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A Segment Based Approach to Secondary Structure Prediction
by
Bruce Ira Cohen

Abstract

An outstanding problem in molecular biology is the "protein chain folding" prob-
lem. One ultimate goal is to predict the three dimensional structure (the tertiary struc-
ture) of a protein from the amino acid sequence (the primary structure). An intermediate
problem is to go from primary structure to secondary structure, identifying helix and/or
strand subsequences within the amino acid sequence. Secondary structure provides a low
resolution representation of protein structure. This thesis addresses using computers to

make and evaluate secondary structure predictions.

Pattern based secondary structure prediction, which is used to mark turns, is
reviewed in Chapter 2. Chapter 3 introduces a new language (A Language for the Pred-
iction of Protein Substructures [ALPPS]) which allows an investigator to divide a protein
A sequence into segments and explore segments with both patterns and metapattern (pat-
terns of patterns) in a hierarchal manner. Chapters 4 and 5 explore the problem of scor-
ing secondary structure predictions on o/a class proteins. Standard residue based scoring
and enhancements are described in Chapter 4. A proposal for feature based scoring is
introduced in Chapter 5. The intent of feature based scoring is to evaluate a prediction as
an approximation of the "known" secondary structure. An application of ALPPS
development on o/a class proteins and testing using some of the scoring ideas is

presented in Chapter 6.
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Chapter 1
Introduction

The computer has become an integral tool for many molecular biologists. Like the
microscope, the computer allows scientists to "see” new vistas which were previously
inaccessible. Computational biology is becoming recognized as an important discipline.
Molecular biologists and biochemists who devote most of their time to more traditional

laboratory work can benefit from computational results.

The area of protein structure prediction offers an example of the potential benefits
of computational biology. Two groups, one based at Scripps and the other in Germany,
were independently studying peptides, seeking potential epitopes which would produce
immunization against foot-and-mouth disease virus (FMDV). Both groups based their
work on the observation that FMDYV viral protein 1 (VP1) has some immunizing activity.
The primary sequence of VP1 was known from DNA sequencing. The Scripps group
synthesized 7 peptides with sequences corresponding to 7 subsequences of the primary
structure of VP1 and tested the antibody responses in rabbits and guinea pigs. They
determined that the peptide corresponding to residues 141-160 elicit high levels of

antibody (Bittle et al., 1982).

Unlike the Scripps group which tested 7 different peptides, the German group used
computational biology to select only one, and reached a similar result with a peptide
corresponding to residues 144-159 (Pfaff et al., 1982). They reasoned that the antibody
combining site would be on a stable section of the surface of VP1. Noting that helices
have local hydrogen bonds which provide stability, they attempted to use secondary

structure prediction methods on the primary sequence of VP1 to look for helices. To



meet the requirement that the epitope be on the surface, they limited the potential peptide
to predicted helices with well separated hydrophilic and hydrophobic sides. Only one
amphipathic helix was predicted, and subsequently the peptide based on this subsequence
produced the immune response.

As demonstrated in the FMDV work, secondary structure prediction can be a valu-
able tool. Secondary structure prediction is also used as a step in various methods of
generating tertiary structure predictions (Cohen and Kuntz, 1989; Crawford, Niermann,
and Kirschner, 1987).

The widespread use of protein structure prediction to reduce (not replace) time
spent in wet labs has yet to arrive. Protein structure prediction is still primarily in the
hands of scientists who are developing rather than only using prediction techniques.!
Schulz (1988) (as well as others) observes that secondary structure prediction has a lim-
ited success rate when simply looking at local sequence information. The inclusion of
long-range information is necessary to improve secondary structure prediction. Work
remains to be done in improving prediction techniques in this area and then making them

available to a larger user community.

This thesis addresses the problem of improving secondary structure prediction for
globular proteins. Segment based secondary structure prediction offers a new approach
to predicting secondary structure features and new evaluation methods which are based

on features rather than residue counts.

The goal of secondary structure prediction is to take a sequence composed from an

! In the FMDV example, computational biologists, W. Kabsch and C. Sander are ack-
nowledged collaborators in the prediction of antigenic sites.



alphabet of 20 amino acids and "read"” this character string to be a "paragraph” composed
of super-secondary structure "sentences.” In turn, the sentences are composed of "words"
in the form of strands, helices, and turns. We have a Roserta Stone — the Brookhaven
Protein Databank (PDB) (Bernstein et al., 1977) — which contains about 200 examples
of protein paragraphs. Secondary structure prediction methods are developed by study-
ing some examples from the PDB and then testing the methods on proteins which were
not included in the original development set. It should be noted that some secondary
structure prediction methods are based on a purely statistical evaluation of PDB exam-
ples, while others (including the work in this thesis) are grounded upon biophysical prin-
ciples.

In deciphering the Hieroglyphics of the Rosetta Stone, Champollion began by
finding the proper names which allowed a mapping between the phonetics of many
Hieroglyphic characters and corresponding Greek characters. The recognition that oval
rings (cartouches) encircled the proper names facilitated the phonetics mapping (Budge,
1950). The positions of the proper names within sefltences also contributed to determin-
ing the grammar. This bootstrap approach began with a partial solution to the problem.
Then the added clues from the partial solution contributed to a more complete under-
standing of Hieroglyphics and the ancient Egyptian language.

Similarly, a bootstrap procedure can be used in secondary structure prediction.
Local sequence patterns combined with some longer range information derived from the
tertiary structure class (o/c, o/B, p/B, Levitt and Chothia, 1976) gives accurate predic-
tions of turns — places between regular secondary structure feature (i.e., B-strands and

a-helices). Chapter 2 reviews this work and describes the use of augmented regular



expressions to express sequence patterns.

Our segment based approach builds on the success of the turn predictions. An
attempt is made to consider segments in terms of the local secondary structure. For
example, assuming that all turns have been marked at one or more residues within the
turn, the segment composed of residues running between two turn markings (residues
which have been marked as turn residues), should contain one or no regular secondary
structure feature. The size of these segments will vary, but they make sense as logical
units of a protein sequence. Other methods use subsequences (e.g., windows in neural
net methods), but these are not meaningful in terms of the underlying putative secondary
structure. As detailed in Chapter 3, different types of segments are used to construct a
secondary structure prediction. A Language for the Prediction of Protein Substructures

(ALPPS) is introduced which allows investigators to:

° specify different types of segments,

° explore and characterize segments with both local sequence
patterns and metapattern (patterns of patterns), and

° look at patterns of characterized segments,

all in a hierarchal manner.

In evaluating secondary structure predictions, comparisons have generally been
made based on four tallies (true positive, true negative, false positive, false negative) for
each residue in the sequence. As demonstrated in Chapter 4, this type of evaluation does
not necessarily portray the degree to which a prediction approximates the observed
secondary structure. The helices of 20 o/a proteins from the PDB are determined by 3
assignment methods and helix predictions are obtained from 4 prediction methods. By
representing secondary structures in juxtaposed feature diagrams — scaled boxes and

lines representing helices and turns — differences between predictions and assignments



based on known tertiary structure can be observed. Chapter 4 also gives some insight
into the differences between the results of applying different secondary structure assign-

ment methods to the same o/a protein.

Chapter S continues the theme of evaluating secondary structure predictions by
looking at predictions as approximations of the "known" structure. For feature based
scoring, we must first define "acceptable approximation” in the context of the intended
use of the prediction. After reviewing one existing attempt at feature based scoring, a
proposal is sketched for a method, pseudo-string edit distance, which looks at the types
of changes (e.g., insert a turn into the D helix) which would transform an abstraction of
the prediction into an abstraction (of the same resolution) of the observed secondary

structure.

The integration of concepts contained in the previous chapters find application in
Chapter 6. A complete cycle of segment based helix analysis and prediction on o/a pro-
teins is presented. The chapter shows that the segment based approach achieves better
results than earlier prediction methods (Chou-Fasman, GOR), but the results are gen-
erally not as good as recent neural net results. On the other hand, the segment based
approach needs to be seen as an overall philosophy which contributes to advancing the
value of secondary structure prediction. This and future directions are included in the

concluding Chapter 7.



A note on organization: Two of the chapters (2 and 3) are manuscripts of published
[or in press] articles and are reprinted with permission of the respective publishers.2 A
third chapter (6) is essentially the manuscript of a paper which is being submitted for
publication. Taken as parts of this thesis, these three chapters contain some redundant
material which is necessary to allow them to stand as independent works. References for
all chapters are integrated in one list after Chapter 7. Two appendices list Common LISP
code for the def-alpps macro, which implements the features of ALPPS, and for the trim-
ming variation of residue based scoring introduced in Chapter 4. A final appendix con-

tains the ALPPS and PLANS patterns used to produce the results of Chapter 6.

2 Chapter 2 will appear as
Bruce 1. Coben, Scott R. Presnell, and Fred E. Cohen; Pattern Based Approaches to Protein
Structure Prediction; Methods in Enzymology (1991) 202, (in press).

Chapter 3 appears as part of

Bruce 1. Coben, Scott R. Presnell, Macdonald Morris, Robert Langridge, and Fred E. Cohen; Pat-
tern Recognition and Protein Structure Prediction in Proceedings of the 24th Hawaii Interna-
tional Conference on System Sciences (1991) pp 574-584.

A slightly different version of Chapter 6 will be submitted to Biochemistry as
Scott R. Presnell, Bruce I. Cohen, and Fred E. Cohen; A Segment Based Approach to Protein
Secondary Structure Prediction.



Chapter 2
Pattern Based Approaches to Protein Structure Prediction’

2.1. Introduction

In the appropriate milieu, polypeptide chains spontaneously assemble into unique
tertiary structures guided by their amino acid sequence (Anfinsen et al., 1961). While
numerous experiments suggest the existence of a folding code, explicit specification of
sequence based folding rules has proven difficult (Schultz, 1988). The goal of our
research is to develop a set of sequence-structure correlates that can be used to predict
secondary structure from protein primary sequence. This chapter begins by discussing a
series of principles which form a foundation for structure prediction. Next we sketch an
algorithm for finding turns and describe some of the requirements for a pattern language
which facilitates the identification of sequence-structure correlates. We will then present
the pattern language itself and finally offer examples of patterns which can be used to

recognize turns or loops and a-helices.

A pattern language must allow for the specification of exact residue-by-residue
matches and simultaneously offer flexibility and generalizability. We have developed a
convenient computer interface for the development of patterns that recognize protein
sub-structures. While efforts to completely automate the development of reliable
sequence-structure correlates have failed in our hands, we believe that structural princi-

ples can be translated by an individual into a pattern formalism and that refinement of

t © 1991 Academic Press. Reprinted, with permission, from:
Bruce 1. Cohen, Scott R. Presnell, and Fred E. Cohen; Pattern Based Approaches to Protein
Structure Prediction; Methods in Enzymology (1991) 202, (in press).



these initial patterns can lead to useful algorithms for predicting secondary structure.

2.2. Theory and Methods

2.2.1. Definitions

There are a number of different approachs to assigning secondary structure to pro-
teins of known three dimensional structure. Although crystallographers’ assignments are
readily available in Protein Databank files (Bernstein et al., 1977), they are subjective. A
researcher looking at the structure on a computer graphics screen might reasonably make
an alternative assignment. Attempts have been made to devise algorithms (e.g., Levitt
and Greer, 1977; Kabsch and Sander 1983; Richards and Kundrot, 1988) which would

provide objective assignments based on:

e distribution of backbone dihedral angles;
e hydrogen bonding patterns; and/or
einteratomic distances of a-carbons.

Each of these methods have strengths and weaknesses. An algorithm that does well in
assigning o-helices may not do as well for B-structure. For example, hydrogen bonding
patterns tend to underassign fB-structure when compared to many subjective assessments.
Backbone dihedral angles ¢ and y give very local information which may not be
sufficient to adequately define actual (as opposed to ideal) secondary structure. The point
here is not to champion any one algorithm, but rather to underscore the importance of
examining the underlying secondary structure assignment when evaluating the results of
secondary structure predictions.

A fundamental assumption in this work is that the structural class (o/o,0/B, B/B) of

the protein in question is known (Levitt and Chothia, 1976). Some clues for accurate



secondary structure prediction (e.g., link length) are dependent upon structural class
(Cohen et al, 1986). Currently, experimental data (e.g., circular dichroism, Manavalan
and Johnson, 1983), compositional analysis (Sheridan et al., 198S), and/or homology
with known structures can yield some structural class information. In the worst case,
results from the three (a/a,0/B, B/B) secondary structure predictions could be used to

guide inclusion in one of the three classes.

The protein domains of known tertiary structure are used both as sources for the
development of hypothetical sequence-structure correlates and as specimens to examine
for potential correlates and as sequences for testing the theories. To eliminate potential
bias, a clear division is made between sequences used to develop sequence-structure
correlates, and sequences used for testing. Generally applicable sequence-structure
correlates might be discovered without this separation, but it also possible for candidate
sequence-structure correlates to appear very strong in the development environment and

yet prove to be of no value outside of the development sequences. The development set
is studied exhaustively and aids in the creation and refinement of sequence patterns. The
test set is sequestered from the investigator’s view and evaluated only in a blind manner
to test the generality of concepts proposed through an analysis of the development set.

Although the alphabet of amino acids which make up the protein sequences contain
20 characters, there are many ways to group similar amino acids for the purpose of
exploring sequence-structure correlates (Schulz and Schirmer, 1979; Smith and Smith,
1990; Karlin et al., 1989). Examples (e.g., groupings by hydrophobicity, charge, or size)
can be found in the case of helical core recognition. The pattern language must be able

to accommodate such groupings.
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2.2.2. Turn Prediction

Typically, turns> are solvent accessible, evenly distributed through the sequence and
dominated by hydrophilic residues. Rose has shown that the total number of tumns in a
globular protein varies linearly with the molecular weight of the chain (Rose, 1978). We
have refined this relationship by focusing on isolated protein domains and separating the
structural subclasses (e.g., a./a,’or.lb, B/B).

Consider a simplified model of a domain of a globular protein as a chain subtended
by a spherical boundary following a path from one side to the other and back again (see
Figure 2-1). The radius of the bounding sphere is

r=(3x110n/0.602x4mv)'3
where 110 is the average molecular weight of an amino acid, n is the number of residues,
and V is the partial specific volume (0.75g/cm>) (Cohen et al., 1986). The solvent acces-
sible turns should occupy most of the volume within 4& of the boundary. In this model,
the length of the sequences linking the turns are a function of the number of residues in a
domain. Average domain size varies from protein class to class. These are complied in
Table II-1. Since the link length varies as the 1/3 power of the domain size, extreme pre-
cision is not required. The separation between consecutive turns can then be calculated
from this information and the pitch associated with a-helices and B-strands. Since the
secondary structure composition in o/p proteins is approximately 1/3 B-strand and 2/3
a-helix, a weighted average pitch is used. Protein class imparts a clear distinction in
locating turns in this formalism. For example, a weakly hydrophilic region might be

labeled a turn in a B/ protein, whereas this same sequence in an o/a protein could be

3 We define tumns as segments of the polypeptide chain which join secondary structure units.
B-turns and irregular coiled regions are unified under this heading.
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Hydrophobic
Core

Figure 2-1: Turns and Hydrophobic Core

A globular protein is represented by a chain (bold line) traversing a sphere.
The solvent accessible turns occupy most of the volume within 4& of the
boundary. Weak turn sequence patterns (e.g., areas with some hydrophilic
residues) may be good turn indicators when they are appropriately spaced from
strong turn sequence patterns (areas dominated by hydrophilic residues).

assigned to a part of an a-helix.

2.2.3. Hierarchical Organization

Several physical principles are used to guide the development of patterns for locat-
ing turns. These include: local maxima in hydrophilicity; putative secondary structure
identification and avoidance; special backbone dihedral angle restrictions on proline; and

weakly hydrophilic regions appropriately spaced from well-defined turns. This also



Table II-1: Domain Size and Link Length

12

Class Domain Radius Pitch Link
Size R) (A/residue) Length
(residues) (residues)
/ot 150 206 15 22t
o/B 200 22.7 2.25 16
p/B 100 18.0 3.0 9
t In the current set of patterns a link length of 26 residues is used.

suggests a natural hierarchy of patterns reflecting the relative merits of each concept.

Turn prediction algorithms developed previously (Lewis, Momany, and Scheraga,
1971; Kuntz, 1972; Chou and Fasman, 1974; Chou and Fasman, 1977; Gamier,
Osguthorpe, and Robson, 1978) have relied ultimately on the calculation of one local
parameter to specify turn likelihood. A cutoff is applied to sort turns from non-turns.
Unfortunately, no one cutoff value is adequate. Typicaliy, there exists a cutoff value that
partitions turns from non-turns which is specific (few false positives) but not sensitive
(many false negatives) and a second cutoff value which is sensitive but not
specific (Cohen and Kuntz, 1989). The observation of Kabsch and Sander (Kabsch and
Sander, 1984) that sequentially identical pentapeptides adopt dramatically different con-
formations in different proteins demonstrates that local sequence information alone is not
sufficient for determining structure. To overcome this problem, we have combined the
local sequence features with their global spacing to improve turn prediction accuracy. In

practice, "strong" turns are located and neighboring sections of the chain are masked
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from further consideration. The extent of the mask varies with protein class.

2.2.4. Pattern Language

The language used to specify sequence patterns is called PLANS, Pattern Language
for Amino and Nucleic acidS (Abarbanel, 1984). As the name implies, this language
could be used for investigating nucleic acid sequences (e.g., RNA secondary structure
prediction).

The simplest patterns associate a label with a particular sequence. For example,
aspartyl-protease-site could be the label associated with the sequence aspartic acid,
threonine, glycine (Pearl and Taylor, 1987).

aspartyl-protease-site: "DTG"
The aspartyl protease site could be generalized through the use of a logical OR
represented symbolically with square brackets [].

asp-site.  "D[TS]G"
Here, serine may replace threonine in the sequence.

More general patterns are created through the concept of regular
expressions (Lewis and Papadimitriou, 1981); a concept used in grep, a UNIX (Ritchie
and Thompson, 1974) pattern matching utility. PLANS expressions are composed of
sequences (e.g., "DTG"), ORs (e.g., "[TS]"), and quasi-closures (repetition e.g.,
"$"%1,3% - meaning 1, 2, or 3 serines). In addition to regular expressions, PLANS
allows complex patterns to be built from less complex patterns using logical operations
(and, or, not). The pattern asp-site-complex demonstrates the use of a boolean operation

on two simple patterns. Note that asp-site and asp-site-complex are functionally
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equivalent.
asp-site-complex: "DTG" OR "DSG"

In addition to the usual one letter code for amino acids, other special characters are
used and summarized in Table II-2. A particularly useful special character is *.’, which
represents any residue. Thus

charge-pair. "[DE]...[KR]"
would identify a pair of oppositely charged residues spaced by four along the sequence.
This pattern is based on the concept of a stabilizing charge pair in an a-helix (Kim and
Baldwin, 1984). The pattern

charge-pair-2:  "[DE]..[KR]",
which has a spacing of only three residues, represents the same biophysical concept. The

pattern

gen-charge-pair: charge-pair OR charge-pair-2
is a generalization which could also be specified using the repeat notation,

| gen-charge-pair-repeat. "[DE).%2,3%[KR]".



Table II-2: Symbols used in pattern specifications

Special
Symbol Meaning

- beginning of sequence

$ end of sequence

* ZERO or more repeats of the proceeding symbol,
equivalent to %0,*

%n,m% between n and m repeats of previous symbol or
pattern specification; m may be ’'*’ to
indicate n or more repetitions

[] logical OR of symbols in brackets, as in [ABC]

- "through", used in [...] to indicate a range of
values, e.a. [A-CG-K] means [ABCGHLJK].

{m,u} spreading of previous symbol that hits at position i,
to all sites between i+m and i+u.

O used for grouping of characters for repetitions or
logical combinations of pattern expressions
involving AND, OR, or NOT.

group group(N,patspec) finds contiguous matches of ’patspec’
at least N in length. For example, group(5,"A") finds
5 or more contiguous A’s.

density  density(op,N,D,pat-spec) finds regions where op
(one of >, <, =, !=or <, <=, >=) operator on N of D matches
for pat-spec is found. For example, density(>,2,5,"[AT]") finds
areas of length at least 5 continuing 2 or more out of §, "A" or
"T" matches.
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Every pattern has associated markers pointing to those locations where the pattern
succeeds in matching part of a sequence. Although the matching subsequence may be
necessarily greater than one residue (e.g., any subsequence which matches aspartyl-
protease-site must be three residues long), the PLANS marker is placed by default on the

first and only the first residue.

*

...SYDTGC...
Markers can be manipulated by the spreading feature. By attaching {x,y} to a pattern,

marks are placed on all residues from n+x through n+y when the pattern first matches at
position n. Thus

aspartyl-protease-site-spread: "DTG"{0,2}
will be marked:

*kx

...SYDTGC...
since the mark is to be spread one to include an additional two residues after the starting

point. The term pattern match refers to the placement of the marks.

Complex patterns are built from other patterns using logical operators which use
these marks. Logical operators allow the requirement of more than one pattern match at
a given site (AND), at least one match at a given site (OR), or the absence of a match
(NOT). For example, a helix could be specified as

helix: (hydrophobic-patch AND NOT many-pro)
where hydrophobic-patch is a complex pattern identifying amphipathic sequences having
periodicity consistent with helical geometry, and many-pro represents two or more pro-

lines within a window of eight residues. This pattern,
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many-pro. density(>=,2,8,"P"){0,8},
also demonstrates the density operator. Any one of six relational operators (i.e., >=, <=,

>, <, =, !=) can be used with the density operator. In this way, simple patterns based on
biophysical principles can be used to rapidly assemble a hierarchical list of complex

statements about the location of substructures in protein sequences.

2.2.5. a-helices

Continuing with a hierarchical approach, turn prediction forms a starting point for
predicting a-helices and B-strands. They serve as markers which tokenize a sequence
into segments or blocks containing at most one unit of secondary structure. In this
chapter we restrict our attention to a-helices in all helical proteins. In this regime, the
challenge is to distinguish blocks which contain a-helices from those including aperiodic

structures.

Previous attempts at predicting the location of a-helices along a sequence have
treated helices as homogeneous entities. Some attempts have been made to exploit the
amphipathicity of helices (Gribskov, McLachlan, and Eisenberg, 1987; Schiffer and
Edmundson, 1967). Others have distinguished the middle of the helix from its
ends (Chou and Fasman, 1978; Argos and Palau, 1982; Richardson and Richardson,
1988). We set out to link these concepts in an attempt to improve predictive accuracy
(see Figure 2-2).

a-helices are commonly observed in globular proteins. Typically, the backbone
dihedral angles cluster around ¢ = -47°, y = -57° producing backbone C=0Ki) to N-

H(i+4) hydrogen bonds with 3.6 residues per turn and a pitch of 1.5 A per residue. Dis-
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Hydrophobic
patch C-cap

F ¢
~
. /
N
’
~
’
~
.
N

-+

Charged Pair

Figure 2-2: Helix Components

A helix can be considered as a helical core sandwiched between an N- and C-
cap. Each component has a set of characterizing patterns. For example, the
helix core commonly contains a hydrophobic patch (pattern H1) and/or a

charge pair (pattern charge-pair).

tortions are observed including bifurcated backbone hydrogen bonds (Parry, 1982), bends
in the helix axis (Barlow and Thornton, 1988), and changes in periodicity near the helix
boundaries (i.e., 3 10 helix formation) (Schellman, 1980; Kabsch and Sander, 1983a).

The packing of a-helices creates a seamless interface with geometric properties dictated
by the periodicity and bulk of the a-helix. These may be seen in continuous repeats in
fibrous proteins (e.g., tropomysin (McLachlan and Stewart, 1975; Parry, 1982)) or in a

variety of arrangements in globular proteins (Chothia, Levitt, and Richardson, 1977,



19

Richmond and Richards, 1978). Typically, the helix-helix interface is dominated by
hydrophobic residues which cluster with a predictable distribution along the

chain (Chothia, Levitt, and Richardson, 1977; Richmond and Richards, 1978; Cohen,
Sternberg, and Taylor, 1982). The hydrophobic packing interface is often complemented
by a hydrophilic region on the opposite side of the helix. This amphipathic arrangement
depends upon the specific location of the helix within the folded protein. While most
helices contribute residues to the solvent interface and hydrophobic core, some are
almost completely buried (e.g., the J helix, residues 222-244, in thymidylate synthase
from Lactobacillus casei (Hardy et al., 1987)). In these less common cases, amphipathi-
city is neither expected nor observed.

Regular expression patterns have been constructed to recognize hydrophobic resi-

dues clustering in a manner compatible with a-helices. One such expression is

HI: ¢.09..
where ¢: [AVILMCKFWY].

. Additional patterns which reflect the plausible alternative arrangements of hydrophobic
and hydrophilic residues which reflect the concepts embodied in H1 have been con-
structed. Composite patterns can be developed which recognize sequences containing
hydrophobic patches and hydrophilic stripes juxtaposed in a manner consistent with an
amphiphilic a-helix.

The identification of sequences which cap the N- and C-terminal ends of a-helices
has been a subject of recent interest in the literature (Argos and Palau, 1982; Richardson
and Richardson, 1988; Presta and Rose, 1988). It is clear from this work that the intrinsic
conformational properties of certain amino acids are well suited to the geometry of helix

termination. Some residue biases have been attributed to the helix macrodipole which
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creates the equivalent of +1/2e at the N-terminus and -1/2e at the C-terminus of the helix
axis (Hol, Duijnen, and Berendsen, 1979). Unfortunately, these residue tendencies are
not specific for the caps of a-helices. However, in the appropriate sequence and structure
context, residue capping tendencies are relevant. For example, the N-terminal cap of an
a-helix tends to be in phase with the hydrophobic face of the helix. Thus, the N-cap is
usually pointing inward toward the rest of the molecule creating a smooth segue between
a particular helix and its predecessor. In practice, this takes the form

NZ: [GDNST][DEKPNQRS]..$¢..¢
where glycine, aspartate, asparagine, serine, and threonine are useful N-cap residues and
aspartate, glutamine, lysine, proline, asparagine, glutamine, arginine, and serine disrupt
the hydrophobic patch.

C-caps can be defined by analogy to N-caps. For example,

CZ: ¢..0¢..[DEKPNQRS][GKNH]
describes a helix C-cap. Glycine and asparagine can adopt backbone dihedral angles
which favor left handed a-helices thereby breaking the usual helical periodicity. Lysine
and histidine can interact with the negative pole of the helix dipole when the side chain

lies along the helix axis. This interaction requires a break in the helical repeat.

2.2.6. Implementation

The program Match (Abarbanel, 1984), written in the C programming language, is
available on request from the authors. Once installed, users do not need to be concerned

about the underlying intricacies of the software, only the concepts of the pattern match-

ing language.
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The computer language LISP is used as a development tool for building both pattern
matching languages and user environments for developing sequence structure correlates.
LISP is available in both interpreted and compiled versions which offer different balance
points in the trade-off between run-time speed and ease of program changes. Working in
a UNIX environment also allows stable, mature portions of the software to be transferred
to the C computer language, and linked to the underlying LISP system.

In addition to being easily modified in an interpreted environment, LISP’s list data
structure readily lends itself to modelling residue sequences and secondary structure
assignment sequences. Object constructions available in Common LISP are used to build
instances which house sequences and PLANS matches for a set of proteins and an associ-
ated set of patterns. A mouse and window based application, Match-Point, is being
developed on Sun workstations as an interactive software tool for exploring potential

structure sequence correlates.

2.3. Results and Discussion

2.3.1. Turn Predictions

The o/a turn patterns are compiled in Table I1I-3. The 5% decrease in prediction
accuracy from the development set (89%) to the test set (84%) suggests that the possibil-
ity that some patterns recognize specific features of the development set instead of gen-
eral principles of turn formation. An example of turns located along a protein sequence
is shown in Figure 2-3. The prediction accuracy was based on the total number of turns

correctly predicted. Multiple identifications of a single continuous turn had no impact on
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Pattern Symbols: Assignment Symbols:
$- TU a9 or a8 <®> - Helix

@- a9 Strong Turn

#- a8 Weak Turn plus Link Length
{- a7 Weak Turn

&- a3 Strong Turn- 4 Philics

*- a2 No phobics

(- al Gly Ala Helical Mask

Sequence Name:lcpv
AFAGVLNDADIAAALEACKAADSFNHRKAFFAKVGLTSKSADDVKRAFAIIDQDKSGFIEEDEL

<ASNNNSY> < SSNNN> < SSSXY> <N
$ $ $ $ $
e e
’ * +
! ! 1t SRR 1
&6& &

* K

(
AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIDQDKSGFIEEDEL

Figure 2-3: Marking Turns

The final turn pattern, TU, and its constituent subpatterns are demonstrated.
Notice the cascade from the subpatterns to the final pattern.

the prediction score. Correctly identified turns (true positives) and overpredictions (false
positives) are presented in Table I11-4.
The turn algorithm has been applied to Interleukin-2 (IL-2, Cohen et al., 1986a)
and Human Growth Hormone (HGH, Cohen and Kuntz, 1987) sequences prior to the
elucidation of their crystal structures (Brandhuber et al., 1987; Abdel-Meguid et al.,
1987). In IL-2, all turns were correctly located. In HGH, turns were predicted which
consistently shortened the crystallographically observed o/a-helices by 4 to 8 residues.

For IL-2, the domain contains 132 residues while HGH contains 191 amino acids. We
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Table I1-3: Turns Patterns for a/a Class Proteins

Name Pattern
;3 comment
gl "[ACFIKLMTVWY][ADEHKNQRST]%2,2[AG][ADEHKNQRST]%2,2
[ACFIKLMTVWY]"{4,4}
;»» Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)
g2 "[ACFIKLMTVWY]%2,2[ADEGHKNQRST][ADEHKNQRST][AG]
[ADEHKNQRST]%2,2.[ACFIKLMTVWY]"{5,5}
;s Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)
g3 "[ACFIKLMTVWY].[ADEHKNQRST]%2,2[AG]
[ADEHKNQRST]%2,2[ACFIKLMTVWY]%2,2"{5,5}
;»; Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)
ma (density(>=,3,9,"A")){5,5}
;»; Too many alanines in one area - bad helix-helix interactions
ga (density(>=,2,9,"G")){5,5}
;»;» Too many glycines in one area - bad helix-helix interactions
gs ((g1 or g2 or g3) and (not ma) and (not ga))
;»» A Gly-Ala type helical site without too many Alas
al (g9) |
;»» Primary mask for helical secondary structure
a2 (density(=,0,5,alpha_strong_phobic)){2,2}
+» Strong turn denoted by the absence of strong hydrophobic residues
a3 (density(=,4,4,alpha_philic)){1,1}
;»» Strong Turn of four hydrophilic residues in sequence
HP ("[VLIAWYKFCT][VLAIWKYFCT]P[VLAIWYFCT]"{2,2} and
(not density(>=,1,5, "[NQRS]"){1,1})
;»» Potential situation of a proline in helical (hydrophobic) region
a5 ("P"{-1,-1}

and (not a3{-13,0})
and (not HP{-1,-1}))
;»; Turn denoted by a proline that is not in a hydrophobic environment
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Table II-3 (Continued): Turns Patterns for o/a Class Proteins

Name Pattern
;. comment

alpha_philic "[DEGKPNQRS]"
;»» Hydrophilic residues

alpha_strong_phobic  "[ACFILMVW]"

;»; Strong hydrophobic residues

ap (not density(>=,2,3,alpha_philic)){-1,-1}
;»; Regions unlikely to be good turns

a7 ((not ap{-1,1}) and (not al{-2,2}))

;»; Possible regions for weak tums, distant from the strongest turns

a8 (group(7,a7)
and (not a9{-13,13}))
;3 Merged weak turns (up to seven hits) and no other turn indications

a9 (group(7,a3) or group(7,a5))
;»; Grouped possible turn sites
TU (a8 or a9)

;»» Final consensus turn pattern

Table I1-4: Results on Turn Predictions

Set True Overpredictions
Positives
Learning Set 42(89%) 3(6%)
47 turns from 8 o/a proteins
Test Set 43(84%) 4(8%)
51 turns from 9 a/a proteins
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initially assumed that the average domain size for a/o proteins would be 150 amino
acids. This effectively limited the length of HGH helices to at most 22 residues. Follow-
ing the calculation described in Table II-1, an &/a domain of 191 amino acids should
contain 25 residue helices; the average length of a a-helix in HGH is indeed, 26 residues.
This suggests that it may be advantageous to recalculate the anticipated link length for a
sequence prior to making a secondary structure prediction. 4

Within an error range of four residues, the strong turn patterns rarely generate false
turn indications. Therefore we can depend on these patterns as landmarks in a sequence.
However, the weaker turn prediction patterns are not as reliable an indicator of actual
turns. These patterns are more dependent on additional signals, such as the expected
periodic distance between turns (Table II-1). As a consequence, most of the over- or
under-predictions (false positives and false negatives) are a result of the noise in these
additional signals.

