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Unsupervised Classification in Hyperspectral
Imagery With Nonlocal Total Variation and

Primal-Dual Hybrid Gradient Algorithm
Wei Zhu, Victoria Chayes, Alexandre Tiard, Stephanie Sanchez, Devin Dahlberg, Andrea L. Bertozzi,

Stanley Osher, Dominique Zosso, Member, IEEE, and Da Kuang

Abstract— In this paper, a graph-based nonlocal total variation
method is proposed for unsupervised classification of hyper-
spectral images (HSI). The variational problem is solved by
the primal-dual hybrid gradient algorithm. By squaring the
labeling function and using a stable simplex clustering routine, an
unsupervised clustering method with random initialization can
be implemented. The effectiveness of this proposed algorithm is
illustrated on both synthetic and real-world HSI, and numerical
results show that the proposed algorithm outperforms other
standard unsupervised clustering methods, such as spherical
K -means, nonnegative matrix factorization, and the graph-based
Merriman–Bence–Osher scheme.

Index Terms— Hyperspectral images (HSI), nonlocal total vari-
ation (NLTV), primal-dual hybrid gradient (PDHG) algorithm,
stable simplex clustering, unsupervised classification.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is an important domain
in the field of remote sensing with numerous applica-

tions in agriculture, environmental science, mineralogy, and
surveillance [1]. Hyperspectral sensors capture information
of intensity of reflection at different wavelengths, from the
infrared to ultraviolet. They take measurements 10–30 nm
apart, and up to 200 layers for a single image. Each pixel has
a unique spectral signature, which can be used to differentiate
objects that cannot be distinguished based on visible spectra,
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for example: invisible gas plumes, oil or chemical spills over
water, or healthy from unhealthy crops.

The majority of HSI classification methods are either unmix-
ing methods or clustering methods. Unmixing methods extract
the information of the constitutive materials (the endmembers)
and the abundance map [2]–[5]. Clustering methods do not
extract endmembers; instead, they return the spectral signa-
tures of the centroids of the clusters. Each centroid is the mean
of the signatures of all the pixels in a cluster. However, when it
is assumed that most of the pixels are dominated mostly by one
endmember, i.e., in the absence of partial volume effects [6],
which is usually the case for high-resolution HSI, these two
types of methods are expected to give similar results [5]. The
proposed nonlocal total variation (NLTV) method for HSI
classification in this paper is a clustering method.

Much work has been carried out in the literature in both
the unmixing and the clustering categories. HSI unmixing
models can be characterized as linear or nonlinear. In a
linear unmixing model (LUM), each pixel is approximated
by a linear combination of the endmembers. When the linear
coefficients are constrained to be nonnegative, it is equivalent
to nonnegative matrix factorization (NMF), and good unsuper-
vised classification results have been achieved in [3]–[5] using
either NMF or hierarchical rank-2 NMF (H2NMF). Despite
the simplicity of LUM, the assumption of a linear mixture of
materials has been shown to be physically inaccurate in certain
situations [7]. Researchers are starting to expand aggressively
into the much more complicated nonlinear unmixing realm [8],
where nonlinear effects, such as atmospheric scattering, are
explicitly modeled. However, most of the work that has been
done for nonlinear unmixing so far is supervised in the
sense that prior knowledge of the endmember signatures is
required [2]. Discriminative machine learning methods, such
as support vector machine-based [9]–[11] and relevance vector
machine-based [12]–[14] approaches, have also been applied
to hyperspectral images, but they are also supervised methods,
since a training set is needed to learn the classifiers.

On the contrary, graph-based clustering methods implic-
itly model the nonlinear mixture of the endmembers. This
type of method is built upon a weight matrix that encodes
the similarity between the pixels, which is typically a
sparse matrix constructed using the distances between the
spectral signatures. Graph-cut problems for graph segmen-
tation have been well studied in the literature [15]–[18].
Bertozzi and Flenner [19] proposed a diffuse interface
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model on graphs with applications to classification of high-
dimensional data. This idea has been combined with the
Merriman–Bence–Osher (MBO) scheme [20] and applied to
multiclass graph segmentation [21], [22] and HSI classification
[23], [24]. The method in [19] minimizes a graph version of
the Ginzburg–Landau (GL) functional, which consists of the
Dirichlet energy of the labeling function and a double-well
potential, and uses Nyström extension to speed up the cal-
culation of the eigenvectors for inverting the graph Laplacian.
This graph-based method performed well compared with other
algorithms in the detection of chemical plumes in hyperspec-
tral video sequences [23], [24]. However, the GL functional
is nonconvex due to its double-well term, which may cause
the algorithm to get stuck in local minima. This issue can be
circumvented by running the algorithm multiple times with
different initial conditions and hand picking the best result.

The two methods proposed in this paper are unsupervised
graph-based clustering techniques. Instead of minimizing the
GL functional, which has been proved to converge to the TV
seminorm, this paper proposes to minimize the NLTV semi-
norm of the labeling functions ‖∇wul‖L1 directly. A detailed
explanation of the nonlocal operator ∇w and the labeling
function ul will be provided in Sections II and III. The L1

regularized convex optimization problem is solved by the
primal-dual hybrid gradient (PDHG) algorithm, which avoids
the need to invert the graph Laplacian. We also introduce
the novel idea of the quadratic model and a stable simplex
clustering technique, which ensures that anomalies converge to
their own clusters and makes random endmember initialization
possible in the proposed algorithm. The direct usage of the
NLTV seminorm makes the proposed clustering methods more
accurate than other methods when evaluated quantitatively on
HSI with ground-truth labels, and the quadratic model with
stable simplex clustering is a completely new addition to the
field of HSI classification.

This paper is organized as follows. In Section II, background
is provided on TV and nonlocal operators. Two NLTV models
(linear and quadratic) and a stable simplex clustering method
are presented in Section III. Section IV provides a detailed
explanation on the application of the PDHG algorithm to
solving the convex optimization problems in the linear and
quadratic models. Section V presents the numerical results and
a sensitivity analysis on the key model parameters. Section VI
presents the conclusions.

