-correlation between

ωCC
+ and climatological ω+ over the tropics also points to intermodel variations in climato-

logical Southern Hemisphere Hadley cell as a source of future model spread (Figure 3.A.3c).

Further examination of this figure shows significant (p value<0.01) cross-correlation over the

southeastern Pacific, including subtropical dry zones. As ωCC
+ is calculated from ascending

motion, this high correlation could be related to varying degrees of the double-Intertropical

Convergence Zone (ITCZ) bias (Tian and Dong , 2020; Hwang and Frierson, 2013). A “dou-

ble ITCZ” creates a spurious intrusion of the tropical rain belt into the southeastern Pacific

and is one of the largest sources of ESM bias and uncertainty in precipitation and ascending

motion in this region (Tian and Dong , 2020). The southeastern Pacific also experiences an

intrusion of warm pool convection from the west during the warm phase of internal variabil-

ity (Figure 3.1b), with substantial ESM uncertainty (Figure 3.A.3f). These results indicate

that while the weakening of the ATOC under climate change was previously shown to be

dominated by the response of the Walker Circulation (Vecchi and Soden, 2007), the uncer-

tainty in the SH Hadley Cell response also contributes to a large ESM spread in the ATOC

response.

3.4 Implications and future directions

Better understanding and constraining the evolution of the ATOC under climate change can

help improve projections of regional precipitation change. We illustrate this by regressing the

precipitation response (Figure 3.1a) against the unconstrained and constrained distributions

of ωCC
+ , across ESMs (Methods). The difference between these two metrics (the mean

change in precipitation sensitivity due to adjusted ATOC) is shown in Figure 3.4a. Notably,

this implies a substantial reduction (larger than 20%) in the expected wetting across the
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maritime continent (Figure 3.4a,b), a region with appreciable ESM uncertainty (Figure 3.1a,

Figure 3.A.1a). The constrained mean indicates a stronger weakening by the dynamical

component, resulting in only a slight increase in precipitation. A substantial change is also

apparent over the Amazon (Figure 3.4c). The original multimodel mean shows a large drying

in the Amazon, which is muted when the ATOC is constrained. These regions also show a

reduction (larger than 10%) in the ESM spread (Figure 3.A.4). Among the other regions

with noticeable change, strengthening in the projected drying can be seen in West Africa and

Central America (Figure 3.4d,e). The above regions are either biodiversity hotspots (Myers

et al., 2000; Costello et al., 2022) or population hotspots, or both. Therefore, constrained

change in future precipitation can provide valuable information towards habitat conservation

planning and is also crucial for climate change adaptation strategies.

Another implication of constraining the ATOC is to provide a clearer picture of the El

Niño-like warming under climate change (Dong et al., 2021), and its implications. Weakening

of the ATOC, specifically the Walker circulation, can warm the Pacific cold tongue region

through the Bjerknes feedback (Sohn et al., 2016). Increased warming in the tropical eastern

Pacific can also create a positive cloud feedback, in which east Pacific warming leads to a

decrease in the low-level stratus cloud deck off the west coast of South America, and more

solar radiation and warming (Ma et al., 2018). A more El Niño-like warming would cause

changes in ENSO characteristics, increased frequency of extreme El Niño and La Niña events,

and their associated global impacts, particularly on climate extremes (Cai et al., 2015; Zheng

et al., 2016). Based on the emergent constraint presented in this study, examining the extent

to which the mean state is becoming El-Niño-like is a potential future research avenue,

with great socioeconomic and ecological importance, considering the far-reaching impacts of

ENSO teleconnections (Yeh et al., 2018).

Clues as to the fundamentally coupled origin of the model biases that produce the emer-

gent relationship presented here can be seen in estimates of ωIV
+ in various types of ESM con-

figurations. Estimates of ωIV
+ using historical simulations from atmosphere-ocean coupled
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ESMs produce similar results as piControl simulations (Figure 3.A.5). However, atmosphere-

only historical simulations, with prescribed SST and sea ice forcings (AMIP, see Methods),

do not produce similar ωIV
+ as piControl. Historical simulations exhibit SST biases due to

atmosphere-ocean coupling, similar to the PiControl simulations, whereas the AMIP simula-

tions do not. This indicates that the model biases that contribute to the emergent relation-

ship are possibly related to coupled atmospheric and oceanic processes, and are not purely

atmospheric in origin. Examination of mechanistic links between SST patterns and ATOC

is an opportunity for future research from an ESM development perspective.

Observational uncertainty of ATOC sensitivity under internal variability can have a ma-

jor effect on constrained estimates. While reanalysis products are the best available estimates

for the observed ATOC, previous studies have indicated that the forced changes in the over-

turning circulation in some reanalyses are flawed due to biases in the forcings (Chemke and

Polvani , 2019; Mitas and Clement , 2005). Surface pressure and temperature observations

provide a similar constraint on ATOC changes, but alternate observations of the ATOC (e.g.,

radiosonde data and satellite measurements) should also be employed to verify that this con-

straint is robust to a range of independently-derived observational indices. With these future

directions, the emergent relationship identified in this study provides a pathway to ESM de-

velopments that could result in more robust regional projections of the intensification of the

hydrological cycle.
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3.5 Figures
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Figure 3.1: Multimodel mean precipitation change under climate change and internal vari-

ability. Total precipitation change (a,b), thermodynamic component of precipitation change

(c,d) and the dynamic component of precipitation change (e,f). Climate change components

(a,c,e) are calculated using the difference between abrupt-4xCO2 and piControl simulations

while the internal variability components (b,d,f) are calculated using the interannual vari-

ability of piControl simulations. Red contours represent the multimodel mean annual mean

precipitation from piControl simulations. Dashed and straight contours represent values 1

and 5 mm/day, to indicate climatologically dry and wet regions, respectively. Values are

normalized by the change in temperature.
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Figure 3.2: Sensitivity of the Walker and Hadley circulations to future warming and internal

temperature variability. The sensitivity of the Walker circulation is represented using the

zonal mass stream function (x1010 kg s-1 K-1, 5oS-5oN) (a-d). The sensitivity of the Hadley

circulation is represented by the meridional mass stream function (x109 kg s-1 K-1) (e-h).

Multimodel mean (a-b,e-f) and model spread, calculated as the standard deviation across

models (c-d,g-h). Climate change components (a,c,e,g) are calculated using abrupt-4xCO2

simulations and the internal variability components (b,d,f,h) are calculated using piControl

simulations. Contours represent the climatological value, calculated as the multimodel mean

of the piControl (x1010 kg s-1 for a-d and x109 kg s-1 for e-h). Values are normalized by the

change in surface temperature.
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Figure 3.3: Emergent constraint on the atmospheric overturning circulation. The emergent

relationship between the sensitivity of to ω+ climate change (ωCC
+, y-axis) and internal vari-

ability (ωIV
+, x-axis), normalized by the change in temperature (%/K). Each dot represents

a different ESM, and x and y error bars represent the ±1 standard deviation. Solid vertical

lines represent the observed historical estimates calculated using various reanalysis datasets.

Dashed vertical lines represent the observed historical estimates calculated using observed

sea level pressure and surface temperature, and statistical learning (Methods). The green

and red lines on the right represent the unconstrained and constrained 66% prediction in-

tervals derived following Simpson et al. (2021). Best fit line (green) and the 95% confidence

interval (shaded) are shown.
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Figure 3.4: Resulting impact of constrained ATOC on future changes in regional precipita-

tion. Difference between constrained precipitation change and the original multimodel mean

of the precipitation change (a) (mm/d/K). Hatching indicates changes larger than ±20%.

Boxes represent the Maritime Continent (5oS-15oN,100oE-160oE), Amazon (11oS-5oN,76oW-

54oW), Western Africa (5oN-15oN,0oE-54oE) and Central America (5oN-21oN,120oW-80oW).

Distributions of area average values over the Maritime continent (b), Amazon (c), Western

Africa (d) and Central America (e), for original and constrained values, are shown.
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Appendix

3.A Supplement

Climate change
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Figure 3.A.1: Same as Figure 3.1 but for the model spread, calculated as the inter-model

standard deviation.
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Figure 3.A.2: ESM values of the ωCC
+ , calculated using Abrupt-4xCO2 simulations, in

descending order. Blue values represent the CMIP5 models and green values represent the

CMIP6 models.
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Hatching indicates the regions where the difference is larger than 10% and the original spread

larger than 0.2 mm/d/K, to avoid division by small numbers.).

Figure 3.A.5: Relationship between the sensitivity of mean ω+ to temperature under natural

variability (%/K), calculated using piControl simulations (ωIV
+) and (a) calculated using

detrended historical simulations, (b) calculated using detrended AMIP simulation. Dashed

black line represents the 1:1. Best fit line (blue) and the 95% confidence interval (shaded)

are shown. r value shown is the Spearman rank correlation.
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Figure 3.A.6: Metrics of the partial least square (PLS) regression model for estimating ω+

using sea level pressure (slp) and surface temperature (tas). The correlation (r) (a) and the

mean squared error (mse) (b) between actual and predicted sensitivity of ω+ to temperature

(i.e., x-axis of the emergent relationship, ωIV
+). Predicted sensitivities (ωIV

+) are calculated

using the ω+ estimates from the PLS regression model using slp and tas from piControl (blue

line) and historical (orange line) simulations. r and mse values for different PSL components

are shown. Eight PLS components are selected based on the r and mse of the historical

simulations, as beyond this number the gain in accuracy is smaller. Predicted and actual

ωIV
+ for the selected PLS model (with 8 PLS components) for piControl (c) and historical

(d) simulations. The dashed line represents the 1:1 line and the blue line is the best-fit

linear regression line, with the 95% confidence interval shown in light blue. Following ref.

Po-Chedley et al. (2022), the final value corresponding to observations is estimated after a

bias correction using the fit between actual and predicted ω+ of all piControl simulations.
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CHAPTER 4

Climate change drives earlier wildfire season onset in

California

[Madakumbura, G. D., Moritz, M. A., McKinnon, K., Williams, A. P., Rahimi S. Bass,

B., Norris J., Fu, R., Hall, A. (in review at Nature Geoscience). Climate change drives

earlier wildfire season onset in California. preprint available at Research Square. https:

//doi.org/10.21203/rs.3.rs-883244/v1]

Abstract

Wildfires in California have become increasingly devastating in recent decades. The

fire-season is also lengthening, with an earlier onset. This trend has been hypothesized to

be driven by anthropogenic climate change, but it has yet to be quantitatively attributed

to climate drivers. Using a comprehensive fire occurrence dataset, we analyze fire-season

onset and climate controls on its variability and change during 1992-2020 in 13 California

ecoregions. Northern California ecoregions with significant snow cover show a stronger trend

towards later onset compared to more arid southern California ecoregions. Onset has trended

earlier for all but one ecoregion. Interannual variability of onset is dominated by climate

variability, mainly through soil moisture and atmospheric aridity. Even excluding fires from

areas with rising human populations, climate factors still primarily dictate onset trends,
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rather than human-caused ignitions. Trend attribution using the onset-climate relationship

shows that, while natural variability has a large contribution to the earlier onset in Southern

California, in 11 out of 13 ecoregions, climate change has advanced fire-season onset by 5-50

days during 1992-2020. Under continued warming, climate change is expected to continue

to promote earlier fire-season onsets and exacerbate wildfire risks in California.

4.1 Introduction

Increasingly large and severe wildfires in the western United States (US) have become more

costly in terms of lives lost and damage to property and infrastructure in recent decades,

particularly in California (Doerr and Sant́ın, 2016; Zhuang et al., 2017; Bowman et al., 2017;

Schoennagel et al., 2017). Wildfire damages in 2018 alone within California are estimated

to be about $148.5 billion (Wang et al., 2021). Anthropogenic climate change (ACC) has

already changed fire weather by increasing surface temperature and evaporative demand

(Abatzoglou and Williams , 2016; Zhuang et al., 2021), and is likely to further exacerbate fire

risk. This may happen both directly by altering seasonal patterns of temperature, precip-

itation, wind, and other conditions central for fire-weather and fuel aridity, and indirectly

by increasing fuel availability (Scott et al., 2013). In recent decades, a significant positive

trend in annual burned area has been observed in California with strong links to the climate

change-driven warming in the region (Brown et al., 2023; Westerling , 2018; Williams et al.,

2019). A consideration of various characteristics of wildfires and a robust understanding

of their controlling factors is vital for understanding how ACC influences fire conditions

(Bowman et al., 2020; Krawchuk and Moritz , 2014).

