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Radiative Transfer on Discrete Spaces

Rudolph W. Preisendorfer

Scripps Institution of Oceanography, Univers: -y of California

La Jolla, California

INTRODUCTION

Ve shall be concerned here with a study of radiative transfer
processes on discrete rather than continuous optical media. That is,
we shall explore the consequences of replacing the usual geometric
setting for radiative transfer processes -- namely some continuum of
points in three dimensional euclidean space € s — bya spatially
bounded set of points, finite in number, each of which is located
in E; in accordance with some explicit rule of selection. Each
point of the set is then assigned certain scattering and absorbing
properties with respect to impinging radiant energy, and each is gen-
erally allowed to interact radiometrically in a specified way with a
certain preselected subset of the given collection. The main object
of the present study is to formulate and solve, within this context
and on a phenomenological level, the problem of the steady state
radiance distribution at each point of the set, under prescribed bound-

ary corditions,

Several papers are planned for the exploration of radiative trans-

fer theory on discrete spaces. The present note is concerned with the
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formulation of the general theoretical foundation of the discrete
theory. In particular we shall motivate and formulate the principle
of local interaction, deduce from it the general equations governing
the discrete radiance distributions about each point of the general
discrete space and, finally, solve these equations in complete theo-
retical detail. Subsequent papers will exhibit further consequences
of the principle of local interaction and will range in sophistication
from the deduction of the principle of invariant imbedding and the
appropriate forms of the principles of invariance on general discrete
spaces down to numerical tabulations of radiance distributions for

certain special discrete spaces.

The motivations for the present series of studies are many;
the four most immediate and objective motivations are discussed below.
Briefly, these are: (i) the need for the formulation of novel
radiative transfer settings which possess a high utility potential
on the numerical analysis level, but which also retain a high fidelity
potential; (ii) the need for a siuple formalism which can, by means
of an hypothetical microstructure, explain such basic concepts as
the volume scattering and volume attenuation functions which occur
in the continuous theory; (iii) the need for an analytical approach
which holds promise for the solution of the problem of the abiogenetic
character of the principles of invariance, the fundamental tool in
the continuous theory, which ranks second in importance to only the
equation of transfer; (iv) the need for a revision of certain parts

of the mathematical substructure of radiative transfer theory in
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accordance with modern standards of mathematical and cpisteriological

rigor. These motivations will be explained now in more detail,
Fidelity versus Utility in Physical Tt .ories

One may liken physical theories to 1life masks of their associated
natural phenomena. The hills and hollows of the face of nature in
many places can be reproduced by mathematical casts with great
detail. The fidelity of the cast can be high even in the reproduction
of the more dynamical aspects of natural processes. But if the
theorist is too enthusiastic in his quest for detail he may find,
like the artist, that he has inextricably sealed the features of the
mold from view; he will have fitted his mold so well that either it
comes off as inscrutably detailed as its inscrutable original or,
more frustratingly, that the mold can came free fram the face of
nature only by being critically distorted with an attendant critical

‘impairment of fidelity.

As far as radiative transfer theory is concerned, the theorist
has at hand initially, in the form of the equation of transfer, a
model of reality which, within the experimental framework it repre-
sents, indeed fills every hollow and follows every hill. It would
therefore be singularly fortunmate if this theory were endowed also
with an equal measure of practical utility. For then no compromi ses
between fidelity and utility ;ould be necessary. As it happens the

equation of transfer actually has been used in its full generality
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many times to deduce in minute qualitative detail the salient
features of the light field in real optical media (see, e.g.,
references 1 and 2). In a far greater number of instances, however,
it was required of the theory to produce detailel quantitative infor-
mation about the light field; and the intractability of the general

theory under such a requirement soon became all too evident.

As a consequence of its inherently intractable form, the equation
of transfer was eventually subject to many fidelity-reducing pro-
cedures in order to gain access to much needed quantitative infor-
mation about the structure of natural light fields. In the course
of such quests the equation of transfer (or the radiance function it
governs) was subject to every immediately obvicus simplification
device in order to make it more amenzble to numerical representation
or simple symbolic analysis. Specific examples are easily cited:
Generally inhomogeneous media were replaced by homogeneous models
(which was effected by considering the scattering and absorbing
functions in the equations as constant functions of position);
highly anisotropic scattering functions usually found in nature were
replaced by isotropic scattering functicns, the effect of‘the replaée-
ment not being known nor easily estimable; the intricate and subtle
location-dependent angular structure of the radiance distributions
was smoothed to a relatively innocuous spherical or step-function
shape in order to reduce the integrodifferential equation to sets
of differential equations; scattering orders higher than the first

or second order were dismissed as negligible; and so on,



SIC Ref. 59-53 -5 -

There is a single and important feature commcn to all these
procedures by means of which they may be broadly classified. With-
out exception, each concession to complexity modified the analytical
structure of the eguation of transfer itself, or the function it
governs. To see the significance of this type of theoretical
activity and place it in a perspective by means of which we can
anticipate and evaluate related and possibly novel types of theoretical
activity we now briefly recall the basic mathematical structures

underlying radiative transfer theory.

Radiative transfer theory is a phenomenological theory which
mimics in minute detail results of real (or imagined) probings of
natural light fields. These probings in principle can be carried
out by means of a single basic instrument, the radiance meter. The
mathematical theory that follows on the 15 of the amassed experi-
mental evidence should then, at its core, consist of not more than
_ three basic ingredients: (a) a mathematical representation of the
space in which the experimental probings take place; (b) a mathematical
representation of the quantity which the physical probe detects and
records; ard (c) a mathematical representation of the observed
behavicr of the quantities detected e;nd recorded by the probe. These
three notions, which we summarize briefly by the symbols X , N ,
and |- , respectively, are sufficient tc form a mathematical
foundation from which the entire existing superstructure of present
day radiative transfer theory can be deduced.3 The mathematical roles
of these concepts are quite simple: the equation of transfer T

is an operator which within X acts on the radiance function N .
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The radiance function N in turn is defined on X . 1In this way
the fundamental role of the space X in the theory becames
unmistakably clear: it -'sets the stage for the other two concepts.
It is the substance from which the mathematical mold of physical

reality is fashioned.