In a specific example of an overprediction (false positive), the first helix of 2ccy
(Cytochrome c prime from Rhodospirillum molischianum) is broken by the presence of a
weak turn indicator (Figure 2-4). The periodic distance used to mask erroneous weak
turn indications is 26 residues; 13 residues on either side of the current pattern. In this
particular instance, the weak turn indications come 15 residues from the nearest strong

turn indicator, hence, the pattern is accepted as an authentic turn.

As an example of an underprediction (false negative), the final turn of 2lzm (Bac-
teriophage T4 Lysozyme [E.C.3.2.1.17] residue 157) is not recognized by the existing

turn patterns. While there are indications of weak hydrophilicity near the position we

4 In the current set of patterns a link length of 26 residues is used.



Pattern Symbols: Assignment Symbols:
A~ ap <SXSRN> “helix
~- a7
$- tu

Sequence Name:2ccy-a
10 30

QSKPEDLLKLRQGLMOTLKS IAGFAAGKADL
< >
$%% %% LA AL A1) $ %

AAA AA A -~
$ $ $
QSKPEDLLKLRQGLMQTLKSQWVP IAGFAAGKADL

Figure 2-4: Overpredicted Turn

The pattern a7, represented by °, denotes areas of weak hydrophilicity. The the
marked region in the center of the helix is sufficiently far from neighboring
turns to be predicted a turn.

would like to call a turn and that position is sufficiently distant from the last predicted
turn, the indications are below the level considered dependable for predicting a weak

turn.

2.3.2. Helix Identification

Preliminary results on the accuracy of pattern based prediction of helical features

are collected in Table II-5. The patterns used to predict helix core regions are well

26
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Table II-5: Helix Residue Results
Percent Accuracy
Development Set  Test Set
Helix Core 87% 82%
N-Cap 75% 65%
C-Cap 74% 58%

defined, providing a predictive accuracy of 87% for the development set and 82% for the
test set. Again, the 5% decrease in prediction accuracy is expected and presumably indi-
cates the recognition of specific features in the development set proteins instead of the
general principles of helix core formation. The majority of over-predictions (false posi-
tives) for helix cores stem from a displacement or extension of the predicted helical core,
either beginning too soon, or ending too late in the sequence. Currently, it is difficult to
associate this character with a specific structure or sequence phenomenon. Helices
characterized by short runs are often under-reported (false negatives). Helices with a
strong hydrophilic character are also problematic. Prediction of the core region of these
kinds of helices is generally dependent on the the recognition of oppositely charged resi-
due pairs in spatial proximity to one another (a "charge-pair"), and putative tertiary

helix-helix interaction sites (Cohen, Richmond, and Richards, 1979).

The predictive capability of the N- and C- cap patterns is about 10% lower than that
of the helix core patterns. The decrease in predictive accuracy from the development to
the test set for the cap patterns is currently greater (at 10% to 15%) than the decrease for
the turn or helix core prediction. This indicates a higher tendency for the capping pat-

terns to recognize specific features in the development set proteins, rather than general
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Pattern Symbols: Assignment Symbols:

@- Nt <ESSSSSSN)> - helix

Sequence Name:lhds-b
80 90 100
LKGAFAQLSGLHCNKLHVNPQONFRLLGNVLAL
<[SSSSSNS > < [ANSSSSNNNNY
@

Figure 2-5: Underpredicted Helix Cap

The left most helix shows a situation where a helix N-cap could not be predict-
ed using the current set of patterns.

principles of the amino acid sequences that initiate and terminate helices. While there is
no structural feature that identifies over-prediction; under-prediction is characterized by
the lack of crucial residues in the amino acid sequence near the site of the N- or C- cap.
Typically, the capping patterns will have one of a class of residues commonly found at
the terminus of a helix. The N-cap positions in helices are often one of the residues G, N,
S, T, or D. The C-cap positions are usually G, K, H, or N. Further, proline is often a

constituent of C-cap areas of sequence, appearing one or two residues after the cap posi-



29

tion. If a helix does not begin or end with one of these residues (e.g., the N-terminal resi-
due of the fifth helix in the p chain of hemoglobin, a phenylalanine, Figure 2-5), the
likelihood of a correctly predicted helix cap is low. This accounts for most of the under-

prediction of this helical feature.

2.4. Conclusion

Pattern based secondary structure prediction appears to be useful. An algorithm to
predict the locations of turns in proteins as a function of protein class has been validated
on a set of proteins excluded from the information used in pattern development. Turn
prediction for protein structures solved subsequently reenforces the statistical validity of

the development test set paradigm.

Tumns form a useful division of the protein sequence into subsegments which con-
tain no more than one piece of secondary structure. In the case of all helical proteins, it
. appears possible to consistently recognize helical core sequences. The exact boundaries
of the helices have proved more problematic. Work is underway to provide a framework
for meta-patterns, patterns of PLANS patterns (e.g., a syntactic organization of N-cap,
helix core, C-cap patterns) which could enhance the prediction accuracy. Additionally,
studies on model helix systems (Hughson, Wright, and Baldwin, 1990; Bradley et al.,

1990) could help define the rules of helix initiation and termination.



Chapter 3
A Language for the Prediction of Protein Substructures’

3.1. Introduction

The rapid generation of DNA sequence data is creating an information explosion,
but the determination of protein structure from protein sequence information is not keep-
ing pace. There are two primary reasons for this gap. First, protein structures are now
determined by laborious physical techniques. X-ray crystallography and nuclear mag-
netic resonance spectroscopy (NMR) routinely yield 1-2 structures per month (Blundell
and Johnson, 1976; Wuthrich, 1986). This falls short of the sequencing rate by two to
three orders of magnitude. Second, not all proteins are amenable to structural characteri-
zation by these physical techniques. X-ray crystallography requires crystals with diffrac-
tion ordered out to near atomic resolution, suitable heavy atom derivatives to aid in the
solution of the phase problem, and three to five man years of work per protein. NMR
studies require proteins of relatively low molecular weight (currently <20 kD), high solu-
bility, and one to three man years. To keep up with the sequence information, new com-

putational schemes which relate protein sequence to structure must be developed.

The pioneering experiments of Anfinsen and co-workers suggest that a protein
sequence contains all of the information necessary to encode the three dimensional struc-
ture of a water soluble globular protein (Anfinsen et al., 1961). Although the long term
goal of predicting three dimensional structure from a protein sequence remains an open

problem in molecular biology, the methods continue to advance. Improved secondary

t+ © 1991 IEEE. Reprinted, with permission, from:
Proceedings of the 24th Hawaii International Conference on System Sciences, Kauai, Hawaii,
Janury 1991; pp 574-584.
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structure prediction can serve as a stepping stone for structure generation (Cohen and
Kuntz, 1989). A concept of "structural homology,” which can define relationships

between proteins that lack strong sequence homology, is beginning to develop.

This paper addresses a pattern matching approach to secondary structure prediction.
The work presented here is not intended to be a treatise on the linguistics of sequences.
Other authors have covered this topic in greater detail (Searls, 1990). Instead, this work
builds on previous efforts that used regular expression patterns to facilitate the
identification of sequence-structure correlates (see Cohen et al., 1986; Cohen, Presnell,
and Cohen, 1991 [reprinted here as Chapter 2]) the work discussed below takes a
segment-oriented approach to secondary structure prediction. This chapter introduces the
details of a new specification language, A Language for the Prediction of Protein Sub-

structures (ALPPS).

3.2. A Language for the Prediction of Protein Substructures

This section will discuss a specification language called ALPPS, A Language for
the Prediction of Protein Substructures. The vocabulary of ALPPS is designed to mimic
a hierarchal view of protein structure. Although the terms reflect descriptions of protein
substructures, the names are free of the targeted substructure. This allows an abstract
view of the problem which may be valuable in preventing premature commitments to one
potential structural assignment. For example, we speak of regions, and not putative-

helices. On the other hand, a region can be thought of as a segment which may approxi-

5 The term specification language is used here because specification is relevant to both people
and computers. A goal of the language design is to provide a means for discussing a segment
Oriented approach among people in the protein research community. Additionally, the language
serves as a description for computer aided analysis of protein sequences.
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mate a piece of regular secondary structure. Each type of segment has a potential
correspondence to some form of protein substructure. Each definition below will include

that potential correspondence.

A segment is an arbitrary subdivision of a residue sequence. A block is the basic
type of ALPPS segment. It is anticipated that a block generally will contain at most one
piece of secondary structure, but this is not necessarily the case. A preliminary partition-
ing of a residue sequence into blocks, may produce blocks which ultimately should be
split or merged in order to better meet the goal of one piece of secondary structure per

block. A frame is a set of contiguous blocks.

A region is a segment, fully contained in a block, which may actually approximate a
protein substructure. Each block can contain at most one region. A rarget - e.g., "helix" -
is attached to each region definition. It is possible that this target merely eliminates some
substructure - e.g., "non-turn." Region targets are used to develop a detailed secondary
structure prediction.

Blocks and regions can be hidden. This means that they will not be considered for
further processing until they are exposed. Initially, all blocks are exposed, but there may
be a reason to hide certain blocks. For example, regions which emit strong "structural

signals” can be masked to allow the reception of weaker signals from other blocks.

A final construction in the ALPPS hierarchy, frame, is discussed later in the section

on future work. The hierarchy is:

o frame- a set of contiguous blocks

e block- the basic ALPPS segment

eregion- the part of a block which may
approximate a protein substructure
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3.2.1. ALPPS Language Description

ALPPS is written in Common Lisp (Steele, 1984) and the notation has a Lisp feel.
The Common Lisp use of keyword (rather than positional) arguments has been adopted.

Anything written after a semi-colon is a comment.

The specification of residue level patterns is done with PLANS (Abarbanel, 1984), a
pattern matching language that was developed and used successfully for identifying turns
by this research group. PLANS patterns are used to initially partition a sequence into
blocks, and can be used to characterize blocks. Regions can also be bracketed by

PLANS patterns.
An ALPPS pattern may look like this:

(def-alpps example-name (:pat "TU™)
(hide-all-blocks) ; this is a comment
(expose-blocks :pat "ch-pr"))

A Common Lisp macro, def-alpps, is used to define an ALPPS pattern. In this example
example-name is the name of the ALPPS pattern. It is originally based on the PLANS
pattern, "TU". After the two working block-lists (a "full block-list" and a "visible block-
list") are created, hide-all-blocks will remove all blocks from the visible block-list. The
full block-list holds all blocks, visible or hidden. The expose-blocks function will sup-
plement the visible block list with any hidden blocks which contain the "ch-pr" PLANS
pattern. A more detailed pattern with an explanation of ALPPS processing will be given

later.
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3.2.2. An Example of ALPPS Processing

Figure 3-1 is an example of ALPPS processing on an arbitrary sequence. This
sequence is used to focus on the processing and not on any particular protein substruc-

ture.

ALPPS begins with a partitioning of the sequence into blocks. A PLANS pattern
(alpha) marks the block boundaries. At this point, blocks are visible. Since the PLANS
pattern anything, can be found in all blocks, the visible block list is empty after the hide-
blocks function. Blocks of potential interest are then revealed by the expose-blocks func-

tion. Finally regions are defined within these visible blocks.

3.2.3. PLANS Patterns and Segment Boundaries

Having looked at an example, a more detailed discussion of ALPPS will examine
each of the functions and some of the issues involved in providing options for the func-
tions. How should segments be defined with respect to PLANS matches? Should the
sequences fed to PLANS extend beyond a segment boundary? These related questions

need to be considered in defining the semantics of ALPPS.

The initial use of PLANS in an ALPPS procedure comes during the partitioning of a
sequence into blocks. One option in this partitioning is a tolerance, the number of resi-
dues on either side of the PLANS mark which go with the opposite block. The tolerance
is an overlap. For example (using PLANS patterns on Figure 3-1) with this sequence:

4321B2468C8653D13579E97531
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(def-alpps no-tol (:pat "alpha™))
yields
B2468C D13579E
4321B C8653D E97531.

While
(def-alpps tol-1 (:pat "alpha” :tol 1))
yields

1B2468C8 3D13579ES
4321B2 8C8653D1 9E97531.

One reason for the tolerance is that block boundaries, like the boundaries of protein
secondary structure, may be fuzzy. Predicted turns may actually fall within a couple of
residues of the beginning or end of a piece of secondary structure. Refinement of the

boundary may come later. The current implementation of ALPPS has a minimum block

overlap of one residue.

The second question is not as straightforward. PLANS patterns are used to charac-
terize blocks and define regions within blocks. When applying PLANS patterns to a
block, should residues which fall before or after a block boundary be examined? Con-
sider the ALPPS procedures in Figure 3-2. Assuming that block boundaries cannot be
crossed for purposes of evaluating PLANS patterns on blocks, three blocks are exposed
in ALPPS procedure fol-1 while only two are exposed in no-tol. The difference being
that with the tolerated residues, the PLANS pattern is able to find more matches. In the
third procedure, no-tol-crossing, the blocks do not include any tolerated residues, but
because residues in adjacent blocks can be considered, the resulting exposed blocks are

the same three as in tol-1.

Note that the PLANS match markings in no-tol-crossing are not identical to those in
tol-1. This is important because it implies that the tolerance number alone would not be

a way to control the boundary crossing. Moreover, one can imagine situations where



37

blocks should be defined with no tolerance (high confidence in turn placements) and
PLANS patterns should look beyond block boundaries (amino terminus hydrophobic face

alignment). In order to meet this need, the crossing flag (:crossing) can be turned on.

One final option for partitioning sequences into blocks is the minimum block size

( =xmin-size). This number gives a minimum number of residues for each block.



(def-alpps tol-1 (:pat "alpha" :tol 1)
(hide-all-blocks)
(expose-blocks :pat "manyodd™))

3D13579E9
L2121

8C8653D1 9E97531.

% EH%%

(def-alpps no-tol (:pat "alpha™)
(hide-all-blocks)
(expose-blocks :pat "manyodd"))

D13579E
%%

E97531.

3%

(def-alpps no-tol-crossing (:pat "alpha”
:crossing t)
(hide-all-blocks)
(expose-blocks :pat "manyodd™))

D13579E
TELIILY

C8653D E97531.

£ 1 3%

Figure 3-2: Boundary Crossings
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3.2.4. Segment Manipulation Functions
The following ALPPS functions are used to manipulate the visible block-list.

(hide-blocks :pat pat
:pat-count-min n
scrossing bool

sregion-target rarger)
(hide-all-blocks)
(expose-hlagks  :pat pat
spat-count-min n
scrossing bool
sregion-target rarget)
(expose-all-blocks)

. hide-blocks removes blocks from future consideration until they are retrieved by

< >xpphose-blocks. The expose-blocks function appends blocks to the visible block list.
I3 1 Ocks can be hidden or exposed in two ways. If PLANS patterns are used, a minimum
IPattem count (:pat-count-min) and crossing flag (:crossing) - described in the previous
S uabsection - are available to refine the specification. The two "all" variations, hide-all-
>R ocks and expose-all-blocks are shorthand for specifying all blocks. An alternative
Tethod of specification involves using region targets (:region-target), a concept

<Ae scribed in the subsection on regions.

Csplit-blocks :pat par)
"Ihis function will create two blocks out of one visible block which matches pat. The

Txewy blocks are visible.

(cat-blocks :patl pat-1 :pat2 pat-2)
Tl'lis function goes through the visible block-list and combines adjacent blocks that have

<4><az- | in the left block, and pat-2 in the right block.

B
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Each of these functions has an additional set of options which can be used to mani-
pulate the use of PLANS patterns to characterize segments. The minimum pattern count
option (:pat-count-min) can be used to specify that more than one residue must be

marked as matching the given PLANS pattern before ALPPS will act on the segment.

For example,

Sequence:
4321B2468C8653D13579E9842

(def-alpps no-tol (:pat "alpha™)
(hide-all-blocks)
(expose-blocks  :pat "odd”

:pat-count-min 3)
yields
D13579E.

While

Sequence:
4321B2468C8653D13579E9842
(def-alpps no-tol (:pat "alpha™)
(hide-all-blocks)
(expose-blocks :pat "odd"))
yields
D13579E
4321B C8653D E9842.

One example of using this option would be in characterizing segments with a PLANS
pattern that tends to overpredict (false positives). By requiring multiple hits on the same

segment overprediction may be minimized.
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3.2.5. Region Definition Functions

(make-regions :start-pat pat
tend-pat pat
:mid-pat par ;; optional
:min-sizen ;; default 1
:crossing bool ;; default false
scolor color ;; optional
starget target) ;; optional

This function walks through the visible block-list and builds regions in those blocks
that meet the criteria but do not already contain a defined region. Regions begin with
some starting pattern (:start-pat) and end with an ending pattern (:end-pat). A middle
pattern (:mid-pat) is optional as is a minimum number of residues (:min-size) contained
in a region. The crossing flag (:crossing) allows residues adjacent to the block boun-
daries to be considered in the application of the PLANS patterns. The color flag (:color)
is used to generate label defined regions on PostScript output.

The target (:target) indicates the type of protein substructure which is suspected to
be found by this region specification. _Targets play two important roles in ALPPS to make
a complete secondary structure prediction. They are used to make the final secondary
structure prediction annotations on a residue basis. They can also be used to characterize
blocks which work as a frame. Both of these roles will be discussed in more detail
below.

3.2.6. ALPPS Interpretations

ALPPS can be used with the following strategy illustrated in Figures 3-3-3-5.
Details on the patterns are given below in the section on o/ proteins. The PLANS pat-
tern TU, which identifies turn residues, partitions a protein sequence into blocks. In Fig-

ure 3-3 ovals represent residues in a protein sequence. Those with solid black filling are
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annotated by the PLANS pattern TU - marking turns. Each double-headed arrow
represents the extent of a block. The target for a block is a segment which contains at
most one piece of regular secondary structure (i.e., a helix or strand). Figure 3-4 demon-
strates the use of meta-patterns to focus on sub- structures. Finally, Figure 3-5 shows a
complete residue-level annotation. Each residue is represented by a vertical pair of ovals
with PLANS markings in the upper oval and secondary structure annotations below. In
this way, ALPPS meta-patterns provide the ability to apply a hierarchical prediction

framework on a sequence.
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PLANS Patterns
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Figure 3-4: ALPPS Blocks
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Figure 3-5: ALPPS Regions
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Figure 3-6: Secondary Structure Annotation
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3.3. Discussion and Conclusion

3.3.1. Software Environment

ALPPS is currently running as part of a Lisp system called Match-Set. The user
interface, GNU Emacs (Stallman, 1986), is valuable for the software developer and
experienced users, but is difficult to learn for new users. An interactive, mouse and win-
dow based system called March-Point was built as a prototype for developing PLANS
patterns. There is a need to expand Match-Point from the prototype phase and introduce

the ALPPS capabilities contained or planned for Match-Set.

3.3.2. Future Work

There are at least two areas of future development planned for ALPPS itself —
frames and interpretations.

Making preliminary assignments within some segments can influence assignments
in other segments. For example, in an o/B barrel, o and P structure generally are found
in pairs. The concept of a frame needs to be more fully developed. A frame of four
blocks showing a-B-?-B would lead to an expectation of finding a region with an o char-
acterization in the middle block. In this case, weaker helical signals might be accepted.
This type of computer-based reasoning is found in the use of "scripts” in natural language
processing (Allen, 1987).

The interpretation of a ALPPS hierarchy — region, block, frame — shown in Fig-
ures 3-3-3-5 works well for annotating helices in a/a proteins. Other interpretations of
the hierarchy may be better for different tasks. For example, rather than using turn mark-

ings to partition a sequence into blocks, one could use helical core markings. Under this
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Figure 3-6: Hierarchy Interpretations

interpretation, turns might be the targets for regions. Figure 3-6 shows two interpreta-
tions which ultimately yield the same annotation. Interpretation (A) is the one described

in Figures 3-3-3-5, while (B) is described in this paragraph.




Chapter 4
Scoring Secondary Structure Predictions on o/a Proteins

4.1. Introduction

Both users and developers of secondary structure prediction techniques need
methods for evaluating the quality of a given secondary structure prediction. For users,
this type of information is important for making a decision on which secondary structure
prediction technique to use and how much confidence should be placed on a prediction.
For developers, quality evaluations provide both a means for comparing different secon-
dary structure prediction methods and a means for giving constructive feedback for
improvement. This last point is especially important to methods based on machine learn-
ing. The general idea behind any evaluation or scoring scheme is to compare a predicted
secondary structure to an observed secondary structure based on the known tertiary struc-
ture of a given protein.

After briefly reviewing the literature with respect to evaluating secondary structure
predictions, this chapter looks at scoring secondary structure predictions on a set of 20
o/o. proteins. Predicted helices are collected from four methods (Chou-Fasman;
Gamier-Osguthorpe-Robson; neural nets; ALPPS). Three different secondary structure
assignments (Kabsch-Sander; Richards-Kundrot; PDB) are used for determining the
observed helices. In addition to comparing each of the four predictions to each of the
three assignments for all 20 proteins, the secondary structure assignments themselves are
compared to each other for a better understanding of how the assignments differ. A vari-
ation on residue based scoring which discounts residues at or near the terminals of hel-

ices (trimming) is introduced. The results of three scoring methods are reported. These
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results focus on the relationship between the scores and the concept that predictions
should be approximations to the observed secondary structures. One conclusion, that
there is a need for methods of evaluation which supplement residue-based scoring, is the

subject of the next chapter.

4.1.1. A Brief History of Evaluating Secondary Structure Predictions

Guzzo (1965) appears to be the first investigator to publish a secondary structure
prediction. After looking for sequence-structure correlations (helical or non-helical) in
the known structures of myoglobin and hemoglobin, Guzzo makes a prediction of the
secondary structure of lysozyme. The evaluation of the prediction is basically descrip-
tive. In addition to a table listing the beginning and ending residues of each predicted
and observed helix, there is a figure similar to the feature diagrams (e.g., Figure 4-1) used
in this chapter. With only one prediction on one structure and no other predictions in the

literature at that time, Guzzo’s descriptive evaluation is a reasonable approach.

A —{H— v T — P15

B: —( 3 N e, IR
Figure 4-1: Feature Diagrams

This figure shows two sample feature diagrams. These two state feature di-
agrams use boxes to represent helices and lines to represent turns (non-
helices). In diagram A, the number in the upper left hand corner of a given
box is the position of the first residue (N-cap) of the represented helix. Simi-
larly, the number in the lower right hand corner is the position of the last resi-
due (C-cap). Diagram B does not include explicit capping positions, but both
diagrams are drawn to scale.
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By 1971, several secondary structure prediction methods were brewing. In the
paper detailing their structure for cytochrome c, Dickerson e? al. (1971) discuss about ten
methods for predicting helices applied to the cytochrome c sequence. A table shows
three observed helices (by residues numbers) and lists the predicted helices of 5 methods.
The discussion is qualitative (e.g., "a tendency to predict more helix than is actually
present”). Similarly, just before publishing his structure for adenyl kinase, Schulz sent
out the sequence to several groups working on secondary structure prediction. In a com-
panion article in Nature, ten prediction methods are reported and compared (Schulz et
al., 1974). Here, Schulz includes residue counts of predicted right (true positives),
predicted wrong (false positives), and not predicted. No attempt is made to summarize

these residue tallies. The discussion includes counts of correctly identified helices.

‘“Two groups found nine, two groups found eight, and one group found seven
out of the 10 helices. Only one of these five groups predicted a wrong piece of
chain as being helical. The results in Fig. 1 indicate, however, that it is still
difficult to find the correct starting and termination point of a helix.”’

Shortly after the publicatioix of Dickerson’s paper on cytochrome c, Lewis and
Scheraga (1971) revise their amino acid "helix-forming categories" secondary structure
prediction method and apply it to 11 proteins of known structure. In doing so, they intro-
duce a pair of quality indices which summarize residue tallies — the overall percentage
of correctly predicted conformations and the percentage of correctly predicted helical
residues. They note that "it is essential to consider both measures of correctness” in
order to avoid the perfect score (percentage of correctly predicted helical residues) avail-
able by simply guessing that an entire protein is helical. This problem of dismissing ran-
dom guessing is discussed by Matthews (1975) in his report comparing over 10 secon-

dary structure prediction methods on T4 lysozyme. He devotes significant space to using
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the correlation coefficient for summarizing the four tallies. Although Matthews only
looked at lysozyme, he does note that the lysozyme predictions are much less successful

than those presented in Schultz’ paper on adenylate kinase a year earlier.

Argos et al. (1976) use and compare five secondary structure prediction methods on
40 known structures. This comparison would move away from the possible bias of a
method doing particularly well on one structure, but not so well in general. Kabsch and
Sander (1983) evaluate three (then) widely used methods on 62 proteins of known struc-
ture. They state that one important feature of their methodology is the use of an algo-
rithm to achieve "objective and accurate assignment of secondary structure.” Their
algorithm (Kabsch and Sander, 1983a) removes the subjective variations caused by using
the depositors’ (crystallographers) secondary structure assignments found in the
Brookhaven Protein Databank (PDB). Although the algorithm is objective, this chapter

questions the appropriateness of the accurate billing.

4.2. Methods & Theory

4.2.1. Standard Residue-Based Scoring

Predictions are compared to "observed” secondary structures of proteins whose 3-
dimensional structure is known. The standard method makes comparisons on residue-
by-residue basis (Schulz and Schirmer, 1979). Four totals — true positives, true nega-
tives, false positives, false negatives — are tallied for each type of predicted structure
type — e.g., helix. In the example below, t represents a turn residue while A

represents an a-helix residue.

By Xa e ‘1
I




51

observation: tt tAAAAAAAAAAAALLLE

prediction: ttAAAAAAttAAAAAAALL
Here, the tallies are:

True Positives (P): 10

True Negatives (N): 4

False Positives (p): 3

False Negatives (n): 2

These four tallies can be summarized by a single number resulting from some arith-
metic combination (see review in Chapter 6 of Schulz and Schirmer, 1979). While there
are many possible quality indices, including the seven in Schulz and Schirmer, this

chapter will only look at the two which are widely used in recent work.

4.2.1.1. Q — the Fraction of Correctly Predicted Residues

A commonly used quality index is the fraction of correctly predicted residues,

which Schultz and Schirmer call Q3 while others simply call it Q.

0= TruePositives+TrueNegatives
TotalNumberResidues

or

P+N

SN ¢ \ S 1
P+N+p+n M

Q

This is the fraction of residues which are correctly predicted. A range of 0 to 100 percent
can be obtained when Q is converted to a percentage. Although other quality indices are
available, Q will be sufficient to examine issues involved in defining the known secon-

dary structure of a protein.
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4.2.1.2. The Correlation Coeflicient as a Scoring Measure
Another popular quality index is the correlation coefficient, C (Q5 in Shultz and
Schirmer):
C= (ExN)-(pxn) @)
NP YN YP+pXP )

The correlation coefficient indicates how a given prediction differs from a random guess.

The range of Cis -1 to 1. A score of 0 says that the prediction is essentially the same as a
random guess. Negative scores show a high proportion of false predictions while posi-

tive scores show a better proportion of true predictions. Matthews (1975) is credited with
bringing the measure to secondary structure prediction, though the correlation coefficient

itself, has been know to statisticians for many years.

A potential problem with the correlation coefficient is the fact that it gives no credit
for correctly predicting the ratio of helix to coil residues. A random prediction can be

based on any preselected ratio of helix to coil residues. Consider the following:

Let R be number of helical residues and g, the predicted number of helical residues.
T=P+N+p+n, is the number of residues in the sequence. Then the expected values

for the four residue tallies are:
=Rxd
P=Rx T
p=(T-R)x-%

N=(T—R)x-gT—;,ﬂ

n=Rx£T—;,8l

In the cases where all assigned residues are [not] helical and all predicted residues

are [not] non-helical (i.e., R=T and R=0) the denominator is zero, and C is not
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defined. Otherwise, the denominator of C is always non-zero, so only the numerator

needs to be evaluated.

Py RXEXT=RI(T~g)
T2

e T=R)XgXRX(T—g)
T2

_ RxgX(T-R)X(T=g)
T2

p

PxN-pxn=0.
Therefore the expected value of C is zero even if g=H.

4.2.2. Adjusting for Inexact Capping: Trimming

The difference between secondary structure assignment methods might relate to the
difficulty in assigning the terminals of helices. Though the cores of helices are generally
easy to assign, the ends — especially the exact capping residues are not. Figure 4-2

gives a notation system for discussing this issue.

————NoNaNoN|N; C;C Coe=t6——

Figure 4-2: Capping Notation
In this notation, the capping residue is noted by a zero subscript (i.e., Ng for
the first residue and Cgy for the last). The positive subscripts on helical resi-
dues count the sequential distance from a given cap. Negative are used to
mark residues which are close to a capping residue, but outside a given helix.
In this example, the helical residues are in bold type. .

Noting that the N and C, residues are difficult to assign, it is reasonable to assume
that these residues are also difficult to predict. In tallying scoring counts, these residues

might be given discounted weights or even excluded from the tallies altogether. Given

6 A demonstration of this assertion is provided in the results section of this chapter.
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that a secondary structure prediction provides a "low resolution” view of the protein’s

structure, an exact residue-by-residue result is not always required.

The trimming technique removes the residues which cap helices in either the

assigned or predicted secoﬁdary structures. Figure 4-3 demonstrates the technique.

NI

ttttAAAAAAAAAAAAAAALttLAAAAAAAAAAAAZALLL

tttttt AAAAAAAPALttEtttAAAAAAAAAAAANIELLL

Mcthod TP TN FP FN Q
Standard 22 10 1 7 .80
Trimmed 18 10 0 4 .88

Figure 4-3: Sample of Trimming

This figure demonstrates trimming and shows the resulting changes in the scor-
ing tallies and one representative (Q) quality index. In the feature diagrams,
lines represent turns while boxes represent helices. The first feature diagram
represents on observed secondary structure assignment while the second is a
prediction. The rows of character strings made up of A and t are alternative
representations of the assignment and prediction. Residues which are subject
to trimming are shown in bold when they cap the assigned helices and by an
underline when they cap the predicted helices. The trimming technique re-
moves both types of capping residues from consideration in the tallies.

The examples in Figure 4-4 show how residue-based scoring is affected by trim-

ming. Trimmed scores (in these examples, Q) can be higher, lower, or unchanged
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q _

tAAAAAAAAttELL
— -
ttttAAAAAAAAAL
N 2 2
B r a4 3
FN 3 2
Q .50 .50
~ +—
tAAAAAAAAttELL
1
ttttttttttAAAA
2 2
D e & 2
FN 8 6
Q 14 .20

Figure 4-4: Trimming Examples
Four situations are shown to demonstrate the effect of not counting capping
residues in tallies. In each example, the bottom feature diagram represents a
prediction while the top feature diagram represents the observed structure.
True positives (TP), true negatives (TN), false positives (FP), and false nega-
tives (FP) are given as both standard tallies (first column) and trimmed tallies
(second column). Note that in example D, the trimmed tallies do not reflect
the pairing requirement which is described in the text. Example D is the

motivation for the pairing requirement.
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depending on the relationship between the observed and predicted helices. The differ-
ence between the standard Q score and the trimmed Q score (AQ) is positive when the
predicted helix comes close to matching the assigned helix. (See Figure 4-4 A.) A per-
fect Q score (1.00) is unchanged by a trimming adjustment. A moderate match (Figure
4-4 B) results in little or no change, while a poor match (e.g., a one residue overlap as
seen in Figure 4-4 C) results in a negative AQ. In the first three examples, the trimmed
scores preserve and perhaps enhance the relative ordering of predictions. Unfortunately,
the example D of Figure 4-4 shows a mismatch where AQ is positive. This suggests an
additional rule for trimming. Capping residues should be eliminated from scoring con-
sideration only after the sets of observed and predicted helices are paired with a
minimum of 1 overlapping residue. This pairing is the same as the pairing used in
Taylor’s structure percentage scoring (discussed below).

The trimming algorithm can also include a level of tolerance. For example, resi-
dues at positions N_;, Ng, Ny, Cy, C, and C_; of both the predicted and observed hel-
. ices would be removed from consideration. Again, non-overlapping assigned and
predicted helices would result in unwarranted score improvements if a minimum overlap

rule is not included. This form is called extended trimming or trimmingt.

Various methods could be used to discount the predictions at the end of helices and
focus on the helix cores. For example, some function could be used to weight the tallies
from various residues around the N and C, residues of both the observed and predicted
helices. This type of weighing was implemented by my colleague, Don Morris (Morris,
1990). The results appeared to be no better than the results of the more simplistic trim-

ming technique. Trimming offers a way of emphasizing the correct prediction of well
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established helical residues in an easy and understandable manner.

4.2.3. Observed Secondary Structure of Proteins with Known Structures

Chapter 2 notes that assigning secondary structure to proteins of known tertiary
structure is not an easy task. Expert assignments are subjective and may differ between
experts. Algorithmic assignments do not always produce an assignment which is con-

sistent with a consensus of subjective expert assignments.

One of the purposes of this chapter is to give a better portrait of the actual secon-
dary structure assignment differences on o/a proteins. For o/a proteins the polypeptide
chain we consider only two conformational states: helix and turn. All forms of helical
structure (3, ¢, and & helix) are treated identically. Similarly, any region that intercon-
nects regular secondary structure is considered a turn. Three assignment sets are used
this chapter. The Brookhaven Protein Databank (PDB) (Bernstein et al., 1977) assign-
ments are generally available and serve as an example of subjective assignments. The
method devised by Kabsch & Sander (1983) is widely used. The assignments produced
by the more recent Richards & Kundrot (1988) algorithm appear to be closer to subjec-
tive assessments of helical structure, while retaining the consistency of an objective algo-

rithm.