Fire-season onset timing is a fire behavior characteristic with practical applications in fire

risk outlooks (National Interagency Coordination Center , 2021). An earlier than usual onset

is an indicator of a potentially longer fire season, and therefore with the risk of more fires

burning larger areas and with a longer mean burning time (Westerling , 2016). Onset has
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been widely identified as when fire weather conditions first surpass a selected threshold (e.g.,

Jolly et al. 2015). For instance, examining Canadian forests, (Wotton and Flannigan, 1993)

defined onset as when maximum daily temperature first exceeds 12oC for three consecutive

days. Such an emphasis on temperature in defining onset has naturally led to the conclusion

that ACC has the potential to advance onset in many regions (e.g., Wotton and Flannigan

1993; Strydom and Savage 2017), including California (Abatzoglou and Kolden, 2011). While

fire weather is indicative of fire danger, fire occurrence also depends on fuel availability

and ignition (Moritz et al., 2012). Additionally, widely used fire weather metrics may not

represent complex hydrological processes such as snow (Abatzoglou and Williams , 2016),

which influences soil moisture and hence fuel flammability. This highlights the importance

of investigating fire-season onset using fire occurrence data to develop a robust understanding

of its drivers, including the influence of ACC (Williamson et al., 2016).

The question of how much ACC and natural variability have contributed to the changes in

historical fire-season onset in California has yet to be answered (Westerling et al., 2006;West-

erling , 2016). One major limitation of previous attempts to understand fire-onset (Westerling

et al., 2006; Westerling , 2016; Dennison et al., 2014) is that they were restricted to large

fire sizes (e.g., fire size >405 ha). This reduced the sample size and made it more difficult to

develop robust statistics, especially in regions where either fuel limitations or fire suppres-

sion efforts, or both, can limit the occurrence of such large fires. In addition, large fires may

require the occurrence of multiple unique environmental stressors and conditions (Khorshidi

et al., 2020), making causal interpretations difficult. Moreover, offshore-wind-driven large

fires in Southern California, in particular, are limited by human ignitions (Keeley et al.,

2021). Difficulty in interpreting the causal drivers makes attributing changes in fire onset to

natural variability, ACC, and other potential causes challenging. This stresses the need for

assessing the onset using comprehensive fire records with a wide spectrum of fire sizes and

an objective definition of onset.

In this study, we use an extensive record of fire occurrence data from 1992-2020 for ecore-
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gions in California (Short , 2022). By analyzing the distribution of start dates of all recorded

fires, we define a physically interpretable fire-season onset. We utilize high-resolution ob-

servational climate data to identify mechanisms and main drivers of this onset. Through

this mechanistic understanding, we quantify the influence of climate change and natural

variability on observed changes in onset during recent decades.

4.2 Data and Methods

4.2.1 Fire occurrence and climate data

We use the 5th edition of the United States Forest Service Fire Program Analysis-Fire

Occurrence Database (FPA-FOD) (Short , 2022). The dataset is quality-controlled and com-

prehensive, with 2.3 million wildfires that were recorded by United States federal, state, and

local agencies during 1992-2020. We use the data attributes discovery date, and location

(latitude and longitude) in the analysis.

To investigate the climate drivers of fire-season onset, observed monthly precipitation,

snow water equivalent, maximum and minimum temperature, vapor pressure deficit, and soil

moisture are obtained from TERRACLIMATE (Abatzoglou et al., 2018), which has 1/24th

degree spatial resolution for the period 1960-2020. For dynamical adjustment to isolate the

natural variability, we use ERA5 (Hersbach et al., 2020) sea level pressure (SLP) data for

the period 1960-2020.

Considering the spatial heterogeneity of climatic conditions (Minnich, 2018; Norris et al.,

2021) and fire behavior (van Wagtendonk , 2018; Williams et al., 2019) within California, we

analyze 13 ecoregions based on United States Environmental Protection Agency’s ecoregion

level III classification (Omernik and Griffith, 2014). These ecoregions represent vegetation

characteristics and climate conditions, from deserts to forests and therefore, results can

implicitly indicate the role of vegetation in the onset-climate relationship (e.g., Syphard

et al. 2017).
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4.2.2 Human population proxy

Nighttime light (Elvidge et al., 1999) measurements are an indicator of human activities (Li

and Zhou, 2017), which has also been found to be the best overall explanatory variable of the

spatial variability of human-caused ignitions (Chen and Jin, 2022). We use the harmonized

global nighttime light dataset from (Li et al., 2020) regridded to a 270 m grid. To inspect

the influence of human activities on onset-climate relationships, we remove fires from the

regions with a positive trend in nighttime light for the period 1992-2018 (Figure 4.A.1).

4.2.3 Live and dead fuel moisture data

We use a deep learning-based reconstruction of dry season (July-August) liquid water in

canopy above 2m in height, for 1992-2017 (Asner et al., 2016; Brodrick et al., 2019). This

dataset is developed using remotely sensed canopy water estimates (high-fidelity imaging

spectroscopy and light detection and ranging aerial surveys) and environmental data (e.g.,

elevation, slope, aspect, relative elevation, Landsat 8 surface reflectance, distance to the

nearest road, road density, maximum incident solar irradiation from four periods throughout

the year, and spatial coordinates). The year 2012 is missing from this dataset due to missing

Landsat training data. Original data at 30 m spatial resolution is regridded to a 270 m grid

for the analysis.

As an independent measurement of fuel moisture, we use directly measure live fuel mois-

ture content (LFMC) from the National Fuel Moisture Database. We first select sites across

California that had at least one LFMC measurement during the August-September period

and at least 25 years of summer data from the 1992-2020 study period. Recognizing the po-

tential impact of data gaps, particularly during significant climatic events such as multi-year

droughts or wet periods, we refine the selected dataset by excluding sites with any 3-year

consecutive period of missing data, aiming to mitigate distortion in our correlation calcula-

tions. This provides at least one site for ecoregions: Central California Foothills and Coastal

68



Mountains, Southern California Mountains, Southern California Northern Baja Coast, and

Sierra Nevada. We combine the regions with multiple sites to obtain one representative

timeseries for each region.

4.2.4 Estimation of the influence of natural variability and climate change

To estimate the influence of natural variability and anthropogenic climate change (ACC), we

first develop a causal effect network (CEN) following (Kretschmer et al., 2016). We consider

the following as key drivers of fire season onset: seasonal average precipitation, snow water

equivalent, maximum and minimum temperatures, and VPD. This study posits that the

effects of antecedent conditions, such as precipitation, snow, and temperature, persist into

later seasons via soil moisture and therefore fuel moisture, thereby influencing the fire-onset.

This is in addition to the immediate climatic conditions, such as VPD which can influence

fire-onset through influencing dead/fine fuel moisture. For example, in regions where the

fire season window (gray shaded area in Figure 4.A.1) ends in June-July-August (JJA), we

analyze the aforementioned variables across seasons: December-January-February (DJF),

January-February-March (JFM), February-March-April (FMA), March-April-May (MAM),

April-May-June (AMJ), May-June-July (MJJ), and JJA of the current year, as well as DJF

to November-December-January (NDJ) of the preceding year. This results in 19 seasonal

timeseries for each variable, yielding a total of 95 potential predictor time series (19 seasonal

timeseries for each of the 5 variables). The CEN framework provides a methodology based

on causal discovery to identify the most important variables from this initial list.

As the first step, the correlation between the onset time series of each year and antecedent

climate variables is calculated (e.g., Figure 4.A.1) and the significant (p-value<0.1) cases

are selected. This list of selected variables is called potential parents (P 0). As the second

step, the P 0 are sorted based on the absolute value of the correlation above. Conditional

independence tests are then carried out between each of the variables in P 0 and onset,

first, by removing the influence of the variable with the highest correlation (say Z). This
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is done by calculating the partial correlation. If a variable X has a statistically significant

(p-value<0.05) partial correlation with onset, it is declared that X has an influence on

onset independent of Z. If the partial correlation is not significant, the variable is removed.

The causal principle that a variable must precede in time or occur simultaneously with

another variable to influence it is always observed. This way we objectively obtain a smaller

subset of P 0 (say P 1). This is repeated by conditioning on the variable with the next

highest absolute correlation with onset in P 1. After evaluating conditional independence

with one variable, we incrementally include two, three, and more variables, continuing until

the resulting independent variables list converges. Finally, we create a least square regression

model for the onset of each ecoregion using the selected climate drivers (Table 4.A.1, Figure

4.A.6). With the resultant drivers and the models of onset, we proceed to quantify their

influence on onset.

To isolate the influence from natural climate variability, we use the dynamical adjustment

technique (Bass et al., 2022; Siler et al., 2019; Smoliak et al., 2015). Dynamical adjustment

isolates the variability of the target climate variable that is linked to the circulation-induced

variability. This is the dynamical component, which we treat as an estimate of natural

climate variability. The residual contains the thermodynamic change that is forced by ACC-

driven warming. Following Siler et al. (2019), we use SLP of the domain Northern Hemi-

sphere 0-80oN Pacific/North America sector 110-290oE, as the variable that represents the

circulation change and use partial least square (PLS) regression to map a target climate

variable for a given season of all ecoregions (independent variable, y0) onto the SLP (inde-

pendent variable, X0). We first remove the low frequency variability of X0 (X low˙freq) and y0

(ylow˙freq) using nonparametric lowess smoothing. Then the y = y0 - ylow˙freq is mapped onto

the X = X0 - X low˙freq using PLS regression. The number of PLS components was selected

using leave-one-out cross-validation. Natural variability component (dynamical component)

is then estimated as the PLS modeled estimate (ymod) and the ACC is taken as the residual,

y0 - ymod.We follow this procedure for each variable and each season, separately. Once we
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separate the natural variability and ACC component of each climate driver used to model

onset, we estimate the contribution from each component on the onset trend.

It is important to note that the dynamical adjustment technique is just one among

several methods available for this task (Deser et al., 2020). The impact of methodological

uncertainty on the quantitative estimates provided may warrant further studies.

4.2.5 Uncertainty estimation of the regression model

The uncertainty in regression coefficients is calculated by applying a leave-one-out procedure.

For each sample, we remove one year at a time and re-create the climate-onset least square

regression model, resulting in 29 different models.

For the uncertainty in the trend estimates and soil moisture contribution to onset (total,

NV and ACC), we randomly resample the years with replacement and calculate the trend of

observed onset, modeled onset, NV component and ACC component, for 100 samples. To

estimate the uncertainty of the attribution of observed trends in onset to trends in modeled,

NV and ACC, we calculate the contribution of trends for each of the above-created 29 leave-

one-out regression models. This results in 2900 estimates for each variable.

All trend estimates in this study are calculated using linear least-square regression.

4.3 Results

4.3.1 Onset based on fire occurrence records

Figure 4.1 shows the time series of onset for 13 level III ecoregions of California (Omernik and

Griffith, 2014). Following Hanes et al. (2019), fire onset is defined as the 5th percentile of the

empirical cumulative distribution function of the discovery dates of fires during each calendar

year (i.e. the Julian date). The distributions of onset during 1992-2020 in each ecoregion

show different shapes (Figure 4.1, subpanel insets). Northeastern California (Cascades, and
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Eastern Cascades Slopes and Foothills) shows a peak of onset in May-July. By contrast,

Northwestern and Central California (Coast Range, Klamath Mountains/California High

North Coast, Central California Foothills and Coastal Mountains, Central California Valley,

and Sierra Nevada) have a peak in April-June; in southern California, the fire-season often

begins in the latter part of the cool season (January-March). These contrasts are indicative

of the background climates among ecoregions. In addition to a later end to wet season

precipitation, Northeastern ecoregions have a large snow and subsurface water storage that

can carry the moisture from the winter precipitation towards the spring and summer, delaying

fire onset (Bales et al., 2006). Meanwhile, Southern California is more arid with an earlier

end to the wet season, so that soil moisture from winter precipitation is less persistent

through the dry season (van Wagtendonk , 2018). Furthermore, southern California can

experience periods of very high vapor pressure deficit (VPD), even in winter when offshore

Santa Ana winds can be strong (Jin et al., 2015; Faivre et al., 2014). Southern California

also has extremely high variability in the timing and magnitude of the winter rainy season

and precipitation events within it (Byrne et al., 2023), likely contributing to the multimodal

distribution of fire-onset in some ecoregions.