L]
Returning now to the main line of the discussicu we see, in

the light of the preceding observations, that most of the theoretical
activity in the domain of radiative transfer has been centered

on modifications of the basic structure of the equation ‘T s Or
of the function N . Thus the classical modification procedures
may be classed as process-modifving procedures; the third basic
concept namely that of the space X , was virtually untouched in
these procedures. Of course, the space X has taken many
superficially distinct forms such as half-spaces, slabs, cylinders,
srheres, etc.; however, an important underlying topological
structure is common to ali; each is still a connected sub-set of
(more than one) points in Esy , with a non-empty interior,or a

union of such sets.

It appears possible then to explore at least one further
modification procedure of a general kind, namely that associated
with the modification of the basic space X in the fundamental
triple ( X, N , T ). This space-modifying procedure affects
only the character of X » and leaves free the choice of the
character of the radiative transfer process governing N and T

on the space. Thus the various possibilities such as inhomogeneity
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of optical structure, anisotropic scattering, polarization processes,
etc., are all possible in their full generality for each new choice
of 'X . This space-modifying procedure of course gives rise

to possible fidelity-reducing consequences in the resulting theory
Just as do the process-modifying procedures. But whatever the
consequences, they still demand exploration for possinle novel
numerical procedures and theoretical methods;this then is the first

motivation for the present study.
On the Use of Hypothetical Microstructures in Physical Theory

The second of the four motivations for a study of radiative
transfer on discrete spaces arises from the need for a suitable
extension of the theory under which macroscopically defined (i.e.,
observable) concepts of the theory can be explained and profitably
studied in terms of hypothesized microscopic (normally non-observable)
entities which, however, still obey as far as possible the basic
laws extant in the macroscopic domain. In this way the camplex
radiometric behavior of apparently comtinuous bulk media could
possibly be explained in relatively ;imple terms by means of the
behavior of aggregates of irreducible (molecule-like) components
without the necessity of introducing any new laws or novel
principles, v

As an example of a problem of this kind, consider the case of

the volume scattering and volume attenuation functions in radiative
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transfer theory. Even though these concepts take the status of

point functions in the continuous formulations, they are neverthe-

less evaluated by experimental determinations of the radiometric
response of small but finite volumes of material comprising an
optical medium. By the introduction of a molecular level, however
naive, into the theory, these properties of macroscopic aggregates
can then be related in a known and perhaps informative way to the
properties of the individual molecilar components comprising the

aggregate.

The classical instance of this type of extension of a pheno-
menological theory occurred in the general thermodynamical theory
of bulk matter which describes the macroscopic behavior of gases,
liqpids,and solids in terms 6f the directly observable phenomena
of pressure, volume, and temperature. Right frecm the outset, i.e.,
from initial introduction of a rather primitive form of the hypothe-
sis of the molecular structure of.bulk matter, namely that bulk
matter was considered to consist of aggregates of small hard balls
or of point masses which nevertheless were still subject to the
same macroscopic (e.g., Newtonian and Coulombian) laws, the old
familiar thermodynamic laws govefning pressure, volume, temperature,
heat, and work took on a new and lastingly deeper significance

and descriptive power. .\;...

As is well known radiative transfer theory was also offered

the opportunity to adopt a molecular substratum by means of the
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maxwellian theory of light and later still in the form of the quantum
theory of matter and radiation. But these models of light in the
microcosm involved concepts foreign to the relatively uncluttered
array of concepts used in the classical phenomeno_ogical theory. For
all practical purposes of the theory, radiant energy (light) was still
usefully viewed as an apparently continuous, non-interfering, non-
diffracting type of phenomenon. The only wavelike phenomena of
radiant energy that were detectable by the radiance-measuring apparatus
were those associated with polarization, and those detectable by the
attachment of various colored filters (or spectrum analyzers) to

the radiance meters. Hence the classical theory was obliged to des-
cribe and predict those and only those features of the light field .
in natural media which were observable by means of such radiance-
measuring apparatus, and to accomplish these descriptions and predic-

tions by adopting only macroscopically defined concepts.

These observations show that radiative transfer theory still
awaits its own extension to a microstructure theory. In such an
extended theory it would be desirable to retain as far as possible the
usual concepts and laws presently used within the theory. The
extension would be made by means of these concepts and laws now applied
to the hypothesized microstructure., Thus the shift of emphasis in
the use of the fundamental laws and concepts would be from a con-
tinuous to the discrete space setting. In this way the radiometric
behavior of the apparently continuous bulk media would possibly be
explained in terms of the behavior of aggregates of irreducible
(molecule-like) components without the introduction of any new concepts

and radically different laws or principles,
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Abiogenetic Principles in Physical Theory

We come now to the discussion of the third motivation of the study
of discrete-space formulations of radiative transfer theory. This
motivation is derived from the apparent promise shown by these for-
mulations in resolving an outstanding problem in the foundations of
the theory. This is the problem of the apparent mathenatical abio—\
genesis of the principles‘of invariance which form an important

cornerstone in the modern theory.

Now an abiogenetic principle in a given physical theory is
(a) a principle, (i.e., a rule of action, together with a set of
associated constructs, which may be followed in the formulation of a

wide class of problems and laws in the theory) (b) whose statement

has (as yet) no demonstrable theoretical or empirical basis within

the main body of established principles and constructs of the theory.

According to this definition virtually all of the presently
established principles were at one time in the limbo of abiogenetic
principles. Usually, with increased empirical knowledge and an atten-
dant growth of comprehensiveness of physical theory, more and increas-
ingly rigorous theoretical and em;ﬁirically-based connections are
established between the principle and the main body of the theory
so that eventually the abiogenetic character of the principle is
correspondingly decreased. Thus at one time the far-reaching prin-
ciple of least éctionh was certainly abiogenetic in character. Now
it is solidly established, at least in man's immediate neighborhood

5
of space-time. On the other hand, Mach's principle which asserts
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that the value at a point in space of the metric tensor in general
relativity theory (hence the inertial mass of a given object) is
determinable by means of a well-defined procedure from knowledge of
the total space-time distribution of matter amd euergy — is an

outstanding example of an abiogenetic principle.