II. TOTAL VARIATION AND NONLOCAL OPERATORS

TV method was introduced in [25] and has been applied to
various image processing tasks [26]. Its advantage is that one
can preserve the edges in the image when minimizing ‖∇u‖L1

(TV seminorm). The TV model is

min
u

E(u) = ‖∇u‖L1 + λS(u).

The parameter λ can be adjusted to give higher priority to the
TV-regularizing term, or the data fidelity term S(u).

Despite its huge success in image processing, the TV
method is still a local method. More specifically, the gradient
of a pixel is calculated using its immediate adjacent pixels. It is
known that local image processing techniques fail to produce

satisfactory results when the image has repetitive structures, or
intrinsically related objects in the image are not spatially con-
nected. To address this problem, Buades et al. [27] proposed
a nonlocal means method based on patch distances for image
denoising. Gilboa and Osher [28] later formalized a systematic
framework for nonlocal image processing. Nonlocal image
processing produces much better results, because theoretically
any pixel in the image can interact with any other, which better
preserves texture and fine details.

In HSI classification, clusters can have elements that are
not spatially connected. Thus, it is necessary to develop a
nonlocal method of gradient calculation. We provide a review
of nonlocal operators in the rest of this section. Note that
the model is continuous, and the weights are not necessarily
symmetric [29].

Let � be a region in R
n , and u : � → R be a real function.

In the model for HSI classification, � is the domain of the
pixels, and u : � → [0, 1] is the labeling function of a cluster.
The larger the value of u(x), the more likely that pixel x would
be classified in that cluster. The nonlocal derivative is

∂u

∂y
(x) := u(y) − u(x)

d(x, y)
, for all x, y ∈ �

where d is a positive distance between x and y. In the context
of hyperspectral images, d(x, y) provides a way to measure
the similarity between pixels x and y. Smaller d(x, y) implies
more resemblance between these two pixels. The nonlocal
weight is defined as w(x, y) = d−2(x, y).

The nonlocal gradient ∇wu for u ∈ L2(�) can be defined
as the collection of all partial derivatives, which is a function
from � to L2(�), i.e., ∇wu ∈ L2(�, L2(�))

∇wu(x)(y) = ∂u

∂y
(x) =√w(x, y)(u(y) − u(x)).

The standard L2 inner products on Hilbert spaces L2(�) and
L2(�, L2(�)) are used in the definition. More specifically, for
u1, u2 ∈ L2(�) and v1, v2 ∈ L2(�, L2(�))

〈u1, u2〉 :=
∫

�
u1(x)u2(x)dx

〈v1, v2〉 :=
∫

�

∫
�

v1(x)(y)v2(x)(y)dydx .

The nonlocal divergence divw is defined as the negative adjoint
of the nonlocal gradient

divwv(x) :=
∫

�

√
w(x, y)v(x)(y) −√w(y, x)v(y)(x)dy.

At last, a standard L1 and L∞ norm is defined on the space
L2(�, L2(�))

‖v‖L1 :=
∫

�
‖v(x)‖L2 dx =

∫
�

∣∣∣∣
∫

�

∣∣∣∣v(x)(y)|2dy| 1
2 dx

‖v‖L∞ := sup
x

‖v(x)‖L2 .

III. TWO NLTV MODELS FOR UNSUPERVISED

HSI CLASSIFICATION

In this section, two NLTV models are explained for unsu-
pervised classification of HSI. The linear model runs faster
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in each iteration, but it requires a more accurate centroid
initialization. The quadratic model runs slower in each iter-
ation, but it is more robust with respect to the centroid
initialization. Moreover, the quadratic model converges faster
if the initialization is not ideal.

A. Linear Model

We extend the idea from [30] to formulate a linear model
for classification on HSI. The linear model seeks to minimize

E1(u) = ‖∇wu‖L1 + 〈u, f 〉

=
k∑

l=1

‖∇wul‖L1 +
k∑

l=1

∫
ul(x) fl(x)dx (1)

where u = (u1, u2, . . . , uk) : � → K
k is the labeling

function, k is the number of clusters, K
k = {(x1, x2, . . . , xk)|∑k

i=1 xi = 1, xi ≥ 0} is the unit simplex in R
k , and ∇wu =

(∇wu1, . . . ,∇wuk), such that ‖∇wu‖L1 = ∑k
l=1 ‖∇wul‖L1 .

fl(x) is the error function defined as fl (x) = λ
2 |g(x) − cl |2μ,

where g(x) and cl are the spectral signatures of pixel x and the
lth centroid, which is initially either picked randomly from the
HSI or generated by any fast unsupervised centroid extraction
algorithm (e.g., H2NMF and K -means). The distance in the
definition of fl(x) is a linear combination of cosine distance
and Euclidean distance

|g(x) − cl |μ = 1 − 〈g(x), cl〉
‖g(x)‖2‖cl‖2

+ μ‖g(x) − cl‖2, μ ≥ 0.

In HSI processing, the cosine distance is generally used,
because it is more robust to atmospheric interference and
topographical features [31]. The reason why the Euclidean
distance is also used is that sometimes different classes have
very similar spectral angles, but vastly different spectral ampli-
tudes (e.g., “dirt” and “road” in the Urban data set, which is
illustrated in Section V). This is called the linear model, since
the power of the labeling function ul in (1) is one.

The intuition of the model is as follows. In order to
minimize the fidelity term

∑k
l=1

∫
ul(x) fl(x), a small ul(x)

is required if fl (x) is large, while no such requirement is
needed if fl(x) is relatively small. This combined with the
fact that (u1(x), . . . , ul (x)) lies on a unit simplex implies that
ul(x) would be the largest term if pixel x is mostly similar
to the lth centroid cl . Meanwhile, the NLTV-regularizing term∑k

l=1 ‖∇wul‖L1 ensures that pixels similar to each other tend
to have analogous values of u. Therefore, a classification of
pixel x can be obtained by choosing the index l that has the
largest value ul(x).