All ecoregions except the Sonora Basin and Range show a negative trend in the onset (i.e.,

Julian date of onset becoming earlier in the year). Arid and semi-arid ecoregions (Mojave

Basin and Range, Southern California Northern Baja Coast, Southern California Mountains,

Northern Basin and Range, Sonoran Basin and Range, Central Basin and Range) show

insignificant to marginally significant trends at the 0.1 level (0.06<p-value<0.33). But the

rest of the ecoregions show rapid and significant trends (p-value<0.01). The most negative

trends are in the Cascades (-2.7 days/year), Eastern Cascades Slopes and Foothills (-2.4

days/year), Central California Foothills and Coastal Mountains (-2.2 days/year) and Central

California Valley (-2.1 days/year).
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4.3.2 Climate controls of fire-season onset

Based on the contrasting distributions of the onset across ecoregions observed in Figure 4.1,

we hypothesize that onset variability is dominated by climate. To investigate this, the corre-

lation between the linearly detrended onset and detrended climate variability of different sea-

sons is shown in Figure 4.5 and Figure 4.A.1. The antecedent climate variables suggest causal

links with the onset. Winter and early spring (December-March) soil moisture is generally

the variable with the highest correlation, and is significant for all ecoregions. This correla-

tion is greatest for the Central California Foothills and Coastal Mountains (0.89), Southern

California Mountains (0.88), Sierra Nevada (0.87), and Southern California Northern Baja

Coast (0.87). Winter precipitation generally has the next highest correlation, although this

likely reflects mostly the same information as soil moisture. Spring to summer VPD (Figure

4.A.1) shows strong negative correlations, especially for the Southern California Mountains

(-0.78), Klamath Mountains/California High North Coast (-0.75), and Sierra Nevada (-0.71).

And this is similarly reflected by strong negative correlations for temperature in the same

months. Meanwhile, high mountainous regions (Sierra Nevada, Southern California Moun-

tains, and Cascades) show large positive correlations for snow water equivalent (0.77, 0.69,

and 0.67, respectively). Overall, these relationships indicate that winter precipitation and

snow can influence the onset through delayed effects on soil moisture and VPD, while spring

to summer temperature and VPD can influence onset over shorter timescales.

Trends in human ignitions have been found to influence fire characteristics (Balch et al.,

2017). Repeating the analysis excluding areas with increasing human population (Methods,

Figure 4.A.2-4.A.4), we find similar onset trends and onset-climate relationships to those

shown in Figure 4.5. Furthermore, the number of human-ignited fires is showing decreasing

trends in many ecoregions, throughout the year (Figure 4.A.5). These results suggest the

trends in fire onset observed here are mainly controlled by climate, not human activities.

While the interannual variability of other fire characteristics such as burned area can be

significantly influenced by fuel amount and human population density (Forkel et al., 2019),
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our results suggest interannual variability of fire-season onset is mostly governed by climate

impacts, possibly through influencing the moisture content in the plant material itself.

To further investigate how climate can influence the fire-onset, we examine the rela-

tionship between fire-onset and fuel moisture. Climate conditions can impact the onset by

affecting the moisture content of both live and fine dead fuels. However, as the analysis here

is conducted on monthly to seasonal climate timescales, fine dead fuel moisture estimates

relevant for igniting and carrying fire under many synoptic weather conditions (e.g., 1 and 10-

hour dead fuel moisture content; Nelson 2000) fall outside this study’s scope. Therefore, we

limit our analysis to live fuel moisture. Remote-sensing-based estimates of vegetation mois-

ture content can provide more spatially and temporally complete data compared to direct

measurements of live fuel moisture content (LFMC) (Dennison et al., 2005; Roberts et al.,

2006; Rao et al., 2023). Remote sensing-based reconstructions of dry-season canopy water

content (CWC) of vegetation canopy above 2m in height (Asner et al., 2016; Brodrick et al.,

2019) show significant positive correlation with fire-onset across California (Figure 4.3a).

This strong relationship is particularly evident in Southern California ecoregions, Central

California Foothills and Coastal Mountains, Cascades, and the southern Sierra Nevada. We

also investigate this relationship using direct measurements of LFMC from the National Fuel

Moisture Database for regions that have continuous coverage (see Methods). This verifies the

reconstructed CWC results (Figure 4.3b-e), in particular for the Central California Foothills

and Coastal Mountains (r=0.69), Southern California Mountains (0.72), Southern California

Northern Baja Coast (0.66), and Sierra Nevada (0.66). Regions with particularly high fuel

moisture and onset correlation in Figure 4.3 also stand out as the regions where the soil

moisture-onset correlation in Figure 4.5 are strong. This is consistent with the soil moisture

dominance in the temporal and spatial variability of fuel moisture (Brodrick et al., 2019;

Countryman and Dean, 1979; Goulden and Bales , 2019).
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4.3.3 Roles of natural variability and climate change on observed onset trends

With the above mechanistic understanding of how onset variability is controlled by climate

variability, we next decompose the influences of climate drivers on the observed onset trend.

Using a causal effect network framework (Kretschmer et al., 2016; Runge et al., 2015, 2019)

we select the climate variables and seasons that have a causal influence on onset for each

region (see Methods). We then model the fire-onset of each ecoregion as a linear function

of these climate variables. Next, the time series of each climate variable is separated into

natural-variability and ACC-driven components, using the dynamical adjustment technique

(see Methods). Dynamical adjustment isolates the variability of the target climate variable

that is linked to the circulation-induced variability (Bass et al., 2022; Siler et al., 2019;

Smoliak et al., 2015). This is the dynamical component, which is generally interpreted as

due to natural variability. The residual contains the thermodynamic change that is generally

interpreted as due to ACC-driven warming. From these time series of natural variability

and ACC components of climate drivers, contribution to onset trend by each component is

estimated (Figure 4.4, Figure 4.A.6).

California experienced a severe multiyear drought during 2012-2015 (Madakumbura et al.,

2020; Williams et al., 2015). Dominated by this drought, the natural variability compo-

nents of all regions have a large negative trend. This negative trend caused earlier fire-

onset in all ecoregions. The largest contribution from natural variability can be seen in the

arid/semi-arid regions of the Mojave Basin and Range (accounting for a trend of 30 days

from 1992–2020) and Southern California Mountains (25 days). The smallest influence of

natural variability is seen in the Sonoran Basin and Range (a negative trend contribution of

3 days).

Distributions of ACC contribution are either partially or completely negative, contribut-

ing to an earlier onset. Central estimates of distributions show that ACC has contributed

to an earlier onset in nine out of thirteen ecoregions. This is particularly pronounced in

the Cascades (50 days), Northern Basin and Range (38 days), and Sierra Nevada (31 days).
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Meanwhile, in southern California ACC has slightly delayed onset, ranging from 9 days in

the Mojave Basin and Range to 13 days in the Sonoran Basin and Range. One possible

reason for this is that some of these regions are more fuel-limited, where moisture is needed

for fuel growth, making the climate-onset relationship more complicated than the modeling

approach considered in this study. Furthermore, this could also be due to the greater in-

fluence of precipitation variability over warming in these water-limited regions (Figure 4.5,

Figure 4.A.1). Specifically, the definition of onset used in this study—the 5th percentile

of the empirical cumulative distribution function of the discovery dates of fires during each

calendar year—marks the fire onset in Southern California during the latter part of the

cool and wet season (Figure 4.1). This is a period during which precipitation variability

outweighs the effect of temperature variability (Table 4.A.1). For higher percentiles of the

empirical cumulative distribution function, we observe a clear and larger contribution from

ACC towards an earlier fire activity in Southern California (Figure 4.A.7-4.A.8).

Climate does not fully account for the observed trends of fire-onset in some ecoregions

(difference between observed and modeled trend distributions in Figure 4.4), particularly the

Coast Range, Eastern Cascades Slopes and Foothills, and Central California Foothills and

Coastal Mountains. Possible reasons could be nonlinear climate influences not captured by

our linear models, or other factors that we did not consider.

4.4 Discussion

Understanding how ACC influences fire-season onset in California is critical for disaster risk

reduction efforts. Previous analyses to understand onset have generally focused on the onset

of fire weather but not fire occurrence. Fire-weather indices are indicative of the atmospheric

evaporative demand and near-surface soil moisture, and therefore serve as proxies for fuel

moisture. But they do not capture complex ecohydrological processes and feedbacks, and do

not fully represent mechanisms relevant to fire-season onset (e.g., Holden et al. 2018). Our
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results based on fire occurrence data present an estimate of onset that is physically consistent

with variations in surface and subsurface water budgets and fuel moisture in distinct climate

regimes of California.

Our results highlight a geographical divide across California in the contributions of cli-

mate change versus internal variability to onset trends. A large, onset-promoting influence

of ACC in Northern California stems from the strong influence of temperature on snow melt

(Bales et al., 2006; Westerling et al., 2006) and evapotranspiration (Goulden and Bales ,

2014, 2019). Climate-change-driven warming in California has already emerged from the in-

terannual temperature variability (USGCRP , 2023). This indicates a continuing shift in the

distribution of the onset in Northern California beyond the envelope of natural variability.

There is a large natural variability in precipitation in California (Dettinger et al., 2011),

and there is large uncertainty regarding the sign of the anthropogenic precipitation change

(Langenbrunner and Neelin, 2017). This makes the detection and separation of the cli-

mate change component of precipitation very difficult (McKinnon and Deser , 2021) and

implies a large uncertainty in the estimates of the ACC contribution. More subtle changes

in precipitation characteristics, such as a shortening of the wet season (Swain, 2021) and a

decrease in precipitation frequency (Gershunov et al., 2019; Holden et al., 2018) could also

influence statistics of aggregate fire behavior, such as onset. ACC also alters the precipita-

tion partitioning in California, shifting from snow-dominant to rain-dominant (Gergel et al.,

2017), thus modifying the snow-climate relationships identified in this study. In future work,

climate-based modeling of onset presented in this study could be modified to incorporate

these nonlinear changes in precipitation characteristics.

The climate control of fire-onset is ubiquitous across California, in ecoregions with varying

vegetation characteristics, from deserts to forests. However, assessments of fire-onset date

aggregated across an ecoregion may give more weight to the more fuel-abundant areas within

the ecoregion. Future analysis should more rigorously evaluate the role of land-cover type

in modulating the effect of fuel moisture on fire-season onset. Other fuel characteristics
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can also have interannual variability (e.g., Koontz et al. 2020). For example, wet years can

promote fuel growth in fuel-limited regions (Williams et al., 2019; Keeley and Syphard , 2019);

meanwhile, drought leads to tree mortality, which may further increase fire risk beyond that

expected from fuel drying alone (Millar and Stephenson, 2015).

Climate variability shapes fuel availability, ignition efficiency, and fuel combustibility,

irrespective of the ignition sources (Abatzoglou and Williams , 2016; Scott et al., 2013; Rao

et al., 2023). However, most fire ignitions in California are caused by human activities, which

have major impacts on the number and seasonality of wildfires in the state, particularly by

widening the fire-season beyond the summer months when lightning is most common (Kee-

ley and Syphard , 2018; Balch et al., 2017). We attempted to remove the possible influence

from trends in human ignitions by removing fires from regions that have a positive trend in

nighttime light, a well-known proxy for human population density. However, it is important

to acknowledge the caveat that human influence on fire ignition extends beyond areas illu-

minated at night. Fires can be ignited by human activities or equipment in regions far from

urban areas, indicating that the relationship between human presence and fire ignitions is

more complex than what nighttime light data alone can reveal. This complexity might be

one of the reasons why climate alone cannot fully explain the observed trend in fire-onset in

multiple ecoregions.