The principles of invariance in radiative transfer theory are,
first of all, principles in the sense of part (a) in the definition
above. The constructs involved in their statement are the diffuse
reflectance R and the diffuse transmittance T functions
associated with homogeneous slabs of light-scattering materials. In
the statements of the principles, the slabs may have finite or
infinite optical depth but always infinite lateral extent. The
statements of the principles give rise to explicit formulae which
relate, by means of the R and T  functions, the radiance dis-
tribution at some interior point of a slab to the incident boundary

radiance distributions on each face of the slab.

The basic idea behind the modern form of the principles made its
first appearance in a paperéby Ambarzumian published in 1943. In
that paper the optical medium was an infinitely deep homogeneous
isotropically-scattering slab, Only one of the two functions (the R
function) was used, and only one of the four stataments of the
principles were given. This unheralded appearance of the R
function and its first invariance statement without any substantiating

ground-work and without any subsequent justification, either theoretical

or empirical, immediately set the abiogenetic character of the
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principles of invariance. Specifically, therewas no immediate
connection between the principle and the established equation of
transfer for radiance which lay at the foundation of the theory. If
any connection at all coula be drawn between the principle and the
existing body of radiative transfer it could perhaps be made, though
tenuously, with same early peripheral studies first by Stokes7 and
later by quleigh8 dealing with the reflection of light fram piles

of glass plates or regularly stratified media.

Subsequently, the Ambarzumian principle of invariance was
rounded out by Chandrasekhar9 to fair comprehensive statements
involving two functions, the R and T functions, which pertained
to homogeneous plane-parallel slabs with arbitrary volume scattering
(phase) function. However their abiogenetic character remained
unchanged. Still later, the four principles were generalized to be
applicable to a wider class of spaces, namely non-homogeneous, curvi-
linear, non steady state spaces; and the number of functions was
increased from two to four (two R and two T ).10’11’12

Again, the principles remained as abiogenetic as ever.

In a subsequent note we will show that—in the context of
arbitrary discrete spaces—the existen;e of the general R_ and T
functions (and even more general counterparts) can be rigorously
established amd, furthemmore, the principles of invariance can be
derived from an intuitively simpler (and empirically meaningful)
principle, the so-called principle of local interaction (developed

below) on which, incidentally, the whole of discrete-space radiative
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transfer theory can be based, including the appropriate forms of the

equation of transfer. Further, it appears that on the basis of

the local interaction principle, and by means of a sequential transition
from discrete to arbitrary proximations of continuous spaces, the
continuous-space, arbitrary-geometry counterparts of the invariance

principles may thus be proved with arbitrarily great precision.

Other approaches to the solution of the problem of the abiogenetic
principles of invariance possibly can be made by capitalizing on the
apparent Green-function nature of the k and T  functions with
respect to the equation of transfer. Such an approach has been
considered elsewhere.ll’lgut such approaches involve mathematical

techniques of possibly questionable rigor for reasons which will be

touched on in the following and final discussion.

Finitary Formulations of Physical Theories

The fourth and final, motivation to be discussed here is concerned
with the possibility of a finitary formulation cf radiative transfer
theory, that is, a mathematical formulation of the theory solely
in terms of intuitively based mathematical constructs which are mani-
pulated in accordance with intuitively sound rules of logic. The
term "intuitive" used here is in the strictly defined sense used by
the intuitionistic school of modern mathematics as established by

Brouwer (see, e.g., references 14).



SI0 Ref. 59-53 - -

The intuitionistic philosophy in the domein of pure mathematics
is analogous in some ways to the operationism philosophy in the
domain of physics: each requires its concepts to be formulated in

accordance with performable activities, noumenal in mathematics,

phenomenal in physics. The existence of an object (or its accepted
representation) must be established on the authority of only those
principles which yield explicit performable rules of action culminating

in that object (or its accepted representation).

The similarity between physical operationism and mathematical
intuitionism clearly gains in depth when one observes that the

notion of the completed infinite is excluded from the intuitionistic

mathematical philosophy. Only the potentially infinite sets are
allowed, that is, arbitrarily large sets which are constructable
clement by element according to known performable rules (algorithms).
The analogy is deepened even further when one observes that the
rules of logic in either discipline do not make unqualified use of

the law of the excluded middle which states that: with respect of a

given proposition P , precisely one of the two and only two possibili-
“ties, " P true" or " P not true" must always hold. The propositicn

miy be a mathematical statement about the property of a set of

numbers, or it may be — in the physical case -- a statement about

the phase space coordinate of an elementary particle. -

Our purpose here is not to expound on the tenets of operationism
and intuitionism, but to bring to the reader's attention a hint

of the logically unsatisfactory state of affairs cxtant in physical
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theories which are associated with non-operaticnalistic principles
and whicn still couch their concepts in and operate with non-intuitive
mathematics. The obvious remedy for this state of affairs is to com-
bine the best elements of each schcol of thought. The preliminary
finitary (in fact, strictly finite) formulaticn given below (and in
subsequent parers) is restricted to one small segment of physical
theory, namely radiative transfer theory; but it serves to point

up the fact that, despite the adoption of the severly attenuated
mathematical methodology associated with the finitary formulation,
mny of the so-called classical results are recoverable in this new
and intuitively defensible formulation. For one of the few presently
existing applications of finitary methods to other physical theories,
in particular to measurement processes and to quantum mechanics,

respectively, see references 15 and 16.

The reader may argue that a finitary formulation is apparcntly
clumsy and relatively intractable when compared with thc infinitary
formulations using the ideas of uncountably infinite sets along with
integrals and derivatives of functions over them. However, this
criticism can be directed only at the calculus level. It will be
adinitted that the calculus of finitary formulations is presently not
as well developed as the infinitary formulations. However, it would
be just as foolish to ignore finitary formulations on such grounds
as it would be to reject the electrification of a new city because
it is apparcntly hopelessly isolated from the custamary power sources:
the problem of electrification should not be solved by returning to
the oil lamp, but rather by finding a new way of generaling the

necessary supply of electrical power.
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A different objection to the use of finitary formulations in
physics may be made on pragmatic grounds: the infinitary formulations
using the concepts of the completed infinite, the unqualified use of
the law of the excluded middle, and such admittedly disguised chimeras
as the axiom of choice, are harmless ploys that quickly and painlessly
allow one to arrive at the desired results eventually attainable by
the more conservative finitary tactics, So why not take the simplest
and most practical route? This is a campelling argument, especially
in this age of accelerating progress made possible by the hack 'n' tack
approaches to the solution of everyday physical problems. The argument ,
however, is patently false. Elementary counterexamples to the argu-
ment can be drawn from the ranks of number theory, and other branches
of mathematics, or even mathematical physics. Such an illustration
would, however, be intrinsically difficult and uninformative for the
general reader. Thus, the following simile, though crude, would
perhaps serve better to bring home the fallacy along with a hint of

its potentially catastrophic' consequences.