4.2.4. Data Set of 20 o/a Proteins

The 20 a/a proteins used in this scoring comparison are listed in Table IV-1. These

are the same 20 proteins which form the test and development sets described in Chapter

6.
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Table 1V-1: Proteins Used for Scoring Comparisons
PDB  Protein
156b  Cytrochrome B562 (Lederer et al., 1981)
lccS§  Cytochrome C5 (Carter et al., 1985)
lcer Cytochrome C (Ochi et al., 1983)
lecd  Erythrocruorin (Steigemann and Weber, 1979)
1fdh  Human Fetal Hemoglobin (gamma chain) (Frier and Perutz, 1977)
lhmq Hemerythrin (Stenkamp, Sieker, and Jensen, 1983)
Imbd Myoglobin (Phillips and Schoenborn, 1981)
2ccy  Cytochrome C prime (Finzel et al., 1985)
2cts Citrate Synthase (Remington, Wiegand, and Huber, 1982)
2cyp  Cytochrome ¢ Peroxidase (Finzel, Poulos, and Kraut, 1984)
2lh1 Leghemoglobin (Arutyunyan et al., 1980)
2lhb  Hemoglobin V (Honzatko, Hendrickson, and Love, 1985)
2lzm T4 Lysozyme v (Matthews, 1975)
2tmv  Tobacco Mosaic Virus Coat Protein (Namba, Pattanayek, and Stubbs, 1989)
3c2c  Cytochrome C2 (Bhatia, 1981)
3cln  Calmodulin (Babu, Bugg, and Cook, 1988)
3cpv  Parvalbumin B (Moews and Kretsinger, 1975)
3hhdb  Human Hemoglobin (alpha chain) (Fermii et al., 1984)
3icb Vitamin D-dependent Calcium-binding Protein  (Szebenyi and Moffat, 1986)
3wrp  Trp Aporepressor (Lawson et al., 1988)

4.2.5. Prediction Methods

Four prediction methods — Chou-Fasman, GOR, neural nets, and ALPPS — are

used. Chou-Fasman (1978) [CF] and Garnier, Osguthorpe, & Robson (1978) [GOR]

were selected because they are well known and readily available on many computers.

Neural nets [NN] are a recent tool for secondary structure prediction. The network and

weights’ developed by Kneller, Cohen, and Langridge (1990) take advantage of training

only on o/a proteins. ALPPS is the segment based method which we are currently

developing.

7 When a protein was in the original neural net protein set, a "jackknife” weight set developed
by excluding the given protein from the training set is available. All but 156b, 2cts, 2tmv, 3cln,
and 3wrp were in the original set of proteins used in the neural network. Surprisingly, the neural
net aggregate scores for these proteins exceeds the aggregate scores for the other 15.
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4.2.6. Aggregate Scores and Summary Statistics

An aggregate score can be calculated for any residue based measure by taking the
four tallies — true positives, true negatives, false positives, false negatives — over the
set of 20 proteins. This essentially treats the 20 proteins as one long sequence. Summary
statistics can be obtained by treating each the score on each of the 20 proteins as one
entry. Not surprisingly, the aggregate score will not always be the same as the mean

score since the scores on longer sequences get more weight in the aggregate score.

4.3. Results

For each of the twenty o/a proteins listed in Table IV-1, predictions are generated
based on four methods (Chou-Fasman, GOR, neural nets, and ALPPS) and compared
against helix assignments from three methods (Kabsch-Sander, Richards-Kundrot, and
PDB). Comparisons are also made between pairs of assignment methods. The comparis-
ons are scored by Q and C quality indices calculated on standard, trimmed, and trimmed+

residue tallies.

The main set of results is found in the twenty pages of Figure 4-5. Each page con-
tains 7 feature diagrams — one for each assignment or prediction — and a table contain-
ing the described Q and C scores.

Table IV-2 with the same format as each of the 20 tables in Figure 4-5 gives results
based on aggregating the 20 sequences. The concept of trimming appears to be validated
by the aggregate results shown in the last 3 columns. Table IV-3 gives summary statis-

tics — mean, median, standard deviation, worst, best, and range — on each set of Q
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scores on the three significant assignment-assignment pairings.8 Three assignment-
assignment pairings and three tallying methods yield 9 sets of 20 (one for each protein) Q
scores. The ranking of proteins by Q score within each set is shown in Tables [V-4, IV-

6, and IV-6 for standard, trimmed, and trimmed+ tallies.

Similarly Table IV-7 gives summary statistics for the 12 prediction-assignment
pairing sets and Tables IV-9 through IV-11 show the ranking of proteins by Q score

withing each set.

Figure 4-5: Individual Sequence Results

The next 20 pages contain the results of running four secondary structure pred-
iction methods and scoring the predictions against the secondary structure as-
signments based on three different methods. Each page contains the results for
one of the 20 proteins. The assignments and predictions are displayed as
feature diagrams. A table shows Q and C values generated from the 21 paired
comparisons of a predicted or assigned secondary structure with an assigned
secondary structure. Standard, trimmed, and trimmedzt tallying methods are
used and listed separately. The proteins are identified by the Protein Databank
name given in Table IV-1. The prediction methods are Chou-Fasman (cf),
Garnier-Osguthorpe-Robson (gor), neural nets (nn), and segment based
(alpps). The assignment methods are Kabsch-Sander (ks), Richards-Kundrot
(rk), and Protein Databank HELIX records (pdb).

8 For convenience, the scoring tables of Figure 4-5 show 21 pairings even though 6 are redun-
dant. Twelve come from pairing each prediction with each assignment. An additional three come
from using an assignment as a prediction for scoring purposes. The symmetry of true and false
tallies in both Q and C lead make predicted tallied against observed the same as observed tallied
against predicted. Obviously an assignment scored against itself gives Q and C of 1.



61

0onoot | (88)96 (96°) 86 09)LL | (168 | (LsHi1e | (11) 89 Fpawwiny
oo1oot | (zL)ss (z8) 26 9¥)69 | (€S) 18 | (6¥) S8 | (80) +9 pawiwg
001001 | (19) €8 (1L) 98 W69 | (8v)08 | (ep) €8 | (b0) +9 prepuels qpd
(88°) 96 001001 | (DO || (L9)T8 | (L¥)I 9L | (6€)8L | (61-) 6% || Fpowwin
(TL) 88 01001 | (S8) €6 wsHee | e | @ IL | L) sy pawruyg
(19)) €8 001001 | (TL) LY Os)vL | @e)IL | (€ IL | (S1-)TS prepuels H
(96) 86 ©0D00T | (000T || (LLILS | (98I 6L | (Tv) 8L | (90™) ¥S° || Fpowumnn
(z8) 26 (S8°) €6 ©ovoot || 908 | (oL | (ix)TL | (90-) TS pawrung
(1) 98 TL) L8 00100t || (§6)LL | (s¥)oL | (se)TL | (SO-) S prepuels )
POy PAAISqQQ
qpd H 2 | sddre uu 303 » uondIpaid
(D) O -53100g paseq anpisay
g6 t BE €t
—t ) s G 200 E &
€6 1 [ 14 _
t | 1 4
—f J—F ]
ov 1§
—f ) s I A L
po] 4 119 ¢ | 4
tot Gt g [ a4 ] _a\m
|_ mM'ﬁ 9¢ L 14 N_l
l_Nom wlmw | [/ —— [ A T
96 t—0¢ _ ¢
pot t 1 j _wwm
|1S mlu_lm o 1 m|

(57

Q9§ 0] SHudMUBIEY JIMINIS LIePUoRS

:sddpe

108

3o

:qpd

3]

)



62

©0D00T | 001001 | (0D00T || (0L | (S6186 | (s sL [ (8L) 06" || Fpowwm
©oD oot | s6)L6 | onoot || @)oo | (6L)o6 | @yITL | (98 || pounumn
©onoot | 88)ve | (98)¢6 || (ov)or | (69048 | (ev)or | (LsHse || prepues qpd
©oD 00t | 0000t | (96186 || (9s)8L | 96186 | (zsIzL | (08)06 || Fpowumn
(s6)t6 | onoot | 16196 || G¥IeL | (L8 | )1 | WL Lg || powwn
@8)v6 | 0onoot | (08)68 || @)1 | 89)€8 | W) 69 | (59028 [|  prepums ¥
©00noot [ 96786 | (onoot || €r) 69 | 6786 | @918 | (zL)ss || Fpouwnum
00D oot | 16796 | (on oot || (se) e | 8LI06 | (8508 | (s9)¢8 ||  pounumn
98)¢6 | (08768 | (00n oot [ (ze)so | (89948 | (€s)LL | (19) 18" || prepums sx
poyaN | paniasqo
qpd ¥ 2 | sddre uu 103 » uondipatd
(D) D -s3100g paseq npIsaY
- ) C B T J—
i Lt L
— ] e L} nil —
|.1m ] pr— ]
89 _ ot
— ) r* i ] ! —
b2 4 LA o
£ ] AN s i N ) —
/% .14 (22
2 . 33 24 |
£ » —1— P
i . R ) i —
ad =d

1§01 20} SHuMUBSSY JIMPNNS LISPUORS

:sddpe

:103

3o

:qpd



63

0ovoot | onoot | u8)ve 6oL | aryes | @es | @)L || wooununn
00’001 | (01001 | (L8)¥6 O eL | 65708 | (19018 | (@) 69 || pounmn
00D o001 | (s6) L6 (6L) 88 WL | ssHsL | (8sI6L | (9689 ||  prepuers qpd
©0ovoot | onoot | (s8)es || (6v)sL | (89)s8 | (69)s8 | )L || Fpounuin
0000t | ovoot | (s8) g6 O eL | wsHeL | (6sH08 | oL || pourunn
(s6) L6 oot | (w)Ls @)L | WL | ws)sL | (86169 || prepums ¥y
8) v6 (s8) €6 ©0o1oot ||l (6s)18 | (18)26° | OL) 68 | (98) €L || Fpownun
8) v6 (s8) €6 ©0onoot f| usHeL | (€Lrss | 69758 | (ss)eL || powunn
(6L) 88 L) Ls ©oonoot || asHrsc | oL)os | 69048 | (9s)pL || prepuems 2 |
POYION | POAISQQ
qpd M 0 | sdde uu 103 » uondpald
(D) O -sa109g pasegq onpisay
gt _ 33 sdd
.ﬂ L % 6§ _ Lc%|| ©
13|_ Tt 1 pT | :uu
t6 L 6¢ st
tH _ ﬁlmn| _ o 103
_ 96 8¢ AJ_||| 1
R 7 T
Ht— t _ [ X
H t 1 :
i Tt g

gt 19—
L ¢ L —g¢

2307 20) SHUIMUBISSY JUIMINIG ATEPUCRNIS



64

ll% ...m_l?u 2€

00100t | (26) 66 (sS) €8 90) %9 | (62785 | (SI-) €L | (LI)LS || Fpowwin
001001 | (€6) 86 @) 18 €N | B2)I8s | (€0)89 | (€2)19 || pownun
001) 00’1 | (z8)96 (6£) 9L aney | az)es | 1079 | (6179 ||  prepums qpd
(6) 66° 00'1) 00’1 | (€5) S8 1765 | (€IS | (€1)9L" | (07) 65" || Fpouwwuwn
(€6) 86° 00D 00T | (95) €8 w0)6s | #T)9s | A IL | (6T)€9 | pounun
(28 96' 001001 | () LL (20009 | (L1D9s" | (LoYoL | WT)+9 | prepuers u
(sS) €8 (€5) s8° 00001 || (10)¥s | (91785 | (61789 | (81)6S || Fpounun
) 18 (99) €8 001001 || (L0)9S | 9TITY | BT Ly | WT)T9 | pounuin
(6£) 9L (ev) LL (00°'1) 001 __ (Lo 8s | e)ey | (81999 | (61)2T9 pIepuels b2
POYIBN | PaAIISqO
qpd b D | sddre uu 103 » uonoIpald
(D) O -sa100g paseq anpisay

:sddpe

_ z
108

™ o — " ] w

P! | ] I s LAY AN A
tH Y

- ! _HioP® W o i I ey A JE T apd
Lt U L3 oy [4

€t gt €L .

Pt Wi a0 ot il s S DY A

£ B T 1{ e T} =

L4 Ll Ty

PR 20] HHUIMUBSSY UMONINS LIEPUCIS



65

©oDoot1 | (16)86 w6 (6€)8L | 16D €8 | (81779 | (02)09 || Fpouruwm
00'1) 00T | (98) 56" (TL) 88 LT 69 | (spILL | (€168 | (02)09 || powrmn
001001 | (SL)T6 (95) 18 61)Ly | eIyl | (€179 | (L1) 19 || prepuers qpd
(16) 86° 0000t | 48)v6 (69)88 | (LLIT6 | @y)TL | (6v) Ly || Fpownwn
98) s6° onoot | (6L)T6 Oy)LL | (85028 | (82) 99 | (s€)s9 | pourunn
(SL) T6 0000t | 19) 8 Q)L | (8v)8L | (92) L9 | (82)s9 || prepuens b
w16 @8) v6 ©0D00T f| (L9)s8 | (06796 | (ZSILL | (8¥) 1L || Fpowumn
@@L)ss 6L)T6 ©00D00T || SISL | (6L)06° | (8€I0L | (v oL || powuwnn
95 18 +9) v8° 0000 ff (spI9L | (oL) L8 | (6€)TL | (s€) 69 || Pprepuers 2!
POYRIN | PIAISQO
qpd p 2 | sddre uu 108 » uondIPA

(D) D -sa100g poseq anpisay

o

o

{YPJI 20] SHuIuBEsY JUMOINNS LIPUoIIS




66

e ;r
F

00100t | (0D 00T | (S6)86 B1)€9 | (9 LL | (08) 16 | (6149 || Fpowwn
001001 | (L6) 66 (26) 96 90) LS | (0v)89 | (S9)¢8 | (€1)19 || powwn
001) 00’1 | (@8)T6 (16 96° (80009 | (S€)L9 | (09028 | W1)¥9 [| prepuers qpd
00001 | (0'D 00T | (98) ¥6° €L | €L | (0816 | (S1)+9 || Fpowwn
(L6) 66 oDoot | #8) €6 S1)€9 | (€€)€9 | (19728 | (60019 || pourunn
(28) 26’ 00DO00L | (PL)8% @159 | 82)€9 | (85) 18 | (01)59 || prepuers y
(56 86° 98) ¥6' 000 || UT)49 | 69048 | (LL) 68 | (E1)6S | Fpowun
(26) 96° #8) €6 ©0D00L || G119 | (6¥) 4L | (68)18° | (90)9¢ || powwun
(16) 96° (L) 88" 00001 || (L1Dey | wh)TL | (5508 | (80065 [ prepums !
POYION | PIAISQO
qpd o D | sddre uu 103 » uonoIpald
(D) O -s3103g paseq npisay
| I < .

— O] -
12 4 (24

— N N e i od 108
Iwmm mm_.l.m . @L'._s mw_lﬁ..m mm“ apd
i ik o O il o o »
—f ) e Y e - i, S

|1 4.4

:burqy 10) sjusmuBissy Jumonng Arepucidg



67

©oDoor | (88)96 (z8) €6 weyw | wvieL | (6€) 18 | ) eL paurun

001)001 | (S6') 66° (+8) v6' = Wr)v8 | #9)68 | (€5)98 | (19)88 [ Fpowwin
001001 | (LL) €6 (oL) 88 Oe)sL | 9e)LL | (g€) 08 | (eI 9L prepuels qpd

(88) 96 ©01)00'1 | (6L)T6 @e)sL | (ov) 08 | (ze)es | (v 6L purwin

(S6) 66 00001 | (6L)¥6 = 8T)8 | (1706 | (Iv)06° | ($S) 06 || Fpowwin
(LL) €6 001)00°1 | (99)98 W)L | re)sL | (z)es | @e) L = Eu_!m.u b

(8) €6’ (6L) 26 onoot || (108 | (0s)e6L | (o) 9L | (O¥) bL paurmLn
(oL) 88 (99) 98 oot j| 6L | @)LL | (Se)LL | 9e) vl prepuels b

#8) v6 6L) ¥6° 00'1) 001 3 (ss)e8 | @998 | (6918 | (p) 8._ Fpourmn

[ _powow | poasssqo
qpd b 2 | sddre uu 103 » uondIpald
(D) O -sa100g paseq anpisay

AN t € .
| — Tll.m_ T,m — :sdd
€Tt ww_.ﬁlp 8¢ € ©

3

o
4

I\

:pqu] 20j) syuwewruBssy UmInng Lrepucieg



68

0ovoot | 16)L6 | (€6)L6 || o oot | (1L)ss | @) ig | (9s) 8 || Fpounun
0000t | 16796 | wedLe || (LITe | #9018 | 9 LL | (sv)8L || pounum
©00D001 | (6L)26 | w6)86 || 9918 | (LsI8L | wEILL | (6€)9L || prepums
a6)Le | 0onoot | oot || 8L)e6 | (1L)s8 | (6v) 8 | (ov) 8L || Fpownum
(16796 | 00001 | 86)66 || (1ILY06 | (19708 | (1p) 18 | eI SL || pownmm
6L)26 | 00001 | 98)p6 || (8598 | (ss)9L | (8D o8 | (82) €L || prepums
(€6 L6 | 0o oot | (0onoot || 08)es | (LL)ss | (se) L | (ev) 8L || Fpourmm
)6 | 86766 | (00'D00T || 8918 | (698 | (EISL | (eI vl || pounum
)86 | 98)v6" | (0000t || (19958 | (19708 | (0£)sL | wE)vL || prepums
Py | peasesqo
qpd o | sddre uu 203 » uondIpald
(3) O -5210g paseg anpisay
et 1m t :sdd
- £0t mml_w 3_ | 6t y
€Tt tot | s 1 )
—t §I_ 08 R L g W
g R 1 =
20
t tot t €s 23 .
i o N v W e
o et ) i e AW Al S J—
LAV S oL | 4
—J o " fe L _F + o
[#949 Lo ot RZ% R
—f _Ho ] g E e — =
Ul k.19 )7 L4



69

00D 001 | (86) 66 (667001 || (BSI6L | (59968 | (S€) 9§ | (0€) 79 || Fpowwn
00D 001 | W6) L6 (06" S6 O¥)pL | (LsH6L | (82)98 | (LZ) 19 || Ppounun
00 1) 00’1 | (68) 56 (SL) LS oy)zL | ®y)sL | (92)9s | (€2)19° || prepuers qpd
(86) 66 00DO00T | (C0DOOL || (ISHILL | (OL)98 | @) 29 | (L2) 19 || Fpounuwm
#6) L6 001001 | (26796 €))L | 3928 | W€D 09 | (92)2T9 || Ppourmn
(68) S6° 00D 001 | (LL) 68 Q) IL | @)L | (1€)68 | (@) 19 || prepuers b
667001 | 00'DO00T | (001)00T || (1SIOL | (BLI68 | (9D 9" | (€€) 59 || Fpouwun
(06) 6 (6 96 ©oDoot [f (o)L | (1L 98 | (1€)29° | (0E) 49" || powwun
(SL) LS (LL) 68 000t Jf @)L | (€908 | (82)19° | (LZ)v9 || prepuers !
POYIOW | PRAISQ0
qpd L L | sddre uu 03 » uondIpAId

(D) D -s3100g paseq npisay




70

001001 | (€6) L6 #8) 26 (8€) 69 | (5€199 | (£€)99 | (€1)sS | Fpowwwn
©onoot | (06)56 (98) €6° We) L9 | (86)99 | (0£) 59 | (1SS || powwnn
001001 | #8)T6 (8L) 88 (1£)99° | 8€)99 | (62)+9 | (60)SS" || prepumrs qpd
(€6) L6 oD 00T | (88) 6 0£)s9 | (SEI L9 | (0£) Sy | (IS || Fpowwn
(06) $6° onoot | (€8)16 92)€9 | 9Ly | (1€)S9 | (60)#S || powuwnn
#8) T6’ 00100t | (b)) 98 (€2)29 | 9£)59 | (62) 9 | (60)Ss" || prepuers b
#¥8) 6 (88) ¥6° ©onoot || @)sy | wedeL | 0e) L9 | (O1) 1§ || Fpounun
(98) €6 (€8) 16 ©oDoot [f (se)Ly | O¥)eL | (0€)99 | (11)gs |  pounun
(8L) 88 (L) 98 0001 || W) 99" | (ip) L | (2€)99° | (1) €S | prepuers 2|
POPIN | PeAIISQO
qpd b D | sddre uu 103 » uondipald

(D) D -s3100g paseq anpisay

:d£>g 205 syuswuBEsy JunpANnS LIEpucdes




71

©oDoot | (16) L6 ©ODO00T || W) T8 | (LLIve | (8L) 96 | (69) 68 || Fpowwn
oonoot | u8)ze 6 86 6eI9L | Ws)98 | (8668 | (96) €8 || pourunn
001001 | (€L)06 (8L) 6 (se)oL | (€v)eg | (Ly) L8 | (9¥) 08 || prepums qpd
(16) L6 001 00’1 | (88) 56 (SeISL | (8S)s8 | (@s)s8 | (18D 18 || Fpounun
(18) 26 001 00T | (#8) €6 6TIoL | ) os | (s¥) 08 | (0s)6L || powumn
(€L) 06° 001001 | (IL) 68 (€2)69° | (6£)8L | (op)6L | (9v)8L | prepuers 3
00D 001 | (88)56 00001 || Ws)€8 | (69)06° | (65)88 | (9) L8 || Fpowumn
6 86 #8) €6 ©0DO00T || (€¥I9L | (0S) 18 | (8¥) 18 | (bS) 18" || Powwn
(8L) 26 (1) 68 00001 f| WEIPL | (€v) 08 | (9p) 18 | (1) 8L || prepuers 2]
POYIIN | PIAISQO
qpd p 2 | sddre uu 103 » uonoIpald
(D) O -sa100g poseq npisy

(24




72

0onoot | ®6)66 | onoot [ 0sHos | w8)€6 | (62)9L | z) 2y || Frowun
©onNoot | W | €6)Le || @I | w9 | 616y | @)y || powwum
0onoot | 198 | (s8)ve f sedzr | ssreL | (i | (s1)zy || prepums
96)66 | (001001 | L6D66 || w¥IoL | 98)¢€6 | (ev) 18 | (e£) 8y || Fpourum
wy)ie | ©onoot | @ee || 62189 | (0908 | (zIeL | (€2) €y || powunn
(19)s8 | onoot | (5998 |l (€2)ee | @ | @) | s1)ze || prepums
0onootr | (Le)es | 00100t [| (09)¢€8 | (98)€6 | @) 1L | (€2) 19 || Fpounmn
€6)L6 | @es | ©onoot f| )L | (oL)ss | (€1)sy | 81909 ||  powmn
(s8)vs | (59798 | (001001 || BEIEL | (95D 08 | (01999 | (z1)09 || pmpums
POYW
qpd ¥ | sdde uu 103 » uondIpaLd

(J) O -sas00g paseg npisay




73

0onNoot | (s8)e6 (06°) S6 (L) ss | (€s)8L | () sy | W)L Fp3wwin
0000t | w86 | 06)s6 || (19008 | (¥ | (Ov) L9 | (€) Ly || pounum
o1 oo1 | 99)ss8 (98°) ¥6° st | aydeL | #€) 99 | (z€) 89 prepuels qpd
s8)e6 | o001 | e)es || 5918 | (0oL | Wy 9 | (€9) 18 || Fpownmn
@8)e6 | 0000t | 68)s6 || (6v) €L | (0D 69 | (1) 69 | (ssHoL ||  powrunn
99)s8° | 0onoor | 89098 | av) i | #e)se | 9e)v9 | @v)IvL || prepums ¥
06)s6 | we)66 | (oD0or || 9)es | @r)vL | @) 9 | Ws)oL || Fpowunn
06)s6 | 68)s6 | (0oDooT || (LsI8L | €€V 69 | (€I | p) 1L || powrmmn
98)ve | 89798 | (onoor | @) | (62)89 | (0£) €9 | (LedoL || prepums 2
| powew | ponsssqo
qpd u Y sddpe wu 108 » uondIpAId
(D) O -52000g paseg InpisaY

3




74

00001 | (86)66 (8L) 68 (8126 | (L) 98 | (009 | (91)8S || Fpowwin
(00’1001 | (88) %6 (89) 8" wL)9s | (€918 | (00D 9 | (LI)6S pawunn
00'1)001 | (28)16° (19 6L (9978 | (€S)LL | (00) 9% | (S1)8S PpIepuels qpd

(86) 66° (oo'noot | (6L)06 (1) 9g | @L)Hve | (00)0S | (z0) 1S || Fpouwunn
(88) v6' ©onoot | (hL)Ls (19) 18 | (8)8L | (00005 | (80) ¥S pauruLn
(@8) 16 ©onoot | (L9)es __ (SS)LL | (6v)vL | (0005 | (80°) ¢§° prepuels M

(8L) 68 (6L) 06° o100t || (€s)8L | (1908 | (00)8S | (€2) €9 || Fpowwn
(89) v8' L) Ly ©onoot || (osIoL | (19)8L | (0078 | (€2) Ty paurunn

a9) 6L L9) €8 00100t || (6r)sL | (9s)sL | (0008 | 41T)T9 || Pprepums !
(|__PowdW | peasqo
qpd M 2 | sddre uu 103 » uondipald

(D) O -sa100g paseq npisay

p————— |
; A i S I S A L
LA}

f

4
&
=

3
L0
!

)

£3—
L

g

—st
Aaunz 10) sjpounuSssy aamonns Lrepucdes




75

00001 | (0656 (16) 96 (S¥)s9 | (1s)8L | (19) 99 | (8T) 19" || Fpawwn
001001 | (88) %6 06" s6° 0£)€9 | WSHLL | ap) 9 | (ST) 19 pauruLn
00'1) 00’1 | W8)T6 (z8') 06 6T) 9 | @S)sL | (ov)s9 | (€2) 29 prepueys
06) s6° ©oonoot | #6) L6 6€) €9 | (98D 6L | (ev) L9 | (8Y) 89 || Fpourwn
(88) ¥6' ©onoot | (16)96 O 19 | as)se | () sy | (y) L9 paururn
@8) 26 001001 | (18)68° )79 | W)L | (1v) 99 | (2€) 99 prepuels
(16 96 6 L6 001001 || (6195 | (6¥)6L | (€€ 1S | (9¥) €9 || Fpowmmn
(06) s6' (16) 96' 001001 || 62)LS | WSI6L | (ZEITS | (6£) €9 pouruLn
(8) 06’ (18°) 68° 001001 || wz)8s | (1s)9L | (€€) S | (8€) 9 prepue)s
. ||__Powsn
qpd M 2 | sddre uu 103 » uondIPAI

(J) O -sai00g paseq npisay




76

00D 001 | (L6) 66 ¥6) L6 (L) 16 | (88)v6° 06796 | (8L) 16 | Fpowwn
(00’001 | (96) 86" (26) 96 (€97¢€8 | (08706° | (6,706 | (8S) 18 || pounun
00'1) 001 | (08) 16 (06) 56 Oy)LL | (L) 9s aL) s | W)L | pmpums qpd
(L6) 66 00’001 | (S6) 86 OL)TZ6 | (68) 56 (L8)96 | (29)98 || Fpounuwn
(96 86 00001 | (68) 56 19)¢8° | (6L) 06 @8)¢6 | (zs)08 || pourumn
08) 16’ 00D 001 | (SL) L8 Ov)6L | (59)T8 (§9)18 | 8e)sL || prepuers H
+6) L6 (67 86 00001 || (s8)€6° | (000001 | (2826 | (18) 26 || Fpowun
(6 96 (68) S6° 0000t || (1IL) 98 | (06)S6° (1L)98 | (99948 || powunn
(06 S6° (sL) L8 ©001)00°1 || (ssD6L | (18)16° (€928 | (sS)6L __ prepue)s 2!
| powaw | peasssqo
qpd u 2 | sddre uu 103 » uondIpAld
(D) O -sa100g paseq anpisoy
P e ! I s
oL Ot (4




77

:adag 20) nyuowuBEsy JuNPS LIEpuoddg

001001 | (6L) 68 (98) €6 QL) 98 | (§9)6L | (SEILS | (@¥) 19 || Fpowwn
00001 | (EL) S8 8) 16 @)v8 | (8S)9L | (9€)8S | (9€)09° || powwn
00 1) 001 | (99) 18 @L) L8 +9)08 | (8v)zL | (XEI6S | (ST)6S || Pprepuers
(6L) 68 ©o'noot | (L9)os (€8)76 | #8)€6" | (9 6L | WS)SL || Fpowumn
(EL) s8° 0oDoo1 | @)es @8)T6 | (1IL) 98 | (6¥)EL | W)z || pown
(99) 18 001001 | (5908 9L)68 | (95108 | (sv)vL | (g€)oL || prepuers
98) €6 L9) 08 001001 || (s9)6L | (€769 | (0E) 1S | (e¢) 19" || Fpowunn
@) 16 @L)es 001001 || (L9)08 | @SITL | (€EI¥S | (L) s9 || powuumn
@L) L8 (59 08 001)00'1 | (€978L | O¥)0L | (62)95 | (€v)s9 || prepums
PO
qpd » | sddpe uu 303 » uonOIPAIY
(D) O -sa100g paseq pisy
et i
oL
G ey Y P RN b G — =
Uy o
P T ] o
Lo | §
E of of s A ey S AN . P
| ¢ ] .
o ] qpd
, oy
[ %




78

001001 | (8L)v6 (L6') 66 @®e)8L | ®LY06 | (Le) 1 | (Li)gs || Fpowwn
©00'1 001 | (69)68 (6 L6’ )69 | 19728 | (€e)8L | 91)9s |  powwnn
001001 | (6598 L) 06' 8189 | (ss)6L | @) LL | (6095 | prepums qpd
(8L) v6' 0000t | (08)v6 89) L8 | (9666 | (88) L6 | (61) LS || Fpowwnn
(69°) 68 0o oot | (1) 68 asheL | OLres | ()16 | (0z)8s |  powunn
(65) 98° ©00'1) 001 | (95) 28 (s)6L | (59)¢€8 | (09)88 | (81009 || prepumrs »
L6) 66° (08) 6 oonoot || svIsL | @8)z6 | (68)8L | (sT) 8¢ || Fpoummn
6) L6 (IL) 68 ©onoot || aelor | (€L)Ls | @e)sL | 82) Ty A
L) 06° (95) 28 001001 || wz) 89 | 89)s8 | 8L | (@)Y D |
8._.02 PIAISQQO
qpd p D | sddre uu 108 » Saoaoc
(D) D -531005 paseq InpisoY
g A S A LY, AR ——— ——
€6 3
g L S ey S w3 ) m
Uit LL
|._..§m _.mm T|||mm R _I_..t. | :s08
139 | §
T 6 gt .
am— | L S LA S S e L c—
129 t E J@ { .
v6 T On_% ml apd
1 + €1 2 1 .
£ mm_lﬁwﬁ:n 9_ _ 3_% g ¥
—pet - )




79

llﬂ..\

oonoot onoot | (LL)es (S1)¢8 | (SL) LY 8e) L8 | @I)Ig FpawwiLn
00100t | (96) 86 (08) 06 ag)oL | (L9) 18 sy g | (ayleL pawuwug
©o'1oor | (€6) L6 (€9) 18 1y | wsHsL (6€£)08 | WT)EL prepuels qpd
00 100I | (001)00'T | (EL) ST w1)os | (1L) €8 (€e) g | 1) 6L || Fpowuwn
(96°) 86° 001001 | (9L) 88" @)L | (5918 el LL | we)sL pawnuin
(€6) L6 0100T | #9) 18" 16y | @S)sL e | ) 1L prepuels b ]
(LL) 68 (€L) S8 onoot || #€)69° | (001 00T | (SSH6L | (O¥)SL || Fpowmun
(08") 06° (9L) 88 o1oot || (82)€9 | #6) L6 @ws)sL | (ge) Ly pawnum
(s9) 18 #9) 18 Oonoot f L1)19 | (18) 16 @Sy | (82) sy pmEpun)s (2|
PO PRASSQO
qpd i s sddre uu J03 » uonOIpALd
(D) O -sa100g paseq anpisoy
1.. $ 14 _ m _ _r.m
8¢ € t
¢ _ s : L f -
£ I —— 4 £2
»
oy n iy
ce -
- —f L u__an_ Mgi ]
NL m., 9¢ T T
J j ﬂw _—.Q.||\_wm _ ﬂm
T <4 9¢ 147 M‘_l
] s Ft ] e
e L, i o i i

:308

3o



80

oDoot | (oonoot | ovoot || werze | (€906 | (s1-) v | (82) Ly || Fpounum
00001 | (06)L6 | OV 00T || @299 | WEILL | 1) 99 | (91) 29 || pownnn
©00noot | usHos | o8)se |l (61019 | 8L | (1) Ly | ()19 || prepums qpd
00001 | (00100t | oD oot || (8e)sL | (68)86 | (Lo-) €8 | (L1 sy || Fpounun
06)L6 | (0onoot | 8)96 | (02189 | (xv)s8 | (€1-)9L | (€00 65 || powmumn
(s)9s | 0onoot | €98 f| 16y | (Lerss | (€1 eL | (10-)6s | prepums b
0o'noot | onoot | ©Govoot || 621 | 6s)88 | (S1-)wL | (2)v9 || Fpouwnum
0000t | u8)9s | oV00T f| (L1Isy | (OeIsL | (€17) 99 | (€1)09° || powmn
(98056 | (€9)18 | 000001 f| @I | (zIoL | (€1-)99 | (01)09° f| prepums 2
{_powon | poasseo
qpd M 2 | sddp uu 203 » uondIpAd
(3) D -sa109g poseq nprsy
16 NLI_NH ..1_ ﬁ 10 u_.| wu
[ 1.4 T
ot —F 3 i ] o8
Vo ot L4
pot 1 £9 ] £ T
8 ‘ 8€ ! r
—f —
—F — =




81

‘sutajoad O [[e 10j sarjes a3 Jo uonedau33e oy uo SAI0IS Paseq INPISAI ) SMOYS I[qe) STy

suploLd (T [V 10] 531005 ANeBBBy :7-A] dqeL

00001 | (16) 86° (06 S6° wsheL | (€9)¢€8 | @)L | (0€) Ly || Fpouunn
001001 | (68)S6 L8) v6 WL | (ssI8L | (5€)69 | (Lz) 99 |  pourunn
001001 | (6L) 16 (LL) 68 (8e)zL | BY)ISL | (2€)69 | (€T) 59 | prepuers qpd
(+6') 86' 00'1) 00’1 | (06) S6° (s)8L | (99) €8 | (9p)sL | (0€) L9 || Fpowunn
(68 s6' ©onoot1 | #8)T6 @) eL | ssIsL | 6€)IL | (LT) 99 || powunn
6L) 16 001001 | (TL) 98 Oe) 1L | Wy pL | SE)IL | (€T)S9 | prepuers o
(06) S6° (06 S6° onoot || (1sHoL | (69)s8 | (ev)TL | (€€) L9 || Fpouunn
(L8) ¥6° +8) 26 ©onoot | (svHeL | (19)18 | (LE) 69 | (0£) 99 || pourunn
(L) 68 (TL) 98 01001 || (ov) 1L | (ss)8L | (s€)69° | (82) 99" || prepuers !
POYISN | PaAIaSqO
qpd 2 | 0 | sddre uu 103 » uondIpald

(D) O -s21008 paseq anpisdy Ne3u33y




Assignment Comparison Summary Statistics on Q Scores
Method Mean Median SD Worst Best Range

rk ks standard .86 .86 .04 77 94 17
trimmed 92 91 .04 .83 99 .16
trimmedt 94 .90 .06 .80 1.00 .20

pdb rk standard 91 .89 .05 .81 97 .16
trimmed 95 93 .04 .85 1.00 15
trimmedt 97 94 .03 .89 1.00 12

pdb ks || standard .89 .87 06 76 98 22
trimmed 94 91 05 81 1.00 .19
trimmed+ 95 92 05 .83 1.00 17

Table IV-3: Assignment Comparison Summary Statistics on Q Scores

Sets of 20 (one for each protein) Q scores are taken from the residue based
score tables of Figure 4-5. The combination of two secondary structure assign-
ment methods and tallying method (e.g., trimmed) specifies each set. This
table lists summary statistics (mean, median, standard deviation, worst, best,
and range) on each set of Q scores.
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Secondary Structure Assignment Comparisons Ranking by Standard Q
rk-ks pdb-ks pdb-rk
94  2ccy 98 2ccy 97 3icb
89 3c2c .96 1hmq 97 cer
.89 IccS 95 3cln 96 lecd
.89 2lhl 95 3wrp 95 2cts
89 2cts 94 2lhb 94 lccS
.88 1hmq 94 2lzm 93 1mbd
.87 3cln 93 lccS 92 2ccy
87 lccr 92 2lh1 92 3c2c
.87 156b 90 3c2c 92 1hmq
87 3wrp 90 3hhb 92 2cyp
.86 1mbd .88 lcer 92 1fdh
.86 2lzm .88 1mbd 91 3cin
.86 2lhb .88 2cyp 91 2tmv
.86 2cyp .87 2cts 90 2lhl
.84 1fdh .87 3cpv .86 3hhb
83 2tmv .86 156b .86 3wrp
.82 3hhb .81 1fdh .85 2lhb
.81 3icb 81 3icb .85 2lzm
80 3cpv 79 2tmv .83 156b
77  lecd .76 lecd .81 3cpv

Table IV-4: Assignment Comparisons Ranking by Standard Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on standard Q scores for each of the three com-
parisons.