Our analysis provides a framework for understanding the mechanisms through which

climate conditions control fire onset. The ACC component in predicting onset is indicative

of what is to come, as ACC-driven warming trends continue. Thus, our findings have major

implications for wildfire disaster prevention and management strategies in coming seasons

and years.
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4.5 Figures
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Figure 4.1: Trends in fire-season onset during 1992-2020. Fire-season onset timeseries defined

as the 5th percentile of the cumulative distribution of the occurrence day (Julian date, shown

on y-axis) of all fires of each year, for each ecoregion. The subpanel inset histogram shows

the distribution of the detrended onset date in months January (Jan) to August (Aug).
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Figure 4.2: Relationship between climate variable and fire-onset. Correlation between de-

trended fire-onset and detrended precipitation, snow water equivalent, maximum tempera-

ture, minimum temperature, vapor pressure deficit, and soil moisture. For maximum and

minimum temperature and vapor pressure deficit, the correlation is multiplied by -1 in the

figure. Correlation is calculated against the given variable, averaged over each antecedent

3-month running period (DJF, JFM, etc.) to onset and the strongest correlation for each

variable, among all seasons, is shown here.
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Figure 4.3: Relationship between fire-season onset and measures of vegetation moisture. (a.)

Correlation between fire-season onset and reconstructed canopy water content (CWC) using

remote sensing and environmental data (Asner et al., 2016; Brodrick et al., 2019) for the

period 1992-2017. Each grid cell value represents the correlation between that grid cell’s

canopy water record and the fire-onset record for the ecoregion that the grid cell lies within.

(b-e) Timeseries of the fire-season onset and representative live fuel moisture content (LFMC)

measurements during 1992-2020 for Central California Foothills and Coastal Mountains (b),

Southern California Mountains (c), Sierra Nevada (d), and Southern California Northern

Baja Coast (e). Correlation between onset and LFMC (r) is shown in panels b-e. Only

statistically significant values after controlling for a false discovery rate (Benjamini Hochberg

1995) of 20% (with a corresponding p value of 0.04) are shown.
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Figure 4.4: Influence of natural variability and climate change on observed trend in onset.

Trends of observed onset from 1992-2020 (Observed, light blue), and onset modeled using

total climate variability and trend (Modeled, dark blue), natural variability (NV, green)

and anthropogenic climate change component of climate variables (ACC, red). Modeled

trend distributions are created by considering the uncertainty of regression model and trend

estimation, yielding 2900 values per region (Methods). Boxplots indicate the median (orange

horizontal line) and the interquartile range. Whiskers show the percentiles 2.5 and 97.5.

Outliers are shown by circles. Right panel shows the mean ACC contribution for each

region.
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Figure 4.A.1: Relationship between climate variable and onset. Correlation between de-

trended onset and precipitation (ppt), snow water equivalent (swe), maximum temperature

(tmax), minimum temperature (tmin), vapor pressure deficit (vpd), and soil moisture (soil)

in the given seasons. The gray shaded area shows the seasons when the onset has occurred

in the past in the region.
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Figure 4.A.2: Nighttime light trend for 1992-2018.
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Figure 4.A.3: Same as Figure 2 but after removing fires from regions with a positive trend

in nighttime light during 1992-2018.
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Figure 4.A.4: Same as Figure 4.4 but after removing fires from regions with a positive trend

in nighttime light during 1992-2018.
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Figure 4.A.5: Trends in the number of human-caused fires during 1992-2020. Trends that

are at least marginally significant (p-value<0.1) are shown in red. Note that the y-axis range

is different for the bottom-middle panel, which represent data for whole California.Bottom

right panel shows the timeseries of annual fire frequency (blue solid line) and the linear trend

(red dashed line). Magnitude and the statistical significance of the trend is annotated.
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Figure 4.A.6: Observed and modeled onset timeseries and the climate change contribution

to the onset trend during 1992-2020. Timeseries of observed onset (Observed, brown), onset

modeled using climate (Modeled, blue) and the climate change component of the modeled

onset (ACC, red) for each ecoregion. Middle panel shows the total contribution (days) from

ACC to the observed onset trend during 1992-2020.
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Figure 4.A.7: Same as Figure 4.4 but for fire-onset defined as the 10th percentile of the

empirical cumulative distribution function of the discovery dates of fires during each calendar

year.
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Figure 4.A.8: Same as Figure 4.4 but for fire-onset defined as the 20th percentile of the

empirical cumulative distribution function of the discovery dates of fires during each calendar

year.
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Table 4.A.1: Causal effect network-based modeling of fire-onset using climate drivers. Precip-

itation (ppt), snow water equivalent (swe) maximum temperature (tmax), minimum temper-

ature (tmin), and vapor pressure deficit (vpd) are used as climate drivers. In the equations,

lag1 indicates the previous year.
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CHAPTER 5

Recent California tree mortality portends future

increase in drought-driven forest die-off

[Madakumbura, G. D., Goulden, M.L., Hall, A., Fu, R., Moritz, M.A., Koven, C.D.,

Kueppers, L.M., Norlen, C.A. and Randerson, J.T., 2020. Recent California tree mortality

portends future increase in drought-driven forest die-off. Environmental Research Letters,

15(12), p.124040. https://doi.org/10.1088/1748-9326/abc719]

Abstract

Vegetation tolerance to drought depends on an array of site-specific environmental and

plant physiological factors. This tolerance is poorly understood for many forest types despite

its importance for predicting and managing vegetation stress. We analyzed the relationships

between precipitation variability and forest die off in California’s Sierra Nevada and introduce

a new measure of drought tolerance that emphasizes plant access to subsurface moisture

buffers. We applied this metric to California’s severe 2012-2015 drought, and show that it

predicted the patterns of tree mortality. We then examined future climate scenarios, and

found that the probability of droughts that lead to widespread die-off increases three-fold by

the end of the 21st century. Our analysis shows that tree mortality in the Sierra Nevada will

likely accelerate in the coming decades and that forests in the Central and Northern Sierra
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Nevada that largely escaped mortality in 2012-2015 are vulnerable to die-off .

5.1 Introduction

Droughts are among the worst climate hazards society faces, creating economic losses of tens

to hundreds of billion US dollars per year (Mishra and Singh, 2010; Commission, 2012).

Forests are especially vulnerable to drought in a warming world, as higher temperatures

increase atmospheric moisture demand, evapotranspiration and soil drying and tree die-

off (Allen et al., 2010; Williams et al., 2013; Allen et al., 2015; Fettig et al., 2019). Future

droughts are projected to become longer, more severe and frequent in many regions (Wehner

et al., 2011; Seneviratne et al., 2012; Madakumbura et al., 2019), with consequent impacts

on vegetation structure and function. An improved understanding of forest response to

drought is needed to better predict the impact of climate change on forested ecosystems

at large scales. Such capabilities would help forest managers anticipate patterns of tree

vulnerability to drought and proactively allocate resources and time at local and landscape

scales (Heinimann, 2010; Keenan, 2015).

Studies investigating the causes of tree die off have advanced our knowledge of forest tol-

erance to drought, and the underlying interactions of biological, physiological and environ-

mental factors. Robust statistical relationships between drought induced tree mortality and

various metrics of drought intensity have often revealed ecological thresholds (Anderegg et al.,

2015; Paz-Kagan et al., 2017; Young et al., 2017; Goulden and Bales , 2019). These plant

physiological and environmental predictors of mortality reflect the processes and properties

that mediate the translation of precipitation deficit to physiological damage and ultimate

tree death (Anderegg et al., 2013).

The patterns of die-off ultimately depend on both drought intensity and duration, and

processes that occur over a range of timescales (McDowell et al., 2008). The biological re-

sponse to drought stress has been investigated intensively at the scale of individual plants
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based on theoretical (McDowell et al., 2008) and experimental (Barbeta and Peñuelas , 2016)

analyses, but studies that focus on multidecadal records and at landscape scales and larger

are scarce. Given potentially large spatial variations in drought tolerance and drought sever-

ity across landscapes, such larger scale studies are needed. For example, while large variation

in vegetation stress and tree mortality were noted across the Sierra Nevada landscape during

California’s 2012-2015 drought, but it is unclear whether the variation arises from forest

drought tolerance (e.g., water availability or plant physiological factors) or drought severity.

Comparisons of drought duration and remotely-sensed vegetation properties can provide

an opportunity to investigate plant response and tolerance to drought at large spatial scales.

The Normalized Difference Vegetation Index (NDVI) shows strong responses to droughts

lasting 2-4 months in arid and humid biomes, and 8-10 months in semiarid and sub humid

biomes in the world (Vicente-Serrano et al., 2013). In a regional setting, a comparison

between California forest water balance and canopy density, as measured by canopy water

content (CWC) (Asner et al., 2016), showed a comparatively long time scale response, with

coniferous vegetation tolerating drought for several years before accelerated die-off (Brodrick

et al., 2019). Despite the insights from such comparisons, the controlling factors (e.g.,

environmental and tree physiological properties) behind drought tolerance have not been

fully explored. Efforts to forecast the long-term impact of drought are also complicated by

the likelihood that climate, environmental conditions, and vegetation distributions may be

different in the coming century (Kelly and Goulden, 2008; Parks et al., 2018; Holsinger et al.,

2019).

Here we explore the timescale of drought response for coniferous forests in California’s

Sierra Nevada (Myers et al., 2000; Bales et al., 2011). This region experienced a severe

drought in 2012-15 that was followed by widespread die-off in 2015-16. We used data from

pre-2012 to identify the duration of drought that was best correlated with anomalies in

canopy density time series as measured by the Normalized Difference Moisture Index (NDMI)

(hereafter referred to as the drought sensitivity timescale or DST). We then investigate how
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the pre-2012 DST interacted with drought severity to produce the observed spatial and

temporal patterns of die off during the 2012-2015 drought. Finally, we use output from

state-of-the-art global climate simulations to examine how changes in multi-year droughts

may amplify future die-off episodes.

5.2 Data

5.2.1 Vegetation Indices

We used vegetation indices NDMI, NDVI, and CWC in this study. NDVI and NDMI were

derived from Landsat 5, 7 and 8 surface reflectance and brightness temperature images.

Data were obtained from USGS (https://espa.cr.usgs.gov) for the period 1984 to 2017 after

being regridded to a resolution of 0.0002695o (approximately 30 m). Snow- and cloud-

affected pixels were removed using the Landsat collection 1 pixel-quality data layers. We

used late growing season NDMI (Aug-Oct) in this study. Further details of the derivation

of NDMI and NDVI can be found in ref. Goulden and Bales (2019). Dry season (July-

Aug) CWC data at 30-m resolution (derived in ref. Brodrick et al. 2019) was obtained from

https://doi.pangaea.de/10.1594/PANGAEA.897276.

As a direct measurement of tree mortality, we used the number of dead trees from

the Aerial Detection Survey data from the USFS (https://www.fs.usda.gov/detail/

r5/forest-grasslandhealth/?cid=fsbdev3_046696). We re-projected and rasterized the

dead trees per acre (DTPA) ‘1’ product in this geodatabase.

5.2.2 Historical climate data

To derive drought indices, we used high resolution monthly precipitation (PR) data (Flint

and Flint , 2012), potential evapotranspiration (PET) and climatic water deficit (CWD) from

the Basin Characterization Model (Flint et al., 2013), a high resolution physically-based
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hydrologic model developed for California (https://ca.water.usgs.gov/projects/reg_

hydro/basin-characterization-model.html#provisional). Data from 1980-2016 were

used at 270 m resolution. Annual mean NDVI was used to calculate the total evapotranspi-

ration (ET) of water year from an exponential relation between ET and NDVI. This relation

is derived from in situ measurements of ET, as in ref. Goulden and Bales (2019).

5.2.3 Future climate projections

To assess future drought conditions, we used monthly precipitation for the period 1850-

2015 from historical simulations and from 2016-2100 for SSP2-4.5, SSP3-7.0 and SSP5-8.5

warming scenarios (O’Neill et al., 2016) from ten of the state-of-the-art global climate models

(GCMs) (Supplementary Table 1) participating in Coupled Model Intercomparison Project

Phase 6 (CMIP6) (Eyring et al., 2016). We selected available models with two or more

ensemble members for all three scenarios at the time of analysis. In total, 90 ensemble

members per scenario, were used. Use of a large ensemble dataset allows the sampling of

extreme conditions without using statistical resampling methods (Swain et al., 2018).