The infinitary programs in rure mathemitics and mathematical
physics can be likened to the economies of separate cities each of
whi.ch has evolved from the clumsy but workable barter level up through
the more elegant but still practical treasury-backed money certificate
level amd, finally, reaches the ethereal levels in which only the
abstract concept of credit in all its symbolic glory remains. The
commodities and services available in each city are supposed evenly

matched within each city. Thus, for examrle, inhabitants of each
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city who remain in their city experience no difficulties in building,
buying and selling houses solely by the internal exchange of credit;
each city could actually thrive materially (in the literal sense) on
the intramural flow of finmancial accreditation. Somecay somewhere in
elther city,; however, it is roasonable to expect that at least one
creditor may for some reason be compelled to move to the other city.
The creditor, preparatory to moving, is disturbed to find that the
accreditation structures of the two cities are incompatible, even
though each has at its roots a hard-cash equivalent of services or
commodities. He therefore demands of his debtors in his own city

a hard-cash liquidation of all his debts so that he may start afresh
in the new city but without any loss of accumulated progress or
wealth status. His dismay deepens and his hopes for a lossless move
into the new city crumble when he finds that not only can he not
equate his services or commodities to its counterparts but, more
horribly, he finds that there is in his city no hard-cash equivalent
to his own accumulated credits for services or commodities. He
panics, so do his creditors; and the house of economic cards begins

its kaleidoscopic collapse. ' :

L Someday, somewhere in the intricate lacework of infinitary
mathematical and physical theories enough demands for "hard-cash"
liquidation of debts may be brought to bear on them so that a
serious halt in material progress may occur while a forced re-evalua-
tion of the accreditation system takes place. The debt may be in the *
form of an hitherto mutually agreed upon (but never quite verified)

"existing point" somewhere in an uncountably infinite set; the
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creditor (nature) for some reason might demand of the debtor (the
physicist or mathematician) that he produce the "point" immediately
and palpably. Or the debt may be in the form of an action conveniently
based on an "either-or" dichotomy postulated by scme lazy physicist or
matheratician who ruled out the actual possibility of ''meither-nor" so
that his inability to literally produce one or the other of the
possibilities at a crucial moment may abruptly annihilate at this
juncture a vital bridge to the remaining subnetwork of consequences of

his theory.
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HEURISTIC INTRODUCTICN TC THE PRINCIPLE
OF LCCAL INTERACTION

We now present an intuitively simple experinent one may perform
with two particles which are allowed to interact radiometrically.
From results of this experiment we proceed to trace a chain of deduc-
tions to a primitive form of the local interaction principle. From
this we make an inductive leap to the general form of the principle
presently envisioned. We may observe here that an alternative
approach to the principle is possible by suitably dissecting the
equation of transfer for radiance. However, such a biopsy could
be performed only after several layers of infinitary fat have been
laboriously stripped away. For the reasons cited at length above,
we have chosen relatively more naive finitary approach to the
principle. The question of the interrelation of the principle of
local interaction and the 9quation of transfer will be touched on
again in subsequent papers wheliein some connections between the two
will be made. We now turn directly to the heuristic introduction

of the principle.
The Classical Interreflection Problem

Suppose it has been found by direct experimentation that a
small volume or "point" of material exhibits the following radio-
metric response to a finite set of incoming pencils of radiation:
for an incoming set of bea’qs of radiation of total radiance N°©

and arbitrary directions of jng¢idence s the resultant radiance
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distribution is angularly uniform of magnitude N2 where
2.<| is some number obtained from the experiment. Suppose now there
are two such "points" or "particles" R and P, in an otherwise
empty region of space. For our immediate purpose R and P:

may be thought of as repﬁsenting small disjoint spheres of scatter-
ing material separated a distance which is large compared to their
radii. One of the points, say P, , is now irradiated by a
single pencil of radiation of radiance magnitude N° . Since the
region between , and. 4 is hypothesized to be empty of any

other ascattering material, it follows that the initial or irmediate

resultant radiance of P

| @as seen at [, is given by N°Z ,

that is, P, at this stage of the discussicn is irradiated by

primary scattered radiant flux from the direction of R, the

magnitude of the primary radiance being N°®X .

The particle F> now scatters an amount (NO3 )3 = N©¢32
in the direction of P, (the quantity N°X acting as the
" initial irradiating pencil of flux on > ). For the same reason

as before P‘ sees precisely this amount of radiance arriving

from Pa which is composed of secondary scattered flux with

respect to the source flux comprising"l N® . The particle P.

in turn scatters the fractional amount (N°3?) 5 of

tertiary scattered flux back tg Ps . This amount. 'is in

addition to the amount N©Z of primary scattered flux originally
sent to Pa . This process is continued indefinitely. Thus P;_

at the next stage, scatters back an amount NoeZ4 to P,

in additicn to the secondary scattered flux WN°3 < determined

during the immediately praceding interchange.
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The total radiance received by [ as a result of the first

N scatterings by P, in the direction of Pz is represented by

fo;) — Noz + Nozg, 4.+ '\JOZZD—I ,

whereas the total radiance received by P, as a reosult of the

first n flux scattering interchanges by pa in the direction

of P. is represented by

NG = N°>2 4+ NoZ%a oo s NoZ"

To summarize the first N interchanges between P. and Pz
)
we may write N‘,"2 and o as:

2 = 5 (1)

n _ N oze(l _Zzn) (2)
Ne| -~ — , /2*2 b

which simply represent the sums of the corresponding finite geometric

. . P=A
series with common ratio , =
t
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Passage to the Steady State Limit