Secondary Structure Assignment Comparisons Ranking Trimmed Q
rk-ks pdb-ks pdb-rk
99  2ccy 1.00 3wrp 1.00 lcer
96 3wrp 1.00 lccS 99 l1hmq
96 2cts 98 2lhl 98 3icb
96 3c2c 97 2ccy 98 3cin
96 lccS 97 2lhb 98 lecd
95 2lzm 97 3hhb 97 3wrp
95 3cin 96 1hmq 97 lccS
93 2lhl 96 3cin 97 2cts
93 156b 95 2lzm 96 2ccy
93 1hmq 95 2cts 96 1mbd
93 Iccr 95 3c2c 95 1fdh
93 2lhb 94 lcer 95 2cyp
92 1mbd 93 1mbd 94 2tmv
92 1fdh 93 2cyp 94 3c2c
91  2cyp 92 156b 93 2lzm
.89  3hhd 91 3cpv 92 2lhl
.88  3icb 90 3icb 91 2lhb
.87 2tmv .88 1fdh .89 3hhb
83 3cpv .84 2tmv .88 156b
83 lecd 81 lecd .85 3cpv

Table IV-5: Assignment Comparisons Ranking by Trimmed Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on trimmed Q scores for each of the three com-
parisons.




Secondary Structure Assignment Comparisons Ranking Trimmed+ Q
rk-ks pdb-ks pdb-rk
1.00 3wrp 1.00 3wrp 1.00 3wrp
1.00 2cts 1.00 2lhb 1.00 3icb
1.00  2ccy 1.00 2lh1 1.00 1hmq
1.00 156b 1.00 lccS 1.00 lcer
99 2lzm 1.00 2cts 1.00 lccS
99 2lhb 99 3hhb 99 2cts
98 lccS 98 156b 99 2tmv
98 3cln 98 1hmq 99 1mbd
97 3c2c 97 2ccy 99 3cln
95 2lhl 97 3cin 99 2lhb
94 1fdh .96 3c2c 99 lecd
94 3hhdb 95 2lzm 98 1fdh
94 1mbd 94 Imbd 97 2lh1
94 1lhmq .94 Icer 97 2ccy
94  2cyp 93 3cpv 97 2cyp
93 lccr 92 2cyp 96 156b
90 2tmv 91 1fdh 95 3c2c
85 lecd .89 2tmv 94 3hhb
85 3icb .89 3icb 93 2lzm
.80  3cpv .83 lecd .89 3cpv

Table IV-6: Assignment Comparisons Ranking by Trimmed+ Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on trimmed+ Q scores for each of the three com-
parisons.




Summary Statistics on Residue Based (J Scores

Method Mean Median SD Worst Best Range
ks cf standard .67 67 .08 3 .81 .28
trimmed 67 68 .09 32 .84 32
trimmed+ .69 71 12 S1 92 41
gor standard .70 .70 .09 .55 .84 .28
trimmed .70 69 .10 32 .86 34
trimmedt .74 by | 12 Sl 92 41
nn standard .79 77 .07 .62 91 .28
trimmed 81 79 09 62 97 35
trimmed+ .85 49 11 .58 1.00 42
alpps standard 1 71 .08 .58 .85 27
trimmed 13 72 .09 .56 .87 31
timmed+ | .76 74 11 54 93 39
rk cf standard 67 67 09 52 .82 30
trimmed 67 .68 .10 48 87 39
trimmed+ .70 .70 12 49 90 41
gor standard 13 69 .10 .50 .88 38
trimmed 74 72 .10 .50 93 43
trimmedt | .78 13 12 .50 97 47
nn standard 38 .70 .07 .56 .85 .29
trimmed 78 13 .09 .56 .90 33
timmedt+ | .84 a5 12 51 99 48
alpps || standard 72 75 .07 .60 .89 29
trimmed 74 as .09 .59 92 33
trimmedt | .79 76 .10 59 93 34
pdb cf standard .66 67 .08 .55 .80 25
trimmed 67 69 .10 35 .84 .29
trimmedt | .70 72 13 53 91 38
gor standard ) 67 11 46 .87 41
trimmed 12 .68 12 46 90 44
trimmedt | .76 b ) | .14 46 .96 .50
nn standard .76 J2 07 57 .86 .29
trimmed 79 74 .08 .58 90 32
trimmedt | .84 .78 .10 .58 98 39
alpps || standard A2 74 07| .60 .87 27
trimmed 74 74 .09 37 92 34
trimmedt | .79 81 .10 .63 1.00 37

Table IV-7: Summary Statistics on Residue Based Q Scores

Sets of 20 (one for each protein) Q scores are taken from the residue based
score tables of Figure 4-5. The combination of secondary structure assignment
method (observation), prediction method, and tallying method (e.g., trimmed)
specifies each set. This table lists summary statistics (mean, median, standard

deviation, worst, best, and range) on each set of Q scores.
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Summary Statistics on Residue Based (J Scores
Method Mean Median SD Worst Best Range |
rk rg || standard 74 .74 .08 .59 .88 28
trimmed 75 A0 .09 .60 93 33
trimmedt .80 .79 .10 .62 97 35
ks rg || standard 8 | .70 .09 .55 .84 28
trimmed 1 .69 .10 .52 .86 34
trimmed+ 75 71 12 Sl 92 41
pdb rg || standard | .73 7 |0 s6 | 87| 31
trimmed 73 o3 9 4 | .56 .90 34
trimmed+ i .76 12 .56 96 40

Table IV-8: GOR Summary Statistics without 2tmv

This table is similar to Table IV-7 in format. Only summaries of GOR predic-
tions are shown, and only 19 of the 20 predictions are included in the data.
The GOR prediction for Intact Tobacco Mosaic Virus [2tmv] contains no hel-
ices, and this Q score is not considered here.
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4.4. Discussion

Before discussing scoring predictions it is important to look at the data collected on
the helices assigned by different secondary structure assignment methods. Counting the
helices in the feature diagrams of Figure 4-5, there is a range of 141 (Kabsch-Sander),
150 (Richards-Kundrot), and 152 (PDB) total observed helices on the 20 proteins. The
next section will look at differences in secondary structure assignments and the effects of
trimming. After looking at assignments some comments can be made on the scoring of

predictions.
4.4.1. Secondary Structure Assignments

4.4.1.1. Differences in Secondary Structure Assignments

Some of the differences in the total number of helices assigned by different methods
can be explained by the "run-on" helix problem. Using Richards-Kundrot assignments,
~ one can find examples of two adjacent helices which have no residue separating the C-
terminal of one helix and the N-terminal of the next. There are even cases where the C-
cap residue is the N-cap residue of the next helix (e.g., residue isoleucine-76 is serves
both roles in leghemoglobin [21h1]). This comes about because the Richards-Kundrot
assignment is based on fitting a-carbon locations with those of an ideal helix. The kink
at a given residue may allow it to fit two adjacent helices. A feature of Richards-Kundrot
is that it treats each helix as a unit. Kabsch-Sander assignments, which use hydrogen
bonding patterns, define a helical unit as a set of contiguous residues which are assigned
as helical. In the leghemoglobin example, Richards-Kundrot assigns one helix from resi-

due 57 through residue 76 and a second from 76 through 81, while Kabsch-Sander
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assigns one long helix from 58 through 81. (See Figure 4-6.) A visual examination of the
structure on a graphics terminal leads to an assignment of one (kinked) helix. In another
example (sperm whale myoglobin [1mbd]), Richards-Kundrot assign serine-58 to two
adjacent helices, while Kabsch-Sander define serine-58 as a one residue turn. In this case
a visual inspection gives the impression that there are two distinct helices. Had Kabsch-

Sander treated serine-58 as a helical residue, the separation of these two distinct helices

would have been lost.
Leghemoglobin [2lh1 - Residues 44-86]
S8
ks: _
31
57 76
rk I
s
57 '
b: _
pd - %2
Sperm Whale Myoglobin [1mbd - Residues 44-81] ‘
A3 59
ks: |
3 el
51 58

« —f i
P —

77 T 7

Figure 4-6: Run-on Helices

These two examples show places where the Richards and Kundrot assignment
place one residue in two adjacent helices.
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From a residue based perspective, the Kabsch-Sander and Kundrot-Richards assign-
ments are not very different. After discounting capping residues through the trimming
methods, all three assignments are very close in areas shown in Figure 4-6. The three are
identical for 2lh1, and Kabsch-Sander and PDB are identical for Imbd. Extended trim-

ming brings all three into agreement on both subsequences.

Other examples of differences in helix counts arise from more divergent assign-
ments. Many "stray” helices, ones which appear in only one of the three assignments,
can be found. In Tobacco Mosaic Virus Coat Protein [2tmv], Kabsch-Sander finds a
helix from residue 104 through residue 108. Neither of the other two assignments show a
helix in the same area. On the other hand, Kabsch-Sander shows no helix before residue
20, while both Richards-Kundrot (8-13) and the PDB (9-14) assign a 5 residue helix
closer to the beginning of the sequence. On balance, all three assignments find 6 helices,

but there is a significant difference in where the helices are placed.

Table IV-2 shows the best aggregate Q scores between secondary stracture assign-
ments is only .91 (Richards-Kundrot and PDB). The .86 aggregate score (Richards-
Kundrot and Kabsch-Sander) is low considering that 9 predictions have Q scores of .86

or better when compared against one (or more) secondary structure assignments.

Table IV-3 shows summary statistics for the cross assignment comparisons. When
comparing Richards-Kundrot and Kabsch-Sander, only one sequence [2ccy, .94] had a Q
score equal to or better than .90. The difference between these two assignments is
emphasized by noting that there is no overlap between top six sequences in the PDB-KS
and PDB-RK columns — even though the scores are at least .93. The hypothesis of pro-

teins with secondary structure which is "easy" to assign can be dismissed. On the other



94

hand, at least one protein [3cpv] appears to fare poorly in all three comparisons.

4.4.1.2. Secondary Structure Assignments and Trimming

Although stray helices will not be tempered by trimming, run-on helices and
moderate capping differences will. Table IV-2 shows what happens to the aggregate
scores when trimming is applied. The biggest jump occurs for the Richards-Kundrot and
Kabsch-Sander comparison (e.g., .86 to .92 Os). The range of Q scores decreases from
.05 to .03. The aggregate scores continue to improve when extended trimming is applied.
The aggregate C scores also improve with both forms of trimming. With extended trim-

ming the correlation coefficient is .90 or better for all three comparisons.

The summary statistics in Table IV-3 show the same trends for both PDB cross
comparisons. The scores in both PDB-RK and PDB-KS rise with trimming and the range
falls. This continues with extended trimming. The RK-KS scores go up with trimming
and the range drops slightly, but the trend does not carry over to extended trimming.

As seen in the discussion of Figure 4-4, trimming ameliorates helix capping differ-
ences between secondary structure assignments, but it does not change the scoring of
stray helices. In the process of trimming capping residues from consideration in overlap-
ping helices, some potential true positives are cut from the tallies. The false positives
and false negatives of the stray helices are not changed by trimming. In the RK-KS com-
parisons, trimming improves the capping comparisons, but extended trimming exposes
the stray helices. For two proteins [3cpv and lecd] the extended trimming scores are

lower than the trimming scores.
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4.4.2, Scoring Predictions

As a first look at the predictions, the helix counts show that CF (143), NN (140),
and ALPPS (151) are similar to the assignment counts (141 to 152). The GOR count
(90) is very low. On the other hand, the aggregate residue based scores of Table IV-2
place GOR above CF and close to ALPPS on all comparisons. This is one indication that
residue based scoring does not necessarily reflect the fit between the topology of two
secondary structures. This section will look more carefully at the residue based numbers
before returning to the theme of scoring a prediction as an approximation of observed

secondary structure.

4.4.2.1. Residue Scores

Although there is a ranking of methods (NN, ALPPS, GOR, CF) based on the Q
scores, Table IV-7 reports all four methods having large (.25+) ranges which increase
with trimming and extended trimming. The standard deviations and ranges for the GOR
predictions appear to be slightly larger than the corresponding figures for each of the
other three prediction methods. A review of the feature diagrams in Figure 4-5 shows
that the GOR prediction for Tobacco Mosaic Virus Coat Protein [2tmv] contains no hel-
ices. The Q scores stay the same through trimming, and the C score is zero. This predic-
tion could be considered as an outlier. When this prediction is removed from considera-
tion the range and standard deviation statistics for GOR (see Table IV-8) look similar to

those of the other three prediction methods.
Unlike the situation in assignments, it does appear that there are some proteins with
secondary structures which are "easy” to predict. Looking at the rankings in Table IV-9,

3cln is consistently in the top five predictions. Other proteins lend themselves to good or
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excellent prediction Q scores. For example, 2ccy is always in the top half of each list
with Q scores ranging from .73 (CF-RK) to .87 (ALPPS-PDB). Similarly, some
sequences [lecd, 2cyp] were generally at the bottom of the Q rankings.

The rankings also show the influence of assignment methods on prediction scores.
The best GOR Q score is for the prediction of 3hhb compared to the RK assignment
(.88). Seven GOR-PDB scores are better than the one for 3hhb (.77), and six GOR-KS
scores are better than 3hhb’s .76. The .12 difference between the GOR-RK score and the
GOR-KS score is significant. This difference is increased with trimming (.16) and

extended trimming (.21).

4.4.2.2. Looking at the Feature Diagrams

A look at the feature diagrams for the GOR prediction and assignments on 3hhb

gives more insight into interpreting the residue scores. As can be seen in the feature

diagrams, GOR places one long helix from residues 60 to 137. The first two predicted
| helices correspond well with the first two helices of each of the three assigned secondary
structures. The PDB and KS assignments show a third helix in the area of residues 37 to
42. Neither the RK assignment nor the GOR prediction have a helix in this area. Aside
from a one residue turn (at 59), GOR shows two helices taking up the entire area between
residues 51 and 137. RK places 5 helices (including a both parts of a run-on situation) in
this same stretch, while both KS and PDB have 4 helices. Although the topology of the
GOR prediction does not look very much like the layout of the RK assignment. The Q of
the comparison is very good. Moreover, the Q score gets even better as turn residues
from the RK assignment are discounted by extended trimming. Good Q scores do not

tell the whole story.
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One might argue that this secondary structure prediction is prima facie wrong
because of the unreasonable length of the fourth helix. Q scores for reasonable predic-
tions do not necessarily portray a complete evaluation a prediction as an approximation
of an observed secondary structure. Consider the ALPPS and NN predictions for lccr.
Assuming that any predicted helix of less than 20 residues is reasonable, only the ALPPS
predicted A helix (residues 10-35) should be questioned. Since it is 25 residues, it may
be too long. The NN-KS Q score (.86) is much better than the ALPPS-KS Q score (.75).
Kabsch-Sander shows 4 helices — none of which are run-on. The ALPPS prediction
does a good job of matching the B, C, and D helices. For purposes of using the predic-
tion to generate a tertiary structure, the missing turn in the NN prediction may be more

misleading than the extended helix in the ALPPS prediction.

4.5. Conclusions and Future Directions

This chapter looked at scoring by producing three sets of observed secondary struc-
tures and four sets of predictions over a set of 20 o/a proteins. The 7 sets of secondary
structures were scored against the 3 observed secondary structures using standard residue
based tallies and trimmed and extended trimming tallies. Scores were reported as both Q
and C quality indices. Additionally, feature diagrams of the 140 secondary structures
were used to examine the differences between secondary structure methods as well as to
explore the concept of predictions as approximations of observed structure.

In comparing secondary structure assignment methods, there is a large range in the
number of predicted helices and in the individual Q and C scores. Much of difference in
Q and C scores was removed by trimming. Although the aggregate scores continue to

improve after extended trimming, a couple of individual extended trimming scores are
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lower than the trimmed versions. Trimming is not a method that simply adds points to
residue scores. It allows scoring to discount residues which are subject to interpretation

by different assignment methods.

Some proteins have observed secondary structures which can be well predicted by
all four methods ("easy to predict™). Other proteins present observed secondary struc-

tures which are not well predicted by any of the four methods.

Residue based scoring does not give a complete measurement of how well a
predicted secondary structure approximates an observed secondary structure. Residue
tallies do not reflect any assessment of a prediction as a reasonable secondary structure.
For example, GOR scores are generally close to ALPPS scores and better than CF scores,
yet GOR shows a third less helices. Many GOR helices are more than 40 residues in
length. The residue based penalty for missing turns relates solely to the length of the
missed turn. Some complementary scoring system needs to be developed which givés
additional information on the fit between the topology of the observed and predicted

secondary structures.

Feature based scoring methods and a proposal for a method based on changes to a
prediction which make it approximate an observed secondary structure are discussed in

the next chapter.



Chapter §
A Proposal for Feature-Based Scoring

5.1. Introduction

Chapter 4 addresses the problem of evaluating secondary s@;:mre predictions. The
scoring techniques used in that chapter are variations of residue by residue comparisons
of predictions and observations. One conclusion of that chapter is that residue based
scoring fails to provide a complete evaluation of the relative "goodness of fit" between
predicted and observed secondary structures. This chapter attempts to lay the ground-
work for a feature based scoring system for secondary structure predictions on a/ct pro-

teins. This new evaluation technique would supplement residue based scoring systems.

Secondary structure prediction is not an end in itself. Itis a valuable stepping stone
on a path towards some other goal. Any secondary structure prediction should be
evaluated in light of how well it furthers the underlying goal. For example, secpndary
structure prediction might be used to refine a model structure built by sequence homol-
ogy to a known structure. In this case, the correct prediction of the ends of helices would
be very important. For purposes of discussion in this chapter, it is assumed that the end
goal is tertiary structure generation based on combinatorial methods (Cohen, Richmond,
and Richards, 1979; Cohen and Kuntz, 1989).

At this time, residue based scoring is the accepted standard for evaluating secondary
structure predictions. Residue based scoring is a valuable tool, but it does not adequately
describe a comparison between predicted and observed secondary structure. The exam-
ple shown in Figure 5-1 demonstrates a situation where two predictions have identical

residue based tallies, and upon visual inspection, the two predictions are both reasonable

99
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observed:
1? A E? B f? C ﬁ? D
prediction 1:
]? A E? B f? C
prediction 2:
A B C D

Figure 5-1: Residue Scoring Ambiguity

A secondary structure assignment and two predictions are shown in as feature
diagrams. Both predictions are correct on all but 8 residues. Prediction 1, to-
tally misses the D helix, while prediction 2 simply misses the single capping
residues from each end of all four helices.

(e.g. no helix is less than 5 residues) yet different. In light of the goal of using secon-
dary structure as a step towards a tertiary prediction, prediction 2 is a better approxima-
tion of the observed secondary structure.? This assessment is more easily made when
examining the feature diggrams, than whgn looking at the residue tallies. nﬁs chapter
addresses the issue of devising a quantitative evaluation of a helical secondary structure
prediction based on a comparison of the features in the observed and predicted secondary

structures.
This idea is not new. As seen in the introduction to Chapter 4, early secondary
structure predictions were evaluated by pairing observed and predicted helices. There

was a sense of under- and over- predicted helices as well as realization of the difficulty in

predicting the ends (especially the C-cap) of helices. These ad hoc evaluations were not

9 Using the trimming modifications described in chapter 4, the tallies do differ, and prediction 2
is the clear winner. Another example of identical tallies for two reasonable predictions can be as-
sembled that are differentiated by trimming.
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quantitative. As the number of known protein structures increased and more secondary
structure prediction methods became available, quantitative residue based comparisons

became the norm.

This chapter looks at two general types of feature based scoring methods. The first
is based on the only known published attempt at quantitative feature based scoring. The
remainder of the chapter introduces a new concept, pseudo-string editing, as a feature
based measure. In order to develop this, an excursion through the established field of
string edit distances is presented. The concept of pseudo-string editing is sketched with

some examples, but additional work will be required to fully develop this new idea.

5.2. Registration and Analysis Methods

One general approach to evaluation using the feature diagrams consists of two
major steps, registration and analysis. The predicted and assigned features need to be
paired or registered.!% Some features will not have mates, while others have more than
one. Figures 5-2 and 5-3 give three examples of different rules for registerihg predicted
and observed features. Variations on these themes could also be considered. The regis-
tration then needs to be analyzed. Some comparisons can be made based on the registra-
tion alone. For example, does each assigned helix have one and only one mate in the
predicted secondary structure? A second level of analysis looks in more detail at the

pairings. For example,

10 Although the term alignment would describe this step, alignment has taken on a specific
meaning in the context of protein sequence studies.
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e How do the sizes of the assigned and predicted helices
compare?

o How far apart are the mid-points of the respective
assigned and predicted helices?

5.2.1. Taylor’s Structure Percentage

In an appendix to an article on using templates to predict supersecondary structural
motifs (Taylor and Thornton, 1984), Taylor (1984) developed a feature based score
called a structure percentage. An example is shown in Figure 5-2. A registration of
observed and predicted secondary structure units (strands and helices) is based on a
minimum one residue overlap. The registration was used by Taylor to produce a struc-
ture abstract for the observed secondary structure and each prediction. Taylor’s structure
percentage was designed for comparing supersecondary structure motifs and not secon-
dary structure predictions. Although the goals of the evaluation are different, Taylor’s
approach appears to be a good starting point — especially with respect to the issue of

registration.

5.2.2. Alternative Registrations

Taylor’s single residue overlap rule is dependent upon the secondary structure
assignment method. If an observed helix and a predicted helix share only one residue,
that residue is an N[C]-cap for one helix and a C[N]-cap for the other. As discussed in
Chapter 4, the caps of helices are difficult to assign and predict. Why should an observed
helix be registered with a predicted helix if they share but one residue in common? Fig-
ure 5-3 provides examples of two alternative registration rules which put more emphasis

on correctly predicting the central region of the helix.
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Observed

Structure Percentage = 3/5

Figure 5-2: Taylor’s Structure Percentage

First the predicted and observed features are registered. Starting at the N-
terminal of the sequence, stop at the first C-terminal residue of a secondary
structure unit (helix or strand). Go to the same residue in the parallel feature
diagram and see if the same type of unit is found. If so, these two units are re-
gistered and a matching column can be entered in the structure abstract matrix.
If not, the unit is not paired with another unit and a dash goes into the abstract.
This is shown here for the third helices of both the assigned and predicted
feature diagrams. Continue attempts at pairing using the N-most C-terminal of
any unit which has whose pairing (or non-pamng) is not deteumned until all
units have been considered.

The structure abstract matrix follows from the registration. A column is pro-
duced for each pairing (or non-pairing) arrow in the registration. One row is
formed for the observed assignment and another for the prediction. The entries
are a for helix and - for turn. The structure percentage is simply the number of
columns with matching entries divided by the total number of columns.

Even with a more stringent set of registration rules, the calculation of the structure
percentage is too simplistic for evaluating predictions. No regard is given to the type of
error (e.g. a missing helix, extra turn, length of features) made by the prediction. All

errors are given the same weight.
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Figure 5-3: Alternative Registrations

Panel A- Single Central Residue Overlap - A registration that requires only a
single residue overlap would be depéndent upon the assignment algorithm.
This example requires that a central residue of a secondary structure unit must
overlap with a similarly assigned residue in the parallel feature diagram in ord-
er to define a pairing. In this definition the parallel residue can be in any posi-
tion of the secondary structure unit. A broad definition of central residue (e.g.,
each secondary structure could have more than one central residue) lowers the
dependence upon the assignment algorithm. It also focuses the scoring on ac-
curate prediction of the cores secondary structure units.

Panel B- Double Central Residue Overlap - The single central residue over-
lap registration (defined in Panel A) does not guarantee that the cores of both
of the paired units are covered by the extent of the opposite units. Although
the core of the fourth predicted helix is covered by the fourth assigned helix,
the core of the fourth assigned helix is not cover by the predicted helix. In this
example, a pairing units occurs only when a central residue from each poten-
tial mate, finds a partner residue. A double central residue overlap rule
demonstrates a high standard for pairing.
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5.3. Pseudo-String Editing

When comparing a predicted secondary structure to an observed secondary structure
for a given protein one might ask the question, what mistakes distinguish the prediction
from the observation. Some mistakes are not as damaging to the long term goal (e.g., ter-
tiary structure generation) as others. Another way of asking this question is what altera-
tions are necessary to take a predicted secondary structure and transform it into an
acceptable approximation of the observed secondary structure. Consider the two predic-
tions shown in Figure 5-4. Prediction 1 fails to show the turn between the B and C hel-
ices. An insertion of a short turn breaking helix BC into two helices would produce a
good approximation by prediction 1. Prediction 2 has all four helices well registered
with the observed secondary structure. The predicted A helix is more than twice as large
as the observed A helix. Contracting the right (carboxy) half of the predicted A helix
would produce an approximation by prediction 2. Some consideration might be given to
expanding the left (amino) end of the predicted D helix, but unpredicted 6 residues may

not be important to the approximation.

Each type of alteration could be given a cost in scoring points, and the prediction
with the lowest score would be considered best. In the Figure 5-4 examples, the cost of
inserting a turn might outweigh the cropping of a helix. A scoring method can be con-
structed based on this alteration scheme. Borrowing constructions from the well studied
field of string edit distances, a new scoring method, pseudo-string edit distances, could

prove to be a useful approach to feature based scoring.
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observed:
“ A §§ §EC EE D
prediction 1:
lf A <o BC EZ D
prediction 2:

i A B C
—0 35" - 78

Figure 5-4: Feature Diagrams for Editing

These feature diagrams (based on 1ccr) are presented to consider what changes
are necessary to transform each of the predictions into approximations of the
observed feature diagram. This is discussed in the text.

5.3.1. String Edit Distances

This subsection gives on overview of string edit distances. It is presented to iden-
tify some of the issues that will need to be considered for an implementation of pseudo-
. string editing. A detailed examination of string editing can be found in Sankoff and

Kruskal (1983).



INDUST-R-Y- INDU--8TRY
IN---TEREST INTEREST--
delete D substitute T for D
delete U substitute E for U
delete S insert R
insert E insert E
insert E delete R
substitute S for Y delete Y
insert T
IN--DUSTRY INDUSTRY
INTEREST-- INTEREST
insert T substitute T for D
insert E - substitute E for U
substitute R for D- substitute R for S
substitute E for U substitute E for T
delete R substitute S for R
delete Y substitute T for Y
Figure 5-§: String Edit Examples

Four examples of string edits are shown. In each case, a set of edits transforms
INDUSTRY to INTEREST. Bold characters show places where the same
characters can be aligned. Dashes show insertions and deletions. Substitutions
are shown by different characters in the same position.
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d(a,b)20 nonnegative
d(a,b) =0 if and only if @ = b identity
d(a,b)=d(b,a) symmetry

d(a,b)+d(b,c)2d(a,c) triangle inequality

Figure 5-6: Distance Requirements

In this figure, d is a relation and a and b are objects (e.g., strings). These four
requirements are necessary for a relation to be considered a mathematical dis-
tance metric.

Assume that you have two character strings, INDUSTRY and INTEREST.
Through the use of three string edit operations, insertion, deletion, and substitution, one
string can be transformed into the other. Four examples are shown in Figure 5-5. By
assigning a cost for each operation, totaling the costs of each set of operations, and deter-
mining the set of operations which minimizes the total cost, a metric can be placed on the
distance between strings. The assignment of the individual operation costs needs to
preserve notions of a metric which are summarized in Figure 5-6. These imply that the

cost of an insertion must equal the cost of a deletion to preserve symmetry.

Table V-1 displays four cost schemes and their application to each of the four string
edit examples. The first scheme is based on the assumption that all operations should
cost the same. The second scheme also gives equal weight to operations after consider-
ing that a substitution is equivalent to an insertion plus a deletion. The third scheme
encourages substitutions. There may be limitations placed on which characters are sub-
ject to substitution. A scheme could also give different costs to different sets substitu-
tions as long as the metric constraints of Figure 5-6 are preserved. This is exemplified by
the fourth scheme where D-T and U-E substitutions are preferred. Table V-1 demon-

strates that the ranking of string edit sets is dependent upon the allocation of costs on
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Table V-1-A
Scoring  indel substitute comment
Scheme

[T 1 1 1 for each operation
II 1 2 substitute = delete + insert
I 2 3 reward substitutes
v 2 2forD-TorU-E reward substitutes
3 for others to varying degrees
Table V-1-B
ScoringScheme: I II I IV

Edit Set

[INDUST-R-Y- 7 8 15 1I5
IN---TEREST

IN--DUSTRY 6 8 14 13

INTEREST--
INDU--8TRY 6 8 14 12
INTEREST--
INDUSTRY 6 12 18 16
INTEREST

Table V-1: String Edit Scores

Four different scoring rules, I, II, III, and IV, (Table V-1-A) are applied to the
four different string edits shown in Figure 5-5. The bold numbers in Table V-
1-B show the lowest score for each set of scoring rules. The "shortest” string
edit is dependent on the scoring rules.

each operation. Moreover, the allocation should be based on the underlying goals of cal-
culating the string edit distance. For example, in studying homologies between protein
primary sequences, some substitutions (e.g., I [isoleucine] for L [leucine]) should be

less costly than others (e.g., G [glycine] for W [tryptophan]).

