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Abstract

Homogenizations and Large Deviations

by

Ivan Matic

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Fraydoun Rezakhanlou, Chair

The object of study is homogenization and large deviations for various stochastic models. We start
by presenting large deviation bounds for certain Hamilton-Jacobi equations. The discrete analogue
of the control curves from the variational formula brings us to the study of the deterministic walks
in random environments. The discretization of time in variational formula of Hamilton-Jacobi
equation is related to the Frenkel-Kontorova model, for which we do the homogenization.
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Chapter 1

Introduction

The limiting behavior of stochastic models is used to describe many processes in nature: for-
mation of crystals, spread of infections, traffic jams, and a variety of interface growths. The study
of these models encourages and uses the mutual interactions of various math disciplines. For
example, in the case of Hamilton-Jacobi (HJ) partial differential equations, homogenization is re-
lated to the study of invariant measures for Hamiltonian systems. This brings us to the celebrated
weak KAM theory. The homogenization for Hamilton-Jacobi-Bellman (HJB) equations gives the
(quenched) large deviations for diffusions with random drifts and obstacles. When the time is
discrete, from the PDE world we get to the Frenkel-Kontorova (FK) and Gibbs measures (GM)
models. Homogenization for FK is related to finding invariant measures for symplectic maps.
When the space becomes discrete we arrive at the study of random walks in random environments
(RWRE) and deterministic walks in random environment (DWRE). Totally asymmetric exclusion
processes (TASEP) and k-exclusions are famous interacting particle systems used to model traffic
flows. These two models are related to the FK model for special case of Lagrangians.

HJ and HJB are very popular in the PDE community. The FK model is of great interest to
the researchers in dynamical systems, while GM is studied in equilibrium statistical mechanics.
RWRE and percolation are some of the most important topics in probability theory, and they have
been very popular among probabilists in recent years. Many of those studying hydrodynamic
limits showed an interest in TASEP. Understanding the connection between these models would
be appreciated by many mathematicians.

The results from this thesis help in understanding the FK model, deterministic walks in random
environments, and solutions to some Hamilton-Jacobi equations.

1.1 Large Deviations
Large deviation theory is the study of the exponential rate of decay of probabilities of some

rare events. The simplest example is the sum Sn of independent random variables X1, . . . ,Xn with
mean m. The events {|Sn| ≥ n(m+δ )} are rare for all δ > 0, meaning that P(|Sn| ≥m(1+δ ))→ 0
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as n→ ∞. However, it is possible to get a more precise result, namely there exists a function
I : R+ → R such that P(|Sn| ≥ m(1 + δ )) ≈ e−nI(δ ). The study of the function I and the large
deviation probabilities is closely tied to the study of the limits of moment generating functions, i.e.
Λ(λ ) = lim 1

n logE
(

eλ ·Xn
)

. For more details, see [8].

1.1.1 Stochastic Hamilton-Jacobi and Hamilton-Jacobi-Bellman equations
We are interested in the large deviations for the viscosity solutions of the following PDEs in

the cases δ = 0 (Hamilton-Jacobi) and δ = 1 (Hamilton-Jacobi-Bellman):

uε
t (x, t,ω)+H(∇uε(x, t,ω),τx/εω)) = δ

ε

2
∆uε(x, t,ω) (1.1.1)

uε(x,0,ω) = gε(x).

One of the central problems in this area is:

Problem 1.1.1. Do there exist large deviations for the viscosity solutions of the Hamilton-Jacobi
and Hamilton-Jacobi-Bellman equations? Identify and prove the regularity properties for the rate
function.

In the case of a convex Hamiltonian, viscosity solutions can be characterized by variational
formulas. In the work [16] of Kosygina, Rezakhanlou, and Varadhan, various controls have been
sampled from the variational formulas to obtain estimates. These estimates were good approxi-
mations for solutions to establish homogenization. We hope that some similar idea can be applied
to the study of large deviations. The goal is to find a set of controls that are close enough to
the solutions to cause sub-exponential error in probabilities of large deviations. At the same time,
those controls should be sufficiently simple to establish the large deviations principle. That method
would hopefully be robust enough to implement in some other models.