Now, because of the finite speed of propagation of scattered
flux and because £  applies to any irradiation, however small
or large, there will be at any finite time after the initial
irradiation of P, , an infinite number of remaining interchanges
still possible between P' and P> . However, because == <}
for sufficiently large values of N , the numerical difference

between N(;;‘ and N, defined by

N N°=Z

= T 9

'- ‘__. Z¢ (3)
can be maede arbitrarily small. That is, for any positive number

€ , 'n integer 1N, can be found (explicitly) such that if N

is an integer greater than No ,» we have

2N+t
(o 2
,NIZ“Noa' = | — 52 < €
A similar statement holds for N(a": and the corresponding
quantity N, defined as:
Nex 2
Ny = . (&)
|- 22
We define the quantities N2 am N, exhibited above
as the steady state radiances between |7 and % .
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Preliminary Formmulation of the Local Interaction Principle

We now come to a key observation on the mutual relations

between N“"; s ‘a"" and between N, , Ny . An
examination of (1) and (2) shows that if N""'e‘ is multiplied
by 2 , we obtain N‘e".’ » i.e., for each given integer N

we see that the relation

Gl (0}
a1 = 2 =
(5)

holds. Furthermore, a more detailed examinatirn of (1) and (2) could

Nt

show that if ]\]( ' is multiplied by >  and if to this is

=4
added 0 we would obtain o i.e., in symbols:
e
i
(n} (h=i
N = N°Z+ N (6)

which holds for each given integer n °

’

A similar set of relations may be shown to hold between the
steady state radiances N> and N2y . Thus, if N2
in (3) is multiplied by & » We obtain the expression for N3

!

in (4):

Mo = Nia = (7)
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which is analogous to (5) above. Similarly we have

Na = N°Z + Na,S_'. $ (8)

which is analogous to (6).

It is immediately verifiable that the pair of relations (5),
(6) is equivalent to the pair (1), (2) in the sense that either pair
is derivable from the other ty a finite number of algebraic operations,
More importantly, a similar observation may be made for the pair
(3), (4) and the pair (7), (8), i.e., each is derivable from the
other by a finite number of algebraic operations. The pair (7,

(8) constitutes the germ of the principle of local interaction

developed and exploited below for the case of an arbitrary finite

number of radiometrically interacting points.,
Symmetric Formulation of the Local Interaction Principle

A more symmetric formulation of the principle, as sumarized
in (7) and (8), can be given by allowing Pe also to be irradiated
by an outside source. Thus §f N Z, r(eplaces N° ,ad N,
represents the initial irradfation of t?‘l by some exterior source »
it is easy to see that, by following once again the steps leading

to (7) and (8), we have for the more general case:

Nay = N,Z + Ngaz (9)

?
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Ne= N, = + N3, S 10)

Various Levels of Interpretation of the Principle

The special principle of local interaction as summarized
by the pair (9), (10), despite its apparently restrictive deriva-
tion, is of far-reaching generality ard arplicability. Its generality
may be discerned by a suitably general reinterpretation of the
notion of "point" or "particle" as sumarized by P\ and P,
in the derivation. By interpreting P, and not as
simple "geometric points" but as parallel planes which are (sects of
points) separated by a vacuum, and by considering . as the reflec-
tance (or transmittance) of the planes, N,z and WNa, are
then interpreted as the steady state radiances set up between P|
and Pz . A broader interpretation would consider the "points"
P‘ and Pa as extended three dimensional sets of points,
i.e., bodies of scattering material which are in radiometric inter-
action (such as two clouds, or the atmosphere and the earth, or
the atmosphere and the sea). In such an interpretation N© , Nz
and Nj; would not be numbers but functions and = would
then be considered as functicnal operator on N,z and l\’a‘
rather than just a single number. The Juxtapositicn of two symbols
such as N, ( No$ Lo N°> ) would now be interpreted

as a generalized linear operation on the function N2, ( Nz g OF No)
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by the operator > , rather than just a simple multiplication
of numbers. These ideas lend great depth to the discrete-space

formulations. They will’, be amplified in a subsequent paper.

BASIC DEFINITIONS

The discrete locaticn space Xa is a bounded finite subset
of distinct points of euciidean 3-space E3 , i.e., X,= {ac,, ey Xnd,
xX; € E3 where ,ﬁ:(,,,,7 n s, and n is a finite
integer and there exists a positive integer O < ©© such
that each J \ 1€ {<n > p%,(a‘ In any specific application
of the subsequent results, a specific rule of construction must
be given for Xn . For example, X n may consist of all

integral lattice points X, of E3 in the sphere C, defined by

the inequalities |961 | = a R A= lgeony n where is saome

given integer. In what follows the spatial disposition of the

.elements o, cof X, | is arbitrary but fixed.

The Local Direction Space S S I is
a set of unit vectors in [T defined as = :{ f-',‘;',g“‘,A}where
§,1j= (xj—xi)/lx_;-x‘.) s and ' I‘;% _xj . In other
words =, is generally the set of unit vectors at X ; each
of which points to some specific subset of .4, < n-| other
elements of W n S €8, §. points fram 2 to X; .

For each 4 , the set = i is clearly a subset of = ,

the unit sphere in E5.
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The local scattering function (X; 5 o 3 . ) 5 X € Xn

——

is a function defined in - %= to the set non

negative real numbers.

The local_absorption function A (%:5 <) 5 ‘x‘. eX,is a

function defined in = _ to the set of non negative real

numbers.,

The local conservation property of the local scattering and

local absorption functions at X/, ,(_'=|,..., n, is defined

by:

Atz .8y + =, Z(x;55 38') = | (1)
§e=,

/
where § is an element of a given subset = of =

—————

which must be defined at each > for each discrete space Xn s

Setting 52 T(x57355' )= S(:i,5), (11)
s
becomes:

/

!

Acx; §)+ SCx,8)=1, @)

For our present purposes, we will say that Xn is conservative

if A(-’I,,‘)E‘-.O on = for every X, € Xa 5 and none-
conservative if | > A(x, ,E)> O for scme § ¢ = at

every x. € Xn - There are intermediate possibilities,
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but they are of no interest here. Henceforth,unless otherwise
3#*
specificd, we will assume that Xn is non-conservative. The

specific radiance distribution N(X;,-) at x:. ¢ Xn
is a function on = to the set of non n;egative real numbers,
Two points X; s 2, of X, are said to be eclipsed

if there is a point X[ € Xaq such that . # X s He#X 3

and 5, = EJK .