The actual distance between two strings is the minimum total cost of editing one
string into the other. The problem of computing the optimal edit sequence is well
studied (Masek and Patterson, 1983). Algorithms have execution times of order O(jk)

where the strings have lengths of j and k.
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5.3.2. Pseudo-String Objects

In summary, string editing can be used to define a distance metric between strings.
Characters are string edit objects which are manipulated by string edit operations. The
metric is defined by an allocation of costs on operations. The distance is the minimum
total cost of transforming one string into the other. Given this brief summary of string
edit metrics, a parallel world of pseudo-string edits can be constructed. The objects,
operations, and cost allocation schemes described in these three subsections are merely
examples of a possible construction. Additional research will be necessary to produce a

working pseudo-string editing metric.

Before describing pseudo-string editing, it is important to note that I am not propos-
ing to look at secondary structure assignments and predictions as character strings of As
and ts. Though one could take At strings (as shown in Figure 4-3) and produce string
edit distances, these distances would be another residue based score. Pseudo-string

objects need to be at the feature and not residue level of abstraction.

Feature diagrams can be viewed as pseudo-strings composed of helix and turn
objects. Although feature based scoring is meant to complement residue based scoring
by not considering individual residues, helix and turn units need some length attribute.
This could be accomplished by having three sizes for each object type giving six dif-

ferent type pseudo-string objects (PSOs):

short helix
medium helix
long helix
short turn
medium turn
long turn.

The exact definitions of these PSO types need to be established.
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In string editing, the string objects are discrete characters. In pseudo-string editing,
the objects are fuzzy.!! The number of residues represented two PSOs of a given PSO
type may vary. For example, in Figure 5-1 the observed A helix is 10 residues long
while the prediction 2 A helix has 8 residues. The same type of PSO (e.g., a medium
helix) could be used to represent each helix. Both the observed secondary structure and

prediction 2 have matching pseudo-string representations.

5.3.3. Pseudo-String Operations

Continuing with a sample pseudo-string edit system, six edit operators (PSOPs) are
shown in Figure 5-7. In the following descriptions, a turn is used as the sample object,

but it is easy to see how the operators would act on any of the other five objects.

11 This is not a reference to fuzzy set theory (Kandel, 1982). At this point in time, I am aware
that the field of fuzzy set theory is worth exploring but I am leaving that to future work.
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! } -{ Jren
I — —f } {
insert turn delete turn

-1 L Jre— -1 1 |

b | H — | } { !
expand left tum contract left turn

——— F———}— — —H —

b | H }— - } f 1
expand right turn contract right turn

—{ — | r

- ] —{ } {  e—

shift left tum shift right tumn

Figure 5-7: Pseudo-String Editing Operations
Three pairs of possible pseudo-string editing operations are shown. In each
case, the operation takes the bottom feature diagram and produces the top
feature diagram. In these examples involving turns, only the helix caps which
actually touch the modified tum are changed The caps at posmons Aand B
are unchanged. ‘

insert short turn- breaks the existing helix into two smaller helices and a short turn.
The N-cap of the first new helix and the C-cap of the second match the caps of the origi-
nal single helix.

delete short turn - removes the turn and concatenates the two surrounding helices.

shift right turn - moves the turn to the right by lengthening the neighboring left
helix and shrinking the neighboring right helix. The N-cap of the left helix and the C-
cap of the right remain fixed.

shift left turn - moves the turn to the left by shrinking the neighboring left helix and

lengthening the neighboring right helix. The N-cap of the left helix and the C-cap of the
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right remain fixed.

expand left small turn - takes a small turn and leaves a medium turn. The C-cap of

the adjacent left helix is moved to make room for the larger turn.
contract left medium turn - would reverse the previous operation.

expand right small turn - takes a small turn and leaves a medium turn. The N-cap

of the adjacent right helix is moved to make room for the larger turn.

contract right medium turn - would reverse the previous operation.

- 1 -y o f o B —1
—{— 1}
-2 I |
—F{  }—
.+ expand helix B

expand left helix A

Figure 5-8: Nonreverse Pseudo-String Editing Operations

Two pseudo-string editing operations are shown. In each case, the operation
takes the bottom feature diagram and produces the top feature diagram. This
example shows that a delete turn is not the reverse of an insert helix. Similar-
ly, applying expand-left helix and expand-right helix produces a slightly dif-
ferent result from the delete turn.

These operators can be viewed as pairs of reversible operations. Some of the
reverse operators are necessary because of the requirement that either pseudo-string can
be edited to match the other. As shown in Figure 5-8, a delete turn is not the same as an

insert helix. The number of operators could be reduced if both pseudo-strings could be
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edited simultaneously until the resulting pseudo-strings were the same. Other operations,

e.g., shift, are redundant but convenient.

String Edit Example
ABCD
ABD

insert C
Pseudo-String Edit Example
A’ B

A
___..__l l—

insert short turn
Figure 5-9: PSOPs and Adjacent PSOs

In both examples an insert is applied to the lower [pseudo-]string to produce
the upper [pseudo-]string. Unlike string edit operations, pseudo-string edit
operations can affect the object type of more than one object in a single opera-
tion.

Unlike string edit operators, a PSOP can affect more than one object during the
course of a single operation. In Figure 5-9, the string insert pushes D to the ﬁght, but
does in change the B or D characters. The pseudo-string insert splits long helix A into

medium helix A’ and medium helix B.

5.3.4. Pseudo-String Operational Costs

The final component is composed of the costs for each operation. Just as in the case
of string edits, the metric constraints of Figure 5-6 must be observed. Although one
could argue that the cost of inserting a helix should be different than the cost of deleting
a helix, the symmetric relationship between these two operations demands that they be

scored the same. This does not mean that inserting a helix must cost the same as insert-
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ing a turn.

The underlying intended use for the secondary structure prediction is very impor-
tant. For example, if the underlying use is tertiary structure generation based on a com-
binatorial approach (Cohen, Sternberg, and Taylor, 1980; Cohen and Kuntz, 1989), then
the cost of changing the size of a helix should be less that the cost of inserting a helix.
This is because the tertiary fold will not be changed as much by a shortened helix as it
would by the presense of an additional helix. Although ordering the relative costs of
indels (insertion or deletion), shifts, and size changes (expansion and contraction) flows

from the underlying use, quantifying this ordering is much more difficult.
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5.4. Conclusions

A feature based scoring method would complement residue based scoring for secon-
dary structure predictions. Feature based scoring allows the purpose of undertaking a

secondary structure prediction to be reflected in the scores.

Two general classes of feature based scoring are worth considering. A simple ver-
sion of a "registration and analysis method" using any of three registration methods and
Taylor’s structure percentage analysis gives some additional information, but the analysis
(structure percentage) is too simple. More work could be done on developing a more

sophisticated and useful analysis scheme.

Pseudo-string edits are not string edits on a turn-helix string representation of resi-
dues. The pseudo-string edit distances show promise, but require much additional work
before they can demonstrate that promise. This future work for pseudo-string edit dis-
tances includes:

e complete definitions for pseudo-string objects;
e complete definitions for pseudo-string operators; and

e costs for each operator-object combination.



Chapter 6
A Segment Based Approach to Protein Secondary Structure Prediction’

6.1. Introduction

Under suitable conditions, many proteins adopt a compact, globular fold which is
dictated by the amino acid sequence of their polypeptide chain. However, the precise
relationship of sequence to structure remains unresolved. Substantial experimental and
theoretical efforts have been directed at understanding the protein folding problem.
Experimentalists have uncovered evidence of native-like intermediates along the folding
pathway (Hughson, Wright, and Baldwin, 1990; Goto and Fink, 1990; Ptitsyn et al.,
1990). Theoretical methods are also being used to explore possible folding pathways,
and to gain an understanding of the forces which stabilize folded proteins. To date, three
approaches have been employed: energy minimization and/or molecular
dynamics (Levitt and Warshel, 1975; Nemethy and Scheraga, 1977; Weiner et al., 1984,
McCammon, Gelin, and Karplus, 1977; Karplus and McCammon, 1981; Beveridge and
Jorgenson, 1986), Lattice models (Skolnick and Kolinski, 1989), and semi-empirical sub-
structure condensation (Cohen, Richmond, and Richards, 1979; Cohen, Sternberg, and

Taylor, 1980).

Energy minimization techniques and molecular dynamics approaches offer the
promise of a rigorous treatment of the inter- and intra-molecular forces in protein struc-

tures. However, several practical details of these methods remain unresolved. The

+ This chapter is similar to the manuscript of a paper prepared for publication:
Scott R. Presnell, Bruce 1. Cohen, and Fred E. Cohen; A Segment Based Approach to Protein
Secondary Structure Prediction.
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current potential functions do not provide an accurate representation of energy states,
bulk solvent is not handled adequately, and optimization algorithms cannot sample the
entirety of conformation space. Moreover, computing power enables us to visualize no
more than 2 or 3 nanoseconds of dynamic variation while protein folding requires mil-
liseconds to seconds (Udgaonkar and Baldwin, 1988; Roder, Eloeve, and Englander,

1988).

Monte Carlo simulations utilizing simplified lattice frameworks have been per-
formed in an attempt to elucidate general rules for globular protein folding. These simu-
lations have incorporated several different lattice types (cubic, diamond, and "210" or
"knights walk") to simulate the folding pathways of four helix bundles such as apo-
ferritin and somatotropin (Sikorski and Skolnick, 1989), and B-barrel proteins such as
plastocyanin (Skolnick and Kolinski, 1990) These methods provide an interesting vig-
nette of the possible folding pathways. However, the simulations currently require that
position specific conformational preferences be built into the backbone atom representa-

tion of each simulated sequence.

Semi-empirical methods also suffer some limitations; but they have found utility in
the development of structure models. The present semi-empirical condensation methods
are based on a hierarchical definition of globular proteins. The classical hierarchy struc-
ture presents the following categories: primary, secondary, and tertiary structure. Typi-
cally, condensation schemes fold primary structure into secondary structure, then secon-
dary structure is assembled into tertiary structure. This strict ordering is not intended to
be an accurate reflection of a protein folding pathway: some aspects of secondary struc-

ture formation may be influenced by specific tertiary interactions. However, current
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work on the molten globule state indicates that the intermediate stages in protein folding
show a large fraction of the secondary structure apparent in the native state (Hughson,
Wright, and Baldwin, 1990; Goto and Fink, 1990; Ptitsyn et al., 1990). The body of
work that focuses on the transition of secondary structure to tertiary structure will not be
considered here (Cohen, Richmond, and Richards, 1979; Cohen, Sternberg, and Taylor,
1980; Cohen, Sternberg, and Taylor, 1982). This work concentrates on advanced tech-

niques for relating primary structure to secondary structure.

Several groups have reported methods for the prediction of secondary structure in
globular proteins (for a review see: Schulz, 1988). These methods group loosely into two
classes. The collection of known structures provides a database of information about the
propensity of the individual amino acid to reside in speciﬁc types of secondary structure.
The first class of methods is based on statistical analyses of this data. The progenitor of
these methods was developed by Chou and Fasman (Chou and Fasman, 1974; Chou and
Fasman, 1978). Specialized treatments of context in the amino acid sequence (e. g. Mar-
kov dependence) or the information content within the sequence were developed into
prediction methods by Garnier, et al. (referred to here as the GOR method, Gamier,
Osguthorpe, and Robson, 1978; Gilbrat, Garnier, and Robson, 1987). The most
advanced of these methods now combines many predictive schemes, or combinations of
predictions from sequences homologous to the sequence of interest (Levin and Gamier,
1988; Nishikawa and Ooi, 1986). Recently, computational neural networks have been
used to investigate the mapping of protein sequence to secondary structure (Qian and

Sejnowski, 1988; Holley and Karplus, 1989; Kneller, Cohen, and Langridge, 1990).

The second class of methods rely on biophysical principles as a basis for the predic-
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tion of interactions among the amino acids. This approach was first outlined by

Nagano (Nagano, 1973; Schulz et al., 1974), and Lim (Lim, 1974a; Lim, 1974b). For
globular proteins, these principles include compactness of form, the presence of a hydro-
phobic core, or cores, and a polar outer shell. The geometries inherent in the two arche-
types of secondary structure, a-helix and pB-sheet, afford restrictions on the types of
amino acid side- and main- chain interactions. Our methods for the generation and
analysis of patterns that recognize sequence-structure correlates have followed from this

second class of techniques.

Long range interactions are believed to play a critical role in the formation of com-
plete tertiary structure. Kabsch and Sander (1984) were among the first to note that
identical or similar sequences of up to five residues can adopt decidedly different three
dimensional structures. Hence, five residues of context is not enough to define unique
three dimensional structure. Classical secondary structure prediction methods typically
achieve results of no greater than 65% accuracy. This limitation has often been attri-
buted to the absence of long range interactions in the prediction algorithms. At first
glance, the specification of long range interactions seems a daunting problem. But, gen-
eral knowledge of the nature, or types of long range interactions expected can be
included into predictive schemes. In previous work, Cohen et al. (1986) described the
specification of regular expression patterns that could incorporate long range interactions
from the estimated turn distribution in proteins. The patterns developed under the
PLANS system were able to accurately locate turns in the three classes of globular pro-

teins: (o/ar, a/P, B/P) with success rates approaching 90%.

We report here the extension of the PLANS work to predict regular secondary struc-
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ture in o/ proteins. This advancement involved two explicit developments. First, the
general problem of regular secondary structure prediction was divided into subtasks.
Regular expression patterns were developed to recognize the individual component parts
of helices, the amino terminus, the core, and the carboxy terminus. Those patterns were
designed to function in an autonomous fashion. Second, A Language for the Prediction
of Protein Substructures (ALPPS) was formulated to coordinate the development and
analysis of meta-patterns: patterns of patterns. In the case of helical structure prediction,

meta-patterns coordinate the recognition of the helix components.

The patterns developed in this work recognize three helical features to differing
extents. Scoring the success of feature prediction, we are able to detect 95% of the helix
core structures, with a 10% over-prediction rate (for every 10 helix core features
predicted correctly, one over-prediction will occur). N- cand C- terminal helix caps are
much more difficult to recognize. One half of these features are detected, but a 25%
over-prediction rate is observed. The recognitipn of individual features at these rates
produces prediction accuracies that exceed the statistically based prediction algorithms.
The residue based scores from the pattern based work presented here do not surpass the
the scores obtained by the latest neural network algorithms. However, pattern based
methods allow complete inspection, and consequent structural interpretation, of the tools
used to predict structure. Interpretation of the internal weights of neural network connec-

tions is difficult for all but the simplest architectures.

In summary, we can analyze protein structures for specific features of helical secon-
dary structure, and develop patterns to recognize those features. We can also orchestrate

the recognition of these features in specific orderings via a language that describes meta-
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patterns. The developments described in this work mark the emergence of a prediction
scheme that uses the hierarchical organization in protein structure to facilitate the the

inclusion of sequential, long range interactions.

6.2. Methods

Definitions. Our previous work on the prediction of turns considered protein
sequences from three structural classes of proteins o/c, /B, B/B (Levitt and Chothia,
1976). In this work, we have focused on the features that stabilize individual a-helices
within protein structures constructed primarily of helices (o/c protein structures). This is
not intended to be a representative sampling of all globular proteins. Instead, it provides
a limitation on the variety of structural interactions to identify, characterize, and predict.
For o/a proteins the polypeptide chain has only two conformational states: helix and
turn. All forms of helical structure (3,4, @, and % helix) are treated identically. Simi-
larly, any region that interconnects regular secondary slructure is considered a turn.

One drawback to class specific structure prediction algorithms is the problem of
determining the structure class of the protein under scrutiny. Protein class determination
in the absence of a crystal structure remains a difficult problem in biochemistry (Sheridan
et al., 1985; Klein and Delisi, 1986; Deleage and Roux, 1987). However, work in
sequence analysis (Bowie et al., 1990), and machine learning techniques are beginning to
provide new algorithms for this task (Kim, 1991). Advanced experimental methods (Lee
etal., 1990) are also providing new methods beyond the classical circular dichroism

techniques for determining structure class from experimental data (Johnson Jr., 1990).

Data Sets. Twenty polypeptide chains from the collection of o/a proteins in the

Brookhaven protein data bank (PDB, Bernstein et al., 1977) were pooled and split into
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two sets of ten chains each. One set was used for the development and analysis of pat-
terns. The sequences of the other set were sequestered from examination for the pur-
poses of unbiased evaluation after pattern development was complete (Table VI-1).
Except for the structure of Tobacco Mosaic Virus Coat protein, the data sets were
selected from crystal structures that have an atomic resolution greater than 2.5 &. Iden-
tity scores were evaluated after alignment with the multiple sequence alignment program
PIMA (Smith and Smith, 1990). The greatest amount of identity between any two
polypeptide chains was 42% (between fetal human hemoglobin vy chain and human adult

human hemoglobin B chain). The next highest identity was 27%.

Table VI-1: Proteins Used for Pattern Development and Analysis

Development Set
PDB  Protein
lcer Cytochrome C (Ochi ez al., 1983)
1fdh  Human Fetal Hemoglobin (gamma chain) (Frier and Perutz, 1977)
2ccy  Cytochrome C prime (Finzel er al., 1985)
2cts Citrate Synthase (Remington, Wiegand, and Huber, 1982)
2lhl Leghemoglobin (Arutyunyan et al., 1980)
2lhb Hemoglobin V (Honzatko, Hendrickson, and Love, 1985)
2lzm T4 Lysozyme (Matthews, 1975)
3c2c  Cytochrome C2 : (Bhatia, 1981)
3cin Calmodulin (Babu, Bugg, and Cook, 1988)
ﬁv Parvalbumin B (Moews and Ktetsinger. 1975)
Test Set |
156b  Cytrochrome B562 (Lederer ez al., 1981)
lcc§  Cytochrome C5 (Carter et al., 1985)
lecd  Erythrocruorin (Steigemann and Weber, 1979)
lhmq Hemerythrin (Stenkamp, Sieker, and Jensen, 1983)
Imbd Myoglobin (Phillips and Schoenborn, 1981)
Cytochrome c Peroxidase (Finzel, Poulos, and Kraut, 1984)
2tmv  Tobacco Mosaic Virus Coat Protein (Namba, Pattanayek, and Stubbs, 1989)
3hhd Human Hemoglobin (alpha chain) (Fermi ez al., 1984)
3icb Vitamin D-dependent Calcium-binding Protein  (Szebenyi and Moffat, 1986)
3wrp  Trp Aporepressor (Lawson er al., 1988)
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Secondary structure assignment. Secondary structure assignment was performed
with the aid the the program DEFINE (Richards and Kundrot, 1988). Briefly, the algo-
rithm within DEFINE evaluates the fit of actual secondary structure backbone C,, atoms to
an ideal secondary structure through a difference distance matrix technique. Specific
structure "masks" are used to make secondary structure assignments to the three dimen-
sional structure. The cumulative root mean squared difference between the ideal and
actual structures is used to evaluate the assignment of the desired structure type. In this
study, 0.75 A was used as the maximum RMS difference between the ideal and actual
helical structures. This yielded a secondary structure assignment that was consistent with
most authors assignments. While other programs are available for structure
assignment (Kabsch and Sander, 1983a; Sklenar, Etchebest, and Lavery, 1989), DEFINE
was employed because it more closely matched the crystallographers’ helical structure

assignments.

Evaluation. The accuracy of the algorithms presented here were evaluated using
several 'measures. Feature based scoring was used to evaluate the predictive capabilities
of the PLANS patterns. If a pattern appears within four residues of the targeted feature
of structure (e.g. the core of an a-helix), that event is considered a true positive (7P), oth-
erwise the event is registered as a false positive (FP). The absence of a prediction for a
targeted feature is registered as a false negative (FN). Since PLANS patterns do not
explicitly predict the absence of a structure element, true negatives (TN) cannot be
recorded. We represent the success of a feature based prediction as the quotient of the
correctly predicted features and the total number of features. This index, often referred
to as Q,, is defined as follows (Schulz and Schirmer, 1979): This index all but ignores

the possibility of over-prediction, so we also report the quotient of over-predicted
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TP

Qr=TpriN ®
features (FP) and the total number of features (referred to simply as O):
FP
= 4
0 TP+FN @

The primary goal of the patterns and algorithms developed in this work was the
prediction of helical features. However, structural feature analysis is not a commonly
accepted standard for algorithm comparison. Residue based scoring, in which each resi-
due is given equal weight, was used to evaluate the success of helical predictions for the
purposes of comparison to other algorithms. Residue based scoring and trimming are dis-
cussed in Chapter 4.

Pattern Development. In our previous work, PLANS was developed to facilitate
expression of sequence-structure correlates as regular expression pattems (Cohen et al.,

1986; see also Chapter 2). We continue to use that regular expression syntax and algo-

rithm as the basis for turn and helix coinponent pattern development in this work.12

Turn Patterns. In the ALPPS assisted prediction of regular secondary structure, the
first step is to predict the likely locations of turns. This is done using the composite turn
prediction pattern, TU, developed previously (Cohen ef al., 1986). TU is the synthesis of

several patterns that predict turn location. A cluster of hydrophilic residues provides the

12 The PLANS patterns described here, which show primarily sequential relationships, are
presented in a simplified syntax. The general PLANS pattern syntax is pattern_name : pattern.
@ represents one of a set of hydrophobic residues; A, V,I,L,M,C,K,F, W, or Y.
Y represents one a set of hydrophilic residues; A, D,E,H,K,N,Q, R, S,or T.
- represents one of the acidic amino acids; D or E.
+ represents one of the basic amino acids; K or R.

sents any amino acid.
Eg represents residues X or Y.

¥ represents the complement of the set V.
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strongest signal. A pattern that explicitly recognizes the special role of proline in initiat-
ing and terminating helices is also included. Weaker turns are recognized as an inter-
rupted collection of hydrophilic residues spaced appropriately from the strongest turn
indications. The relationships between the constituent aspects of TU and the composite

pattern is shown in Figure 6-1.

Helix Component Patterns. The characteristics of helical residues vary as a func-
tion of their position within the helical structure. There are often differences in the spa-
tial distribution of residues (e.g. the amphiphilic character of a helix), as well as differ-
ences in residue types between the center and the termini. Several authors have noted
specific sequential characteristics of helices from globular proteins (Richardson and
Richardson, 1988), and others from membrane associated proteins (Rees, DeAntonio,
and Eisenberg, 1989; Sternberg and Gullick, 1990). In order to efficiently describe pat-
terns that recognize diverse a-helical characteristics in o/ proteins, we have chosen to
subdivide helices into three specific components for study: the central section or core
region of the helix, the amino terminal area of the helix (referred to hereafter as the N-
cap) and carboxy terminal area (C-cap). While the principle of structure subdivision is
general, the PLANS patterns subsequently described are specific to soluble, globular pro-

teins. The patterns would have to be reformulated for integral membrane proteins.

Helix Core. The criteria for the prediction of the helix core regions incorporate
several different biophysical properties (Figure 6-2). Sequential placement of hydropho-
bic residues in a pattern suggestive of a hydrophobic patch on one face of a helix would
facilitate the creation of a hydrophobic interaction with another part of the

protein (Schiffer and Edmundson, 1968).
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PATCH: ©.00.®
Acidic and basic residue can be placed in such a way as to generate a charged pair on

one surface of the helix.

PAIR: -+
Empirical rules can be used to identify a putative helix-helix interaction site (Richmond

and Richards, 1978).
WNTER:  OYY[AYvo
Long stretches of hydrophilic residues indicate a turn or loop regions on the surface of
the molecule. By process of elimination the remaining areas are likely to contain helices.
NO-PHIL: Y¥VYY¥YYY
We have found that these criteria are effective when given equal weights (i.e. not
hierarchical). These individual PLANS patterns, along with others, are collected into an

aggregate helix core pattern called HCORE.

Helix N-cap. Three sub-types of patterns have been developed to describe the
amino terminal capping sites of the helices (Figure 6-3). Those patterns that give the
most reliable indication of a helix N-cap stem from the combination of a residue com-
monly found at the exact helix N-cap site (in this case N, S, T, or D) and a proline

residue (Richardson and Richardson, 1988).

Patterns containing a residue from the set N, D or S, one or more acidic residues one to
three residues from the N-cap site, and one or more large hydrophobic residue five to six

residues from the N-cap site are also highly reliable.
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Leu 15

Figure 6-2-(a): Helical Core — Hydrophobic Patch

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c) form a puta-
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy-
drophilic residues might also indicate a helical region.
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Figure 6-2-(b): Helical Core — Charged Pair

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c¢) form a puta-
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy-
drophilic residues might also indicate a helical region.
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Figure 6-2-(c): Helical Core — Putative Helix-Helix Interaction Site

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c) form a puta-
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy-
drophilic residues might also indicate a helical region.
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Figure 6-3-(a): N-Cap Examples — Specific Residues

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi-
dues placed just after a residue with a strong N-cap preference (3cpv residues
59-65); and (c) a Strong N-cap residue "terminating” a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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Leu 65

Figure 6-3-(b): N-Cap Examples — Acidic and Large Hydrophobic Residues

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi-
dues placed just after a residue with a strong N-cap preference (3cpv residues
59-65); and (c) a Strong N-cap residue "terminating” a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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Ser 39

Figure 6-3-(c): N-Cap Examples — ""Terminating'' a Putative Hydrophobic Patch

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi-
dues placed just after a residue with a strong N-cap preference (3cpv residues
59-65); and (c) a Strong N-cap residue "terminating” a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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The placement of the acidic residue correlates well with the hypothesis that interaction
with the helix dipole is important to the stabilization of helical structure. These two pat-
terns are considered at the same level in the N-cap pattern hierarchy. The next most reli-
able patterns require a residue that strongly suggests a N-cap site "in phase" with a clus-
ter of hydrophobic residues on one face of the putative helix. In the case of N-caps, it
seems that there is a requirement for a hydrophilic residue, just after the N-cap position,

to terminate the hydrophobic patch.

NPHASE: Y. 00..D
S B
This effect will be referred to as the "hydrophobic phasing” of the cap site.

These patterns, along with others are collected together into a composite N-cap pattern

referred to as NCAP.

Helix C-cap. The C-cap prediction scheme follows an analogous hierarchical con-
struction of patterns, but the critical residues differ. The pattern that provides the most
reliable, independent, indication of a carboxy terminal site for a helix is the juxtaposition
of a G at the C-cap site and a P one or two residues after the helix.

CSIMPLE: GP
Patterns containing, one of G, H or K (residues indicative of the C-cap site) and one or
more basic residues one to three positions from the C-cap site, or a large hydrophobic

residue three to four positions upstream of the C-cap site have also proven predictive.
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By analogy with the N-cap patterns, a residue that strongly suggests a C-cap specific site
"in phase” with a hydrophobic patch on one face of a putative helix constitutes the final

class of patterns used in C-cap prediction.

CPHASE: O.00.. g

These patterns, along with others are collected together into a composite C-cap pattern

referred to as CCAP.

ALPPS Pattern Language. ALPPS, as described in Chapter 3, was used to produce
patterns for this work. By utilizing the information in the required sequential ordering of
the secondary structure component patterns, we take the next step in introducing long
range interactions into secondary structure prediction.

The location of the turn predictions generated by the TU pattern is used to segment
the sequence into blocks. After initial segmentation, all the sequence blocks are hidden
from consideration. Then, those blocks that contain strong evidence for helical structure
are exposed for evaluation. This is done using the PLANS pattern for helix core recogni-
tion: HCORE. Each visible block is then examined for orderings of PLANS patterns that
match the region definitions supplied in the form of an ALPPS pattern. The subsequent
PLANS patterns are then evaluated within the context of a block. Helical regions are
specified under four possible conditions. Under the best of conditions, the the amino ter-
minus, the core, and the carboxy terminus of a helix are recognized by the PLANS pat-
terns NCAP, HCORE, CCAP respectively. The sequence beginning with the location of the

NCAP pattern and ending with the CCAP pattern is marked as a helical region. If one or
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more of the capping patterns is not recognized within the block, helical regions are con-

structed from the available information. The ordering of region definitions is significant,

and there is at most one helical region per block. Figure 6-4 presents a symbolic

representation of the different stages of prediction for the the protein carp parvalbumin B.

A complete listing of the ALPPS and PLANS patterns used to produce the results

discussed in this chapter can be found in Appendix C.

Figure 6-4: A Working Example of an ALPPS Prediction

The first row of the figure on the next page is a description of the actual secon-
dary structure for carp parvalbumen b (3cpv). The next three rows show where
the sequence is broken into blocks using the turn prediction algorithm. The
next three rows indicate the low-level PLANS patterns that recognize the dif-
ferent helical foundations (N-cap, helix core, and C-cap). ALPPS then uses
the location of these PLANS patterns to define secondary structure. In this
case, ALPPS first looks for the correct juxtaposition of N-cap core and C-cap
then calls the region between the the N-cap and C-cap a helix. If one of the
helix caps cannot be found, the ALPPS constructs a helix covering the distance
between the remaining cap pattern and the helix core patterns, or possibly to
the end of the block. If there are no caps at all, the helical core pattern might

be used to define the helical region.
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6.3. Results and Discussion

Table VI-2 shows the predictive capabilities of individual PLANS patterns on the
specific structure sub-types: turns, helical cores, N-caps and C-caps. Because of a lack of
false negatives (FN), strict Q3 or C values as described earlier cannot be calculated: the
PLANS patterns are scored on a basis of feature recognition. Multiple identifications of

the same feature had no effect on the accuracy scores.

Table VI-2: Feature Scores

Development sequence set

Class Q) o TP FN FP
Tums 84% 12% 63 12 9
Cores 95% 10% 81 4 9
N-Cap 61% 20% 51 33 17
C-Cap 58% 27% 49 35 23

lest sequence set

Tums 2% 11% 47 10 6
Cores 95% 10% 63 4 7
N-Cap 51% 30% 34 33 20
C-Cap 35% 32% 23 4 21
Both sequence sets

Turns 83% 11% 110 22 15
Cores 9%5% 11% 144 8 16
N-Cap 56% 25% 8 66 37
C-Cap 48% 29% 72 19 44

The patterns used to predict the locations of turns show a high level of success. The
2% decrease in prediction accuracy from the development set to the test set suggests the
possibility that some patterns recognize specific features of the development set rather
than generalized biophysical principles of turn stabilization. Within an error range of

four residues, the strong turn patterns rarely generate false indications. However, the
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weaker turn prediction patterns are not as reliable an indicator of the placement of actual
turns. These patterns are more dependent on additional signals, such as the expected
periodic distance between turns (Cohen et al., 1986). As a consequence, most of the over
or under prediction (false positives and false negatives) are a result of the noise in these

secondary signals.

In a specific example of an over prediction (false positive), the first helix of Cyto-
chrome ¢ prime is broken by the presence of a weak turn indicator. Weak turn indica-
tions are not utilized if they are within eleven residues of strong turn indications. In this
particular instance, the weak turn indications occur 15 residues from the nearest strong

turn indicator. Hence, the pattern is accepted as an authentic turn (Figure 6-5).

Lysozyme contains an example of an under prediction (false negative). The last
block should be split into two blocks, but it is not. There are some weakly hydrophilic
residues in the area we would like to call a turn. While the area is sufficiently distant
from the previous turn, the signal is below the threshold for accepting a weak turn indica-
tor (Figure 6-6).
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The patterns used to predict helix core regions also appear successful. The lack of a
significant decrease in prediction accuracy is likely to indicate the recognition of general
principles in helix core formation. The few false positives for helix core feature stem
from a displacement or extension of the predicted helical core, either beginning too soon,
and/or ending too late in the sequence. Currently, it is difficult to associate this character
with a specific structure or sequence phenomenon. Short helices (of length 5 to 10) are
under-reported (false negatives), as are those helices with a strong hydrophilic character.
Prediction of the core region of these types of helices is generally dependent on the
recognition of complementary charged residue pairs, or a putative tertiary helix-helix
interaction site (Richmond and Richards, 1978).

The predictive capability of the N- and C- cap patterns is significantly lower than
that of the helix core patterns in both the development and test sets of protein sequences.
Similarly, the decrease in predictive accuracy from the development to the test set for the
cap patterns is currently greater (approx. 10% to 20%) than the decrease for the turn or
helix core prediction. This suggests a tendency for the capping patterns to recognize
specific features of the proteins in the development set, instead of general principles of
the amino acid sequences that initiate and terminate helices. There is no specific struc-
tural feature that identifies over-prediction. However, the lack of crucial residués in the
amino acid sequence near the site of the N- or C- cap typically characterizes under-
prediction. Often the capping patterns will have as a constituent one of a class of resi-
dues commonly found at the terminus of a helix. The N-cap positions in helices are often
one of the residues G, N, S, T, or D. The C-cap positions are usually G, K, H, or N.
Further, proline is often a constituent of C-cap areas of sequence, appearing one or two

residues after the cap position. If a helix does not begin or end in one of these residues,
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the likelihood of a correctly predicted helix cap is low.