Now, we discuss how to discretize (1) for numerical imple-
mentation.

1) Weight Matrix: Following the idea from [28], the patch
distance is defined as:

dσ (x, y) =
∫

�
Gσ (t)|g(x + t) − g(y + t)|2dt

where Gσ is a Gaussian of standard deviation σ . To build a
sparse weight matrix, we take a patch Pi around every pixel i ,
and truncate the weight matrix by constructing a k-d tree [32]
and searching the m nearest neighbors of Pi . k-d tree is a
space-partitioning data structure that can significantly reduce

the time cost of nearest neighbor search [33]. We employ a
randomized and approximate version of this algorithm [34]
implemented in the open source VLFeat package.1 The weight
is binarized by setting all nonzero entries to one. In the
experiments, patches of size 3×3 are used, and m is set to 10.
Note that unlike RGB image processing, the patch size for HSI
does not have to be very large. The reason is that while low-
dimensional RGB images require spatial context to identify
pixels, high-dimensional hyperspectral images already encode
enough information for each pixel in the spectral dimension.
Of course, a larger patch size that is consistent with the spatial
resolution of the HSI will still be preferable when significant
noise is present.

2) Labeling Function and the Nonlocal Operators: The
labeling function, u = (u1, u2, . . . , uk), is discretized as
a matrix of size r × k, where r is the number of pixels
in the hyperspectral image, and (ul) j is the lth labeling
function at j th pixel; (∇wul)i, j = (wi, j )

1/2((ul) j − (ul)i ) is
the nonlocal gradient of ul ; (divwv)i = ∑

j (wi, j )
1/2vi, j −

(w j,i )
1/2v j,i is the divergence of v at the i th pixel; and

the discrete L1 and L∞ norm of ∇wul are defined as:
‖∇wul‖L1 = ∑

i (
∑

j (∇wul)
2
i, j )

(1/2), and ‖∇wul‖L∞ =
maxi (

∑
j (∇wul)

2
i, j )

(1/2).
The next issue to address is how to minimize (1) efficiently.

The convexity of the energy functional E1 allows us to
consider using convex optimization methods. The first-order
primal-dual algorithms have been successfully used in image
processing with L1 type regularizers [30], [35]–[37]. We use
the PDHG algorithm. The main advantage is that no matrix
inversion is involved in the iterations, as opposed to general
graph Laplacian methods. The most expensive part of the
computation comes from sparse matrix multiplications, which
are still inexpensive due to the fact that only m = 10 nonzero
elements are kept in each row of the nonlocal weight matrix.

We then address centroid updates and stopping criteria for
the linear model. The concept of centroid updates is not
uncommon; in fact, the standard K -means algorithm consists
of two steps: first, it assigns each point to a cluster whose
mean yields the least within-cluster sum of squares, and then, it
recalculates the means from the centroids, and terminates when
assignments no longer change [38]. Especially for data-based
methods, recalculating the centroid is essential for making the
algorithm less sensitive to initial conditions and more likely
to find the “true” clusters.

After solving (1) using the PDHG algorithm, the out-
put u will be thresholded to uhard. More specifically,
for every i ∈ {1, 2, . . . , r}, the largest element among
((u1)i , (u2)i , . . . , (uk)i ) is set to 1, while the others are set
to 0, and we claim the i th pixel belongs to that particular
cluster. Then, the lth centroid is updated by taking the mean
of all the pixels in that cluster. The process is repeated until the
difference between two consecutive uhard drops below a certain
threshold. The pseudocode for the proposed linear model on
HSI is listed in Algorithm 1.

Before ending the discussion of the proposed linear model,
we point out its connection to the piecewise constant

1http://www.vlfeat.org



ZHU et al.: UNSUPERVISED CLASSIFICATION IN HYPERSPECTRAL IMAGERY WITH NLTV AND PDHG ALGORITHM 2789

Algorithm 1 Linear Model

1: Initialization of centroids: Choose (cl)
k
l=1 (randomized

or generated by unsupervised centroid extraction algo-
rithms).

2: Initialization of parameters: Choose τ, σ > 0 satisfying
στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ R
r×k and p0 ∈ R

(r×r)×k randomly,
set ū0 = u0, uhard = threshold(u0)

4: while not converge do
5: Minimize energy E1 using PDHG algorithm
6: uhard = threshold(u)
7: Update (cl)

k
l=1

8: end while

Mumford–Shah model for multiclass graph segmentation [39].
Assume that the domain � of the HSI is segmented by a
contour � into k disjoint regions, � = ∪k

l=1�l . The piecewise
constant Mumford–Shah energy is defined as

EM S
(
�, {cl}k

l=1

) = |�| + λ

k∑
l=1

∫
�l

|g(x) − cl |2dx (2)

where |�| is the length of the contour. To illustrate the connec-
tion between (1) and (2), consider the “local” version of (1),
which essentially replaces the NLTV regularizer ‖∇wul‖L1

with its local counterpart

E loc
1 (u) =

k∑
l=1

‖∇ul‖L1 +
k∑

l=1

∫
ul(x) fl(x)dx . (3)

Assume that the labeling function ul is the characteristic
function of �l . Then,

∫
ul(x) fl(x)dx is equal to

∫
�l

|g(x) −
cl |2dx up to a multiplicative constant. Moreover, the TV
of a characteristic function of a region equals the length
of its boundary, and hence, |�| = ∑k

l=1 ‖∇ul‖L1 . So the
linear model (1) can be viewed as a nonlocal convex-relaxed
version of Mumford–Shah model. We also note that the linear
energy (1) has been studied in [23]. But in their work, the
authors used a graph-based MBO method to minimize (1)
instead of the PDHG algorithm, and the difference of the
numerical performances can be seen in Section V.