In the special case of quadratic Hamiltonian H(p,x,ω) = 1
2 |p|

2 +V (x,ω), the Hopf-Cole trans-
form makes connections between HJB equations and Brownian motions killed with rate V . When
the environment is Poissonian, Sznitman in [28] managed to establish the shape theorem for the
annealed Lyapunov exponents. His quenched Lyapunov exponents correspond to homogenization
of Hamilton-Jacobi equations, while the annealed case corresponds to some extent to the large
deviations. However, the connection is still not fully there, because his shape theorem covers the
convergence of the moment generating function for the value λ = 1. This could be easily extended
to positive integers but it is not yet clear how to go beyond this. The importance of establishing
those connections is that the results of the two areas would immediately enhance each other.

In one-dimensional case, we will be able to say something more about large deviations when
the Hamiltonian has the form H(p,x,ω) = K(p)−V (τxω) for certain convex functions K .
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1.1.2 Large deviations for deterministic walks in random environments
Motivation and relation to other models

An important class of controls featured in the variational formulas for HJ are those that solve
an ODE of the form dX/dt = b(X ,ω). It would be beneficial to understand the large deviations of
the controls themselves. If the ODE is replaced by a recursive equation for sequences, we get an
analogous model which is called a deterministic walk in a random environment. Another interest
in this model comes from the fact that it can be viewed as a very degenerate case of a random walk
in a random environment. An averaged (annealed) walk does not posses the Markov property and
as such it has presented a big challenge in recent years. Varadhan in [30] and Rassoul-Agha in [20]
used the point of view of the particle to understand this walk as a Markov chain on a much larger
probability space and derived the large deviations from the Donsker-Varadhan theory applied to
such a Markov chain. The problem they had to face is that the state space was extremely large and
establishing compactness that is needed for the large deviations was a very difficult task. Following
this approach, several refinements of the results were possible, and these all assumed the ellipticity
for the environment. The most degenerate case when this ellipticity is not present is our model of
the deterministic walk in a random environment.

Definition of the model

A deterministic walk in a random environment can be understood as a general finite-range
dependent random walk that starts repeating the loop once it reaches a site it has visited before.
For a more precise definition let us assume that b : Zd×Ω→Zd is a random field on the probability
space (Ω,P). We now define the walk Xn recursively as X0 = 0, Xn+1 = Xn + b(Xn,ω). Without
stating all the assumptions now, we will able to prove the following theorem (see also [17]):

Theorem 1.1.2. There exists a convex function Λ : Rd → R such that

lim
n→∞

1
n

logE
[
eλ ·Xn

]
= Λ(λ ).

When time and space are continuous we get a generalization stated in the next problem. Solving
this problem would directly benefit the understanding of large deviations for HJ equations.

Problem 1.1.3. For reasonable random fields b : Rd ×Ω→ Rd , do we have large deviations for
the solution Xt of the system of differential equations

dXt

dt
= b(Xt ,ω)?

Before attempting to solve this problem, it might be useful to consider the following simplifi-
cation in which the time is discrete but the space is continuous.

Problem 1.1.4. Do we have large deviations for the sequence Xn on Rd defined as Xn+1 = Xn +
b(Xn,ω), for suitable random field b : Rd×Ω→ Rd?
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1.2 Homogenization
Homogenization deals with studying the limiting behavior of solutions to partial differential

equations with rapidly oscillating coefficients. Relatively well understood examples are ones of the
Hamilton-Jacobi and Hamilton-Jacobi-Bellman equations. The homogenizations for the periodic
models are done by Evans and Gomes in [13] and [14] while the results for stochastic models
are due to Lions, Kosygina, Rezakhanlou, Souganidis, Tarver, and Varadhan in [16], [19], [24].
The limiting functions turned out to be the solution of a deterministic Hamilton-Jacobi PDE. The
Hamiltonian of such a PDE (so called the effective Hamiltonian) is given by the cell problem.

1.2.1 Homogenization for the Frenkel-Kontorova model
The Frenkel-Kontorova model can be understood as a discrete analogue of a solution to the

stochastic Hamilton-Jacobi equation. Let (Ω,P) be a probability space such that P is invariant
under the family (τz)z∈Rd of transformations on Ω (a good way to think about τz is as translations).
We also assume that τz is ergodic. In other words, we are assuming P(τzA) = P(A) (for all z and
A); and only trivial sets (i.e. those of measure 0 or 1) can satisfy P(A∆τzA) = 0 for all z∈Rd . Here
∆ denotes the symmetric difference.