These helix capping patterns suggest that one of a specific set of residues is required
(but not sufficient) to initiate or terminate a helix. A systematic approach to the
mutagenesis of N-caps in barnase by Serrano and Fersht (1989) has provided some addi-
tional data on this aspect of helix structure. Threonines found at two different helix N-
caps were mutated to several alternative residue types to examine the energetic contribu-
tions of different residues to helical structure stabilization. On the whole, the energetic
stability provided by the alternative residues commonly found at the N-caps corroborate
the statistical data presented by Richardson and Richardson (1988). However, the choice
of a "best" residue to terminate a specific helix appears to be dependent on the tertiary
interactions at the particular site. In this sense, the statistical data reported by Richardson

and Richardson is not sufficent to completely specify the N- and C- caps.

Multiple regions can be defined by the user specified ALPPS prediction patterns. In
the ALPPS pattern for predicting helical structure, four different region types have been
specified as described in the methods section and in Figure 6-4. These regions reflect the
amount of information available to specify the extent of the predicted helix. The number
of assigned regions (helices) can be evaluated against the number of predicted regions for
the protein sequences examined. Table VI-3 presents the number of each type of region
identified in each protein. There was no particular relationship between the type of
region predicted and the quality of the prediction for that region. Nor was there a more
general relationship between the distribution of region types and the overall quality of a
sequence prediction. However, some sequences appear to be more difficult to predict

than others given any prediction method. For example, both cytochrome C peroxidase

—
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and erythrocruorin are predicted equally poorly by the methods of Chou and Fasman
(1974), GOR (Garnier, Osguthorpe, and Robson, 1978), neural networks (Kneller,
Cohen, and Langridge, 1990), and ALPPS. The rank orderings of the proteins by success

rate using the different prediction methods were similar (data not shown).

Table VI-3: ALPPS Region Scores

Development set
Protein  Assigned Predicted | Both NoNt NoCt Noends Repechage

Helices Helices ends
lcer 5 4 1 1 0 2 0
1fdh 9 9 3 1 2 3 0
2ccy 5 6 2 1 2 1 0
2cts 21 24 5 7 5 6 1
2lhl | 8 1 5 1 1 0
2lhb 8 8 0 2 3 3 0
2lzm 11 9 4 1 1 3 0
3c2c 5 7 4 0 3 0 0
3cln 7 8 5 0 3 0 0
3cpv 7 7 4 0 1 1 1
Totals 85 90 & 29 18 21 20 2

Test set
156b 4 5 2 I 1. 1 0
lecd 8 7 ) 3 1 1 0
1mbd 8 6 2 2 1 1 0
3icb 6 5 3 0 2 0 0
lccS 4 3 1 0 1 1 0
2cyp 13 11 3 1 6 0 1
3wrp 6 5 0 1 2 2 0
1hmq 5 5 1 1 0 3 0
2tmv 6 6 1 0 3 2 0
3hhb 7 8 2 0 3 3 0
Totals 67 61 17 9 20 14 1

Table VI-4 presents the results of evaluating the predicted helical regions on a resi-
due by residue basis in comparison to helical residues defined by the automatic assign-

ment algorithms. In this two state prediction scheme, those regions not predicted as heli-
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cal were scored as turns. The Chou and Fasman algorithm (Chou and Fasman, 1974)
produced a predictive accuracy (Q@3) of 65% when applied to the collection of 20 all-
alpha protein sequences used in this study; the GOR algorithm (Garnier, Osguthorpe, and
Robson, 1978) provided an accuracy of 71%; the neural net scheme of Kneller et

al. (Kneller, Cohen, and Langridge, 1990) was 78% accurate; and the ALPPS algorithm
provided an accuracy of 71%. Trimming the N- and C-cap locations in both the assigned
sequence and the predicted sequence improved the Chou and Fasman, GOR, the neural
net, and ALPPS based predictions %2, %4, %6, and 6% respectively. Most of the indivi-
dual prediction scores increase as the endpoint locations are eliminated from considera-
tion, but some scores stay constant or decrease. This suggests that the overall error rate
in prediction stems mainly from the difficulty in assigning the N- and C-caps. It is our
experience that those predictions that do not benefit from neglecting the endpoints were
poor predictions from the start. These data give a relative indication of the ability each
algorithm possesses to predict the core features of secondary structure.

The primary source of error in the ALPPS prediction of helices results from failures
in the underlying PLANS patterns. These errors can be subdivided into two levels: the
segmentation of the sequence into structural units, or block definition, and the
specification of helices within those units, or region definition. The primary source of
block definition comes from correct identification of turns; here with the PLANS pattern
TU. Failure at this level results in either the scission of a segment of regular secondary
structure or the concatenation of two segments of regular secondary structure. Based on
our previous work in turn prediction, we had anticipated and planned for these failures.
We were able to describe a simple length based heuristic for splitting exceptionally long

blocks. This is analogous to the PLANS work where weak turn predictions were masked
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away from the location of strong turn indicators based on the expected distance between
turns for a given protein class. We were not able to develop a consistently accurate
heuristic for recognizing appropriate situations for adjacent block concatenation.

The errors in region specification are of two types: mis-assignment of the helical
core, or mis-assignment of the helical endpoints. When one or both of the helix termini
cannot be determined, helix is defined over the extent of the helical core pattern. This
usually leads to under- prediction, but can lead to over-prediction when false positive
helical core signals are generated. Predicted helical termini can also be located in a

manner which erroneously shortens the helical region.

ALPPS also provides information to drive a display of the secondary structure pred-
iction. Using the graphical display program MIDAS (Ferrin et al., 1988), one can evaluate
a secondary structure prediction in light of the the actual three dimensional structure of
the protein. Graphical display of the structures facilitates an inspection of the postulated
. 'sequencc-structme correlates for structural relevance. Examination of algorithm errors is
also greatly simplified by coloring the residues with respect to the types of errors (under
vs. over) in the secondary structure prediction. A MIDAS ribbon rendering which
highlights the differences in the assigned and the predicted secondary structure for Cyto-

chrome c, is presented in Figure 6-7.

6.4. Conclusions

We have developed PLANS patterns that recognize individual components of
secondary structure. In the work presented here, we present concepts used to recognize

the distinct structural components of o-helices: N-cap, core region, and C-cap. Currently



Table VI-4: ALPPS Residue by Residue Scores

Development set
Protein [0 o TP TN FP FN
lcer 071 0.42 38 41 16 16
1fdh 074 035 91 17 7 31
2ccy 0.85 058 91 18 11 7
2cts 070 036 220 89 48 80
2lh1 069 023 87 19 22 25
2lhbd 066 023 79 21 18 32
2lzm 0.71 041 87 30 8 39
3c2c 061 022 48 21 31 12
3cln 079 0.46 90 23 14 16
3cpv 0.88 0.75 64 32 8 4
Totals 073 039 895 311 183 262
;l‘rimmed 080 056 543 225 86 101
Test set
156b 073 0.49 48 28 5 22
lccS 071 041 33 26 13 11
lecd 0.60 0.01 75 7 11 43
1hmq 064 0.12 62 11 15 25
1mbd 075 026 104 12 11 26
2cyp 061 023 103 78 62 50
2tmyv 077 0.54 57 62 15 20
3hhb 0.78 045 91 20 8 22
3icb 069 0.15 46 6 14 9
3wrp 069 0.17 64 6 S 26
Totals 069 033 683 256 159 254
Trimmed 075 047 408 192 72 126
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we can identify almost all of the helical regions via their core structure features. How-

ever, we can identify only some of the N-cap, and C-cap positions with certainty.

With the success of the pattern based turn prediction, it was our expectation that the

predicted location of turns would be a useful basis for sub-dividing a protein sequence

into regions for independent evaluation. This expectation has been fulfilled. A language

to facilitate a segment based approach to the prediction of regular secondary structure,

ALPPS, has been designed and implemented. Initial pattern development was performed
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Figure 6-7: Sample ALPPS Result

Blue indicates where the secondary structure assignment and prediction match.
Red indicates those segments of the sequence falsely predicted as helical.
Violet outlines those segments where sequence was assigned helical but not
predicted as such. The orange segment indicates an entire' helix that was not
predicted.

on a database of ten o/a proteins. These patterns were applied to an independent, non-
homologous data set. The results presented here compare favorably with the current
secondary structure prediction algorithms (Table VI-5). The ALPPS method is similar to
the GOR method when all residues are considered. However when the scoring is focused
on the core of the helical segments, the ALPPS algorithm fairs better. On the basis of
individual residue scores, the neural network algorithm and weights developed by

Kneller et. al. performs 3% better than the ALPPS system.

Effective, practical use of secondary structure prediction methods is facilitated by
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Table VI-5: Comparison of Prediction Methods for All

Helical Proteins

Method Raw Trimmed Reference

Q23 (0) 02, (0)
Chou & Fasman  0.65(0.23) 0.68 (0.30) (Chou and Fasman, 1978)
Garnier, et al. 0.71(0.36) 0.75(0.46) (Garnier, Osguthorpe, and Robson, 1978)
Qian, et al. 0.67 (NC) NC (NC) (Qian and Sejnowski, 1988)
Kneller, et al. 0.79 (0.55) 0.85(0.69) (Kneller, Cohen, and Langridge, 1990)
This Work 0.71 (0.36) 0.80 (0.56)

NC is used to show Not Calculated. The values determined for Chou and Fas-
man, Garnier, et al. and the current work were taken by applying the respective
algorithms to the 20 protein dataset described in methods, and comparing that
to the assignments as generated by the algorithm of Richards and Kundrot.
The weights generated in the neural net simulation by Kneller et al., were also
used in a run against the 20 protein dataset, but compared against the helical
assignment as determined by the algorithm of Kabsch and Sander, as this as-
signment was used in the training of the neural network. The value for Qian
and Sejnowski were taken unmodified from Kneller et al. (Kneller, Cohen, and

Langridge, 1990).

ability to determine the basis for individual predictions. With methods based on statisti-

cal analyses, this determination is infeasible because the data are primarily numerical dis-

tributions. The problems are similar with computational neural network learning algo-

rithms. However, the database of rules contained in a pattern matching system such as

ALPPS is interpretable by the experimentalist. This allows the experimentalist to per-

form an evaluation of confidence based on the biochemical knowledge incorporated into

the pattern. Secondary structure prediction then overcomes the concept of a "black box"

procedure.

Several secondary structure prediction algorithms may in fact be useful when used

in concert. Predictions with the ALPPS system and the neural network software often

complement each other. When the neural network software incorrectly predicts a partic-
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ular region, often the ALPPS evaluation will be closer to the targeted assignment, and
vice versa. In future work, we plan to integrate the two methods to obtain the best infor-

mation from each package.

Work on extensions to the ALPPS method is also underway. PLANS patterns that
recognize the componénts of B-structure, and the ALPPS patterns that would coordinate
the prediction of B-structure regions are currently under dcvelopnxeqt. The eventual
incorporation of combined a and  component structure patterns for the set of o/p pro-
teins is also anticipated. We have only explored the lower half of the structural hierar-
chy. We are now incorporating concepts into the syntax of ALPPS that will facilitate the
description of higher level concepts in protein structure. These will include super-
secondary structure and "motifs" such as four helix bundles (Presnell and Cohen, 1989)

or nucleotide binding folds (Rao and Rossman, 1973).

One of the innovative features incorporated into the ALPPS language was the abil-
ity to utilize the sequential ordering of sub-structure features as recognized by PLANS
patterns. We have exploited that aspect of the ALPPS meta-pattern language to construct
the first example of a predictive algorithm for regular secondary structure that explicitly
incorporates non-local sequence-structure correlations. The results presented here
strongly suggest that processing the sequence into structurally reasonable segments can

provide an advantage over non-hierarchical methods of prediction.

Thé developments in predictive schemes have also brought to our attention the com-
plexities in describing the target. Scoring algorithms that focus on the prediction of indi-
vidual residues have been used as a standard of comparison for several years. One

artifact of these algorithms is that each residue is considered equally important. How-
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ever, researchers and algorithms and cannot agree amongst themselves on the precise
location of the terminal residues of regular secondary structure. Moreover, the semi-
empirical condensation methods of model construction, which use secondary structure as
input, are insensitive the the exact end or beginning of a particular stretch of secondary
structure (Cohen and Kuntz, 1989). Of much greater importance is the number and loca-
tion of the individual secondary structure features. The trimming technique presented
here affords one method to examine this issue. We are continuing to develop new scor-
ing algorithms that focus on the segmented, feature oriented, nature of regular secondary
structure. This should provide an evaluation technique that indicates the utility of secon-

dary structure predictions for subsequent steps in the modeling process.
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Chapter 7

Conclusions
*‘[T]he prediction of helix locations has almost become a science.”’
— Richard E. Dickerson (Dickerson et al., 1971)

Twenty years later, the prediction of helix locations is still an open problem.
Secondary structure can provide a low-resolution view of the structure of a protein — a
view that can be used for many purposes, e.g., the epitope search described in Chapter 1
or tertiary structure prediction described in Chapter 6. Most of the standard secondary
structure prediction techniques have failed to adequately focus on the prediction of helix
[strand] locations. Instead, the emphasis has been on maximizing some quality index
(usually Q or C) which is based solely on residue counts. As is shown in Chapter 4, resi-
due based scores do not necessarily reflect how well a prediction approximates observed
secondary structure. Segment based secondary structure prediction, as described in this
thesis, is attempt to produce pxediétions which do approximate observed secondary struc-

ture.

As described in Chapter 2, local sequence patterns can provide some sequence-
structure correlates — particularly for turns when combined with the concept of link
length (appropriate spacing between turns). The non-local information provided by the
appropriate spacing is an important caveat. Sequence-structure correlates for helix com-
ponents can also be derived from local sequence information, but these patterns need to
be placed into a larger framework in order to predict helix locations. ALPPS provides

the framework through its various segment types and metapattern syntax.

18
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The results of using ALPPS and a segment based approach, detailed in Chapter 6,
are promising. Because the predictions begin with a partitioning of the sequence into
segments based on turn predictions, no predicted helix is unreasonably long. Similarly,
minimum sizes are applied to predicted helices. The bootstrap kernel of segment based
prediction allows the use of local sequence information to go into refining the prediction

with more long range information.

One of the areas of future improvement for ALPPS is an implementation of the
frame concept sketched at the end of Chapter 3. Prediction may also be improved by
moving to a multiple pass technique. Preliminary predictions of helix locations may be
subject to change on a second pass when supersecondary structure (e.g., o - B - a) or
motif (e.g., four helix bundle) signals are recognized. o

Although residue based scores do not completely evaluate secondary structure pred-
ictions, they do reveal some information. This is particularly true after capping differ-
ences are removed by trimming. Based on Q or C scores, our predictions are superior to
Chou-Fasman (Chou and Fasman, 1978) and GOR (Gamier, Osguthorpe, and Robson,
1978), but not as good as a recent neural net technique (Kneller, Cohen, and Langridge,
1990). Neural nets and machine learning in general offers the capacity of exhaustive
searching that might exhaust (bore) a human. Work should go into combining aspects of

a neural net (or other machine learning) approach into our segment based approach.
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Pseudo-string edit distances described in the chapter on feature based scoring, could
improved machine learning by providing an evaluation tool which reflects the goal of
making predictions which approximate secondary structure assignments. Though all of
the components of pseudo-string editing (objects, operations, and costs) are outlined in

Chapter S5, the remaining work will be difficult, but also rewarding.
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Appendix A
Common Lisp Source Code for def-alpps Macro

;;;;“‘###‘##**#*#‘#####**‘###**######t####tt#**#**t**#*#*******************#
;35 * Match-Set System

»n* file: alpps.lisp

A
;;;;*#####*#t*#***##‘##**t#*#***t****###*##*##***#***#***********************
S

;»; These functions are the basis of the segmentation capabilities of

;s ALPPS.

(in-package ’alpps)
(use-package ’(user lisp loop plans))

(import ’ (loop:mit-loop ))
(export ’(segment-sequence substring hide-blocks expose-blocks split-blocks
cat-blocks alpps-eval-all))

;»; def-alpps macro
(defvar *alpps-pattern-names* nil)
(setf *alpps-pattern-list* nil)

;35 defaults for automatic turn regions
(setf *turn-region-name* "auto-turn")
(setf *turn-region-target* "Cturn")
(setf *turn-region-symbol* "+")

(setf *turn-region-color* "Yellow")

(defmacro def-alpps (name lamda-list &rest body)
(let ((it (gensym)))
‘(let (it
(cons ’progn
(cons (cons ’segment-known-sequence ’,Jamda-list)
’;body))))
(setf *alpps-pattern-list*
(cons ’,name *alpps-pattern-list*))
(setf *alpps-pattern-names*
(cons (format nil '""s'" ’,name) *alpps-pattern-names*))
(defun ,name ()
it)))

164



165

(defvar *top-alpps-blocks* nil "place to put seqs from alpps")

(defvar *bottom-alpps-blocks* nil "place to put seqs from alpps”)

(defvar *top-visible-alpps-blocks* nil "place to put seqs from alpps™)
(defvar *bottom-visible-alpps-blocks* nil "place to put seqs from alpps")
(defvar *top-visible-alpps-regions* nil "place to put seqs from alpps")
(defvar *bottom-visible-alpps-regions* nil "place to put seqs from alpps™)
(defvar *default-seq* nil "working sequence name for alpps")

(defvar *default-resseq* nil "working sequence for alpps")

(defvar *default-spat* nil "working alpps pattern™)

(defvar *summary-seq* "SUMMARY")

(defun alpps-eval () S
"perform alpps patterns see s-patterns-table”
(mit-loop for spat in *alpps-pattern-list*
do
(setf *region-color-list* nil)
(setf *default-spat* spat)
(eval (eval (list spat )))
(setf *default-sb* (get-default-block-pointer))
(setf *alpps-sb-list*
(append *alpps-sb-list* (list *default-sb*)))
(send-to-midas)
(tally-regions-and-types)))

(defun alpps-eval-all ()

"this function should not be in alpps package”

(setf *alpps-tallys-list* ()

(setf *alpps-region-type-tallys-list* ())

(setf *alpps-sb-list* ()

(start-total-residue-scoring)

(mit-loop for seq in match-set::*sequence-deck*
do
(setf *default-seq* seq)
(setf *default-resseq* (match-set::resseq-obj-seq

(gethash seq match-set::resseq-hash)))

(alpps-eval )))
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XYY
299

i+ss STRUCTURES FOR BLOCKS

(defstruct (seq-blocks :named)
"holds blocks for a given sequence”
(name) ;( :type string)
(alpps-pattern) ;( :type string)
(tolerance) ;( :type integer)
(length) ;( :type integer)
(block-list) ;( :type list)
(predicted-ss-seq) ;( :type string)
(predicted-helices) ; ( :type list)
(predicted-strands) ; ( :type list)
(helix-results) ; ( :type list)
(strand-results) ; ( :type list)
(turn-results) ; ( :type list)
(big-Q)

(big-C-alpha)
(big-C-beta)
(visible-list)) ;( :type list)

(defstruct (block)
"main object for blocks"
(seq) ;( :type string)
(left-tol) ;( :type string)
(right-tol) ;( :type string)
(ss-seq) ;( :type string)
(length) ;( :type integer)
(tolerance) ;( :type integer)
(start) ;( :type integer)
(end) ;( :type integer)
(visible) ;( :type bool)
region
(markings)) ;( :type list)

(setf seq-blocks-hash (make-hash-table :size 100 :test # equal))
;( "hash table for holding seq-blocks")
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(defun segment-sequence (&key (seq *default-seq*) (tol 0) pat
(turn-regions nil)
(spat *default-spat*))
(let ((resseq (match-set::resseq-obj-seq
(gethash seq match-set::resseq-hash))))
(setq *default-resseq* resseq)
(segment-known-sequence :seq seq :resseq resseq :turn-regions turn-regions
:tol tol :pat pat :spat spat)))

(defvar tol-pad-char #\? "character for tol area before and after seq")

(defun segment-known-sequence (&key (seq *default-seq*)
(resseq *default-resseq*)
(turn-regions nil)
(tol 0) pat
(spat *default-spat*))
(let* ((tol-pad (make-string tol :initial-element tol-pad-char))
(block-list (make-block-list :seq seq :resseq resseq
itol tol :pat pat
:turn-regions turn-regions
:left-tol tol-pad
:right-tol tol-pad)))
(setf (block-left-tol (car block-list)) ")
; (setf block-list (reverse block-list))
(setf (block-right-tol (car (reverse block-list))) "") ; remove padded tol

(setf (gethash (format nil "“s+7s" seq spat) seq-blocks-hash)
(make-seq-blocks
‘name seq
:length (length resseq)
:alpps-pattern spat
:tolerance tol
:block-list block-list
:visible-list block-list))))

(defun get-default-block-pointer ()
(setf *default-sb*
(gethash (format nil "“s+7s" *default-seq® *default-spat*)
seq-blocks-hash) ))
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(defun remove-mid-numbers (1)
"takes a list of numbers and removes middle adjacent numbers.
e.g. (remove-mid-numbers ’(
‘(1 3456 7 812 13 14 15 18 19 27 28 29))
gives (138121518 192729)"
(mit-loop for i in 1 with result = () and j = nil and look-back = nil
do
(if (null j)
(setf result (cons i result))
(if (equal i (+ 1 j))
(setf look-back t)
(progn
(if look-back
(setf result (cons j result)))
(setf look-back nil)
(setf result (cons i result)))))
(setfj i)
finally
(if look-back
(setf result (cons j result)))
(return (reverse result))))



(defun get-run-beginnings-only (1 &key (run-length 3))
"takes a list of numbers and returns the beginnings of runs

of length 3 or more.

e.g. (get-run-beginnings-only ’(

169

‘(134567 8 12 13 14 15 18 19 27 28 29))

A A~ Y

gives (3 1227)"
(mit-loop for i in 1 and j in (cdr 1) with result = () and hold = (car I) and
count =1
do
(if (equal (+i 1) j)
(if (equal count 1)
(progn
(setf hold i)
(setf count 2))
(incf count))
(if (>= count run-length)
(progn
(setf result (cons hold result))
(setf hold i)
(setf count 1))
(progn
(setf hold 1)
(setf count 1))))
finally
(if (>= count run-length)
(setf result (cons hold result)))
(return (reverse result))))
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(defun make-block-list (&key (seq *default-seq*) resseq (tol 0) pat (offset 0)
(left-tol "™) (right-tol "")
(turn-regions nil))
" block out a sequence "
(let* (1 (length resseq))
(match-results (plans-match resseq pat))
(turn-starts ()) this-block
block-list obj (start 1)
(full-seq (format nil ""a™a™a" left-tol resseq right-tol)))
(progn
(if turn-regions
(setf turn-starts (get-run-beginnings-only match-results)))
(setf match-results (delete 1 (remove-mid-numbers match-results)))
(mit-loop for i in match-results
do
(setf this-block
(make-block
:seq (substring resseq :start start :end i)
:ss-seq nil
:left-tol (substring full-seq
.start start
:end (+ start tol -1))
:right-tol (substring full-seq
:start (+1itol 1)
:end (+ 1 tol tol))
:length (- (+1i 1) start)
:start (+ start offset)
:end (+1i offset) :region nil
:tolerance tol :visible t
:markings nil))
(setf block-list
(cons this-block block-list))
(if (and turn-regions (member start turn-starts))
(setf (block-region this-block)
(make-region
:name *turn-region-name*
:seq (block-seq this-block)
:length (block-length this-block)
:start (block-start this-block)
:target *turn-region-target*
:symbol *turn-region-symbol*
:color *turn-region-color*
:end (block-end this-block)
:visible t)))
(setq start i)



(if (not (equal start 1))
(progn
(setf this-block
(make-block
:seq (substring resseq :start start :end 1)
:ss-seq nil
:left-tol (substring full-seq
:start (- start tol)
:end (- start 1))
:right-tol (substring full-seq
:start (+11)
:end (+1tol))
:length (- (+ 1 1) start)
:start (+ start offset)
:end (+ | offset)
:tolerance tol :visible t
:markings nil))
(setf block-list
(cons this-block block-list))
(if (and turn-regions (member start turn-starts))
(setf (block-region this-block)
(make-region
:name *tum-region-name*
:seq (block-seq this-block)
:length (block-length this-block)
:start (block-start this-block)
:target *turn-region-target*
:symbol *tum-region-symbol*
:color *turn-region-color*
:end (block-end this-block)
:visible t)))))
(reverse block-list))))
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(defun substring (string &key (start 1) (end (length string)))
" returns a substring of string . Does some checking for reasonable bounds."
(let (result)
(if (or (string-equal string "") (null string))
(setf result string)
(progn
(if (< start 1) (setf start 1))
(if (> end (length string)) (setf end (length string)))
(setf result
(make-string (- (+ 1 end) start) :initial-element #\space))
(mit-loop for i from (- start 1) to (- end 1)
withj=0
do
(setf (elt result j) (elt string i))
(incf j))))
result))

(defun show-all-blocks (&key (seq *default-seq*) (spat *default-spat*))
(preshow-all-blocks :seq seq :spat spat)
(format t "["aj"%" *top-alpps-blocks*)
(format t "["aj"%" *bottom-alpps-blocks*))



(defun preshow-all-blocks (&key (seq *default-seq*) (spat *default-spat*))
"retrun list of blocks for a given sequence in up-down fashion"
(let* ((seq-ptr (gethash (format nil "“s+7s" seq spat) seq-blocks-hash))

(tol (seq-blocks-tolerance seq-ptr))
(top-list nil)
(1 (seq-blocks-length seq-ptr)))
(setf *top-alpps-blocks*
(make-string | :initial-element #\space))
(setf *bottom-alpps-blocks*
(make-string | :initial-element #Aspace))
(mit-loop
for block in (seq-blocks-block-list seq-ptr)
with tol = (seq-blocks-tolerance seq-ptr)
do
(setf top-list (not top-list))
(mit-loop for i from (max 1 (- (block-start block) tol))
to (min 1 (+ (block-end block) tol))
and j in (coerce
(format nil ""a"a™a" (block-left-tol block)
(block-seq block)
(block-right-tol block)) ’list)
do
(if top-list
(setf (elt *top-alpps-blocks* (- i 1)) j)
(setf (elt *bottom-alpps-blocks* (- i 1)) j))
),
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(defun preshow-visible-blocks (&key (seq *default-seq*) (spat *default-spat*))
"put visible blocks into 2 strings for up/down display"”
(let* ((seq-ptr (gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(tol (seg-blocks-tolerance seq-ptr))
(top-list nil)
(1 (seq-blocks-length seq-ptr)))
(setf *top-visible-alpps-blocks*
(make-string | :initial-element #\space))
(setf *bottom-visible-alpps-blocks*
(make-string | :initial-element #\space))
(setf *top-visible-alpps-regions*
(make-string 1 :initial-element #\space))
(setf *bottom-visible-alpps-regions*
(make-string | :initial-element #\space))
(mit-loop
for block in (seq-blocks-visible-list seq-ptr)
with tol = (seq-blocks-tolerance seq-ptr)
do
(setf top-list (not top-list))
(mit-loop for i from (max 1 (- (block-start block) tol))
to (min 1 (+ (block-end block) tol))
and j in (coerce
(format nil ""a"a™a" (block-left-tol block)
(block-seq block)
(block-right-tol block)) ’list)
do
(if top-list ,
(setf (clt *top-visible-alpps-blocks* (- i 1)) j)
(setf (elt *bottom-visible-alpps-blocks* (- i 1)) j)))
(if (not (null (block-region block)))
(mit-loop for k from (region-start (block-region block))
to (region-end (block-region block))
do
(if top-list

(setf (elt *top-visible-alpps-regions* (- k 1))
(coerce (region-symbol (block-region block))
*character))
(setf (elt *bottom-visible-alpps-regions* (- k 1))
(coerce (region-symbol (block-region block))
"character)) ))))))
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(defun show-visible-blocks (&key (seq *default-seq*) (spat *default-spat*))
"retrun list of visible blocks for a given sequence”
(setf *default-block-list*

(seg-blocks-visible-list

(gethash (format nil "“s+7s" seq spat) seq-blocks-hash)))

(mit-loop
for block in (seg-blocks-visible-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
with result = nil and region-list = nil
do

(setf *default-block* block)
(setf result
(cons (list (block-start block) (block-end block)) result))
(if (block-region block)
(setf region-list
(cons (list (region-start (block-region block))
(region-end (block-region block)))
region-list)))
finally
(print (reverse region-list))
(return (reverse result))))
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(defun hide-blocks (&key (seq *default-seq*) (spat *default-spat*) pat
(spat-min-count 1)
(no-limit nil))
"looks for segments which have pattern and are then hidden"
(mit-loop
for block in (seq-blocks-visible-list
(gethash (format nil ""s+7s" seq spat) seq-blocks-hash))
with result = nil and plans-results = nil
do
(if (null no-limit)
(setf plans-results (plans-match (block-seq block) pat))

(setf plans-results (interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* pat))))

(if (< (length plans-results) spat-min-count)
(setf result (cons block result))
(setf (block-visible block) nil))
finally
(setf (seq-blocks-visible-list
(gethash (format nil ""s+7s" seq spat) seq-blocks-hash))
(reverse result))))

(defun expose-blocks (&key (seq *default-seq*) (spat *default-spat*) pat
(spat-min-count 1) (no-limit nil))
"remove blocks from hiding based on pat”
(mit-loop
for block in (seg-blocks-block-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
with result = nil and plans-results = nil
do
(if (not (block-visible block)) ; only build if necessary
(if (null no-limit)
(setf plans-results (plans-match (block-seq block) pat))
(setf plans-results (interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* pat)))))
(if (or (block-visible block)
(not (< (length plans-results) spat-min-count)))
(progn
(setf (block-visible block) t)
(setf result (cons block result))))
finally
(setf (seq-blocks-visible-list
(gethash (format nil ""s+7s" seq spat) seq-blocks-hash))
(reverse result))))



(defun expose-all-blocks (&key (seq *default-seq*) (spat *default-spat*))
(let ((sb (gethash (format nil "“s+7s" seq spat) seq-blocks-hash)))
(mit-loop

for block in (seq-blocks-block-list sb)

do

(setf (block-visible block) t))

(setf (seq-blocks-visible-list sb)
(seq-blocks-block-list sb))))

(defun split-long-blocks
(&key (seq *default-seq*) (max-length 100) (spat *default-spat*))
"looks for segments which are longer than max-length and divide them
in half"
(mit-loop
for block in (seq-blocks-block-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
with block-results = nil and visible-results = nil
do
(if (not (block-visible block))
(setf block-results (cons block block-results))
(if (not (> (block-length block) max-length))
(progn
(setf block-results (cons block block-results))
(setf visible-results (cons block visible-results)))
(progn
(mit-loop for i in (cut-block :block block
:cut-point (round (/ max-length 2)))
do
(setf block-results (cons i block-results))
(setf visible-results (cons i visible-results))))))
finally
(setf (seq-blocks-block-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(reverse block-results))
(setf (seq-blocks-visible-list
(gethash (format nil ""s+7s" seq spat) seq-blocks-hash))
(reverse visible-results))))
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(defun cut-block (&key block cut-point)
"given a block, return a list of 2 cut at cut-point”
(let ((left-block nil) (right-block nil)

(i 0) (offsetet 0))
(format t "using cut-block™%")
(setf tol (block-tolerance block))
(setf offset (- (block-start block) 1))
(setf left-block
(make-block
:seq (substring (block-seq block) :end cut-point)
:ss-seq nil
:left-tol (block-left-tol block)
:right-tol (substring (block-seq block)
:start (+ cut-point 1)
:end (+ cut-point tol))
‘length cut-point
:start (block-start block)
:end (+ cut-point offset)
:region nil
‘tolerance tol
:visible t
:markings nil))

(setf right-block
(make-block
:seq (substring (block-seq block) :start cut-point)
:ss-seq nil
left-tol (substring (block-seq block)
:start (- cut-point tol)
:end (- cut-point 1))
:right-tol (block-right-tol block)
:length (- (block-length block) (- cut-point 1))
:start (block-end left-block)
:end (block-end block)
:region nil
‘tolerance tol
:visible t
:markings nil))
(list right-block left-block)))
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(defun split-blocks (&key (seq *default-seq*) pat (spat *default-spat*))
"looks for segments which have pattern and are then split”
(mit-loop
for block in (seg-blocks-block-list
(gethash (format nil ""s+7s" seq spat) seq-blocks-hash))
with block-results = nil and visible-results = nil and new-blocks = nil
do
(if (not (block-visible block))
(setf block-results (cons block block-results))
(if (not (plans-match (block-seq block) pat))
(progn
(setf block-results (cons block block-results))
(setf visible-results (cons block visible-results)))
(progn
(setf new-blocks
(reverse (make-block-list :resseq (block-seq block) :pat pat
:left-tol (block-left-tol block)
:right-tol (block-right-tol block)
:tol (block-tolerance block)
:offset (- (block-start block) 1))))
(setf block-results (append new-blocks block-results))
(setf visible-results (append new-blocks visible-results)))))
finally
(setf (seq-blocks-block-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(reverse block-results))
(setf (seq-blocks-visible-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(reverse visible-results))))