Eclipse convention for radiance distributions: If X, and

X are eclipsed, then we set, by definition, N (X, 5. )="", o1 )«
= N(:?Ck, S«i)=0.

Restriction convention for radiance distributions: 1In

certain applications of the results developed below, it will be
necessary to restrict the domain of the radiance distribution at

x; € Xn to certain subsets of == . (i) the most common
restrictior. is to E"' . For convenience we will write N(x,, f.;J)

/ —
as Ny, » and st N(2,,§)=0 forann §j5 =, . In

particular, to simplify notation, we set Nyu=0, A=l.-,n.

(ii) In general, if N (%, ) is restricted to a given fixed

subset :—'_—'_‘./C:‘_‘:“. = then we set N(X,;, §) =0
_ ’

for § 74 =; . For the remainder of the present discussion,

restriction convention (ii) will in force s unless explicitly noted

otherwise.

* This assumption's primary job is to insure the validity of equation
(29) below. Actually this assumption may be relaxed somewhat. We

shall not, however, go into such details here,
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Scurce Convention. To each element X, & Xn is assigned an

incident radiance distribution NO(I;, ») defined on some finite

—_0 — .3 ‘:",{ ° ° For
subset = of = ; i.e., — = gvia" ? gdulf

o
brevity, we will write NO(J(;, §J-:) = NJ’; ) . In general

=% contains directions which are not in — (=) ; in this

wajr we provide the system Xﬂ with the possibility of exterior sources.
LOCAL INTERACTICN PRINCIPLE

The statement of the local interaction principle for )(,.,
is an immediate generalization of the special two-point case
developed in the Introduction, Specifically, let X . € Xn -
Then for every fe =,

n
N(x;,5) = Z Ny, SV Z (X 5 Ses ;5 5 )

k=

A4 o
+ Z N:i Z (.I‘,j fk., 3 5) o
W= (12)

Relation (12) is the principle of local interaction for )( n 3

——
¢

it takes the following special form for §S= j‘,J. &

-—_

n
Ny = Z N Z (X5 Ses 3 54;)
K=1 )

= 0 o (13)
+ z K‘:Z(-1‘°§ g".t‘ 55‘,)) 5 A‘,J=‘;"'in -
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VECTOR FORMULATION OF THE PRINCIPLE

Relation (13) for the principle of local interaction is formlly
a set of n® equations in the N°  unknowns N,;j o 4, =100 ;
however, with the eclipse and restriction conventions on N(x,, )
the actual number of unknowns may be less than ne Nevertheless,
in order to emphasize the inherent symmetry of the following formu-
lations, we can and shall explicitly carry through the discussions
employing all ' n° symbols N;J' « The inherent symmetry of the
local interaction principle is most clearly seen when vector notation
is employed. We now consider the necessary steps leading to such

a formulation.
Specific Radiance and Field Radiance Vectors

We shall designate by N, the |x n? array of N,

values:

(Nu,an,...,Nm) Na,‘l\};_z,uu,N‘*n) I an,!\/n;’..., '\)nn)

This vector is called the specific radiance vector; the word "specific"

serves to recall the important fact that N, is manufactured ,

in the above manner, from the specific radiance distributions WN( - PN ) .
There is another radiance vector which can be obtained from N (. , )
by a certain pemmutation of the entries of N+ . This

new arrangement is of the form:

(Nll ) Na‘) .

..,Nn'.JN'al NZl)"‘) Nn), f o o N‘n)wzn.)o..,Nnn)
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We shall be designeted this vector by the symbol N_ and call it

the field radiance vector. The word "field" is used to point up

the similarity of N_ ‘ and the well known concept of field radiance

used in the ccntinuous theory of radiative trm;sfer. To see this,

one may divide N _ into N blocks each of M entries, starting

with N . Then the first block consists of radiance values

of the form N;, with « running from | to N . The

second block consists of radiance values of the fomm [\,1'2. , with
,(' running from | to N . The //1 block therefore contains

the radiance values for all the incoming directions to X, € X n

(These incoming directions are simply the negatives of the elements

of =, , hence the minus sign subscript in N_ ). It will be
convenient to have an explicit notation for these subsets of N/_ ,
and for corresponding subsets of Ny . Thus we set
N+(1;)=(N;,....,N‘-,,), £=1gcig Ny so that
Ny = (NJ,(X.),,., N;(I.,)). Furthermore, we define N -(X,)="" _—
SNl y.cyNn) 50 that N_ = (N=(x) 5 ...y No(xn)). Na(2x,)

is the specific radiance vector at X, . I\J_.(x‘-) , the field

radiance vector at x; . Furthermore, tc put the source or

incident radiance distributions in vector form, we write W °¢ x, )=

!

= (N?‘- 9 venq N:;".).) x‘:},...,n. N"'(I‘.)is the incident radiance

vector at x, . Finally, set Ne=( N%xn ...y No(-xn)) .
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Scattering Matrices

With the preceding definitions of the various radiance vectors
at D(i we see that the form of the local interaction principle

given in (13) motivates the definition of the following set of

matrices. For each (¢ , , = ly-eiy , set:

205 5,:585:) Z(x;580580) e Z(x;sfusfmﬂ
2(1;‘33‘2[354.’;) Z(:XAS fzti f;'z) "’Z_(J(J')gzijgjn

Z(x;): . . .
(14)

Z-(x,-;fn;?,f,;,) 2(1-'5§n; Ssz ) so Z(";an;if.n)/

In short Z(:X‘-) for each 4 =1,y.. .71, isan N XN  matrix

whose entry in the & th row and/3 th  column is Z(.‘X‘* ',f.,u- 5 S"/‘)

Z (x;) is the local scattering matrix.

2
Furthermore, we define the Dzﬁn matrix = as:

/

/

2 xy)

2 (x3) O

) (15)
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Thus, = is an nzx n2 matrix with N blocks
along its main diagonal consisting of the N»N  matrices 3 (X, ) ;

the zeros indicate that all other 04 - n3 entries of =

are set equal to zero, = is the scattering matrix for X, .