Let L : Rd×Ω be a convex function. Define

Sn(p,q,ω) = inf

{
n−1

∑
i=0

L(qi+1−qi,τqiω)

}
,

where the infimum is taken over all sequences q0,q1, . . . ,qn that satisfy q0 = p and qn = q. Assume
that h : Rd → R is a Lipschitz-continuous function and let us define

un(q,ω) = sup
Q

{
nh
(

Q
n

)
−Sn(q,Q,ω)

}
.

We will prove (see also [18]) the following theorem under some coercivity assumptions on the
function L:

Theorem 1.2.1. There exists a convex and coercive function L̄ : Rd→R such that for every η > 0,
all q ∈ Rd , and almost all ω ∈Ω, the following holds:

lim
n→∞

E

[
sup

q′∈B(q,η)

∣∣∣∣1nun(nq′,ω)−u(q′)
∣∣∣∣
]

= 0,

where
u(q) = sup

Q
{h(Q)− L̄(Q−q)} .
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The existence of L̄ is established using the subadditive ergodic theorem. However, once the
homogenization is obtained for all functions h plugging in some particular perturbations of linear
initial data one can obtain a variational formula for L̄. Denote by K the class of functions g :
Rd×Ω→ R that satisfy the following three conditions:

(i) For each a ∈ Rd the function g(a,ω) belongs to Ld+α(Ω) for some α > 0;

(ii) For each a ∈ Rd E(g(a,ω)) = 0, and

(iii) For each sequence q0,q1,q2, . . . ,qn ∈ Rd such that qn = q0 the following equality holds:

n−1

∑
k=0

g(qk+1−qk,τqkω) = 0.

Theorem 1.2.2. L̄ is the convex conjugate of the function H̄ defined as:

H̄(p) = inf
g∈K

sup
a

esssupP {g(a,ω)+ p ·a−L(a,ω)} .

A discrete analogue to the class K turned out to be of great use to Rosenbluth and Yilmaz in
studying RWRE. Some of its important properties are established in [25].

Let us conclude by mentioning a particularly interesting problem that arises from this study.

Problem 1.2.3. Do we have large deviations for the Frenkel-Kontorova model under certain as-
sumptions on L and h?

Since the time here is discrete while the space is not, this would be a step towards understanding
large deviations for Hamilton-Jacobi equations.

Connections to last passage percolation and k-exclusions

Methods used in the study of the homogenizations for the Frenkel-Kontorova model can be
slightly modified to work in the discrete space. Interesting problems would be establishing the
relations of this model to the last passage percolations and k-exclusions.

Homogenization results for percolation are obtained by Grimmett and Kesten in [15] and large
deviations are studied by Chow and Zheng in [3], and Cranston, Gauthier, and Mountford in [6].
The proof of Theorem 1.2.2 utilized the limits obtained by the subadditive ergodic theorem. This
gives a hope that similar arguments would allow us to get variational formulas for the limits derived
by Grimmett and Kesten and prove some regularity of such limits.

Consider the following modification of the Frenkel-Kontorova model in which the space is also
discrete and L(a,τzω) represents the time the particle needs to travel over the edge between z and
z + a. We assume here that L(a,ω) = +∞ for all a such that ‖a‖ > 1. Sn(q,Q,ω) now has an
interpretation as the time that a particle needs if it wants to travel between q and Q using exactly
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n steps. The passage time between the sites q and Q is defined as S(q,Q,ω) = infn Sn(q,Q,ω).
If we denote by l(q,Q,ω) the value for n that minimizes Sn(q,Q,ω) we see that l and S satisfy
the subadditivity property and as such we have the limits of 1

nS(0,na,ω) and 1
n l(0,na,ω). We can

obtain similar results to the ones for the FK model and analogous versions of L̄ and H̄ and get
a candidate for the variational formula for L̄. In this case L̄ and l̄ are norms, and H̄ (that can be
defined similarly to the definition from theorem 1.2.2) is not a conjugate of L̄ for every probability
distribution P.