5.2.4 Predictors of DTPA

We carried out regression analysis to explain the spatial variations of dead trees per acre.

Apart from climate and vegetation variables explained above, the following variables were

extracted for the analyses: To represent resource competition (Young et al., 2017), tree basal

area data were obtained from the LEMMA group (https://lemma.forestry.oregonstate.

edu/data). Soil plant available water content (AWC) was obtained from the US Gen-

eral Soil Map database (http://websoilsurvey.nrcs.usda.gov) by extracting the vari-

able aws0150wta (units: cm). Subsurface drying can be directly linked to the amount of

evapotranspiration exceeding the precipitation (Goulden and Bales , 2019). To represent

the vegetation-induced subsurface moisture use, we use the mean evapotranspiration as a

predictor variable.
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5.2.5 Conifer fraction and fire

We limited the analysis to conifer dominated forests in the Sierra Nevada. To mask out non-

conifer-dominated regions, we used the existing vegetation classification maps from the USFS

(https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement). From the

vegetation classification maps, we selected pixels with vegetation types: Sierran mixed

conifer, Ponderosa pine, montane hardwood-conifer, lodgepole pine, red fir, white fir, sub-

alpine conifer, Jeffrey pine, Douglas fir, Eastside pine and pinyon-Juniper. We removed

fire-impacted pixels from 1980 through 2016 from the analysis by using the fire history data

product from California’s Fire and Resource Assessment Program (http://frap.fire.ca.

gov/data/frapgisdata-sw-fireperimeters_download).

5.2.6 Elevation data

Elevation data were obtained from USGS NED 1 arcsec digital elevation map (https://

viewer.nationalmap.gov/basic/).

All vector data used in this study were first rasterized and all data were reprojected to

World Geodetic System 1984 using ArcGIS 10.7 (https://desktop.arcgis.com/en/) and

the GDAL library (https://gdal.org/). All analyses (except for future projection from

climate models) were done after bilinearly interpolating to the resolution of climate data

( 270m) using the Climate Data Operator library (Schulzweida, 2017).

5.3 Methods

5.3.1 Calculation of drought indices

We consider four drought indices. Standardized precipitation index (SPI; ?), cumulative pre-

cipitation minus evapotranspiration (PR-ET), standardized precipitation-evapotranspiration

index (SPEI) and CWD. Using observed data, we calculated drought indices with integration
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periods from one to six years. The cutoff of six years was chosen considering the most signifi-

cant multi-year droughts during the historical period in California (https://water.ca.gov/Water-

Basics/Drought). All the years here are “water years”, defined as starting from October of

the previous year and ending in September of the corresponding year. For example, the 4-

year SPI corresponding to 2015 would be calculated from the standardized PR from Oct-2011

to Sep-2015 (i.e. water years 2012 to 2015). PR-ET and CWD were calculated in a similar

manner to SPI and SPEI, but instead of standardizing, we calculated the cumulative PR-ET

and CWD during the drought integration period. Such cumulative moisture deficits have

been linked with physiological thresholds of tree mortality (Anderegg et al., 2015; Goulden

and Bales , 2019).

For CMIP6 ensembles, historical and future time series of each ensemble member for

each grid cell were first merged to obtain a time-series spanning 1850 to 2100. SPI for 4-year

integration periods was calculated from these time series.

5.3.2 Calculation of DST

To determine DST, we calculated temporal correlations between vegetation and drought in-

dices for each pixel (for the period 1983-2011), and retained the timescale with the maximum

correlation: First, the vegetation anomaly was obtained for NDMI and CWC by removing the

long term median (1984-2011 for NDMI and 1990-2011 for CWC). This can be considered to

be the vegetation change e.g., dNDMI and dCWC). For CWD the long term (1980-2011) me-

dian was also removed (but not for SPI, SPEI and PR-ET, since they are already in anomaly

form). Considering the documented delayed response of NDMI and CWC to drought (ref.

Goulden and Bales 2019, Figure 5.A.1), a lag of 1-year was imposed between drought and

vegetation anomalies in the correlation calculations. For example, in the case of dNDMI

and SPI, the 1984-2012 dNDMI timeseries was correlated with the 1983-2011 water year

SPI timeseries. The drought anomaly time-series were obtained for various timescales from

the four drought indices and the above steps were repeated, e.g., 4-year Pr-ET in 2015 is
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the cumulative 2012-2015 PR-ET and the corresponding vegetation anomaly for that year is

2016 dNDMI and dCWC. Finally, the timescale giving the maximum positive correlation be-

tween vegetation anomalies and SPI, SPEI and PR-ET (or for CWD, the minimum negative

correlation) was obtained as the drought timescale having maximum influence on vegetation,

similar to the methodology used in ref. Vicente-Serrano et al. (2013). Only pixels where the

correlation was significant at 80% were plotted in figures and used for analysis.

5.3.3 Random Forest Model

A random forest (RF) regression analysis was carried out to examine drivers of DTPA.

RF is a non-parametric supervised machine learning algorithm (Breiman, 2001). It has

the advantage of handling nonlinear interactions between variables. RF is widely used in

ecological studies to identify the key components of complex processes and their relative

importance (Bond-Lamberty et al., 2014; Kane et al., 2015; Byer and Jin, 2017; Paz-Kagan

et al., 2017; Schwalm et al., 2017; Anderegg et al., 2018). Predictor variables were selected

based on previous studies: For drought-induced precipitation deficit we used the 4-year

SPI of 2015 and mean evapotranspiration (Goulden and Bales , 2019). For the temperature

anomaly and atmospheric moisture demand, we used mean PET during the drought (i.e.

impact of the drought-induced temperature anomaly) (Williams et al., 2013; Allen et al.,

2015). For resource competition, we used basal area (Young et al., 2017). For forest drought

tolerance, we used DST. For capacity limitation, we used AWC (Klos et al., 2018) (Figure

5.A.2-5.A.3). The final random forest regression model was found to have R2 value of 0.64.

For additional details of the RF regression analysis, see the Supplementary Methods.

5.3.4 Statistical analysis and significance tests

The Pearson correlation coefficient was calculated in temporal correlation analyses. A two-

tailed Student’s t-test was applied to calculate p-values and statistical significance, including

that of the difference in means of different scenarios of the multimodel GCM ensembles.
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To obtain large geographic scale patterns of the DST from the pixel-wise analysis con-

ducted using high resolution (270m) data, spatial smoothing was conducted. For spatial

smoothing, K Nearest Neighbor (KNN) regression was applied using the python package

scikit-learn (https://scikit-learn.org/stable/). The KNN regression algorithm em-

ploys a user-specified distance measure and a threshold K to find the nearest K neighbors

to each item. It then assigns the value based on the average. The K value (the distance

between points during the spatial smoothing) was taken to be 250 pixels (an approximate

distance of 70 km). This was chosen as a compromise between smoothing and retaining

small scale spatial features (Figure 5.A.4).

5.4 Results

5.4.1 Spatial patterns and the interpretation of DST

The drought sensitivity timescale (DST) was calculated across the Sierra Nevada (see Figure

5.3 for geographic domain) based on the relationship between SPI and NDMI (Figure 5.1a).

Different forest types in the Sierra Nevada have different DST values, with mesic stands

having DSTs around 3-4 years (see Supplementary Discussion). The longest drought time

scales (>4 years) are seen in an elevation band around 1500-2500 m and a latitude range

of 36-39oN. Lower or higher elevation forests generally have shorter timescales (<2 years),

depending on latitude. The timescale generally decreases with increasing elevation south of

38.5oN. Alternative combinations of drought and canopy moisture indices revealed time scales

that agreed with the spatial distribution by the SPI-NDMI analysis (Figure 5.A.5-5.A.7).

A simple interpretation of DST is that it represents the number of years required to

empty a previously full, subsurface water storage under steady rate conditions. If this in-

terpretation is correct, we should be able to multiply the mean drawdown rate by DST to

predict subsurface water storage depth. We can quantify the subsurface storage depth as the

maximum rootzone drying during the recent past (2003-2010) (Maeda et al., 2015; Wang-
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Erlandsson et al., 2016) (see Supplementary Discussion). Carrying out the multiplication

described above, we find that the simple interpretation of DST holds remarkably well for

Sierran forests (Figure 5.A.8). We further explore the drivers of DST and its interpretation

in Supplementary Discussion. DST may be shaped by complicated environmental, climate

and biological processes across temporal and spatial scales, but preliminary analysis shows

that the factors thought to control plant water drawdown (Fellows and Goulden, 2017) such

as mean precipitation, evapotranspiration, potential evapotranspiration, plant available wa-

ter content, can account for DST variation (from a random forest regression model with

R2=0.79, Figure 5.A.9, see Supplementary Discussion). This confirms that DST reflects the

plant accessible subsurface water buffer.

5.4.2 Usefulness of DST as a vegetation stress predictor

We investigated the relationship between pre-2012 DST and the subsequent trajectory of

vegetation stress and mortality over the 2012-2015 drought. The triangles in Figure 5.1b-d

show the progressive deepening of drought with elevation. This is measured by the normal-

ized precipitation minus evapotranspiration (PR-ET; see triangles in Figure 5.1b-d) of each

water year, accumulated since the beginning of the drought in 2012. Cumulative PR-ET

during a drought can be linked to subsurface drying (Goulden and Bales , 2019). Cumulative

PR-ET deficits in three water years (2012-2014) were severe, as shown by negative values

in all elevation bins below 2700 m. By 2014, the PR-ET deficit had become extraordinarily

large below 2700 m. Figure 5.1b-d represent the antecedent drought conditions affecting veg-

etation in the subsequent year, as portrayed in the companion panels (Figure 5.1e-g). Figure

5.1e-g show DST as a function of elevation, i.e. a collapsed version of Figure 5.1a. In 2013,

the year after the beginning of the drought, there were only modest losses of canopy moisture

at all elevations (Figure 5.1e). By 2014 canopy moisture loss increased for elevations where

the normalized cumulative PR-ET was negative (Figure 5.1f), and by 2015 extreme canopy

loss was seen at these elevations (Figure 5.1g).
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In 2013, after one year of drought, some elevations showed moderate vegetation stress

(Figure 5.1e), but no systematic relationship between DST and vegetation stress. However,

as the drought lengthened, vegetation stress became most apparent at those elevations where

DST is lowest and drought severity is high, i.e. orange/reddish dots in Figure 5.1f. (Ele-

vations above about 2700 m are characterized by a low DST, but they did not experience

severe drought and hence remained unaffected.) By 2015, after an even longer period of

extreme precipitation deficit (at least 3 years), even elevations with the longest DST also

showed signs of extreme canopy moisture loss. Only the highest elevations avoided moisture

loss (Figure 5.1b-d). Canopy moisture loss precedes tree mortality and could ultimately

trigger it (Brodrick and Asner , 2017; Paz-Kagan et al., 2017; Goulden and Bales , 2019).

The predictive power of DST for vegetation conditions is apparent in directly measured tree

mortality, as shown in Figure 5.1e-g. Very low tree mortality is seen in 2013, similar to

the background rate (Byer and Jin, 2017). By 2014 values were slightly higher for those

elevations with signs of vegetation stress, and relatively low DST values (orange-reddish dots

in Figure 5.1f). By 2015 a dramatic increase in tree mortality is seen everywhere except the

highest elevations.

These results suggest that both DST and drought severity are useful predictors of the

progression of vegetation stress during drought. To test this conclusion further, we examine

the geographical variation in tree mortality at lower elevations of the Sierra Nevada (Figure

5.1a). Figure 5.2b shows the observed DTPA at the end of the drought. In the low elevations

of the Southern Sierra, where DST is low (Figure 5.1a, Figure 5.A.6), the die-off is high.

By contrast, the low elevations of the Northern Sierra, where DST is similarly low, little

tree mortality occurred. Clearly the early signs of vegetation stress at low elevations (Figure

5.1f), and the higher levels of eventual tree mortality (Figure 5.1g) came from the southern

portion of the Sierra Nevada. This spatial pattern appears to reflect the greater precipitation

shortfall in the south relative to the north (Figure 5.2a).