(defun cat-blocks (&key (seq *default-seq*) patl pat2 (spat *default-spat*))
"looks for adjacent segments which have pattern and are then merged”
(let* ((block-list (seq-blocks-block-list

(gethash (format nil ""s+7s" seq spat) seq-blocks-hash)))
(first-block (car block-list)))
(setf block-list (delete first-block block-list))
(mit-loop
for second-block in block-list
with block-results = nil and visible-results = nil
do
(if (not (block-visible first-block))
(progn
(setf block-results (cons first-block block-results))
(setf first-block second-block))
(if (not (and
(block-visible second-block)
(plans-match (block-seq first-block) patl)
(plans-match (block-seq second-block) pat2)))
(progn
(setf block-results (cons first-block block-results))
(setf visible-results (cons first-block visible-results))
(setf first-block second-block))
(merge-to-one-block first-block second-block)))
finally
(setf block-results (cons first-block block-results))
(if (block-visible first-block)
(setf visible-results (cons first-block visible-results)))
(setf (seq-blocks-block-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(reverse block-results))
(setf (seq-blocks-visible-list
(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
(reverse visible-results)))))
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(defun merge-to-one-block (first-block second-block)
"combines two block structs into the first"
(setf (block-seq first-block)
(format nil ""a™a" (block-seq first-block)
(substring (block-seq second-block) :start 2)))
(setf (block-ss-seq first-block)
(format nil ""a™a" (block-ss-seq first-block)
(substring (block-ss-seq second-block) :start 2)))
(setf (block-length first-block) (+ (block-length first-block)
(block-length second-block)))
(setf (block-end first-block) (block-end second-block))
(setf (block-markings first-block)
(merge-block-markings (block-markings first-block)
(block-markings second-block))))

(defun merge-block-markings (first-list second-list)
"combines two block marking lists"
)

(defun equal-pair (a b)

"test for equality of all member of list"
(if (and (null a) (null b))

T

(if (and (equal (car a) (car b))
(equal-pair (cdr a) (cdr b)))
T
nil)))
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;;O#‘###O###‘#‘###t#tt*t**t*###*##t###**#*###*#***t##*###****t****#****##**
;35.* Match-Set System

¥ file: globals.lisp

B

;;#‘#Ot#.#.“#“‘.#“"#‘***‘*‘t““###****#‘#*“‘*#‘##*####*********tt****

(in-package :match-set)
(use-package ’(lisp user loop plans))

;333 LISTS for patterns

(defvar *plans-results-list* nil)

(defvar *alpps-pattern-list* nil)

(defvar *alpps-pattern-names-list* nil)

(defvar *plans-pattern-list* nil)

(defvar *ssblock-types* *("H" "S" "L" "T" ) "sec struct types")

(defvar *ms-output-directory* "." "place for ms output”)
(defvar *default-plans-output-file* "plans-summary.tbl")
(defvar *default-alpps-tally-output-file* "alpps-summary.tbl")
(defvar *default-plans-seq-output-file* "plans-dump.roff™)
(defvar *send-helix-tallys* t)

;»; flags for controling running of ms

(defvar *do-alpps-runs* t)

(defvar *control-file-lock-out* nil "if T, don’t reload control-file")
(defvar *just-peeking* nil “if T, don’t show primary sequence")

_ (defvar *dump-target* nil "possible target for general run”)

;» bags of sec struct symbols for look-down
(defvar *Helix* (coerce "a34jk" ’list))
(defvar *Strand* (coerce "be" 'list))
(defvar *Cturn* (coerce "tljk" ’list))

(setf *hit-char-list* "(#\! A@ ## AS A% A" A& #A\* () A- A_
A=A+ #7 A A< A A}
A[A] A AT AT A A))

(deftype bool ()
"a logical type”
’(or (satisfies null) (satisfies symbolp)))



;335 residue sequence object

(defstruct (resseq-obj :named)
"main object for dealing with matches”
(name)
(seq)
(ss-seq)
(ss-3-seq) ; place to put abt type ss-assignments
(loops) ;;( :type list "start stops for each class")
(turns)
(strands)
(helices)
(match-list) ;;( :type list "((12 3) (39 10) ...))")
(results-list) ;;( :type list "((T L F))")
(alpps-runs)) ;;( :type list "pointers to alpps results")

(defvar resseq-hash (make-hash-table :size 100 :test #’equal)
"hash table for holding resseq-objs")

183



184

;;t##********#***#**#*tt*****###tt##t**##**#*###*#****t********************
;3:;* Match-Set System
;33 * file: helix-output.lisp

esee
999

sece
2999

veee
999

;;*#t#t#******#*####***#***##****##**##***#*#****#******#**#*********#*****

(in-package :alpps)
(use-package ’(lisp user loop plans match-set))

(setf tab-char #tab)

(setf *default-alpps-helix-output-file* "helix-results.tbl")

(defun send-helix-tallys (&key (file ""))

"build an output file with alpps helix results”
(let (file-name (assigned-total 0) (predicted-total 0) (type-totals ())
(type-count (length *region-color-list*)) )
(progn
(mit-loop for k from 1 to type-count
do
(setf type-totals (cons O type-totals)))
(if (equal file ")
(setf file *default-alpps-helix-output-file*))

(setq file-name (format nil ""a/"a"
match-set::*ms-output-directory* file))
(format t "type-count “d"%" type-count)
(with-open-file
(output-stream file-name
:direction :output
:if-exists :new-version
:if-does-not-exist :create)
(format output-stream ".sp 2"%")

(format output-stream ""a™%"a™%"a % a % a % a %"
"TS"
"bOXf
"csssss”
"llcccs”
"llccecc”
"Il{in|n|n|n.")
(format output-stream "Match-Set ALPPS Helix Tallys™%")
(format output-stream
"Sequence aPattern"aAssigned"aPredicted"aRegions™%"
tab-char tab-char tab-char tab-char)



(format output-stream

"“a"a"a"aType aCount™%="%"

tab-char tab-char tab-char tab-char tab-char)
(mit-loop for i in (reverse *alpps-tallys-list*) and

for j in (reverse *alpps-region-type-tallys-list*) and
assigned-count =0
do
(setf assigned-count
(length
(match-set::resseq-obj-helices
(gethash (car i) match-set::resseq-hash))))
(incf assigned-total assigned-count)
(incf predicted-total (fifth i))
(format output-stream
(car i) tab-char
(cadr i) tab-char
assigned-count tab-char
(fifth i))
(mit-loop for k from 0 to (- type-count 1)
do
(incf (nth k type-totals) (nth (+ k 2) j))
(format output-stream
tab-char tab-char tab-char tab-char
(car (nth k *region-color-list*)) tab-char
(nth (+k 2) j)))
finally
(format output-stream
n___-%n)
(format output-stream
"Totals"a™a™d"a™d"%"
tab-char tab-char assigned-total tab-char
predicted-total)
(mit-loop for k from O to (- type-count 1)
do
(format output-stream
tab-char tab-char tab-char tab-char
(car (nth k *region-color-list*)) tab-char
(nth k type-totals)))
(format output-stream ".TE"%"))))))
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;xtttttﬁtttt*###****#*t#****t*t#tt##*****#*####****##***#******************
;3. Match-Set System

3355 file: look-down.lisp

0

;;#***#***##*****‘*#*#******#***##*****************************************

(in-package :match-set)
(use-package ’(lisp user loop plans ))

(defvar *true-pos* 0)
(defvar *tol-pos* 1)
(defvar *false-pos* 2)

(defun look-down (&key ss-seq pos tol goal)
"look down a ss-seq from position pos and try to find goal. returns
*true-pos* *tol-pos* false-pos*"
(let ((true-pos nil) (found nil))
(setf pos (- pos 1))
(if (member (nth pos ss-seq) goal)
(setf true-pos t)
(mit-loop for i from (max (- pos tol) 0) to
(min (+ pos tol) (- (length ss-seq) 1))
do
(if (member (nth i ss-seq) goal)
(progn
(setf found t) (loop::loop-finish)))))
(if true-pos
*true-pos*
(if found
*tol-pos*
*false-pos*))))

(defun make-pat-results-list (&key ss-seq tol goal match-list)
(mit-loop for i in match-list with positive =0
and true-pos = 0 and tol-pos = 0 and false-pos =0
do
(setf positive (look-down :ss-seq ss-seq
:posi :tol tol :goal goal))

(case positive

((0) (incf true-pos))

((1) (incf tol-pos))

((2) (incf false-pos)))
finally
(return (list true-pos tol-pos false-pos))))
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;;#***####***t*#*####**O#*#**#**#t#*#**#*‘#*#*****#*t#***t**t**************
31i:* Match-Set System
s* file: ms.lisp

sese
2999

;;******#*###*"**"**‘#‘*#*‘#**#***#**###t*##*#*##*#********#********##***

(in-package :match-set)
(use-package °(lisp user loop plans alpps))

(defun m-s )
(ms-main))

(defun ms-main ()
"main-line for ms"
(setup-for-ms)
(mit-loop for protein in *sequence-deck*
do
(evaluate-protein (gethash protein resseq-hash )))
(send-plans-results)
(if *do-alpps-runs*
(progn
(alpps-eval-all)
(send-alpps-tallys)))
(send-plans-sequences)
(if *send-helix-tallys*
(alpps::send-helix-tallys))
~ (say-good-bye))

(defun evaluate-protein (obj)
(do-plans-matching obj))

(defun print-proteins ()
(mit-loop for protein in *sequence-deck*
do
(print (gethash protein resseq-hash ))))
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(defun do-plans-matching (obj)
"perform match on all patterns on one resseq”
(let ((seq (resseq-obj-seq obj))
(ss-seq (coerce (resseq-obj-ss-seq obj) 'list))
(match-list ()
(matches ()
(results ()
(new-plans-results-list ()
(results-list ()))
(mit-loop '
for pattern in (reverse *plans-pattern-list*)
and plans-results in (reverse *plans-results-list*)
do
(setq matches (plans-match seq (car pattern)))
(setq match-list (cons matches match-list))
(setq results (make-pat-results-list :ss-seq ss-seq
:tol *plans-tol*
:goal (eval (cadr pattern))
:match-list matches))
(setq results-list (cons results results-list))
(setq new-plans-results-list (cons (list-add results plans-results)
new-plans-results-list)))
(setq *plans-results-list* new-plans-results-list)
(setf (resseq-obj-results-list obj) results-list)
(setf (resseq-obj-match-list obj) match-list)))

(setf protein-data-loaded nil)
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(defun setup-for-ms ()
(if (not *control-file-lock-out*)
(load
(format nil ""a/"a" *match-set-working-dir* "control.lisp")))
(if *do-alpps-runs*
(progn
(setf alpps::*alpps-pattern-list* nil) ; reset to prevent doubles
(load
(format nil ""a/"a" *match-set-working-dir* "alpps-control.lisp"))))
(if (not protein-data-loaded)
(progn
(load -
(format nil ""a/"a" *match-set-working-dir* *protein-data*))
(setf protein-data-loaded t))) '
(setf *plans-results-list* ())
(mit-loop for i in *plans-pattern-list* do
(setf *plans-results-list* (cons *(0 0 0)
*plans-results-list*)))
(init-plans-pat-file *plans-pattern-file*))

(defun say-good-bye ()
(format t "good-bye™%"))
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;;*t###t#####t*#tt##t#tt*##t#*###*#**#t*#**####**###**#**********#****#****
;33:* Match-Set System

;33 file: plans-output.lisp

990

;;##*#*t***#***#*‘#*###'#*#*#####*#‘######*##*#****************************

(in-package :match-set)
(use-package ’(lisp user loop plans alpps))

(setf tab-char #\tab)
(setf break-length 150)

(defun send-plans-sequences (&key (file ""))
"build an output file with plans sequence results”
(let (file-name obj hits len)
(progn
(if (equal file "")
(setf file *default-plans-seq-output-file*))
(setq file-name (format nil ""a/"a"
*ms-output-directory* file))
(with-open-file
(output-stream file-name
:direction :output
:if-exists :new-version
:if-does-not-exist :create)
(format output-stream ".ps 8" %")
(format output-stream ".vs 9°%")
(format output-stream ".nf"%")
(format output-stream ".11 10i"%")
(format output-stream ".po .51"%")
(format output-stream ".pl 8i"%")
(format output-stream ".de NP"%")
(format output-stream
".tl "\n(moAn(dyAn(yr’ Match-Set PLANS Sequence Results’%’~%")
(format output-stream ".sp™%")
(format output-stream ".."%")
(format output-stream ".wh 0 NP"%")
(format output-stream "\fC"%")
(format output-stream ".NP"%")
(format output-stream "Pattern Symbols:"%")
(mit-loop for i from O to (- (length *plans-pattern-list*) 1)
with hit-char = nil and pat = nil do
(setq hit-char (nth i *hit-char-list*))
(setq pat (car (nth i *plans-pattern-list*)))
(format output-stream ""a- “a"%" hit-char pat))
(format output-stream "% %")



(mit-loop for protein in *sequence-deck*
do
(setq obj (gethash protein resseq-hash ))
(setf len (length (resseg-obj-seq obj)))
(if (<= len break-length)
(progn
(format output-stream ".ne "d"%"
(+ (length *plans-pattern-list*) 5))
(format output-stream "Sequence Name:"a Length: "d"%"
(resseg-obj-name obj) len)
(if (null *just-peeking*)
(format output-stream ""a%" (resseq-obj-seq obj)))
(if (null *dump-target*)
(format output-stream ""a™%"
(resseq-obj-ss-seq obj))
(format output-stream ""a™%"
(reduce-string (resseq-obj-ss-seq obj)
:show *dump-target*)))
(if *do-alpps-runs*
(dump-alpps-predictions :start 0
:end nil
:protein protein
:output output-stream))
(mit-loop for i from O to
(- (length *plans-pattern-list*) 1)
with hit-char = nil do
(setq hits
(nth i (resseq-obj-match-list obj)))
(setq hit-char (nth i *hit-char-list*))
(format output-stream
"ﬂaﬁ'%"
(make-match-string
len hits
:hit-char hit-char)))
(if (null *just-peecking*)
(format output-stream ""a™%"
(resseq-obj-seq 0bj))))
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(mit-loop for j from O to (truncate (/ len break-length))
with start = 0 and end =len
do
(setf start (* j break-length))
(setf end (min len (+ start break-length)))
(format output-stream ".ne “d"%"
(+ (length *plans-pattern-list*) 5))
(format output-stream
"Sequence Name:"a From: “d To: "d"%"
(resseq-obj-name obj) (+ start 1) end)
(if (null *just-peeking*)
(format output-stream ""a"%"
(subseq
(resseq-obj-seq obj) start end)))
(if (null *dump-target*)
(format output-stream "“a"%"
(subseq (resseq-obj-ss-seq obj)
start end))
(format output-stream "“a™%"
(reduce-string
(subseq (resseq-obj-ss-seq obj)
start end)
:show *dump-target*)))
(if *do-alpps-runs*
(dump-alpps-predictions
:start start
:end end
:protein protein
:output output-stream))
(mit-loop for i from O to
(- (length *plans-pattern-list*) 1)
with hit-char = nil do
(setq hits
(nthi
(resseq-obj-match-list obj)))
(setq hit-char (nth i *hit-char-list*))
(format output-stream
""a™%" (subseq
(make-match-string
len hits
:hit-char hit-char)
start end)))
(if (null *just-peeking*®)
(format output-stream ""a"%" %"
(subseq (resseq-obj-seq obj)
start end))))))))))
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(defun seg-portion (seq size part)
"returns the partth sized portion of seq"
(let* ((len (length seq))

(start (* part size))
(end (+ (min len (+ start size)) 0)))
(subseq seq start end)))

(defun send-plans-results (&key (file ""))
"build an output file with plans results in format for class analysis”"
(let (file-name obj resulits t-p tol-p f-p d-p (total 0) (res-count 0)
(hit-count 0) (hit-percent 0))
(progn

(if (equal file "")
(setf file *default-plans-output-file*))
(setq file-name (format nil ""a/"a"
*ms-output-directory* file))
(with-open-file
(output-stream file-name
:direction :output
:if-exists :new-version
:if-does-not-exist :create)
(format output-stream ".sp 2°%")
(format output-stream ""a™%"a™% a" % a % a % a %"
" TS"
nbox;n
"cssssss”
"lccccec”
"leccccec”
"lin|njn|n|n|n.")
(format output-stream "Match-Set PLANS Results™%")
(format output-stream "Pattern"aTrue aTolerated aFalse"aDecent™a"
tab-char tab-char tab-char tab-char tab-char)
(format output-stream " Hit of "a Hit of %"
tab-char)
(format output-stream "~aPositives™aPositives aPositives“aPercentage™a"
tab-char tab-char tab-char tab-char tab-char)
(format output-stream "All Residues"aUnmasked™%"
tab-char)



(mit-loop for protein in *sequence-deck*
do
(setq obj (gethash protein resseq-hash ))
(setf res-count (length (resseq-obj-seq obj)))
(format output-stream "_"%"a: “d res"%"
(resseg-obj-name obj) res-count)
(incf total (+ res-count))
(format output-stream ".\
tab-char res-count)
(mit-loop for i from O to (- (length *plans-pattern-list*) 1)
do
(setq results (nth i (resseq-obj-results-list obj)))
(setf t-p (nth O results))
(setf tol-p (nth 1 results))
(setf f-p (nth 2 results))
(setf hit-count (+ t-p tol-p f-p))
(if (not (equal hit-count 0))
(setf d-p
(/ (* (+ t-p tol-p) 100.0)
hit-count))
(setf d-p 0))
(format output-stream
" “aa’d"a"d"a"d"a", 1"
(car (nth i *plans-pattern-list*)) tab-char
t-p tab-char tol-p
tab-char f-p
tab-char d-p)
(>if (not (equal O res-count))
(format output-stream
a1 %"
tab-char
(/ (* 100.0 hit-count) res-count))
(format output-stream ""%"))))
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(format output-stream "="%"a: “d res"%" "Totals" total)
(format output-stream ".\
tab-char total)
(mit-loop for i from O to (- (length *plans-pattern-list*) 1)
do
(setq results (nth i *plans-results-list*))
(setf t-p (nth O results))
(setf tol-p (nth 1 results))
(setf f-p (nth 2 results))
(if (not (equal (+ t-p tol-p f-p) 0))
(setf d-p (/ (* (+ t-p tol-p) 100.0) (+ t-p tol-p f-p)))
(setf d-p 0))
(format output-stream " ~“a"a“d"a"d"a"d"a",1f"
(car (nth i *plans-pattern-list*)) tab-char
t-p tab-char tol-p
tab-char f-p
tab-char d-p)
(if (not (equal O total))
(format output-stream
"a,1f %"
tab-char
(/ (* 100.0 (+ t-p tol-p)) total))
(format output-stream "~%")))
(format output-stream ".TE %") ))))
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(defun send-alpps-tallys (&key (file ""))
"build an output file with alpps results”
(let (file-name (nils 0) (alphas 0) (betas 0) (turns 0) (row-tot 0))
(progn
(if (equal file "")
(setf file *default-alpps-tally-output-file*))
(setq file-name (format nil ""a/"a"
*ms-output-directory* file))
(with-open-file
(output-stream file-name
:direction :output
:if-exists :new-version
:if-does-not-exist :create)
(format output-stream ".sp 2"%")
(format output-stream ""a % a"% a % a % a % a" %"
"TS"
nbox;n
"csssssss”
"llcccccc”
"llcccccc”
"Illfin|in|n|n|n|n.")
(format output-stream "Match-Set ALPPS Tallys™%")
(format output-stream
"SequenceaPattern"aNILS aTurns aHelices"aStrands"
tab-char tab-char tab-char tab-char tab-char tab-char tab-char)
(format output-stream
"~aHelix"aStrand %"
tab-char tab-char)
(format output-stream
"~a~a"a"a"a"aPercent™aPercent™%_"%"
tab-char tab-char tab-char tab-char tab-char tab-char tab-char)
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(mit-loop for i in (reverse alpps::*alpps-tallys-list*)
do
(incf nils (third i))
(incf alphas (fifth i))
(incf betas (sixth i))
(incf turns (fourth 1))
(format output-stream
(car i) tab-char
(cadr i) tab-char
(caddr i) tab-char
(fourth 1) tab-char (fifth 1) tab-char (sixth i))
(setf row-tot (+ (third i) (fourth i) (fifth i) (sixth i)))
(format output-stream
"~a,1fa",1f%"
tab-char (/ (* (fifth i) 100.0) row-tot)
tab-char (/ (* (sixth i) 100.0) row-tot)))
(format output-stream
"Totals" tab-char tab-char nils tab-char turns
tab-char alphas tab-char betas)
(setf row-tot (+ nils alphas betas turns))
(format output-stream
"a",1fa",1f%"
tab-char (/ (* alphas 100.0) row-tot)
tab-char (/ (* betas 100.0) row-tot))
(format output-stream ".TE %") ))))

(defun dump-alpps-predictions (&key start end protein output)
"puts out predicted sequence”
(mit-loop for spat in (reverse alpps::*alpps-pattern-list*)
with sb = nil and result = nil and better-result
do
(setf sb (gethash (format nil "“s+7s" protein spat)
alpps::seq-blocks-hash))
(setf result (subseq (alpps::seq-blocks-predicted-ss-seq sb)
start end))
(setf better-result (string-char-replace
:string result :o0ld #\a :new #\h))
(setf result (string-char-replace
:string result :old #\t :new #\c))

(format output ""a™%" result)))
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;xtt##**t****#t#**#t##*##*******###**##*********t#****#*#**t***************
;»»:* Match-Point System

;3:* file: regions.lisp

999

;i ®* CHANGES:

;3.¥  4/4/90 mid pattern for region

»*  10/4/90 chamges for tallying region types

»s®  2/19M1 fix minimum residue count for regions after chopping TU

999

"

;;*#****####**#t*#*#***‘*#*****#*‘#****#*****#****#*#*#*#********#*********

(in-package ’alpps)

(use-package ’(user lisp plans loop))

(import ’ (loop:mit-loop))

(export *(make-regions hide-regions expose-regions check-region
report-all-regions tally-regions))

(defvar blue "blue")
(defvar *default-color* Blue)
(defvar *region-color-list* nil)

~ (defstruct (region)

"main object for regions”
(name)

(seq)

(ss-seq)

(target)

(symbol)

(length)

(start) ; with respect to entire sequence
(end)

(color)

(visible))

;»» change for minimum AFTER dropping TU
;»» after change to eliminate TU from regions

LB
s

| -

N R

l'k'
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(defun make-a-region (&key block start-pat end-pat name color target symbol
(mid-pat nil)
(start-n t)
(end-ct)
(min-size 1) (no-limit nil))
" make a region in a given block"
(let* ((full-seq (format nil "~a™a™a" (block-left-tol block)
(block-seq block)
(block-right-tol block)))
(offset (- (block-start block) (length (block-left-tol block)) 1))
start-list stop-list mid-list
(start nil)
(stop nil))
(block nil
(if (null no-limit)
(progn
(setf start-list (plans-match full-seq start-pat))
(setf stop-list (plans-match full-seq end-pat)))
(progn
(setf start-list
(interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* start-pat)))
(setf stop-list
(interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* end-pat)))
(setf offset 0)))
(if start-n
(setf start (car start-list))
(setf start (car (last start-list))))
(if endc
(setf stop (car (last stop-list)))
(setf stop (car stop-list)))
(if (or (null start) (null stop) (< (- stop start) (- min-size 1)))
(return nil))



(if (not (null mid-pat))
(progn
(setf mid-list
(interval start stop (plans-match *default-resseq* mid-pat)))
(if (null mid-list)
(return nil))))
(setf start (max (+ start offset) (+ (block-start block) 1)))
(setf stop (min (+ stop offset) (- (block-end block) 1)))
;; recheck for minimum after TU has been eliminated
(if (< (- stop start) (- min-size 1))
(return nil))
(setf (block-region block)
(make-region
:name name
:length (+ 1 (- stop start))
.start start
:target target
:symbol symbol
:color color
:end stop
:visible t))
(return t))))

(setf *nil-region*
(make-region
:name "*nil-region*"
:visible nil))
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(defun make-regions (&key (seq *default-seq*) (spat *default-spat*)

(color *default-color*)

(start-n t)

(endct)

(mid-pat nil)

(min-size 0)

(no-limit nil)

start-pat end-pat name target (symbol " "))
"make regions in visible blocks"
(setf *region-color-list* (cons (list name color) *region-color-list*))
(mit-loop
for block in (seq-blocks-visible-list

(gethash (format nil "“s+7s" seq spat) seq-blocks-hash))

with count =0

do
(if (and (block-visible block)
(null (block-region block))
(not (null (make-a-region :block block :start-pat start-pat
:symbol symbol
:color color
:no-limit no-limit
:start-n start-n
:end-c end-c
:mid-pat mid-pat
:min-size min-size
:end-pat end-pat :name name
‘target target))))
(incf count))
finally
(return count)))
(defun hide-regions (&key (seq *default-seq*) (spat *default-spat*)
name)
"hide all blocks with regions named name”

)

(defun expose-regions (&key (seq *default-seq*) (spat *default-spat*)

name)
"expose all blocks with regions named name"
)
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(defun check-regions (&key (seq *default-seq*) (spat *default-spat*)
pat)
"do something for blocks whose regions contain pat”
)

(defun report-all-regions (&key (seq *default-seq*) (spat *default-spat*))
"builds a list which includes the seq-name and the list of region
targets. A "NIL" is given if there is no region in a given block."
; €.8. ("2kai-b" "Cturn” "beta" "Cturn” "beta" "Cturn” "beta” "Cturn" "beta")
(let ((sb (gethash (format nil "“s+7s" seq spat) seq-blocks-hash))
reg (goals ()) (names () (result ()))
(setf result (cons (format nil ""a" (seq-blocks-name sb)) result))
(setf result (cons (format nil ""a"
(seg-blocks-alpps-pattern sb)) result))
(mit-loop
for block in (seg-blocks-block-list sb)
do
(setf reg (block-region block))
(if (null reg)
(progn
(setf goals (cons
(format nil ""a" "NIL") goals)))
(progn

(setf goals (cons
(format nil ""a" (region-target reg)) goals))
(setf names (cons
(format nil ""a" (region-name reg)) names))))
finally
(setf result (cons goals result))
(return (reverse (cons names result))))))

(setf *default-tally-goals* '("NIL" "Cturn” "helix" "beta"))



(defun tally-regions-and-types (&key (seq *default-seq*) (spat *default-spat*)

(goal-list *default-tally-goals*))
"adds tally lists to both region goal and type lists"
(let ((report (report-all-regions :seq seq :spat spat))
(goal-result () (type-result ()))
(mit-loop for i from 0 to (- (length goal-list) 1)
do
(setf goal-result
(cons (count (nth i goal-list) (third report)
‘test #'equal) goal-result))
finally
(setf goal-result
(cons (cadr report) (reverse goal-result)))
(setf *alpps-tallys-list* (cons (cons (car report) goal-result)
*alpps-tallys-list*)))
(mit-loop for j from O to (- (length *region-color-list*) 1)
do
(setf type-result
(cons (count (car (nth j *region-color-list*))
(fourth report)
:test #’equal) type-result))
finally
(setf type-result
(cons (cadr report) (reverse type-result)))
(setf *alpps-region-type-tallys-list*
(cons (cons (car report) type-result)
*alpps-region-type-tallys-list*)))))

(defun tally-regions (&key (seq *default-seq*) (spat *default-spat*)
(goal-list *default-tally-goals*))
"given a goal-list (e.g. ((helix reg-name) (Cturn reg)))
the function produces
a count list: (3fxn 1 2 3)"

(let ((report (report-all-regions :seq seq :spat spat))

(result 0))
(mit-loop for i from O to (- (length goal-list) 1)
do
(setf result
(cons (count (nth i goal-list) (third report)
:test # equal) result))

finally
(setf result

(cons (cadr report) (reverse result)))
(return (cons (car report) result)))))
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(defun tally-region-types (&key (seq *default-seq*) (spat *default-spat*)
goal-list)
"returns a list of region-type and counts”
(let (;; (report (report-all-regions :seq seq :spat spat))

(report (test-report-all-regions))
(result (0))
(mit-loop for i from O to (- (length *region-color-list*) 1)
do
(setf result
(cons (count (car (nth i *region-color-list*))
(fourth report)
‘test #'equal) result))
finally
(setf result

(cons (cadr report) (reverse result)))
(return (cons (car report) result)))))

(defun test-report-all-regions ()

"builds a list which includes the seq-name and the list of region
targets. A "NIL" is given if there is no region in a given block."
; €.g. ("2kai-b" "Cturn” "beta" "Cturn" "beta"” "Cturn" "beta" "Cturn" "beta")

(let ((sb *default-sb*)

reg (goals () (names () (result ()))
(setf result (cons (format nil ""a" (seq-blocks-name sb)) result))
(setf result (cons (format nil ""a"

(seq-blocks-alpps-pattern sb)) result))

(mit-loop
for block in (seg-blocks-block-list sb)
do
(setf reg (block-region block))
(if (null reg)

(progn

(setf goals (cons
(format nil "~a" "NIL") goals)))
(progn
(setf goals (cons
(format nil ""a" (region-target reg)) goals))
(setf names (cons
(format nil ""a" (region-name reg)) names))))

finally
(setf result (cons goals result))
(return (reverse (cons names result))))))
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;;#*#O###O###‘*#*#‘#****‘#*‘####*#*######****#*####******#**#**#*#**##*****
;3:* Match-Set System
;03 * file: register.lisp

seoe
2999

;;##*##‘##**‘*#.*‘#*.‘t#*******##t***#*‘**‘*#****#********#************#***

(in-package :match-set)
(use-package ’(lisp user loop plans))

(defun determine-next-standard (a p)
"determine whether a or p is next ¢ terminus standard"
(let ((at-a nil))

(if (null a)
(setf at-a nil)
(if (null p)
(setf at-a t)
(if (< (cadr a) (cadr p))
(setf at-a t)
(setf at-a nil))))
at-a))
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(defun raw-regitration-scoring (registration)
"given a registration e.g. '(((3 6) (3 7)) ((12 16) (9 15)) ((20 25) ()))
function will return a list of (length-a len-p n-overlap c-over)"
(mit-loop for i in registration
with n-over = nil and c-over = nil and result = nil
and len-a = nil and len-p = nil
do
(if (car i)
(setf len-a (- (cadr (car i)) (car (car i))))
(setf len-a nil))
(if (cadr i)
(setf len-p (- (cadr (cadr i)) (car (cadr i))))
(setf len-p nil))
(if (and len-a len-p)
(progn
(setf n-over (- (car (car i)) (car (cadr i))))
(setf c-over (- (cadr (cadr i)) (cadr (car 1))))
(setf result
(cons (list len-a len-p n-over c-over) result)))
(if len-a
(setf result (cons (list len-a nil nil nil) result))
(setf result (cons (list nil len-p nil nil) result))))
finally
(return (reverse result))))



207

(defun mid-point-compares (registration)
"given a registration e.g. '(((3 6) (3 7)) ((12 16) (9 15)) ((20 25) ()))
function will return a list of midpoint differences (-1 2 nil)"
(mit-loop for i in registration
with mid-a = nil and mid-p = nil and result = nil
and len-a = nil and len-p = nil
do
(if (car i)
(progn
(setf len-a (- (cadr (car i)) (car (car i))))
(setf mid-a
(truncate (/ (+ (car (car i)) (cadr (car i))) 2))))
(setf mid-a nil))
(if (cadr i)
(progn
(setf len-p (- (cadr (cadr i)) (car (cadr i))))
(setf mid-p
(truncate (/ (+ (car (cadr i)) (cadr (cadr i))) 2))))
(setf mid-p nil))
(if (and mid-a mid-p)
(setf result
(cons (list len-a len-p (- mid-a mid-p)) result))
(setf result (cons nil result)))
finally
(return (reverse result))))



(defun register-prediction (prediction assignment)
"return a pairing of blocks”
(let ((a-left (cdr assignment)) (p-left (cdr prediction))
(a (car assignment)) (p (car prediction))
at-a other-used
(result nil))
(mit-loop while (or a p)
do
(setf at-a (determine-next-standard a p))
(if at-a
(progn
(setf other-used nil)
(if (and p (>= (cadr a) (car p)))
(progn
(setf other-used t)
(setf result (cons (list a p) result)))
(setf result (cons (list a ()) result)))
(setf a (car a-left))
(setf a-left (cdr a-left))
(if (and other-used
(and (or (null a)
(and (car p-left)
(> (car a) (cadr p))))))
(progn
(setf p (car p-left))
(setf p-left (cdr p-left)))))
(progn
(setf other-used nil)
(if (and a (>= (cadr p) (car a)))
(progn
(setf other-used t)
(setf result (cons (list a p) result)))
(setf result (cons (list () p) result)))
(setf p (car p-left))
(setf p-left (cdr p-left))
(if (and other-used
(or (null p)

(and (car a-left) (> (car p) (cadr a)))))

(progn
(setf a (car a-left))

(setf a-left (cdr a-left))))))
finally
(return (reverse result)))))
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(defun pull-nil-pairs (list)
"remove NIL pairs from list eg (1 NIL)"
(let ((result nil))
(mit-loop for i in (reverse list)
do
(if (or (null (car i)) (null (cadr i)))
0
(setf result (cons i result)))

finally
(return result))))
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;;;;###*‘tt###*************#*##**‘****‘t*t#*##t**####*t*****#***#*###********
;3:* Match-Set System

s

3o ¥ file: utils.lisp

;;;;#*#**#t#**#***#tt#*#*###***t*********#*******#*##********************#i**

(in-package :user)
(use-package ’(loop))

(export ’(string-char-replace list-add make-match-string interval
prune-left prune-right))

;;» make-match-string

R given the length of the protein sequence and a list of
B the hit points, the function returns a string of hits.