B. Quadratic Model

1) Intuition: The aforementioned linear model performs
very well when the centroids are initialized by accurate
centroid extraction algorithms. As shown in Section V, the
linear model can have a significant boost to the accuracy
of other algorithms if the centroid extraction algorithm is
reasonable, without sacrificing speed. However, if centroids
are not extracted accurately, or if random initialization is used,
the segmenting results are no longer reliable, and the algorithm
takes far more iterations to converge to a stable classification.

To reduce the times of centroid updates and merge sim-
ilar clusters automatically and simultaneously, the following
quadratic model is proposed:

E2(u) =
k∑

l=1

‖∇wul‖L1 +
k∑

l=1

∫
u2

l (x) fl(x)dx . (4)

Fig. 1. First figure shows the “pushing” mechanism of the quadratic model.
The horizontal line represents the unit simplex in R

2. Signatures from cluster
A1 are colored blue, and signatures from cluster A2 are colored brown.
The vertical dashed bar is generated by a stable simplex clustering method,
and it thresholds the points on the simplex into two categories. The second
figure shows the stable simplex clustering. Every grid point δ on the simplex
generates a simplex clustering. We want to choose a δ, such that there are
very few data points falling into the “Y-shaped region.”

Similar as before, u = (u1, u2, . . . , uk) : � → K
k is the

labeling function, k is the number of clusters, K
k is the unit

simplex in R
k , and fl(x) is the error function.

Note that the only difference between (1) and (4) is that the
power of the labeling function ul here is two. The intuition
for this is as follows.

Consider, for simplicity, a hyperspectral image with a
ground truth of only two clusters, A1 and A2. Suppose the
randomized initial centroids are chosen, such that c1 ≈ c2 ∈
A1; or, that the two random initial pixels are of very similar
spectral signatures and belong to the same ground-truth cluster.

Let x be a pixel from A2. Then, 0 
 |g(x) − c1|2 ≈
|g(x) − c2|2. When (1) is applied, the fidelity term 〈u, f 〉
does not change when u(x) moves on the simplex in R

2, and
thus, pixels of A2 will be scattered randomly on the simplex.
After thresholding, an approximately equal number of pixels
from cluster A2 will belong to clusters C1 and C2, so the new
centroids c̃1 and c̃2 that are the means of the spectral signatures
of the current clusters will once again be approximately equal.

This situation changes dramatically when (4) is minimized.

1) Observe that the fidelity term in E2 is minimized for a
pixel x ∈ A2 when u1(x) ≈ u2(x) ≈ (1/2). Therefore,
the pixels of cluster A2 will be “pushed” toward the
center of the simplex once E2 is minimized.

2) With a stable simplex clustering method (explained in
Section III-B2), the clusters are divided, such that all
of these pixels in the center belong to either C1 or C2;
without loss of generality, suppose they belong to C2.
Then, the updated centroid c̃1 is essentially c1, while
the updated centroid c̃2 is a linear combination of the
spectral signature of members belonging to A1 and A2,
and thus quite different from the original c2.

3) After minimizing the energy E2 again, pixels from A1
will be clustered in C1, and pixels from A2 will be
pushed to C2. Therefore, the clustering will be finished
in just two steps in theory. See Fig. 1 for a graphical
illustration.

The quadratic model not only reduces the number of iter-
ations needed to find the “true” clustering because of its
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Algorithm 2 Quadratic Model with Stable Simplex Clustering

1: Initialization of centroids: Choose (cl)
k
l=1 (randomized

or generated by unsupervised centroid extraction algo-
rithms).

2: Initialization of parameters: Choose τ, σ > 0 satisfying
στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ R
r×k and p0 ∈ R

(r×r)×k randomly,
set ū0 = u0,

4: while not converge do
5: Minimize energy E2 using PDHG algorithm
6: uhard = threshold(u) with stable simplex clustering
7: Update (cl)

k
l=1

8: end while

capability of anomaly detection, but it allows for random
initialization as well, making it a more robust technique.

2) Stable Simplex Clustering: As mentioned earlier, the
quadratic model pushes anomalies into the middle of the unit
simplex. Therefore, it would be ill-conceived to simply classify
the pixels based on the largest component of the labeling
function u(x) = (u1(x), u2(x), . . . , uk(x)). Instead, a stable
simplex clustering method has to be used.

The concept behind the stable simplex clustering is to
choose a division that puts all the data points in the “middle”
of the unit simplex into a single cluster. Fig. 1 shows this in
the simple two-cluster case. Also refer to Section III-B1 for
explanation of the “pushing” process. The idea to accomplish
this goal is inspired by [5]. We first create a grid on a
k-dimensional simplex, where k is the number of clusters, and
each grid point δ generates a simplex clustering. Then, a δ is
searched to minimize the energy g(δ)

g(δ) = − log

(
k∏

l=1

Fl(δ)

)
+ η exp(G(δ))

where Fl(δ) is the percentage of data points in cluster l, and
G(δ) is the percentage of data points on the edges near the
division, i.e., the “Y-shaped region” in Fig. 1. The first term
in g(δ) rewards keeping clusters approximately of the same
size, ensuring no skewed data from clusters far too small. And
the second term rewards sparsity of points in the intermediate
region. The constant η is chosen to be large enough, such that
stability has a bigger weight in the energy.

Algorithm 2 shows the quadratic model using stable simplex
clustering. Fig. 2 shows how this detected the chemical plumes
in a frame with background centroids precalculated and ran-
dom initialization for the final centroid. Notice that no plume
is detected in the first iteration. But by the 12th iteration, the
gas plume is nearly perfectly segmented.

Finally, we present the comparison between the results of
the linear model and the quadratic model on the Urban data set
with identical random pixel initialization in Fig. 3. The linear
model took about 50 iterations to converge, and the quadratic
model only took four iterations.

Fig. 2. Quadratic model and stable simplex clustering on the plume data
set. The chemical plume (brown) is perfectly detected in 12 iterations.