To test this hypothesis, we predicted the spatial distribution of tree die-off assuming the
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entire Sierra Nevada faced a precipitation deficit as large as that seen in the southern part

(i.e. 4-year SPI=-2.5). The hypothetical distribution is generated with a model of DTPA

based on random forest regression. As predictors, we use direct and indirect factors con-

tributing to drought severity (4-year SPI, mean potential evaporation during the drought,

mean evapotranspiration, basal area) and drought tolerance to tree die-off (DST, plant avail-

able water capacity) (model R2=0.64). The model predicts that mesic and dry forests in

central and northwestern regions of the Sierra Nevada (Figure 5.1a) suffer marked tree die-off

(Figure 5.2c), consistent with their low DST values. Thus, differences in drought severity

can account for the differences in tree mortality in those low elevation zones where DTS is

comparably low.

To assess the potential of droughts similar to the 2012-2015 California drought in the

future, we analyze future projections of multiyear precipitation variability in California

simulated by ten state-of the art GCMs (see Supplementary table 1) participating in the

CMIP6 (Eyring et al., 2016). The simulated changes in 4-year SPI occurrence from his-

torical (1969-2019) to future (2050-2100) under a “no emissions reduction policy” warming

scenario, SSP585 (Eyring et al., 2016; O’Neill et al., 2016), are shown in Figure 5.3. Un-

der climate change, the precipitation distribution shifts systematically, resulting in increased

probability of severe multi-year droughts (Figure 5.3a). Examining scenarios associated with

lower greenhouse gas emissions (Figure 5.3b), we see that the probability of severe droughts

similar to 2012-2015 increases with growing emissions. But even for the lowest emissions sce-

narios, this increase in frequency is statistically significant at 99% compared to the historical

simulations. We also note that the future may bring droughts even more severe than that in

2012-2015, as seen in the emergence of 4-year SPI anomalies more negative than -2.0 in the

SSP585 scenario (Figure 5.3a). Such deep droughts would bring very dry conditions to large

swaths of the Sierra Nevada, killing trees over areas with low DST, as in the hypothetical

case of Figure 5.2c.
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5.5 Discussion and Conclusions

Using multiple drought and vegetation indices spanning many decades, we obtain a drought

sensitivity timescale, DST, which can also be interpreted as the plant water buffer. We

find that forests on the low-elevation western slopes and high-elevation eastern slopes of

the Sierra Nevada have the shortest DST, and hence the least tolerance to drought. When

DST is combined with drought severity, it can be used to map the progression of vegetation

stress during the 2012-2015 drought. The low elevation slopes were the first to respond to

the drought as it deepened, consistent with their low DST values. However, the largest

ultimate response, and the greatest tree mortality, occurred in the southern low elevations.

We demonstrate that this enhanced response can be explained by the spatial patterns of

drought severity. The low elevation forests in the central and northern Sierra Nevada are

also vulnerable to drought and would have likely experienced extensive dieback if the 2012-

2015 drought had extended further north.

Previous work suggests interannual precipitation variability in California will increase in

the future (Swain et al., 2018). This work, combined with the results shown here demon-

strating the connection between tree mortality and multi-year drought, raise the question

of whether Sierra Nevada forests will experience greater tree mortality in the future. We

found that multi-year droughts in California will increase with increasing greenhouse gasses

based on state-of-the-art climate model simulations from the CMIP6 project (Eyring et al.,

2016). The distribution of multi-year precipitation anomalies shifts to a drier regime, and

the likelihood of a 4-year drought as deep (or deeper) than the 2012-2015 event increases by

up to a factor of three by the end of the century. These results imply a future increase in the

likelihood of tree mortality in the Sierra Nevada, especially in areas with a short DST. The

low-elevation central and northern Sierran forests did not exhibit die-off in the 2012-2015

event; but this does not mean they are not vulnerable to drought. Future droughts will

almost certainly be distributed differently in space from the 2012-2015 event (as were the

pre-2012 droughts which allowed us to diagnose the sensitivity of the low-elevation central
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and northern forests with low DST).

We note that the warmer temperatures accompanying these projected droughts (Dai ,

2011, 2013), and that a limitation of our study is that our estimates of future drought

ignore this warming effect. Warming will increase potential and actual evapotranspiration,

which will further increase drought when precipitation is low; thus, our estimates represent

a lower range of possible increases to drought intensity. Conversely, it is possible that plant

physiological responses to elevated CO2 may mitigate tree mortality impacts of drought,

though it is unclear how much tolerance to mortality such responses confer (Swann et al.,

2016; Sperry et al., 2019). Lastly, future climate projections are based on coarse resolution

GCMs, and the spatial patterns of climate variables in this region of complex topography

are inadequately represented. Future research can refine our analysis using downscaled

climate model data, as well as state-of-the-art land surface and vegetation models to simulate

evapotranspiration changes and physiological responses to CO2.

Our results imply future changes in Sierra Nevada ecology. Previous work has shown

that projected changes in mean climate would be associated with shifts in vegetation distri-

bution (Holsinger et al., 2019). Changes in mean conditions may lead to a decline in Sierra

Nevada forests assuming current vegetation types migrate to new preferred climate zones

(Parks et al., 2018). These ecological transitions may be accelerated by changes in extreme

events. Previous work has shown that tree mortality markedly impacts subsequent species

composition and forest structure (e.g., Cobb et al. 2017). Future increases in forest-die-off

frequency and magnitude would likewise be associated with large impacts. The increase

in tree mortality may increase fuel load and wildfire risk (Ruthrof et al., 2016; Stephens

et al., 2018). Our results point to the low elevation western slopes of the Sierra Nevada as a

hotspot of increasing dieoff. Conversely, other sub-regions with high drought tolerance may

be more tolerant to ecological change, and may even become refugia (Morelli et al., 2016;

McLaughlin et al., 2017). The drought timescale metric and results we show potentially

provide information that may aid conservation planning.

106



Acknowledgements. We acknowledge theWorld Climate Research Programme’s Work-

ing Group on Coupled Modelling, which is responsible for CMIP6, and we thank the climate

modelling groups for producing and making available their model output. We also thank

the Earth System Grid Federation (ESGF) for archiving the data and providing access,

and various funding agencies who support CMIP6 and ESGF. This research was funded by

the University of California Laboratory Fees Research Program. CDK is supported by the

Department of Energy, Office of Science, Office of Biological and Environmental Research

through the Early Career Research Program administered by the Regional and Global Model

Analysis Program. GDM would like to thank Neil Berg for assistance and discussions on

early ideas of this paper.

107



5.6 Figures
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Figure 5.1: Relationships among DST, drought conditions, and vegetation condition change

during the 2012-2015 drought in Sierra Nevada, California. a, Spatial patterns of the drought

sensitivity timescale (DST; years) associated with the NDMI anomaly during 1983-2011 pe-

riod for SPI. Only regions dominated by conifers, unimpaired from wildfires, and with a

statistically significant maximum correlation between NDMI and SPI of over 80% are shown.

b-d, Drought conditions, elevation binned. The normalized cumulative precipitation minus

evapotranspiration (PR-ET) for each water year since the start of the drought, 2012. Cumu-

lative PR-ET of each year was normalized by the 1980-2011 mean PR-ET. e-g, Vegetation

conditions associated with the year after the year shown directly to the left in panels b-d;

the elevation-binned change in NDMI, dNDMI, divided by standard deviation (circles with

the colorbar), and dead trees per acre (DTPA, magenta stars). dNDMI was calculated with

respect to 2009-2011 mean NDMI as in ref. Goulden and Bales (2019). Error bars represent

±0.5 of the standard deviation. For panels b-g, the elevation bin width is 50 m, and the

x-axis is the mean elevation value of each elevation bin. In panels b-g, only cold, mesic and

dry forests (see Supplementary Discussion) were included for this analysis. The few grid

cells where the mean PR-ET was less than zero were removed from data shown in panels

b-g. 109



a b c

Figure 5.2: Precipitation deficit and tree die-off in Sierra Nevada, California. a, The 4-year

Standardized precipitation Index (SPI) of 2015. b, Observed dead trees per acre during the

2012-2015 drought (DTPA), calculated as the maximum number of dead trees observed at

any time in areal detection surveys done by USFS during the summers of 2013-2016. c,

Dead trees per acre predicted using the random forest model (see Methods) for a 4-year

drought with a uniform 4-year SPI of -2.5 over whole Sierra Nevada forests. In b and c,

only the regions dominated by conifers, unimpaired by wildfires, and which have a statistical

significance for the maximum correlation between NDMI and SPI over 80% are shown.
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a b

Figure 5.3: Future projections of precipitation and increase in extreme droughts in California.

a, Historical (1969-2019) and projected future (2050-2100) distributions of 4-year SPI from

available CMIP6 models for California. The future projection is based on the forcing scenario

SSP5-8.5. For each model, all 4-year SPI values from all ensembles were averaged over

California, pooled together, and binned for the SPI range -2.5 to 2.5. The bin width is

0.5. The multimodel mean and the standard deviation of each bin are shown. b, Historical

(1969-2019) and projected future (2050-2100) frequency of droughts severe than the 2012-

2015 drought from the available CMIP6 models, based on 4-year SPI. Three future forcing

scenarios spanning a large range of future emissions outcomes are shown (SSP2-4.5, SSP3-7.0

and SSP5-8.5). Error bars represent ±0.5 of the standard deviation. The California area-

averaged observed 4-year SPI for the recent drought was taken as -1.71 from the west-wide

drought tracker (https://wrcc.dri.edu/wwdt/).
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Appendix

5.A Supplement

5.A.1 Interpretation of DTS

To test the simple hypothesis that the DST represents the ratio between possible maxi-

mum subsurface storage depth and dry season plant water uptake, the following data were

obtained. California dry season soil water drawdown calculated using a spatially resolved wa-

ter balance model (Fellows and Goulden, 2017) was used. Monthly satellite-derived (Moder-

ate Resolution Imaging Spectroradiometer) evapotranspiration calculated using Operational

Simplified Surface Energy Balance model (Senay et al., 2013) was obtained at 30 arc seconds

for 2003-2010.

Following the methodology used in ref. Wang-Erlandsson et al. (2016), an approximate

subsurface storage depth estimation was done by calculating the running estimate of monthly

rootzone reservoir deficit. The deficit is controlled by the difference between outflow from the

system (i,e, evapotranspiration) and inflow to the system (i.e. precipitation), for each pixel

for 2003-2010. This period was selected considering the availability of monthly observed ET

data, and to limit the analysis to pre-drought conditions. Excess inflow is assumed to be

removed from the system as runoff or deep drainage. The maximum of this deficit is taken

as the estimate of subsurface storage. This method does not include all internal and external

water fluxes. This method may not be accurate for regions where the ignored components

such as runoff have a larger influence. However, this method has been shown to provide

reasonably accurate estimates (Wang-Erlandsson et al., 2016) and therefore is adequate as

a first estimate in our study (Figure 5.A.8).
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5.A.2 Possible controlling factors of DTS

Given the above simple interpretation of DTS, potential drivers of DTS were chosen under

the hypothesis that DTS represents the plant water buffer. The plant water buffer is mainly

controlled by the soil capacity to hold plant available water (Klos et al., 2018) (represented

by available water capacity or AWC), amount of water supply (represented by mean precipi-

tation or PR), atmospheric evaporative demand (mean potential evapotranspiration or PET)

and vegetation water utilization (Fellows and Goulden, 2017) (mean evapotranspiration or

ET) (Figure 5.A.3). A random forest regression analysis show that overall, the DTS variable

is well accounted for (R2=0.79) by these four environmental, climate and vegetation drivers

(see Supplementary Methods below for more details on the regression model). Among the

four drivers, AWC has the greatest relative importance (30.7%), followed by PR (28.9%),

ET (22.5%) and PET (17.9%) (Figure 5.A.9).

Figure 5.A.5 illustrates relationships among DTS and the four drivers for each forest type

individually. In cold forests, DTS increases with all four drivers (see also Figure 5.A.11).