;»; (make-match-string 5 ’(1 3 4))

ses Mk R W
9

(defun make-match-string (length hits &key (show-misses nil) (misses nil)
(tols nil) (hit-char #\*) (miss-char #\-)
(tol-char #\#))
"build a string for display on m-p window"
(let ((result (make-string length :initial-element #space)))
(progn
(mit-loop for hit in hits
do
(setf (elt result (- hit 1)) hit-char))
(if show-misses
(progn
(mit-loop for miss in misses
do
(setf (elt result (- miss 1)) miss-char))
(mit-loop for tol in tols
do
(setf (elt result (- tol 1)) tol-char))))
result)))



(defun interval-old (start stop list)
" make a list of all elts of list between start and stop”
(let ((picks ()))
(mit-loop for i from start to stop do
(setf picks (cons i picks)))
(intersection picks list)))

(defun prune-left (list cutoff)
"cuts sorted list from the left based on >= cutoff™”
(member cutoff list :test #' <=))

(defun prune-right (list cutoff)
"cuts sorted list from the right based on >= cutoff”
(reverse (member cutoff (reverse list) :test #’>=)))

(defun interval (start stop list)
" make a list of all elts of list between start and stop”
(let ((left (prune-right list stop))
(right (prune-left list start)))
(sort (intersection right left) #°<)))

(defun list-add (a b)
"returns list which is sum of two lists"
(let (result)
(mit-loop foriinaandjin b
do
(setf result (cons (+ i j) result)))
(reverse result)))

(defun string-char-replace (&key (string "") (old #\space) (new #space))
"take string and change from old char to new char whnever old is found"
(let ((result string) pos)

(progn
(if (member old (coerce string ’list)) ; check for existence of old
(mit-loop while (setf pos (position old (coerce result ’list)))
do
(setf (elt result pos) new)))
result)))
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(defun reduce-string (string &key (show nil) (blank-char #\space))
"take string and only show chars in show. replace others with blank-char."
(let ((result (make-string (length string) :initial-element blank-char)))
(progn
(mit-loop for i from O to (- (length string) 1)
do
(if (member (elt string i) show)
(setf (elt result i) (elt string i))))
result)))

(defun break-point-string (string &key (size 50) (break-size 3)
(break-char #\space))
"take a string and divide it into sections of length size. sections
are marked with break-size break-chars."”
(let ((result nil) (sects (truncate (/ (length string) size)))
(break (make-string break-size :initial-element break-char)))
(progn
(mit-loop for i from O to (- sects 1)
do
(if (null result)
(setf result
(format nil ""a"
(subseq string
(* i size) (* (+1i 1) size))))
(setf result
(format nil ""a"a™a" result break
(subseq string (* i size) (* (+i 1) size)))))
finally

(if (null result)
(setf result (format nil ""a" string))
(if (not (equal (subseq string (* i size)) ""))
(setf result (format nil ""a™a"a" result break
(subseq string (* i size))))))
(return result)))))
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Appendix B
Common Lisp Source Code for Trimmed Scoring

;;;;#*#*#*#***####**#t*“***#*#**##***#*##*###*******##********##****#*******
;333 score package

30 ¥ file: res-scoring.lisp
;;;;**##‘#t#**##*#**t#*##*#####****##t#***#*#*#‘***#***#******#**************
(in-package :score)

(use-package ’(lisp user loop))

(setf *do-cuts-with-pairing* t)

;31 tolerated residue scoring 9/19/90
;»»» cut out residues around helix caps and then score
;3 pred-ss, assgn are strings of a,t
(defun res-score-seq-tol-pattern (&key (goal #\a)
(tol 1) (assgn-ends t)
(do-pairing *do-cuts-with-pairing*)
(assgn-cuts ()
(assgn-ss "")
(pred-cuts ()
(pred-ss "")
(pred-ends nil))
"returns a list (TP TN FP FN) for the default seq pattern combo
accounting for the tolerance”
(let (cut-assgn-ss cut-pred-ss (helix-cuts ()))
(if assgn-ends
(setf helix-cuts (cons assgn-cuts helix-cuts)))
(if pred-ends
(setf helix-cuts (cons pred-cuts helix-cuts)))

(if do-pairing ; only paired helices are cut
(setf helix-cuts
(sort (remove-duplicates
(remove-paren (pull-nil-pairs
(register-prediction
assgn-cuts pred-cuts))))
#<))
(setf cut-pred-ss (make-tol-cuts :cuts helix-cuts
:tol tol :seq pred-ss))
(setf cut-assgn-ss (make-tol-cuts :cuts helix-cuts
:tol tol :seq assgn-ss))
(res-score-seq-pattern :goal goal
:assgn-ss cut-assgn-ss
:pred-ss cut-pred-ss)))
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(defun make-tol-cuts (&key (seq "") (cuts ()) (tol 1))
"takes a sequence and makes cuts based on a tolerance around points”
(let (result (len (length seq)) (off-char #\0))

(setf result (format nil seq))
(mit-loop for i in (remove-paren cuts)
do
(if (eql tol 0)
(setf (elt result (- i 1)) off-char)
(mit-loop for j from (- i tol) to (+ i tol)
do
(if (and (> j 0) (<j len))
(setf (elt result (- j 1)) off-char))))
finally
(return (remove off-char result)))))

(defun remove-paren (L)
"depth first remove paren”
(cond ((null L) nil)
((atom L) (list L))
(T (append (remove-paren (car L)) (remove-paren (cdr L))))))

(defun compute-big-Q (&key p-a p-b p-t N)
"returns Q for the default seq pattern combo”
(/ (+p-ap-bp-) N))

(defun compute-big-C (results-list)

"returns correlation coefficient given results list (TP TN FP FN)"

(let* ((TP (car results-list))
(TN (cadr results-list))
(FP (caddr results-list))
(FN (cadddr results-list))
(denom
(sqrt (* (+ TN FN) (+ TN FP) (+ TP FN) (+ TP FP)))))

(if (equalp denom 0)
0
(/ (- (* TP TN) (* FN FP)) denom))))
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;3*.###“*‘*#**#t**#*####**t*#t#t##**‘**t#*#*##***##t*t##**#*#***t#t#******
;3::* score package
;s* file: register.lisp

sece
2999

;;#*##****“*“‘*‘**#‘##*##**#####‘###*#‘##*t**####**t#*#t*#***************

(in-package :score)
(use-package ’(lisp user loop ))

(defun determine-next-standard (a p)
"determine whether a or p is next ¢ terminus standard”
(let ((at-a nil))

(if (null a)
(setf at-a nil)
(f (null p)
(setf at-a t)
(if (< (cadr a) (cadr p))
(setf at-a t)
(setf at-a nil))))
at-a))
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(defun raw-regitration-scoring (registration)
"given a registration e.g. (((3 6) (3 7)) ((12 16) (9 15)) ((20 25) ()))
function will return a list of (length-a len-p n-overlap c-over)”
(mit-loop for i in registration
with n-over = nil and c-over = nil and result = nil
and len-a = nil and len-p =nil
do
© (if (car i)
(setf len-a (- (cadr (car i)) (car (car i))))
(setf len-a nil))
(if (cadr i)
(setf len-p (- (cadr (cadr i)) (car (cadr i))))
(setf len-p nil))
(if (and len-a len-p)
(progn
(setf n-over (- (car (car i)) (car (cadr i))))
(setf c-over (- (cadr (cadr i)) (cadr (car i))))
(setf result
(cons (list len-a len-p n-over c-over) result)))
(if len-a
(setf result (cons (list len-a nil nil nil) result))
(setf result (cons (list nil len-p nil nil) result))))
finally
(return (reverse result))))
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(defun mid-point-compares (registration)
"given a registration e.g. *(((3 6) (3 7)) ((12 16) (9 15)) ((20 25) ()))
function will return a list of midpoint differences (-1 2 nil)"
(mit-loop for i in registration
with mid-a = nil and mid-p = nil and result = nil
and len-a = nil and len-p =nil
do
(if (car i)
(progn
(setf len-a (- (cadr (car i)) (car (car i))))
(setf mid-a
(truncate (/ (+ (car (car i)) (cadr (car i))) 2))))
(setf mid-a nil))
(if (cadr i)
(progn
(setf len-p (- (cadr (cadr i)) (car (cadr i))))
(setf mid-p
(truncate (/ (+ (car (cadr i)) (cadr (cadr i))) 2))))
(setf mid-p nil))
(if (and mid-a mid-p)
(setf result
(cons (list len-a len-p (- mid-a mid-p)) result))
(setf result (cons nil result)))
finally
(return (reverse result))))



(defun register-prediction (prediction assignment)
"return a pairing of blocks"
(let ((a-left (cdr assignment)) (p-left (cdr prediction))
(a (car assignment)) (p (car prediction))
at-a other-used
(result nil))
(mit-loop while (or a p)
do
(setf at-a (determine-next-standard a p))
(if at-a
(progn
(setf other-used nil)
(if (and p (>= (cadr a) (car p)))
(progn
(setf other-used t)
(setf result (cons (list a p) result)))
(setf result (cons (list a ()) result)))
(setf a (car a-left))
(setf a-left (cdr a-left))
(if (and other-used
(and (or (null a)
(and (car p-left)
(> (car a) (cadr p))))))
(progn
(setf p (car p-left))
(setf p-left (cdr p-left)))))
(progn
(setf other-used nil)
(if (and a (>= (cadr p) (car a)))
(progn
(setf other-used t)
(setf result (cons (list a p) result)))
(setf result (cons (list () p) result)))
(setf p (car p-left))
(setf p-left (cdr p-left))
(if (and other-used
(or (null p)

(and (car a-left) (> (car p) (cadr a)))))

(progn
(setf a (car a-left))
(setf a-left (cdr a-left))))))
finally
(return (reverse result)))))

218



(defun pull-nil-pairs (list)
"remove NIL pairs from list eg (1 NIL)"
(let ((result nil))
(mit-loop for i in (reverse list)
do
(if (or (null (car i)) (null (cadr i)))
0
(setf result (cons i result)))

finally
(return result))))

(defun pair-for-scoring (&key assignment prediction)
"pair helices for scoring purposes”
(let* ((this-p (car prediction))
(pred-left (cdr prediction))
(result ()))
(mit-loop for a in assignment
do
(if (determine-next-standard a this-p)
(case (best-match :pred1 this-p :pred2 (car pred-left)
:assign a)

(9))))))
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;;;;##tt##t#‘##tt##‘#t##‘#t###‘##‘tt###‘#*tt##t*#ttt***t###**##***#***t**#*##
;33 socre package
s file: utils lisp
399
;;;;t**t*####**t#t‘*###t####*#‘##**#*#t#**#t#t#*#*#t##t#*tt#*******#******#**
(in-package :user)

;]
(use-package ’(loop))

(export *(string-char-replace list-add make-match-string interval
prune-left prune-right make-length-ss-seq make-ss-seq ))

;»» make-match-string

e given the length of the protein sequence and a list of
HH the hit points, the function returns a string of hits.

;»» (make-match-string 5 °(1 3 4))

o Tk g W

(defun make-match-string (length hits &key (show-misses nil) (misses nil)
(tols nil) (hit-char #\*) (miss-char #\-)
(tol-char #\#))
"build a string for display on m-p window"
(let ((result (make-string length :initial-element #space)))
(progn
(mit-loop for hit in hits
do
(setf (elt result (- hit 1)) hit-char))
(if show-misses
(progn
(mit-loop for miss in misses
do
(setf (elt result (- miss 1)) miss-char))
(mit-loop for tol in tols
do
(setf (elt result (- tol 1)) tol-char))))
result)))



(defun prune-left (list cutoff)
"cuts sorted list from the left based on >= cutoff™
(member cutoff list :test #' <=))

(defun prune-right (list cutoff)
"cuts sorted list from the right based on >= cutoff™
(reverse (member cutoff (reverse list) :test #’>=)))

(defun interval (start stop list)
" make a list of all elts of list between start and stop”
(let ((left (prune-right list stop))

(right (prune-left list start)))
(sort (intersection right left) #'<)))

(defun list-add (a b)
"returns list which is sum of two lists"
(let (result)
(mit-loop foriinaandjinb
do
(setf result (cons (+ i j) result)))
(reverse result)))

(defun string-char-replace (&key (string "") (old #\space) (new #space))
"take string and change from old char to new char whnever old is found”

(let ((result string) pos)
(progn

(if (member old (coerce string 'list)) ; check for existence of old
(mit-loop while (setf pos (position old (coerce result ’list)))

do
(setf (elt result pos) new)))
result)))
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(defun make-length-ss-seq (&key (length 0) (hits nil) (symbol #\a))
"builds a string the length of the seq which represents the predicted
secondary structure based on regions and their targets. The default assignment
ist.”
(let ((result (make-string length :initial-element #\t)))
(mit-loop for block in hits
do
(mit-loop for i from (- (car block) 1) to (- (cadr block) 1)
do
(setf (elt result i) symbol))
finally
(return result))))

(defun make-ss-seq (&key (seq "") (hits nil) (symbol #a))

"builds a string the length of the seq which represents the predicted
secondary structure based on regions and their targets. The default assignment
ist.”

(let ((result (make-string (length seq) :initial-element #\t)))

(mit-loop for block in hits
do
(mit-loop for i from (- (car block) 1) to (- (cadr block) 1)
do
(setf (elt result i) symbol))
finally
(return result))))

oooooooo .

oooooooo

(defun string-char-replace-3 (&key (string "") (old #\space) (new #space))
"take string and change from old char to new char whnever old is found"
(let ((result string))

(progn
(mit-loop while (member old (coerce string ’list))
do
(setf (elt result (position old (coerce result 'list)))
new))
result)))
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(defun string-char-replace-2 (&key (string "") (old #space) (new #space))
"take string and change from old char to new char whnever old is found”
(let ((result string) pos)

(progn
(if (member old (coerce string ’list)) ; check for existence of old
(mit-loop while (setf pos (position old (coerce result ’list)))
do
(setf (elt result pos) new)))
result)))

(defun string-char-replace-1 (&key (string "") (old #\space) (new #\space))
"take string and change from old char to new char whnever old is found"
(let ((result string))

(progn
(if (member old (coerce string 'list)) ; check for existence of old
(mit-loop for i from 0 to (- (length string) 1)
do
(if (equal (elt string i) old)
(setf (elt result i) new))))
result)))

(defun reduce-string (string &key (show nil) (blank-char #space))
"take string and only show chars in show. replace others with blank-char."
(let ((result (make-string (length string) :initial-element blank-char)))
(progn
(mit-loop for i from O to (- (length string) 1)
do ,
(if (member (elt string i) show)
(setf (elt result i) (elt string i))))
result)))
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(defun break-point-string (string &key (size 50) (break-size 3)
(break-char #\space))
"take a string and divide it into sections of length size. sections
are marked with break-size break-chars."
(let ((result nil) (sects (truncate (/ (length string) size)))
(break (make-string break-size :initial-element break-char)))

(progn
(mit-loop for i from O to (- sects 1)

do

(if (null result)

(setf result
(format nil ""a"
(subseq string
(* i size) (* (+i 1) size))))
(setf result

(format nil ""a™a™a" result break
(subseq string (* i size) (* (+i 1) size)))))
finally

(if (null result)
(setf result (format nil ""a" string))
(if (not (equal (subseq string (* i size)) ""))
(setf result (format nil ""a™a™a" result break
(subseq string (* i size))))))
(return result)))))



Appendix C
ALPPS and PLANS Patterns for o/a Proteins

ALPPS Patterns

1 21]

;»» N.B. Comments come *after* the line or statement.

799

(in-package :alpps)
(use-package ’(lisp user loop plans))

(defvar *default-min-region* 4)
;3» Minimum helix length

(def-alpps all-alpha-min-1 (:pat "TU" :tol 1) ; :no-limit t
;» Split the sequence based on the TU turn pattern.
(split-long-blocks :max-length 40)

;»» Split any resulting blocks such that no block is longer than 40 residues
(hide-blocks :pat "anything")
(expose-blocks :pat "HA" :no-limit t :spat-min-count 2)
(make-regions :start-pat "Nt" :end-pat "Ct"
:target "helix"
:symbol "b"
:color "Blue”
:min-size *default-min-region*
:no-limit t
:name "both-ends")
333 Nt-HA-Ct helix.
(make-regions :start-pat "Nt" :end-pat "HA"
:target "helix"
:symbol "n"
:color "Green"
:min-size *default-min-region*
:no-limit t
:name "no-ct")
;»» Nt-HA helix.
(make-regions :start-pat "HA" :end-pat "Ct"
:target "helix"
:color "Red"”
:symbol "¢"
:min-size *default-min-region*
:no-limit t
:name "no-nt")



)

;s» HA-Ct helix.
(make-regions :start-pat "HA" :end-pat "HA"
:target "helix"
:symbol "e"
:color "Yellow"
:min-size *default-min-region*
:no-limit t
:name "no-ends")
;»» Parse again for the existence of only one HA.
(expose-blocks :pat "HA" :no-limit t :spat-min-count 1)
(make-regions :start-pat "Nt" :end-pat "Ct"
:target "helix"
:symbol "b"
:color "Blue”
:min-size *default-min-region*
:no-limit t
:name "repechage”)
3»» Nt-HA-Ct helix.
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PLANS Patterns

1244

;3» N.B. Comments about the patterns come *after* the pattern itself.
;3 Syntax: <name> : <pattern>

s === HELIX CORE PATTERNS ==

chprl: "[DE]...[HKR]"{2,2}
;»» charged pair neg to pos N to C

chpr2: "[HKR]...[DE]"{2,2}
;»; charged pair postoneg Nto C

chprla: "[DE].[AVLIMFWY].[HKR]"{2,2}
;»; charged pair neg to pos with phobic interior face

chpr2a: "[HKR].[AVLIMFWY].[DE]"{2,2}
;5; charged pair pos to neg with phobic interior

chpricl: "["PGN][DE]["PGN][AVILMFYW]["PGN][HKR]["PGN]"{3,3}
;3 Neg to Pos charge pair with hydrophobic backside NO PDG or N

chpric2: "["PGN]J[HKR]["PGN][AVILMFYW]["PGN][DE]["PGN]"{3,3}
;»; Pos to Neg charge pair with hydrophobic backside NO PDG or N

chprlc3: "["PGN][DE]["PGN]["PGN][HKR]{"PGN]"{2,2}
;»» Neg to Pos charge pair with hydrophobic backside NO PDG or N

chprlsl: ("[DE].[AVILMFYW].[HKR]"{2,2}) and
(not (density(>=,5,7,"[DEGHKNPQRSTY]"){3,3}))
;»» helix charge pair pattern - -> +

chprls2: ("[HKR].[AVILMFYW].[DE]"{2,2}) and
(not(density(>=,5,7,"[DEGHKNPQRSTY]"){3,3}))
;»; helix charge pair + -> -

chprls3: ("[DE]..[HKR]"{1,1}) and
(not (density(>=,4,6,"[DEGHKNPQRSTY]"){2,2}))
;»» helix charge pair pattern - -> +

CP: (chpricl or chprlc3 or chprlsl or chpris3)
;3» Current working set of charge pairs. Only those aligned with the helix
;» dipole moment are used.
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"[AVILMCKFWY]..[AVILMCKFWY][AVILMCKFWY]..[AVILMCKFWY]"
"[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]..[AVILMCKFWY]"
"[AVILMCKFWY][AVILMCKFWY]..[AVILMCKFWY].[AVILMCKFWY]"
"[AVILMCKFWY][AVILMCKFWY]..[AVILMCKFWY]...[AVILMCKFWY]"
"[AVILMCKFWY]J{AVILMCKFWY]..[AVILMCKFWY][AVILMCKFWY]"
"[AVILMCKFWY]..[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]"
h7: "[AVILMCKFWY].[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]"
h8: "[AVILMCKFWY]..[AVILMCKFWY]..[AVILMCKFWY][AVILMCKFWY]"
;»» Patterns of 4 phobics encompassing 1-2 turns of the helix.

ELETRE

(h1{-3,-3} and h1){0,3}
(h1{-4,-4} and h1){0,4}
(h2{-4,-4} and h2){0,4}
(h2{-5,~-5} and h2){0,5}
(h3{-1,-1} and h3){0,1}
(h3{-4,-4} and h3){0,4}
(h4{-1,-1} and h4){0,1}
(h4{-4,-4} and h4){0,4}
(h5{-1,-1} and h5){0,1}
(h5{-4,-4} and h5){0,4}
(h5{-5,-5} and h5){0,5}
w Longer groups of phobic diamond patterns.

REEEREREREE

helix: (ha or hb or hc or hd or he or hf or hg or hh or hi or hj or hk)
;»; Bring it all together.

- pl:  "[PGQNDERKSTH]...[PGQNDERKSTH]...[PGQNDERKSTH]"
p2: "[PGQNDERKSTH]..[PGQNDERKSTH)]...[PGQNDERKSTH]"
p3: "[PGQNDERKSTH]...[PGQNDERKSTH]..[PGQNDERKSTH]"
pstripe: (p1 or p2 or p3)

;» Philic area’s the absence of which seems to be predictive of helix.

;5 orignally this stemmed from the idea that a philic stripe was

;3 predictive of helix.

H1: (helix)
H2: (aend{2,2} and abegin{2,4} and (not a2{-4,4})) ; old a6
H3: (CP)
H4: (gs)
HS: (density(=,0,8, pstripe)){6,6}
H6' (h1{0,6} or h2{0,6} or h6{0,6})
;» The high level patterns that are predictive of helix.

HA: (H1 or H2 or H3 or H4 or HS or H6)
;:; Core helix structure: Final Pattern.



229

;i3 ==C-CAP PATTERNS ==

cl: "[ACFIKLMVWY].[ACFIKLMVWY][ACFIKLMVWY]..[GKNH]"{7,7}
c2: "[ACFIKLMVWY]..[ACFIKLMVWY]{ACFIKLMVWY]...[GKNH]"{8,8}
c3: "[ACFIKLMVWY]..[ACFIKLMVWY]..[ACFIKLMVWY][GKNH]"{8,8}
c4: "[ACFIKLMVWY]...[ACFIKLMVWY]..[ACFIKLMVWY]{GKNH]"{8,8}
c5: "[ACFIKLMVWY][ACFIKLMVWY]..[ACFIKLMVWY][GKNH]"{5,5}
c6: "[ACFIKLMVWY]..[ACFIKLMVWY]...[ACFIKLMVWY][GK]"{8,8}

;»» Hydrophobic phasing of the C-cap

Cz: "[ACFIKLMVWY]..[ACFIKLMVWY][ACFIKLMVWY]..[DEGKPNQRS]
(GKHN]"{8,8}
"[ACFIKLMVWY].. [ACFIKLMVWY][ACFIKLMVWY] .[DEGKPNQRS]
[GKHN]"{9,9}
"[ACFIKLMVWY]..[ACFIKLMVWY][ACFIKLMVWY].[DEGKPNQRS].P"{8,8}

: "[ACFIKLMVWY]..[ACFIKLMVWY][ACFIKLMVWY]..
[ACFIKLMVWY]..[DEGKPNQRS][GKHN]"{11,11}

Cx: "[ACFIKLMVWY]..[ACFIKLMVWY][ACFIKLMVWY]..

[ACFIKLMVWY]...[DEGKPNQRS][GKHN]"{12,12}
;s Hydrophobic patch + terminating hydrophilic residue followed by a C-cap
;»» Not currently used.

e 2

Cu: ("[GKHN][L].[CFILMVWY]..[CFILMVWY]" or
"[GKHN][L] [CFILMVWY] [CFILMVWY]")

HK: (densxty(>-,2 3, [I-lK]") and (not density(>=,2,3," [K]")))
;»» High density of basic residues R is not used here.
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CA: (("[GK]"{0,0} or "P"{-2,-1}) and
("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}))
CB: (("G"{0,0} or "P"{-2,-1}) and ("[FMW]"{4,4} or "L"{3,3}))
CC: ("[GK]"{0,0} and ("P"{-2,-1} or "[TW]"{-2,-2}))
CD: (("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and "[TW]"{-2,-2})
CE: (("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and
("[FMW]"{4,4} or "L"{3,3}))
CF. (("[FMW]"{4,4} or "L"{3,3}) and "[TW]"{-2,-2})
CG: ("[G]"{0,0} and "P"{-2,-1})
CH

: (("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and
("(FMW]"{4,4} or "L"{3,3}) and "[TW]"{-2,-2} )

CS: (("[GK]"{0,0} or "P"{-1,-1}) and
("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and
("(FMW]"{4,4} or "L"{3,3}))
;s; Combinations of residue patterns that mimic the statistical information
;»» in the Richardson and Richardson Science paper 1988.

(CG)
(CH)
(CS and "["ACFILMV]"{-2,-2})
(c6)
(("[GK]"{0,0} and "W"{-2,-2}) or ("P"{-1,-1} and "[WT]"{-2,-2})
or ("N.P" or "NP"))
f: (HK and (not Cc{-10,0}) and (not Cb{-10,0}) and (not Ca{-10,0}) and
HA({0,13} and (not density(>,2,5,HA){5,5}))
;»» The high level patterns that are predictive of a C-cap.

Q

Ct: (CaorCborCcorCdorCe)
;»» C-cap: Final Pattern
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=== N-CAP PATTERNS ==

e
o
.e

"[NSTDE]..[ACFIKLMVWY][ACFIKLMVWY]..[ACFIKLMVWY]"
"[NSTDE]...[ACFIKLMVWY][ACFIKLMVWY]..[ACFIKLMVWY]"
"[NSTDE][ACFIKLMVWY]..[ACFIKLMVWY]..[ACFIKLMVWY]"
"[NSTDE][ACFIKLMVWY]..[ACFIKLMVWY]...[ACFIKLMVWY]"
"[NSTDE][ACFIKLMVWY]..[ACFIKLMVWY][ACFIKLMVWY]"

3 Hydrophoblc phasing of the N-cap

:BRBRE

Nz: "[GDNST][DEKPNQRS]..[ACFIKLMVWY][ACFIKLMVWY]..[ACFIKLMVWY]"

Ny: "[GDNST][DEKPNQRS]..[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY]"

Nw: "[GDNST]J[ADEKPNQRS]..[ACFIKLMVWY]..[ACFIKLMVWY]
[ACFIKLMVWY]..[ACFIKLMVWY]"

Nx: "[DNST]..[CFIKLMVWY]..[ACFIKLMVWY]..[ACFIKLMVWY]
[ACFIKLMVWY]..[ACFIKLMVWY]"

;»» Hydrophobic patch + terminating hydrophilic residue followed by a N-cap

;»» Currently, these are more predictive than without the hydophilic residue.

DE: (density(>=,2,3,"[DE]")

NA: ("[NS]"{0,0} and ("D"{-3,-2} or "E"{-3,-1}))

NB: ("[NS]"{0,0} and ("[LFW]"{-4,-4} or "M"{-5,-4}))

NC: ("[ND]"{0,0} and "P"{-2,-2})

ND: (("D"{-3,-2} or "E"{-3,-1}) and "P"{-1,-1})

NE: (("[LFW]"{-4,-4} or "M"{-5,-4}) and ("D"{-3,-2} or "E"{-3,-1}))
NF. (("[LFW]"{-4,-4} or "M"{-5,-4}) and "P"{-1,-1})

NG: ("[GNSDT]"{0,0} and "P"{-1,-1})

NH: (("D"{-3,-2} or "E"{-3,-1}) and ("[LFW]"{-4,-4} or "M"{-5,-4})
and "P"{-1,-1})

NS: ("[DNS]"{0,0} and ("D"{-3,-2} or "E"{-3,-1})

and ("[LFW]"{-4,-4} or "M"{-5,-4}))
;»» Combinations of residue patterns that mimic the statistical information
;»» in the Richardson and Richardson Science paper 1988.



Na: (NG)
Nb: (NS)
Nc: (NA and (Nw or Ny or Nz) and (not Na{0,10}) and (not Nb{0,10}))
Nd: (NE and (Nw or Ny or Nz) and (not Na{0,10}) and (not Nb{0,10}))
Ne: (NB and (nl or n4 or n5) and (not Na{0,10}) and (not Nb{0,10}))
Nf: (DE and (not Nc{0,10}) and (not Nb{0,10}) and (not Na{0,10}) and
HA({-13,0} and (not density(>,2,5,HA){5,5}))

Ng' (group(2,NC) and (not NG{-1,-1}))

;> The high level patterns that are predictive of a N-cap.

Nt: (Naor Nb or Nc or Nd or Ne or Ng or group(5,Nf))
;»; N-cap: Final Pattern
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5» ==TURN PATTERNS: refer to the 1986 Biochemistry paper ===

al: (gs or CP)
;>; Primary helical mask for tumns.

a2: (density(=,0,5,alpha_strong_phobic)
and (not "[DE]...[KHR]"{-2,4})
and (not "[DE]..[KHR]"{-2,4})
and (not gs{-2,2}) ){2,2}

;s AA_Turnl_no-phobics

a3: (density(=,4,4,alpha_philic)){1,1}
;3 Strong Turn of four Hydrophilic residues in sequence.

a4: (a3)
333 AA_Turn2_4-philics

HP: ("[VLIAWYKFCT][VLAIWKYFCT]P[VLAIWYFCT]"{2,2} and
(not density(>=,1,5, "[NQRS]")){1,1})
;»» Potential situation of a proline in helical region

AP: ("P"{-1,-1} and (density(>=,1,5, "[DEKNQRST]")){1,1})

as: ("P"{-1,-1}
and (not a2{-11,0})
and (not a4{-11,0})
and (not HP{-1,-1}))
;s AA_Tum3_proline + Must be a philic residue in the surrounding area.

a6: (aend and abegin{-2,0}
and (not (a2{-11,11} or a4{-11,11} or a5)))
+:; AA_Turmn4_helix-ends

a7: ((not ap{-1,1}) and (not al1{-2,2}) and (not a9{-11,11}))
3 AA_TurnS_weak

a8: (group(7,a7))
;»» AA_turnS_group

a9: (group(7,(a2 or a4 or a5 or ab)))
»ss AA_T_possible

tu: (a8 or a9)
TU: (a8 or a9)
;s *The* turn pattern

— .

P N
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abegin: "[DEGHKNQRS][ACFIKLMPTVWY][DEGHKNQRS]
[ACFIKLMPTVWY]"(-3,-3}
;»» Pattern frequently found at the beginning of helices.

aend: "[ACFIKLMPTVWY][DEGHKNQRS][ACFIKLMPTVWY][DEGHKNQRS]"
;»» Pattern frequently found at the end of helices.

alpha_philic: "[DEGKPNQRS]"
;»; Alpha/alpha hydrophilic residues

alpha_phobic:  "[ACFIKLMPTVWY]"
;»; Alpha/alpha hydrophobic residues

alpha_strong_phobic: "[ACFILMVW]"
;;» Alpha/alpha strong hydrophobic residues

ap: (not density(>=,2,3,alpha_philic)){-1,-1}
;> alpha_turn

gl: "[ACFIKLMTVWY][ADEHKNQRST]%2,2[AG]
[ADEHKNQRST]%2,2[ACFIKLMTVWY]"{4,4}
;»» Cluster of ’phobic bounded by ’philics (helix-helix interactions)

g2: "[ACFIKLMTVWY]%2,2[ADEGHKNQRST][ADEHKNQRST][AG]
[ADEHKNQRST]%2,2.[ACFIKLMTVWY]"{5,5}

;5 Cluster of 'phobic bounded by ’philics (helix-helix interactions)

g3: "[ACFIKLMTVWY].[ADEHKNQRST]%2,2[AG]
[ADEHKNQRST]%2,2[ACFIKLMTVWY]%2,2"{5,5}

;»» Cluster of ’phobic bounded by ’philics (helix-helix interactions)

gs: ((g1 or g2 or g3) and (not ma) and (not ga))
;»; A Gly-Ala type heliceal site without too many Alas.

ma: (density(>=,3,9,"A")(5,5}
;»» Too many alanines in one area are a bad sign for helix-helix packing

ga: (density(>=,2,9,"G")){5.5}
;»» Too many glycines in one area are a bad sign for helix-helix packing

anything: "."

END
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