Algorithm 3 Primal-Dual Hybrid Gradient Algorithm

1: Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X ×
Y , and set x̄0 = x0

2: while not converge do
3: yn+1 = (I + σ∂ F∗)−1(yn + σ K x̄n)
4: xn+1 = (I + τ∂G)−1(xn − τ K ∗yn+1)
5: x̄ n+1 = xn+1 + θ(xn+1 − xn)
6: n = n + 1
7: end while

IV. PRIMAL-DUAL HYBRID GRADIENT ALGORITHM

In this section, a detailed explanation is provided on the
application of the PDHG algorithm [30], [35]–[37] to mini-
mizing E1 (1) and E2 (4) in Section III-B2. A review of the
algorithm is provided in a more general setting to contextualize
the extension to nonlocal model for hyperspectral imagery.

A. Review of PDHG Algorithm

Consider the following convex optimization problem:
min
x∈X

{F(K x) + G(x)} (5)

where X and Y are finite-dimensional real vector spaces,
F and G are proper convex lower semicontinuous functions
F : Y → [0,∞], G : X → [0,∞], and K : X → Y is
a continuous linear operator with the operator norm ‖K‖ =
sup{‖K x‖ : x ∈ X, ‖x‖ ≤ 1}. The primal-dual formulation of
(5) is the saddle-point problem

min
x∈X

max
y∈Y

{〈K x, y〉 − F∗(y) + G(x)} (6)

where F∗ is the convex conjugate of F defined as F∗(y) =
supx < x, y > −F(x).

The saddle-point problem (6) is then solved using the
iterations of [30, Algorithm 3].

In Algorithm 3, (I +λ∂ f )−1(x) is the proximal operator of
f , which is defined as

(I + λ∂ f )−1(x) = proxλ f (x) = arg min
y

f (y) + 1

2λ
‖y − x‖2

2.

It has been shown in [30] that O(1/N) (where N is the
number of iterations) convergence can be achieved as long as
σ, τ satisfy στ‖K‖2 ≤ 1.
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Fig. 3. Linear versus quadratic model on the Urban data set with the same centroid initialization. To produce essentially identical results, the linear model
(first row) took 50 iterations of centroid updates, and the quadratic model (second row) took just 4 iterations.

B. Primal-Dual Iterations to Minimize E1 and E2

Recall from Section III that the discretized linear and
quadratic energy E1 and E2 are

E1(u) =
k∑

l=1

‖∇wul‖L1 +
k∑

l=1

r∑
i=1

(ul)i ( fl)i

= ‖∇wu‖L1 + 〈u, f 〉

E2(u) =
k∑

l=1

‖∇wul‖L1 +
k∑

l=1

r∑
i=1

(ul)
2
i ( fl)i

= ‖∇wu‖L1 + 〈u, f � u〉
where u = (u1, u2, . . . , uk) is a nonnegative matrix of size
r × k, with each row of matrix u summing to one, and f � u
denotes the pointwise product between two matrices f and u.
After adding an indicator function δU , minimizing E1 and E2
are equivalent to solving

min
u

‖∇wu‖L1 + 〈u, f 〉 + δU (u) (7)

min
u

‖∇wu‖L1 + 〈u, f � u〉 + δU (u) (8)

where U = {u = (u1, u2, . . . , uk) ∈ R
r×k : ∑k

l=1(ul)i = 1,
∀i = 1, . . . , r, (ul)i ≥ 0}, and δU is the indicator function on
U . More specifically

δU (u) =
{

0 if u ∈ U

∞ otherwise.
(9)

By comparing (5), (7), and (8), we can set K1 = K2 =
∇w , F1(q) = F2(q) = ‖q‖L1 , G1(u) = 〈u, f 〉 + δU (u),
and G2(u) = 〈u, f � u〉 + δU (u). The convex conjugate of
F1 (and F2) is F∗

1 (p) = F∗
2 (p) = δP (p), where the set

P = {p ∈ R
(r×r)×k : ‖pl‖∞ ≤ 1}.

Next, we derive the closed forms of the proximal operators
(I + σ∂ F∗

1,2)
−1 and (I + τ∂G1,2)

−1, so that Algorithm 3 can
be implemented efficiently to minimize E1 and E2

(I + σ∂ F∗
1,2)

−1( p̃) = (I + σ∂δP)−1( p̃)

= arg min
p

δP(p) + 1

2σ
‖p − p̃‖2

2 = projP ( p̃) (10)

Algorithm 4 Primal-Dual Iterations for the Linear Model
1: while not converge do
2: pn+1 = projP (pn + σ∇w ūn)
3: un+1 = projU (un + τdivw pn+1 − τ f )
4: ūn+1 = un+1 + θ(un+1 − un)
5: n = n + 1
6: end while

where projP( p̃) is the projection of p̃ onto the closed convex
set P

(I +τ∂G1)
−1(ũ)=arg min

u
< u, f > +δU (u) + 1

2τ
‖u − ũ‖2

2

= arg min
u∈U

‖u − ũ + τ f ‖2
2 = projU (ũ − τ f )

· (I + τ∂G2)
−1(ũ) = arg min

u

〈
u,

τ

2
Au
〉

+ τδU (u) + 1

2
‖u − ũ‖2

2 (11)

= arg min
u∈U

1

2
〈u, (I +τA)u〉 − 〈u, ũ〉 + 1

2

〈
ũ, (I + τA)−1ũ

〉
= arg min

u∈U

1

2
‖(I + τA)

1
2 u − (I + τA)−

1
2 ũ‖2

2 (12)

where A : R
r×k → R

r×k is a linear operator defined as
1/2Au = f � u. Therefore, A is a positive semidefinite
diagonal matrix of size rk × rk. It is worth mentioning that
the matrix (I + τA) is diagonal and positive definite, and
hence, it is trivial to compute its inverse and square root.
Problem (12) can be solved as a preconditioned projection
onto the unit simplex K

k , and the solution will be explained
in Section IV-C.

Combining (10)–(12) and Algorithm 3, we have the primal-
dual iterations for minimizing E1 (Algorithm 4) and E2
(Algorithm 5).