In order to place the incident radiance terms of (13) into vector
form, we define a matrix = %x,) , £ =1y 4N, vhichls a

similar structure to pd ¢X.)
Z(x,' 3 §|“ ; 5") Z('x:.; gh' ; 5‘(3) e 2(1;5510}‘551"3)

Z (X3 82550) 2 (iS58 ) Taar 35 1800)
2'0(3‘;]“ |

L] L 4

. 16)

e o

2580, 055,) = 550 5 50) - - 203555 5on)

Thus = % (X;) is, for each 4':]7...7 n an 4}. % r)

matrix whose entry in the | ath rowand bth column is S, 35855¢55¢s).

la]
Furthemmore, analogously to =5 , we define the (= AA.) x nt
. ¢ pad] ’

matrix S5 ® as:

Z (X))

Zococz) , O

> 9= . (17)

O = (x ’
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v
Thus =" ° is an (‘Z_‘ 2;)*nt matrix with M blocks alorg:
its main diagonal such that the ( £/  block ( counting from the
top left) has the order ’%4Af‘x n . The zeros indicate
that all the other (A?n _.J‘. ) nin - l) entries are zero,

Vector Synthesis of the Principle

Using the notation just defined, the principle of local inter-

action (13) can be put into the following vector form:

N+ () = N-(x) Zx) + N S Sx,). 19

13
A Flgee.on

Relation (18) is made even more compact by using the remaining

notation introduced above:

Ny = No= + N°Z ° (19)

which is the required vector formulation of the local interaction

principle,

It appears from (19) £hat we have campletely rounded the notaticnal
circle and have returned to the original speical forms (9), (10)
of the principle deduced in the Introduction. However, now (19)
represents in matriciai fom a system of n? linear algebraic

[aY
equations in the unknowns N,‘j with = 4, prescribed
(=1
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source conditions. In order to place the system (19) in a form
which immediately suggests its solution it will be necessary to

first introduce the noticn of the permutation matrix M .
FUNCTICNAL RELATICNS FOR THE RADIANCE VECTORS
The Permutation Matrix M

Equation (19) is the most compact form of the principle of
local interaction on an arbitrary discrete location space )(,, .
It is not, however, in the form most suitable for obtaining solutions

for the quantities N/ . What we require is the so=-called

“J
syrmetric form which involves only N4t or N- . In order to
cast (19) into its symmetric form and thereby ready it for soluticrn,
we recall that the vectors N+ and . N.. are composed of identical
sets of numbers N;J' s A j=1,e.,n ; their salient difference
arises from the order of a;ipearénce of the numbers N, in

cach. Accordingly, there should exist an N? x n? matrix M

with the property that

Na= N-M, | (2)

?

in fact the required V] is the fomm:
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En E::.\ s En;

E \2,. Ez;_ r: N
M = ()

.
J

Em Ez,r\ e Enn

is an nNwn matrix of the form E,-J- = (E..,')

where [E ,

and where S p=0 unless K=« and J{=, , in which case

= . In other words EAJ- has all entries zero except

for a unit entry in the (th row and J'//l cclumn.

It follows immediately that

(22)

so that

(23)

and

TVIT (24)

i.e., M represents a norm-rreserving transformation in an

n*- dimensicnal vector space \/,.,?. » Therefore, in addition to (20), we have
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The Functional Relatiocnships for N+ and N-

From (19),

Ny= N_Z + N°=°,

and making use of ™M  and property (22):
Ne= (N-M)(MZ) + N°Z°
= N+ MZ -+ N°Z°

Hence

Ny (I-M3)= N°Z°,

Furthermore, from (19) and (25):

No= N_2ZM + N°ZM

30 that

N~(I—2'\4) = N°Z°M,

®

- 37 -

(25)

(26)

(27)
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Equations (26) and (27) are the required functional relations govern-
ing N + and N_ . We now turn to the question of the solvability

of (26) and (27) for N,( and N/_ respectively. The answer to

this question devolves on 'the invertibility of the operation (I— b2 M)

or, equivalently, on that of the operation (I-— I\/IZ ) .
SOLUTIONS' OF THE FUNCTIONAL RELATIONS
The Norm Contracting Property of the Scattering Matrix

Let V= (Viy.ceq Unz) be an element of V2 , the
n®- dimensional (radiance) vector space associated with X p . "
The nomm | \/l of \/ 1is defined in the usual way as ’Vl=[; 7{7'] ’/2..
Let & be a linear transformation on Vnz into itself. & 1is
said to be norm-contracting if there is a real number Y% ,

O< ¥ < | , such that for every V & Vja ;

Vsl < ¥YI1V].

(28)

It is easy to show that the iincar transformation ZZ on \/n;
into itself is nomm-contragtinge To this end we recall that the
location space X n 1is hypctiigsized tc be non-conservative which
by (11) implies that every elament 2 (X; 3 S, .3 §.0) of =2
is less than unity and not all such elements are zero., Set )

Y= max§Ziisar ;5a) °;t’~'=‘.--.'f01early O< ¥< | ,end

for every \/ & \/n 2 ; We have
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(Vs < YIV| ()

It follows immediately frem (24) that ZMand MS are also

ncrm-contracting linear transfcrmaticns on \/n"- into itself;

furthermore, the associated X in each case is precisely that for 3 .
Soluticns
We now make use cf the following well-known property of norm-

contracting linear transformations (see, e.g., ref. (17)) : Let S

be a norm-contracting linear transformation with a given contraction

3*
factor Y on a finite dimensicnal vector space \/m . Then the

transformation (I~S5)  hag an inverse (I=-S)"' where 1 is

the identity transformation, and

(1-3)"'"=T+5+82,4 ... . (30)
Since ZM and MS are norm-contracting it follows immediately
that (26) and (27) possess unigue nom trivial sclution vectors N.

and N_  whenever N° is not the zerc vector. Thus

Ne= N°zZ° (I-M2)7,

# an may be infinite dimensicnal; t;roweVer, we shall nct need this

stronger ccndition. Furthermopre s & sirictly finitary demonstration
of the existence of (I- g)~!} nay be given,
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or
N°x °
Ny = 9
and
N°Z°M (32)
N_ = . 32
I-=M