Another model is k-exclusions studied by Seppalainen in [26] and Rezakhanlou in [22] and
[23]. The model is the following: The initial interface is a graph of a function h : Zd → Z. Each
site has its Poisson clock. When the clock rings at the point a, our interface wants to change
from h to ha, where ha(b) = h(b) for b 6= a, and ha(a) = h(a) + 1. The change would happen
if the function ha belonged to the class of so called admissible functions. The set of admissible
functions is usually chosen to consist of the functions with moderate jumps, i.e. of the size at most
k. Totally asymmetric simple exclusion processes are special cases when d = 1 and k = 1. The
problem we want to study is the regularity and convexity of the Hamiltonians that are obtained as
the hydrodynamic limits of those processes.

Problem 1.2.4. Is it possible to obtain regularity and convexity properties for the Hamiltonians in
percolations and k exclusions?
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Chapter 2

Large Deviations for Hamilton-Jacobi
Equations

2.1 Introduction
We are interested in the large deviations for the viscosity solutions of the following PDEs in

the cases δ = 0 (Hamilton-Jacobi) and δ = 1 (Hamilton-Jacobi-Bellman):

uε
t (x, t,ω)+H(∇uε(x, t,ω),τx/εω)) = δ

ε

2
∆uε(x, t,ω) (2.1.1)

uε(x,0,ω) = gε(x).

We will study certain Hamiltonians, and certain environments for which there are large deviations
for solutions of (2.1.1). It is useful to consider the function vε(x, t,ω) = 1

ε
uε(εx,εt,ω). Then the

derivatives of vε satisfy:

vε
t (x, t,ω) = uε

t (εx,εt,ω),
∇vε(x, t,ω) = ∇uε

t (εx,εt,ω), and
∆vε(x, t,ω) = ε∆uε(εx,εt,ω).

The initial value problem (2.1.1) can be rephrased in terms of vε in the following way:

vε
t (x, t,ω)+H(∇vε(x, t,ω),τxω) = δ

1
2

∆vε(x, t,ω) (2.1.2)

vε(x,0,ω) =
1
ε

gε(εx).

The advantage of the above equation is that each member of the family vε satisfies the same equa-
tion with different initial values.
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We will focus on the case δ = 0. Denote f ε(x) = 1
ε
g(εx). Denote by L the convex conjugate

of H. We have the following variational formula for representing the solution

vε(x, t,ω) = inf
y
{ f ε(y)+S(x,y, t,ω)} where

S(x,y, t,ω) = inf
{∫ t

0
L(ξ̇ (s),τξ (s)ω)ds : ξ (0) = y,ξ (t) = x

}
.

The function we are after is uε(x, t,ω) = εvε
( x

ε
, t

ε
,ω
)
, and in the case gε = g does not depend on

ε we have:

uε(x, t,ω) = inf
y

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}

. (2.1.3)

Hopf-Cole Transform for the Hamilton-Jacobi-Bellman Equation

Let us briefly mention one approach that can yield to some results in the case when δ = 1 is
chosen in (2.1.1). If the Hamiltonian has the following special form

H(p,x) =
1
2
|p|2 +b(τxω) · p+V (τxω),

then we can use the Hopf-Cole transform to simplify the problem to the one in which the PDE is
linear. The idea is to start from the solution vε of (2.1.2) and consider the function wε(x, t,ω) =
e−vε (x,t,ω). Then wε

t =−vε
t e−vε

, ∇wε =−∇vεe−vε

, and ∆wε =−∆vεe−vε

+ |∇vε |2e−vε

. The equa-
tion now becomes

wε
t (x, t,ω)+b(τxω) ·∇wε(x, t,ω)−V (τxω)wε(x, t,ω) =

1
2

∆wε(x, t,ω)

wε(x, t,ω) = e−
1
ε

gε (εx).

Now we can apply the Feynman-Kac formula to obtain

wε(x, t,ω) = Eω
x

[
e−

1
ε

gε (εZt)+
∫ t

0 V (Zs)ds
]

where Zt is the diffusion with the generator 1
2∆−b ·∇. Such Zs is a Brownian motion with drift b.