Before moving on to explaining how to solve (12), we
specify the two orthogonal projections projP and projU in
Algorithm 4. Let p̃ = projP (p), where p = (pl)

k
l=1 ∈

R
(r×r)×k . Then, for every i ∈ {1, 2, . . . , r} and every l ∈

{1, 2, . . . , k}, the i th row of p̃l is the projection of the i th row
of pl on to the unit ball in R

r . Similarly, if ũ = projU (u),
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Algorithm 5 Primal-Dual Iterations for the Quadratic Model
1: while not converge do
2: pn+1 = projP (pn + σ∇wūn)
3: Update un+1 as in (12), where ũ = un + τdivw pn+1

4: ūn+1 = un+1 + θ(un+1 − un)
5: n = n + 1
6: end while

then for every i ∈ {1, 2, . . . , r}, ((ũ1)i , (ũ2)i , . . . , (ũk)i ) is the
projection of ((u1)i , (u2)i , . . . , (uk)i ) onto the unit simplex K

k

in R
k .

C. Preconditioned Projection Onto the Unit Simplex

This section is dedicated to solving (12). It is easy to see
that the rows of u in (12) are decoupled, and the only problem
that needs to be solved is

min
u∈Rk

δKk (u) + 1

2
‖Au − y‖2 (13)

where A = diag(a1, a2, . . . , ak) is a positive definite diagonal
matrix of size k ×k, K

k is the unit simplex in R
k , and y ∈ R

k

is a given vector.
Theorem 1: The solution u = (u1, u2, . . . , uk) of (13) is

ui = max

(
ai yi − λ

a2
i

, 0

)
(14)

where λ is the unique number satisfying

k∑
i=1

max

(
ai yi − λ

a2
i

, 0

)
= 1 (15)

The proof of Theorem 1 is shown in the Appendix. The
most computationally expensive part of solving (15) is sorting
the sequence (ai yi )1≤i≤k of length k, which is trivial, since k,
the number of clusters, is typically a small number.

V. NUMERICAL RESULTS

A. Comparison Methods and Experimental Setup

All experiments were run on a Linux machine with Intel
core i5, 3.3 Hz with 2 GB of DDR3 RAM. The following
unsupervised algorithms have been tested.

1) (Spherical) K-Means: Built in MatLab Code.
2) NMF: Nonnegative Matrix Factorization [40].
3) H2NMF: Hierarchical Rank-2 NMF [5].
4) MBO: Graph MBO scheme [23], [24]. The code is run

for ten times on each data set, and the best result is
chosen.

5) NLTV2: NLTV, quadratic model with random pixel
initialization.

6) NLTV1(H2NMF/K-Means): NLTV, linear model with
endmembers/centroids extracted from H2NMF/K -
means.

Every algorithm can be initialized via the same procedure
as that in “K -means++” [41], and the name “Algorithm++”
is used if the algorithm is initialized in such a way. For
example, “NLTV2++” means NLTV, quadratic model with
“K -means++” initialization procedure.

The algorithms are compared on the following data sets.

1) Synthetic Data Set: This data set2 contains five end-
members and 162 spectral bands. The 40 000 abundance
vectors were generated as a sum of Gaussian fields.
The data set was generated using a generalized bilinear
mixing model

y =
p∑

i=1

ai ei +
p−1∑
i=1

p∑
j=i+1

γi j ai a j ei � e j + n

where γi j values are chosen uniformly and randomly in
the interval [0, 1], n is the Gaussian noise, with an SNR
of 30 dB, and ai satisfies: ai ≥ 0, and

∑p
i=1 ai = 1.

2) Salinas-A Data Set: Salinas-A scene3 was a small sub-
scene of Salinas image, which was acquired by the
AVIRIS sensor over Salinas Valley. It contains 86 × 83
pixels and 204 bands. The ground truth includes six
classes: broccoli, corn, and four types of lettuce.

3) Urban Data Set: The Urban data set4 is from the
Hyperspectral Digital Imagery Collection Experiment
(HYDICE), which has 307×307 pixels and contains 162
clean spectral bands. This data set only has six classes
of material: road, dirt, house, metal, tree, and grass.

4) San Diego Airport Data Set: The San Diego Airport
(SDA) data set5 is provided by the HYDICE sensor.
It comprises 400 × 400 pixels and contains 158 clean
spectral bands. There are seven types of material: trees,
grass, three types of road surfaces, and two types of
rooftops [5]. The RGB image with cluster labels is
shown in Fig. 7.

5) Chemical Plume Data Set: The chemical plume data set6

consists of frames taken from a hyperspectral video of
the release of chemical plumes provided by the Applied
Physics Laboratory, John Hopkins University. The image
has 128 × 320 pixels, with 129 clean spectral bands.
There was no ground truth provided for this data, so
a segmentation of four classes is assumed: chemical
plume, sky, foreground, and mountain. A fifth cluster
is added, so that the noise pixels would not interfere
with the segmentation [23].

6) Pavia University Data Set: The Pavia University data set
is collected by the ROSIS sensor. It contains 103 clean
spectral bands and 610×340 pixels, and comprises nine
classes of material.

7) Indian Pines Data Set: The Indian Pines data set was
acquired by AVIRIS sensor and consists of 145 ×
145 pixels, with 200 clean spectral bands. The available
ground truth is labeled into 16 classes.

8) Kennedy Space Center Data Set: This data set was
gathered by the NASA AVIRIS sensor over the Kennedy
Space Center (KSC), Florida. A subscene of the western
shore of the center is used in the numerical experiment.

2Available at http://www.math.ucla.edu/~weizhu731/
3Available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_

Remote_Sensing_Scenes
4Available at http://www.agc.army.mil/
5Available at http://www.math.ucla.edu/~weizhu731/
6Available at http://www.math.ucla.edu/~weizhu731/
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Fig. 4. Clustering results for the synthetic data set generated by five endmembers. The first image on the left is the ground truth, and the remaining
six images are the clustering results of the corresponding algorithms.