These forests are likely water-limited, and very likely storage-limited, due to factors such as a

Pleistocene glaciation and cold temperature limits to soil weathering (Fellows and Goulden,

2017). Therefore, the water buffer is limited by water availability, and increases with AWC

and PR. In mesic forests, PR is higher than cold forests. They have the longest DTS (around

4 years). While AWC, PET and ET increase with PR in mesic forests, DTS shows a slight

decrease towards the highest PR levels. This may be a consequence of significantly larger at-

mospheric water demand. In dry forests, DTS ranges between that of cold and mesic forests,

with a mean value around 2 to 3 years. Dry forests have the highest PR and AWC values,

similar to mesic forests. But dry forests also have the highest median PET. Even though

PR could be stored in these soils with a relatively high AWC, high PET and ET means the

drawdown is consistently higher. There is consequently little water in the deepest soil layers.

Thus, the plants are likely not adapted to utilize the full AWC, effectively reducing the size

of the water buffer. This has the effect of reducing DTS, and DTS values for dry forests are
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in between those of cold and mesic forests. The arguments above are consistent with the idea

that plant rooting depth is strongly linked to the magnitude and seasonality of environmen-

tal and climate variables (Guswa, 2008; Kleidon and Heimann, 1998) and hence is included

implicitly in our analysis. These simple but robust results showing drought resistance control

by environmental, climate and vegetation drivers is supported by theoretical, observational

and modeling studies. These studies also link variables related to water availability to plant

resistance to drought (Fellows and Goulden, 2017; McDowell et al., 2019; Tai et al., 2017;

McLaughlin et al., 2017).

5.A.3 Supplementary Methods

We present here some further details of our methods, for the purposes of reproducibility.

Random forest regression : An ensemble of decision trees is created by the algorithm,

which separates the training data into subpopulations based on the maximum information

gained (Breiman, 2001). We used Python scikit-learn package for the RF calculations.

For RF hyperparameters, we selected the maximum number of levels in each decision tree

(‘max˙depth’). This gave the maximum coefficient of determination (R2) value for the train-

ing set, using scikit-learn GridSearchCV option, with 5 cross validations. The maximum

number of features considered during node splitting (‘max˙features’) was set to ‘sqrt’. De-

fault parameters in the model were otherwise used. RF model fitting was done for a randomly

selected portion of the data (70%), leaving the remaining 30% for testing. Model accuracy

was calculated as the R2 for the test data set. The importance of the predictors (feature

importance) was calculated as the out-of-bag permutation importance. Here the reduction

of baseline accuracy measure (R2) is used as the importance of that feature, after performing

permutation for each feature. For this we used the PermutationImportance function of the

Python package ELI5 (https://eli5.readthedocs.io/en/latest/overview.html). We normalized

the feature importance to have a sum of 1 (Figure 5.A.9-5.A.11). Partial dependence plots

were obtained for each regressor to interpret the relationship with the dependent variable
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(Figure 5.A.10).

All relevant climate and environmental variables used here were checked for multicollinear-

ity prior to regression analysis. Spearman rank correlation was calculated between all vari-

ables to avoid high collinearity (absolute correlation>0.5, following ref. Paz-Kagan et al.

2017). Next, a variance inflation factor (VIF) was calculated for regressor variable sets and

confirmed that each variable has a VIF less than 2.

Vegetation reclassification: To examine DST of broader vegetation classes in Sierra

Nevada, a vegetation reclassification was carried out. Gridded vegetation data were obtained

from LANDFIRE dataset (Rollins , 2009) and the Existing Vegetation Type layer was reclas-

sified into five broad categories: mesic, cold, dry, shrubland/grassland and sparse/barren,

following the classification presented in ref. Parks et al. (2018).
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Figure 5.A.1: 2012-2015 drought induced NDMI change. NDMI anomaly with respect to

2009-2011 mean during 2012-2016.
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Figure 5.A.2: Correlates of the random forest model for DTPA. Mean pet during the drought

(left), mean basal area (right).
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Figure 5.A.3: Correlates of the random forest model for DST. awc (top left), mean pr (top

right), mean pet (bottom left), mean et (bottom right). awc and mean et are used for

modeling DTPA as well.
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Figure 5.A.4: Spatial smoothing of DST. DST for SPI and NDMI, for different K values

used for spatial smoothing using KNN algorithm.
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Figure 5.A.5: Spatial patterns of DST. For drought metrics standardized precipitation index

(SPI), cumulative precipitation minus evapotranspiration (PR-ET), climatic water Deficit

(CWD) and standardized precipitation evapotranspiration index (SPEI) and NDMI (left

panels), CWC (right panels), binned with respect to elevation and latitude. Only grid cells

where the correlation is significant at 80% are shown and used for rest of the analyses.
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Figure 5.A.6: Spatial maps of DST. DST (years) associated with the NDMI anomaly during

1983-2011 period for SPI, cumulative PR-ET (DEF), CWD, SPEI. Only grid cells where the

correlation is significant at 80% are shown and used for rest of the analyses.
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Figure 5.A.7: Comparison between NDMI and CWC. Maximum drought timescale (DST ;

years) comparison between NDMI and CWC Only grids where the correlation is significant

at 80% are shown and used for rest of the analyses.

122



Figure 5.A.8: Simple interpretation of DTS. Mean dry season water drawdown (DSD ;

mm) calculated in ref. Fellows and Goulden (2017) (left), sub surface storage capacity

(mm) calculated following the methodology in ref. Wang-Erlandsson et al. (2016) (middle),

comparison between DSD multiplied by DST and sub surface storage capacity, binned by

elevation (left). Error bars represent ±0.5 of the standard deviation. Red dashed line is the

1:1 line. Color of the markers show the median vegetation class for each bin.
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a b

Figure 5.A.9: a, Feature importance for the possible drivers of DST from Random Forest

regression. Predictor variables used are: plant available water content (awc), mean precipi-

tation (pr), mean evapotranspiration (et) and mean potential evapotranspiration (pet). b,

Relationships between DST and mean pr binned by elevation (top left), the relationship

between mean awc and mean pr binned by elevation (top right), the relationship between

mean pet and pr binned by elevation (bottom left) ), and the relationship between et and

pr binned by elevation (bottom right). Elevation binning was done for 50 m elevation bins.

Bins with items less than 100 were excluded. Scatter plot values and the color of the markers

show the mean value of each variable and median vegetation class for each bin, respectively.

Error bars represent ±0.5 of the standard deviation.
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a

b

Figure 5.A.10: Random Forest regression model for modeling tree mortality. a, The feature

importance for the possible drivers of DTPA from Random Forest regression. The predictor

variables used for the regression are: 4 year SPI of 2015 (SPI4yr), mean potential evapo-

transpiration during the 2012-2015 drought (pet), mean evapotranspiration (mean˙et), plant

available water content (awc), maximum drought timescale (DST) and basal area (basalA).

b, DTPA from Random Forest regression based partial dependence of DTPA on drivers DST,

mean PET during the drought, SPI 4-year, mean et, basal area and AWC.
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a b

Figure 5.A.11: Broader vegetation types of Sierra Nevada. a, Pacific Southwest National

Forests. Data US Forest Service Forest Datasets (https://www.fs.usda.gov/main/r5/

landmanagement/gis) (left). Broader vegetation classes for Sierra Nevada (right). White

regions inside Sierra Nevada boundary represent open water, perennial ice/snow, barren land,

sparsely vegetated, non vegetated or open water. b, Broader vegetation classes for Sierra;

Mesic, Cold and Dry forest spatial distribution and the mean PR, mean PET, AWC and ET

histograms for each vegetation type. Left, middle and right columns represent Mesic, Cold

and Dry forests, respectively.
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Table 5.A.1: Coupled Model Intercomparison Project version 6 models used in this study

and their ensemble members.

Model Ensembles used

ACCESS-ESM1-5 rNi1p1f1 (N = 1 to 3)

CanESM5 rNi1p1f1, rNi1p2f1 (N = 1 to 25)

CanESM5-CanOE rNi1p2f1 (N = 1 to 3)

CNRM-CM6-1 rNi1p1f2 (N = 1 to 6)

CNRM-ESM2-1 rNi1p1f2 (N = 1 to 5)

EC-Earth3-Veg rNi1p1f1 (N = 1, 2)

GISS-E2-1-G rNi1p1f2, rNi1p3f1 (N = 1)

IPSL-CM6A-LR rNi1p1f1 (N = 1 to 4, 6, 14)

MIROC6 rNi1p1f1 (N = 1 to 3)

MPI-ESM1-2-LR rNi1p1f1 (N = 1 to 10)
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CHAPTER 6

Final conclusions and future work

6.1 Final conclusions

This dissertation delves into the changes of the hydrologic cycle due to climate change and

climate variability, focusing particularly on precipitation patterns and their implications for

human and ecological systems. It leverages data-driven methods to parse out the signal of

climate change from the noise of climate variability and model uncertainties across different

spatial and temporal scales. Employing a range of ML techniques, from linear regression

models to complex neural networks, previous chapters aim to discern the climate change

signal in historical and future precipitation patterns globally and at a continental level,

alongside investigating the effects of climate variability and change on wildfire characteristics

and drought impacts on forests within California’s ecosystems. Chapter 2 provides evidence

of an anthropogenic fingerprint in historical precipitation data, overcoming limitations of

previous studies by harnessing spatiotemporal data variability. Chapter 3 shifts focus to

future precipitation projections, introducing an ML framework to constrain uncertainties

in atmospheric circulation dynamics, thus refining regional precipitation forecasts. Chapter

4 and 5 examine the historical and projected impacts of climate change on wildfire onset

and forest drought resilience in California, highlighting the critical role of climate in driving

these phenomena and underscoring the potential of ML models to predict and manage future

environmental challenges.
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6.2 Future work

This dissertation applies various ML frameworks to understand the changes in the hydrologic

cycle and the impacts of these changes and variability. The following follow-up analyses are

either in progress or being planned as future work:

1. The signal detection method used in Chapter 2 focuses on global-level signals. Current

work involves modeling the complete, spatiotemporally resolved global forced signal using

advanced ML techniques and multi-model large ensembles of climate model simulations

(Deser et al., 2020). A large ensemble can provide the spatiotemporal forced response as the

ensemble mean, allowing for training an ML algorithm to model the forced response from

raw data, which includes internal variability and climate model uncertainty.

2. The emergent constraint presented in Chapter 3 can be followed up with analyses

designed to elucidate the model parameter choices leading to the spread in the Atmospheric

Turnover Circulation (ATOC). The moist static energy balance and the gross moist stability

framework, which show promise, will be considered for this.

3. Wildfire season onset in California is examined in detail in Chapter 4, and an at-

tribution study was carried out for the variability and change of the historical onset time

series. In follow-up studies, other temporal characteristics of the fire season, such as the fire

season’s end, will be examined.

4. Chapter 4 demonstrated a decrease in human ignitions across California’s ecoregions

throughout the year. We are conducting a study to investigate the spatial footprint of this

change in human ignitions and the possible reasons behind this temporal change.

5. The drought sensitivity timescale introduced in Chapter 5 has the potential to identify

drought refugia. Future studies will include a detailed analysis of this aspect of California’s

ecosystem.

Answering the above research questions with the aid of ML techniques will deepen our

understanding of how climate change and climate variability manifest in climate simula-
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tions. Moreover, these analyses will shed light on the societally relevant impacts of these

changes, ultimately contributing to more informed decision-making processes and adaptation

strategies.
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(2017), Emergent constraints on projections of declining primary production in the tropical

oceans, Nature Climate Change, 7 (5), 355–358.

Langenbrunner, B., and J. D. Neelin (2017), Pareto-optimal estimates of california pre-

cipitation change, Geophysical Research Letters, 44 (24), 12,436–12,446, doi:10.1002/

2017GL075226.

Lapuschkin, S. (2019), Opening the machine learning black box with layer-wise relevance

propagation, Ph.D. thesis, Technische Universität Berlin.

Li, X., and Y. Zhou (2017), Urban mapping using dmsp/ols stable night-time light: A review,

International Journal of Remote Sensing, 38 (21), 6030–6046, doi:10.1080/01431161.2016.

1274451.