Consequently vε(x, t,ω) =− logEx

[
e−

1
ε

gε (εZt)+
∫ t

0 V (Zs)ds
]

and

uε(x, t,ω) =−ε logEx/ε

[
e−

1
ε

gε (εZt/ε )+
∫ t/ε

0 V (Zs)ds
]
.



9

Therefore doing quenched large deviations for Zs is related to doing the homogenization for the
corresponding HJ. On the other hand:

lim
ε→0

ε logP [uε(x, t,ω)≤ α] = lim
ε→0

ε logP
[
εvε

( x
ε
,

t
ε
,ω
)
≤ α

]
= lim

ε→0
ε logP

[
e−vε (x,t,ω) ≥ e−α/ε

]
≤ −α + lim

ε→0
ε logE [wε(x,y,ω)]

= α + lim
ε→0

ε logE
[
Ex

[
e−

1
ε

gε (εZt)+
∫ t

0 V (Zs)ds
]]

.

The problem of annealed large deviations for the drifted Brownian motion killed with rate V is tied
to a bound for the large deviations for the Hamilton-Jacobi-Bellman equaiton.

2.2 Large Deviations for the Environment
As an illustration of the large deviations we will consider the Hamilton-Jacobi equation in

one-dimensional space. For a Hamiltonian of a special form H(p,x,ω) = K(p)−V (τxω) there
is a convenient way to represent solutions to (2.1.1) and use the large deviation properties of the
environment to study the solutions.

In this section we will see that Poisson fields posses a large deviation property that would be
sufficient for our purposes. The section 2.3 will assume the existence of such large deviations for
the environment and use that to establish the result for the solutions of (2.1.1).

First we need to recall some standard results about the entropy function. Then we will define
the entropy function for Poisson fields. This argument is analogous to the one for Markov processes
presented in the famous paper [11] of Donsker and Varadhan.

2.2.1 Entropy
If λ and µ are two probability measures on (X ,F ) we define the entropy of µ with respect to

λ as:

h(µ|λ ) = sup
Φ∈B(X)

{
Eµ(Φ)− logEλ

(
eΦ
)}

. (2.2.1)

Then we have the following result:

h(µ|λ ) =

{
Eµ

(
log d µ

d λ

)
if µ << λ ,

+∞, otherwise.
(2.2.2)

Indeed, if µ is not absolutely continuous with respect to λ then taking Φn = n ·1A for some set A
that satisfies 0 = λ (A) < µ(A) we have Eµ(Φn)− logEµ(Φn) = nµ(A)→ +∞ as n→ ∞. On the
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other hand, if µ << λ we have by Jensen’s inequality: Eµ

[
log
(

eφ/d µ

d λ

)]
≤ logEµ

[
eφ/d µ

d λ

]
=

logEλ (eΦ). This implies that h(µ|λ ) ≤ supΦ∈B(X)

{
Eµ(Φ)− logEλ (eΦ)

}
. Taking Φ = log d µ

d λ

we get Eµ(Φ)− logEλ (eΦ) = Eµ

(
d µ

d λ

)
giving the other inequality. Thus (2.2.2) is established.

There is another way to express the entropy. If we denote by B1(X) = { f ∈B(X) : Eλ
(
e f )≤

1} then

h(µ|λ ) = sup
f∈B1(X)

Eµ( f ). (2.2.3)

This is easy to verify. If µ is not absolutely continuous with respect to λ then taking A be the
set such that λ (A) = 0 < µ(A) and fn = n1A we have Eλ (e f ) = 1 and Eµ( f ) = nµ(A)→ +∞

as n→ ∞. Assume now that µ << λ . Let f ∈ B1(X). Then f ∈ B(X) hence from (2.2.1)
we get h(µ|λ ) ≥ Eµ( f )− logEλ (e f ) ≥ Eµ( f ). Taking supremum over f ∈ B1(X) we obtain
h(µ|λ )≥ sup f∈B1(X) Eµ( f ). If we now choose f = log d µ

d λ
we get f ∈B1(X) and Eµ( f ) = h(µ|λ )

which implies (2.2.3).
If G ⊆F is a sigma-field we can define the entropy of µ with respect to λ in the sigma-field

G as
hG (µ|λ ) = sup

Φ∈B(X)

{
Eµ(Φ)− logEλ

(
eΦ
)}

.

We have the following theorem relating the entropies of the smaller σ -fields. The proof is presented
in [11] (lemma 2.3).