TABLE I

KEY PARAMETERS USED FOR DIFFERENT DATA SETS

Twelve classes of different materials are reported in the
datacube of size 512 × 365 × 176.

K -means and NMF are nonparametric, and the parameter
setups of H2NMF and the MBO scheme are described in
[5], [23], and [24]. The key parameters λ and μ in the NLTV
models are determined in the following way.

1) λ is chosen, such that the data fidelity term is around ten
times larger than the NLTV-regularizing term ‖∇wu‖L1 .

2) μ is chosen, such that the Euclidean distances between
different endmembers are roughly ten times smaller than
the cosine distances.

Table I displays the parameters chosen for the numerical
experiments. The large variance of the parameter scales results
from the variety of image sizes and scales. A sensitivity
analysis over the parameters is presented in Section V-G.

B. Synthetic Data Set and Salinas-A Data Set

All the algorithms are first tested on the synthetic data set.
The classification results are shown in Table II and Fig. 4. Both
NLTV algorithms have better overall accuracy than all of the
other methods, although they took a longer time to converge.
The qudratic model classified the image almost perfectly.

The visual classification results and overall accuracies of
the Salinas-A data set are shown in Fig. 5 and Table II.
Both NLTV methods performed at higher accuracy compared
with other methods. The linear model improved the result of
K -means by incorporating spatial information of the data set,
and the quadratic model only took four iterations to converge.

TABLE II

COMPARISON OF NUMERICAL RESULTS ON THE

SYNTHETIC AND SALINAS-A DATA SETS

C. Urban Data Set

There was no ground truth provided for the Urban HSI.
A structured sparse algorithm [42] (which is different from all
of the testing algorithms) has been used to initialize a ground
truth, which is then corrected pixel by pixel to provide a
framework for numerical analysis of accuracy. As this “ground
truth” was hand-corrected, it does not necessarily represent the
most accurate segmentation of the image; however, it provides
a basis for quantitative comparison.

After running all the algorithms that are compared to create
six clusters, we noticed that they all split “grass” into two
different clusters (one of them corresponds to a mixture of
grass and dirt), while treating “road” and “metal” as the
same. To obtain a reliable overall accuracy of the classifi-
cation results, the two “grass” clusters are combined in every
algorithm, hence obtaining the classification results for five
clusters, which are “grass,” “dirt,” “road + metal,” “roof,” and
“tree.”

The overall classification accuracies and run times are
displayed in Table III. As can be seen, the proposed NLTV
algorithms performed consistently better with comparable run
time. It is easier to see visually in Fig. 6 that the NLTV
algorithm performed best of the five algorithms tested; specif-
ically, the NLTV algorithm alone distinguished all of the
dirt beneath the parking lot and the intricacies of the road
around the parking lot. The TV regularizer also gives the
segmented image smoother and more distinct edges, allowing
easier human identification of the clusters.
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Fig. 5. Clustering results for the Salina-A data set. The first image on the left is the ground truth, and the remaining six images are the clustering results of
the corresponding algorithms.

Fig. 6. Clustering results for the Urban data set. Five clusters, including rooftops, grass, trees, dirt, and “road+metal,” are generated by the algorithms.

TABLE III

COMPARISON OF NUMERICAL RESULTS ON THE URBAN DATA SET

D. San Diego Airport Data Set

The classification results and computational run times are
shown in Fig. 7 and Table IV. No ground-truth classification
is available for this HSI, but after examining the spectral
signatures of various pixels in the scene, we managed to
pinpoint some errors that were common for each algorithm.
We will not go into detail about the NMF and H2NMF
algorithms, which clearly do not perform well on this data
set. K -means obtained some decent results, but splitted the
rooftops of the four buildings on the bottom-right of the image
into two distinct clusters, and failed to separate two different
road types (clusters 5 and 6). The MBO scheme failed on
two accounts: it did not properly segment two different road
surfaces (clusters 6 and 7), and did not account for the different

TABLE IV

RUN TIMES FOR THE SDA, CHEMICAL PLUME (PLUME), PAVIA

UNIVERSITY (PAVIA), INDIAN PINES (PINES), AND
KSC DATA SETS

rooftop types (clusters 3 and 4). The linear NLTV model
with H2NMF initialization is significantly more accurate than
H2NMF and MBO. It successfully picked out two different
types of roof (clusters 3 and 4) and two different types of
road (clusters 6 and 7), although the other type of road
(cluster 5) is mixed with one type of roof (cluster 3). The
best result was obtained by using the NLTV quadratic model
with random initialization, with the only problem that tree
and grass (clusters 1 and 2) are mixed together. However, the
mixing of grass and tree is actually the case for all the other
algorithms. This means that NLTV quadratic model alone was
able to identify six of the seven clusters correctly.
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Fig. 7. Clustering results for the SDA data set. The first image on the left is the RGB image, and the remaining six images are the clustering results of the
corresponding algorithms.

Fig. 8. Clustering results for the Chemical Plume data set.

E. Chemical Plume Data Set

Analyzing images for chemical plumes is more difficult
because of its diffusive nature. All the algorithms are run on
the image before it was denoised and the results are shown in
Fig. 8. The unmixing methods, such as NMF and H2NMF,
do not perform satisfactorily on this data set. MBO++,
K -means++, and NLTV2++ can all properly identify the
chemical plume. Note that NLTV with H2NMF as centroid
initialization outperforms H2NMF as a classification method.
We have to point out that the NLTV quadratic model is not
so robust with respect to the centroid initialization even with
a “K -means++” type procedure on this data set. But, this is
also the case for all the other testing algorithms. The MBO
scheme, which was specifically designed for this data set [23],
does seem to have the highest robustness among all the
algorithms.