Equations (31) and (32) ccnstitute the required soluticns for the
specific and field radiance vectors, respectively, under a given

incident source condition N ® and for the discrete location

SCATTERING-ORDER DECOMPOSITION OF THE SOLUTIONS

In the continuous theory cf radiative transfer it is quite often
helpful in a physical or mathematical analysis of a multiple scattering
problem to decompose the radiance distribution N(X, ) at a
poeint X in the optical medium into an infinite series, the N th

term of which ccnsists of a radiance distributicn associated with

radiant flux scattered precisely () times; thus:

O

N(x,.) = =2 N%x,-) , (33)

n=o
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where FJOCa-)') is the rcduced radiance distributicn with respect
to which the scattering orders are usually indexed. Mcre often than
not, owing to the complexity of the multiple scattering process, the
theorist is unable to obtain explicit closed analytical fcrms for the
ﬂ-lez radiance distributions in terms of the reduced radiance distri-
buticn (which is generally the given radirmetric datum). Usually

only estimates armd bounds on N"(.X,-) of a very crude (but cccasionally

18,19
helpful) nature can be wrung frcm the general transport equaticn.”

Not the least of the many analytically pleasant features of the
discrete space formulations of radiative transfer theory is the
possibility of obtaining simple closed forms for the n'ﬂﬁVJ radiance
distributicns about each point of the location space )(n . These
forms are obtained directly from the infinite series represcntation
of T-MS . We now briefly outline the details of obtaining

the desired decomposition.

To begin with, we set

o ") o
N{y= N°Z 7, (34)

’

0 \
N+ is the reduced radiance vecker with respect tc which the

fcllowing n-a»ﬁ} scattering crders are indexed. hli_ may be
interpreted as the radiant flux cf gero scattering order which is
fed into the system Xn - We centinue by inductively defining j\/ﬁ

as:

Nt = M:M(MZ) .
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so that

n o] n (35)
N+ = N+ (MZ) .
Nn
+ may be interpreted as the portion cf N representing the
p-~ary, radiance vector, i.e., a radiance distributicn ccnsisting
of radiant flux which, with respect to that comprising hji_ , has

been scattered at most N  times. It follows that, by means of
(30) and (31), the specific radiance vector N may be represented

by the follcowing formal infinite series:

4

Ne= 2 NP
n=o (36)

which is analogcus to its ccntinuous counterpart (33).

It is of interest to cbserve that (35) (and hence (36)) is
especially amenable tc numerical evaluaticn on large-scale automatic

computors.

The Truncated Deccmposition

In addition to its useful conzeptual features and its basic
numerical tractability, the scattering order deccmpositicn of the
radiance vector as given in (36) yields a relatively strai~htforward

and practical truncation formula with a well-defined error bound.
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That' is, if the infinitec series (36) is truncated at the K+h term,
K=O , we can estimate the norm of the difference between [N/,

and the finite sum of the first K  terms. Specifically; write

K 0o
Ny = Z N: + Z NJ 2
N =0 N=k+\

sc that

N~ ML = | 2 NT L

But then, according to (35) we may write:

1= N7 = | = . ND (M)

nN= K4

9

which, by virtue of the triangle inequality which holds in \/,z (the

present vector space), may be replaced by the inequality

| = NP s > | N (MDY

This inequality may be strengthened further by using the ncrn-

contracting property of the operator Mz_ o That is

IV (M2 = | [ g (M2 T (M3) |

< ¥INIME| = ¥ INE (MDY I(M)

< YINT (MDY,
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Centinuing to apply the nom-ccntracting prcpertics in this way, we

eventually arrive at the inequality:
& n n o
INT (M2)"] < ¥ INS
so that the errcr estimate beccmes

NG - = N0l < = xTINgL,

n=go n=~gt

which reduces to

o) 1<+
INYL ¥
lN+ = Z N+ l
= |~
(37)
|
|
For non-trivial scattering problems we have |[N,| = JN+ | ;
therefore, the relative error asscciated with the K-tem truncaticn
certainly cannot exceed ¥ ¥ (1— X) , i.e.,
N+ Z N+ X "4 o
— < |- X (38)
N, :
As an example of the use of (38), suppose that Y =1/2.

| Then a truncaticn of the infimite series at |¢= & , has associated

with it a relative error less than 4%.
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SUMIARY AND PROSPECTUS

Starting with an arbitrary discrete space )(n and the principle
of local interacticn (12) on X, , it has been possible to
formulate tho cemplete multiple scattering problem on X pn (equation (19)°
and to sclve it explicitly {equaticn (31)) along with estimates c¢n

the accuracy cf an iteraticn-type approximate soluticn (equation (38)).

These results only begin to show the anmalytic advantages cf a
discrete-space apprcach tc radiative transfer problems. In subsequent
papers we will show how the principles of invariance on Xn may
be derived from the local interacticn princirle. The results of such
a derivaticn may be applied to such practical problems as the numerical
computation cf the light field in natural acrosols and hydrosols. This

alsc will be shown in subsequent works.

The local interaction principle will also be used to formulate
the basic transfer equation on discrete spaces and, by limiting processes,
also those on continua. Thus the principle is capable of tying together

all the fundamental concepts and laws of radiative transfer theory.

For all its power and comprehensiveness, the principle has never-
theless a commonplace origin in everyday knowledge of radiative transfer:;
Its underlying precept was implicitly known and instinctively perceived
by every investigator who ever engaged in an interreflection study, or
who made use of th concept of the volume scattering (phase) function.

In this light the following observation by Mach forms a particularly

apt conclusion to this work:
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"Let it be remarked in conclusion that ... every general
Principle, brings with it, by the insight which it furnishes, dis-

illusionment as well as elucidation. It brings with it disillusionment

to the extent that we recognize it in facts which were long before
knovn and even instinctively perceived, although our present recognition
is' more distinet end more definite; and elucidation, in that it
enables us to see evervwhere throughout the most complicated relations
the same simple facts."

The Science of Mechanics, Open Court

Pub. Co., (La Salle, I1i., 1942, 9th Ed.),
p. 88,
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