Theorem 2.2.1. Let G ⊆F be a σ -field, and let µ̂ and λ̂ denote the regular conditional probability
distributions of µ and λ with respect to G . Then the following equality holds:

h(µ|λ ) = hG (µ|λ )+Eµ

(
h(µ̂|λ̂ )

)
.

Let v ∈ Rd be a vector and a ∈ Rd a point. Define the strip starting at a in the direction v as

Σv;a = {x ∈ Rd : 0≤ (x−a) · v≤ |v|2}.

Each point a∈Rd and each vector v∈Rd determine the half-space Σ−v;a = {x∈Rd : (x−a) ·v≤ 0}.
Denote by FΣ = FΣv;a the σ -field generated by those functions f that depend only on the points
in Σ. Denote by Q̂ and P̂ the r.c.p.d. of Q and P with respect to the sigma field F

Σ
−
v;a

. We define
the entropy with respect to the strip Σv;a as

H(v;a,Q) = EQ [hFΣ
(Q̂|P̂)

]
.

The following theorem holds:
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Theorem 2.2.2. Let v,a ∈ Rd be fixed (v is assumed to be a vector, while a is a point). Either
H(tv;a,Q) = ∞ for every t > 0 or

H(tv;a,Q) = tH(v;a,Q).

Proof. It suffices to prove that for any two collinear vectors v1 and v1 we have H(v1 + v2;a,Q) =
H(v1;a,Q)+ H(v2;a,Q). We will use Q̂ and P̂ to denote the r.c.p.d. of Q and P with respect to
F

Σ
−
v1;a

. Let us denote by Q̂′ and P̂′ the r.c.p.d. of Q̂ and P̂ with respect to FΣv1;a . Using the theorem
2.2.1 we get

H(v1 + v2;a,Q) = EQ
[
hFΣv1+v2;a

(Q̂|P̂)
]

= EQ
[
hFΣv1;a

(Q̂|P̂)+EQ̂
[
hFΣv1+v2;a

(Q̂′|P̂′)
]]

= H(v1;a,Q)+EQ
[
EQ̂
[
hFΣv1+v2;a

(Q̂′|P̂′)
]]

.

Let us denote by Q̄ and P̄ the r.c.p.d. of Q and P with respect to F
Σ
−
v2;a+v1

. The last term is

equal to EQ
[
hFΣv2;a+v1

(Q̄|P̄)
]
. Because of the stationarity we have that EQ

[
hFΣv2;a+v1

(Q̄|P̄)
]

=

EQ
[
hFΣv2;a

(Q̂|P̂)
]

= H(v2;a,Q). �

Assume that v,a∈Rd are fixed. For ω̄ ∈Ω, let us define the measure δω⊗v;a Q in the following
way: For every k, l ∈ N and any sets A1, . . . ,Ak ∈ F

Σ
−
v;a

, B1, . . . ,Bl ∈ F(Σ
−
v;a)c , and any natural

numbers a1, . . . ,ak,b1, . . . ,bl

δω̄ ⊗v;a Q(ω(A1) = a1, . . . ,ω(Ak) = ak,ω(B1) = b1, . . . ,ω(Bk) = bk)
= 1ω̄(A1)=a1 · · ·1ω̄(Ak)=ak

·Q(ω(B1) = b1,ω(Bl) = bl).

Theorem 2.2.3. Let Pω = δω ⊕v;a P̂. Then

H(v;a,Q) = sup
Φ∈F

Σ
−
v;a+v

[
EQ(Φ)−EQ

(
logEPω

(
eΦ
))]

.

Proof. Take any Φ ∈F
Σ
−
v;a+v

. Then

EQ(Φ) = EQ
[
EQ̂(Φ)

]
≤ EQ

[
logEPω

(
eΦ
)
+hF

Σ
−
v;a+v

(Q̂|Pω)
]

= EQ
[
hFΣv;a+v

(Q̂|P̂)
]
+EQ

[
logEPω

(
eΦ
)]

.