F. Pavia University, Indian Pines, and Kennedy Space
Center Data Set

The Pavia University (9 clusters), Indian Pines (16 clusters),
and KSC (12 clusters) data sets are frequently used to test
supervised classification algorithms. To save space, we only
report the numerical overall accuracies in Table V. As can
be seen, all the competing unsupervised algorithms performed
poorly on these three data sets. Different clusters were merged,
and the same clusters were splitted in various fashions by all

TABLE V

COMPARISON OF OVERALL ACCURACIES ON THE PAVIA
UNIVERSITY, INDIAN PINES, AND KSC DATA SETS

the algorithms, which rendered the numerical accuracies no
longer reliable.

The computational run times of these three data sets are
listed in Table IV. Unfortunately, when the number of clusters
is increasing, the computational complexity of the quadratic
model grows exponentially. The reason is that the number of
grid points (δ in Fig. 1) on the unit simplex grows exponen-
tially as the dimension of the simplex increases. Therefore,
when the number of clusters is large enough (greater than 10),
the stable simplex clustering will become the most time-
consuming part of the quadratic model. On these three data
sets, we sacrificed the accuracy of the quadratic model by
creating a coarser mesh on the unit simplex.

The reason why NLTV, as well as all the other competing
unsupervised algorithms, performed poorly on these three data
sets is twofold. First, when the number of classes is too large
in an HSI covering a large geographic location, the variation of
spectral signatures within the same class cannot be neglected
when compared with the difference between the constitutive
materials, especially when the endmembers themselves are
similar. As a result, the unsupervised algorithms tend to split a
ground-truth cluster with large variation in spectral signatures
and merge clusters with similar centroids or endmembers.
Second, there might exist more distinct materials in the image
than reported in the ground truth. Therefore, the algorithms
might detect those unreported materials, because no labeling
has been used in these unsupervised algorithms. Thus, we can
conclude that NLTV, as well as other unsupervised methods
reported in this paper, is not suitable for such images at current
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Fig. 9. This figure shows the robustness of the NLTV algorithm with respect
to λ and μ. Centroid initialization remains identical as λ and μ are changing.
λ0 and μ0 are the optimal values specified in Section V-A. The overall
accuracies of the Synthetic, Urban, and Salinas-A data sets are displayed.

stage. Modifying the NLTV algorithm to work for such data
sets would be the direction of future work.

G. Sensitivity Analysis Over Key Model Parameters

At last, a sensitivity analysis is provided over the parameters
λ and μ in the NLTV models. As mentioned in Section V-A,
λ and μ are chosen to balance the scale of the regularizing
and fidelity terms or the cosine and Euclidean distances. Fig. 9
shows the robustness of the NLTV algorithm on the Synthetic,
Urban, and Salinas-A data sets with respect to λ and μ within
the variance of two magnitudes. Centroid initialization remains
identical as λ and μ are changing. It is clear that the NLTV
algorithm is fairly robust with respect to λ on all three data
sets. The algorithm is also relatively robust with respect to μ
on the Synthetic and Salinas-A data sets. As for the Urban
data set, a significant decay in accuracy can be observed as
μ increases. This phenomenon is due to the fact that larger μ
causes Euclidean distance to be the dominant one, which is
not ideal with the presence of atmospheric interference in the
Urban data set. Smaller μ also leads to lower accuracy in the
Urban data set, which results from the similarity of “road”
and “dirt” clusters measured in cosine distance. Overall, a
reasonable robustness with respect to the key parameters λ
and μ can be concluded on these three tests.

Similar robustness can be observed on other data sets except
for the Chemical Plume. Fig. 10 shows the sensitivity of the
result with respect to μ. All the centroids are initialized using
H2NMF, and vastly different results occurred as μ changes.
This could be due to the presence of significant noise.

VI. CONCLUSION

In this paper, we present the framework for an NLTV
method for unsupervised HSI classification, which is solved

Fig. 10. Sensitivity of the NLTV algorithm with respect to μ in the plume
data set. All the tests used the same centroid initialization (H2NMF).

with the PDHG algorithm. A linear and a quadratic version
of this model are developed; the linear version updates more
quickly and can refine results produced by a centroid extrac-
tion algorithm, and the quadratic model with stable simplex
clustering method provides a robust means of classifying HSI
with randomized pixel initialization.

The algorithm is tested on both synthetic and seven real-
world data sets, with promising results. The proposed NLTV
algorithm consistently performed with highest accuracy on
synthetic and urbanized data sets such as Urban, Salinas-
A, and the SDA, both producing smoother results with eas-
ier visual identification of segmentation, and distinguishing
classes of material that other algorithms failed to differenti-
ate. The NLTV algorithm also performed well on anomaly
detection scenarios, such as the Chemical Plume data sets;
with proper initialization, it performed on par with the MBO
scheme developed specifically for this data set. However,
NLTV, as well as other unsupervised algorithms, failed to
achieve satisfactory results on data sets with a relatively large
number of clusters. The run times of the NLTV algorithms are
generally comparable to the other methods, and the consistent
higher accuracy on different types of data sets suggests that
this technique is a more robust and precise means of classify-
ing hyperspectral images with a moderate number of clusters.

APPENDIX

PROOF OF THEOREM 1

Problem (13) is equivalent to

min∑k
i=1 ui=1

δ
R

k+(u) + 1

2
‖Au − y‖2

2 (16)

where R
k+ = {u ∈ R

k : ui ≥ 0} is the nonnegative quadrant
of R

k . The Lagrangian of (16) is

L(u, λ) =
k∑

i=1

(
1

2
|ai ui − yi |2 + δR+(ui ) + λui

)
− λ.

If u∗ is a soluton of (16), KKT conditions [43] imply that
there exists a λ, such that

u∗ = arg min
u

L(u, λ) = arg min
ui ≥0

k∑
i=1

1

2
a2

i

(
ui + λ − ai yi

a2
i

)2

.

Therefore, u∗
i = max(ai yi − λ/a2

i , 0). Meanwhile, the primal
feasibility requires

k∑
i=1

u∗
i =

k∑
i=1

max

(
ai yi − λ

a2
i

, 0

)
= 1.

And this proves Theorem 1.
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