Li, X., Y. Zhou, M. Zhao, and X. Zhao (2020), A harmonized global nighttime light dataset

1992–2018, Scientific Data, 7 (1), 168, doi:10.1038/s41597-020-0510-y.

Lu, J., G. A. Vecchi, and T. Reichler (2007), Expansion of the hadley cell under global

warming, Geophysical Research Letters, 34, L06,805, doi:10.1029/2006GL028443.

L’Heureux, M., S. Lee, and B. Lyon (2013), Recent multidecadal strengthening of the walker

circulation across the tropical pacific, Nature Climate Change, 3 (6), 571–576.

Ma, J., S. Xie, and Y. Kosaka (2012), Mechanisms for tropical tropospheric circulation

change in response to global warming, Journal of Climate, 25 (8), 2979–2994.

Ma, J., R. Chadwick, K. Seo, C. Dong, G. Huang, G. Foltz, and J. Jiang (2018), Responses of

146



the tropical atmospheric circulation to climate change and connection to the hydrological

cycle, Annual Review of Earth and Planetary Sciences, 46, 549–580.

Ma, J., L. Zhou, G. Foltz, X. Qu, J. Ying, H. Tokinaga, C. Mechoso, J. Li, and X. Gu (2020),

Hydrological cycle changes under global warming and their effects on multiscale climate

variability, Annals of the New York Academy of Sciences, 1472 (1), 21–48.

Madakumbura, G., C. Thackeray, J. Norris, N. Goldenson, and A. Hall (2021), Anthro-

pogenic influence on extreme precipitation over global land areas seen in multiple obser-

vational datasets, Nature Communications, 12 (1), 3944.

Madakumbura, G. D., H. Kim, N. Utsumi, H. Shiogama, E. M. Fischer, Seland, J. F.

Scinocca, D. M. Mitchell, Y. Hirabayashi, and T. Oki (2019), Event-to-event intensification

of the hydrologic cycle from 1.5 c to a 2 c warmer world, Scientific Reports, 9 (1), 3483.

Madakumbura, G. D., M. L. Goulden, A. Hall, R. Fu, M. A. Moritz, C. D. Koven, L. M.

Kueppers, C. A. Norlen, and J. T. Randerson (2020), Recent california tree mortality

portends future increase in drought-driven forest die-off, Environmental Research Letters,

15 (9), 094,016, doi:10.1088/1748-9326/abc719.

Madakumbura, G. D., J. Norris, C. Thackeray, S. Po-Chedley, F. Ahmed, and A. Hall

(2024a), Emergent constraint on future changes in the tropical atmospheric circulation,

doi:10.21203/rs.3.rs-3908042/v1, in review at Nature Climate Change.

Madakumbura, G. D., M. A. Moritz, K. McKinnon, A. P. Williams, B. Rahimi, S. Bass,

J. Norris, R. Fu, and A. Hall (2024b), Climate change drives earlier wildfire season onset

in california, doi:10.21203/rs.3.rs-3908042/v1, in review at Nature Geoscience.

Maeda, E. E., H. Kim, L. E. O. C. Aragão, J. S. Famiglietti, and T. Oki (2015), Disruption

of hydroecological equilibrium in southwest amazon mediated by drought, Geophysical

Research Letters, 42, 7546–7553, doi:10.1002/2015GL065252.

147



Maher, P., G. Vallis, S. Sherwood, M. Webb, and P. Sansom (2018), The impact of param-

eterized convection on climatological precipitation in atmospheric global climate models,

Geophysical Research Letters, 45 (8), 3728–3736.

Marvel, K., B. I. Cook, C. J. Bonfils, P. J. Durack, J. E. Smerdon, and A. P. Williams

(2019), Twentieth-century hydroclimate changes consistent with human influence, Nature,

569 (7754), 59–65.

McDowell, N. G., et al. (2008), Mechanisms of plant survival and mortality during drought:

why do some plants survive while others succumb to drought?, New Phytologist, 178,

719–739, doi:10.1111/j.1469-8137.2008.02436.x.

McDowell, N. G., et al. (2019), Mechanisms of a coniferous woodland persistence under

drought and heat, Environmental Research Letters, 14, doi:10.1088/1748-9326/ab0921.

McKinnon, K. A., and C. Deser (2021), The inherent uncertainty of precipitation variability,

trends, and extremes due to internal variability, with implications for western u.s. water

resources, Journal of Climate, 34 (24), 9605–9622, doi:10.1175/JCLI-D-21-0251.1.

McLaughlin, B. C., D. D. Ackerly, P. Z. Klos, J. Natali, T. E. Dawson, and S. E. Thompson

(2017), Hydrologic refugia, plants, and climate change, Global Change Biology, 23, 2942–

2961, doi:10.1111/gcb.13629.

Meinshausen, M., et al. (2011), The rcp greenhouse gas concentrations and their extensions

from 1765 to 2300, Climatic Change, 109 (1-2), 213–241, doi:10.1007/s10584-011-0156-z.

Merlis, T. (2015), Direct weakening of tropical circulations from masked co2 radiative forcing,

Proceedings of the National Academy of Sciences, 112 (43), 13,167–13,171.

Millar, C. I., and N. L. Stephenson (2015), Temperate forest health in an era of emerging

megadisturbance, Science, 349 (6250), 823–826, doi:10.1126/science.aaa9933.

148



Min, S. K., X. B. Zhang, F. W. Zwiers, and G. C. Hegerl (2011), Human contribution to

more-intense precipitation extremes, Nature, 470, 378–381, doi:10.1038/nature09763.

Minnich, R. A. (2018), California fire climate, 11–25 pp., University of California Press.

Mishra, A. K., and V. P. Singh (2010), A review of drought concepts, Journal of Hydrology,

391, 202–216, doi:10.1016/j.jhydrol.2010.07.012.

Mitas, C., and A. Clement (2005), Has the hadley cell been strengthening in recent decades?,

Geophysical Research Letters, 32 (3).

Montavon, G., W. Samek, and K. R. Müller (2018), Methods for interpreting and under-

standing deep neural networks, Digital Signal Processing, 73, 1–15.

Montavon, G., A. Binder, S. Lapuschkin, W. Samek, and K. R. Müller (2019), Layer-

wise relevance propagation: an overview, pp. 193–209, Springer, Cham, doi:10.1007/

978-3-030-28954-6 10.

Mora, C., A. G. Frazier, R. J. Longman, R. S. Dacks, M. M. Walton, E. J. Tong, J. J.

Sanchez, L. R. Kaiser, Y. O. Stender, J. M. Anderson, C. M. Ambrosino, I. Fernandez-

Silva, L. M. Giuseffi, and T. W. Giambelluca (2013), The projected timing of climate

departure from recent variability, Nature, 502 (7470), 183–187, doi:10.1038/nature12540.

Morelli, T. L., et al. (2016), Managing climate change refugia for climate adaptation, PLoS

One, 11, e0159,909, doi:10.1371/journal.pone.0159909.

Moritz, M. A., M. A. Parisien, E. Batllori, M. A. Krawchuk, J. Van Dorn, D. J. Ganz, and

K. Hayhoe (2012), Climate change and disruptions to global fire activity, Ecosphere, 3 (6),

art49, doi:10.1890/ES11-00345.1.

Myers, N., R. Mittermeier, C. Mittermeier, G. Da Fonseca, and J. Kent (2000), Biodiversity

hotspots for conservation priorities, Nature, 403 (6772), 853–858.

149



National Interagency Coordination Center, N. (2021), Outlooks, verified 7 March 2024.

Nelson, J. (2000), Prediction of diurnal change in 10-h fuel stick moisture content, Canadian

Journal of Forest Research, 30 (7), 1071–1087, doi:10.1139/x00-032.

Norris, J., G. Chen, and J. D. Neelin (2019), Thermodynamic versus dynamic controls on

extreme precipitation in a warming climate from the community earth system model large

ensemble, Journal of Climate, 32 (4), 1025–1045.

Norris, J., A. Hall, D. Chen, C. W. Thackeray, and G. D. Madakumbura (2021), Assessing

the representation of synoptic variability associated with california extreme precipitation

in cmip6 models, Journal of Geophysical Research: Atmospheres, 126 (6), e2020JD033,497,

doi:10.1029/2020JD033938.

Norris, J., A. Hall, C. Thackeray, D. Chen, and G. Madakumbura (2022a), Evaluating

hydrologic sensitivity in cmip6 models: Anthropogenic forcing versus enso, Journal of

Climate, 35 (21), 6955–6968.

Norris, J., D. Chen, A. Hall, and C. Thackeray (2022b), Moisture-budget drivers of global

projections of meteorological drought from multiple gcm large ensembles, Journal of Geo-

physical Research: Atmospheres, 127 (24), e2022JD037,745.

O’Gorman, P., and T. Schneider (2009), The physical basis for increases in precipita-

tion extremes in simulations of 21st-century climate change, Proceedings of the Na-

tional Academy of Sciences of the United States of America, 106 (35), 14,773–14,777,

doi:10.1073/pnas.0907610106.

Omernik, J. M., and G. E. Griffith (2014), Ecoregions of the conterminous united states:

Evolution of a hierarchical spatial framework, Environmental Management, 54 (6), 1249–

1266, doi:10.1007/s00267-014-0364-1.

O’Neill, B. C., C. Tebaldi, D. P. Van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt,

R. Knutti, E. Kriegler, J. F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, and

150



B. M. Sanderson (2016), The scenario model intercomparison project (scenariomip) for

cmip6, Geoscientific Model Development, 9 (9), 3461–3482, doi:10.5194/gmd-9-3461-2016.

O’Gorman, P. (2012), Sensitivity of tropical precipitation extremes to climate change, Nature

Geoscience, 5 (10), 697–700.

O’Gorman, P. A., and C. J. Muller (2010), How closely do changes in surface and column wa-

ter vapor follow clausius–clapeyron scaling in climate change simulations?, Environmental

Research Letters, 5 (2), 025,207.

Paik, S., S. K. Min, X. Zhang, M. G. Donat, A. D. King, and Q. Sun (2020), Determining

the anthropogenic greenhouse gas contribution to the observed intensification of extreme

precipitation, Geophysical Research Letters, 47 (12), e2019GL086,875.

Parks, S. A., L. M. Holsinger, C. Miller, and M. A. Parisien (2018), Analog-based fire regime

and vegetation shifts in mountainous regions of the western us, Ecography, 41, 910–21,

doi:10.1111/ecog.03432.

Paz-Kagan, T., P. G. Brodrick, N. R. Vaughn, A. J. Das, N. L. Stephenson, K. R. Nydick,

and G. P. Asner (2017), What mediates tree mortality during drought in the southern

sierra nevada, Ecological Applications, 27, 2443–57, doi:10.1002/eap.1602.

Pfahl, S., P. A. O’Gorman, and E. M. Fischer (2017), Understanding the regional pattern of

projected future changes in extreme precipitation, Nature Climate Change, 7 (6), 423–427,

doi:10.1038/nclimate3287.

Po-Chedley, S., J. Fasullo, N. Siler, Z. Labe, E. Barnes, C. Bonfils, and B. Santer (2022),

Internal variability and forcing influence model–satellite differences in the rate of trop-

ical tropospheric warming, Proceedings of the National Academy of Sciences, 119 (47),

e2209431,119.

151



Rao, K., A. P. Williams, N. S. Diffenbaugh, M. Yebra, C. Bryant, and A. G. Konings (2023),

Dry live fuels increase the likelihood of lightning-caused fires, Geophysical Research Letters,

50 (15), e2023GL100,478, doi:10.1029/2022GL100975.

Ribes, A., F. W. Zwiers, J.-M. Azais, and P. Naveau (2017), A new statistical approach to

climate change detection and attribution, Climate Dynamics, 48 (1-2), 367–386.

Roberts, D. A., P. E. Dennison, S. Peterson, S. Sweeney, and J. Rechel (2006), Evalu-

ation of airborne visible/infrared imaging spectrometer (aviris) and moderate resolution

imaging spectrometer (modis) measures of live fuel moisture and fuel condition in a shrub-

land ecosystem in southern california, Journal of Geophysical Research: Biogeosciences,

111 (G4), G04S02, doi:10.1029/2005JG000113.

Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Jucá, S. Contractor, M. G. Bosilovich,
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