This implies that H(v;a,Q)≥ supΦ∈F
Σ
−
v;a+v

[
EQ(Φ)−EQ (logEPω

(
eΦ
))]

.
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To prove the other inequality assume that the supremum on the right-hand side is equal to l.
Let Q̄ denote the measure

∫
Pω dQ(ω). By Jensen’s inequality we have

sup
Φ∈F

Σ
−
v;a+v

[
EQ(Φ)− logEQ̄ (eΦ

)]
≤ l,

which implies that hF
Σ
−
v;a+v

(Q|Q̄)≤ l. According to the theorem 2.2.1 we have

hF
Σ
−
v;a+v

(Q|Q̄) = hF
Σ
−
v;a

(Q|Q̄)+EQ
[

hF
Σ
−
v;a+v

(Q̂| ˆ̄Q)
]
≤ l.

Since Q = Q̂ on F
Σ
−
v;a

we have that hF
Σ
−
v;a

(Q|Q̄) = 0. We also have ˆ̄Q = Pω . We can now conclude

that EQ
[

hF
Σ
−
v;a+v

(Q̂| ˆ̄Q)
]

= EQ
[
hFΣv;a

(Q̂|P̂)
]

= H(v;a,Q). This completes the proof. �

Define the following quantity:

H̄(v;a,Q) = sup
Φ∈FΣv;a

[
EQ[Φ]−EQ

[
logEPω

(
eΦ
)]]

.

Theorem 2.2.4. The following relation holds:

lim
t→+∞

H̄(tv;a,Q)
t

= H(v;a,Q).

Proof. The proof is the same as the proof of the theorem 3.6 from [11]. �

Theorem 2.2.5. Let F ′
v;a =

{
Φ ∈B

(
FΣv;a

)
: EP (eΦ

)
≤ 1
}

. Then

H̄(v;a,Q) = sup
Φ∈F ′v;a

EQ(Φ).

Proof. This follows immediately from (2.2.3). �

2.2.2 Large Deviations for Poisson Field
Let Ω be the set of all point measures on Rd . Fix a,v ∈ Rd . For some subset K ∈ Rd , let

ωK = supp ω ∩K and let FK be the set of functions that depend on ωK only. Let Ft = FΣtv;0 . Let
F ′

t = {Φ ∈Ft : E(exp(Φ))≤ 1}.
For every ω ∈ Ω let ωv;a be the process that is periodization of ω from the strip Σv;a to the

entire Rd . Define Rv;a,ω(A) = 1
‖v‖
∫ ‖v‖

0 δ
τ
−1
a−v+z v

‖v‖
ω
(A)dz. The measure Rv;a,ω is not stationary on
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Ω with respect to τ
−1
tv , so we define the modified measure R̂v;a,ω(A) = 1

‖v‖
∫ ‖v‖

0 δ
τ
−1
a−v+z v

‖v‖
ωv;a(A)dz.

The measure R̂v;a,ω is stationary since

R̂v;a,ω(τtvA) =
1
‖v‖

∫ ‖v‖
0

δ
τ
−1
a−v+z v

‖v‖
ωv;a(τtvA)dz

=
1
‖v‖

∫ ‖v‖
0

δ
τ
−1
a−v+(z+t‖v‖) v

‖v‖
ωv;a(A)dz = R̂v;a,ω(A).

Let M (Ω) be the set of all probability measures on Ω and let MS(Ω) be the space of stationary
measures on Ω. Then we have R̂v;a,ω ∈MS(Ω) for every ω and v,a ∈ Rd .

If a function Φ is continuous and bounded then we have the following relations:∫
ΦdRv;a,ω =

1
‖v‖

∫ ‖v‖
0

Φ(τ−1
a−v+z v

‖v‖
ω)dz, and∫

ΦdR̂v;a,ω =
1
‖v‖

∫ ‖v‖
0

Φ(τ−1
a−v+z v

‖v‖
ω

v;a)dz.

The sets τa−v+z v
‖v‖

(ω)∩Σtv;0 and τa−v+z v
‖v‖

(ωv;a)∩Σtv,0 are the same for each z ∈ (0,‖v‖) \
(‖v‖− t,v). Therefore

∣∣∫ ΦdRv;a,ω −
∫

ΦdR̂v;a,ω

∣∣≤ 2 t
l‖Φ‖∞. Hence for every ε > 0 we have

limsup
l→∞

1
‖lv‖

logP
(∫

ΦdRlv;a,ω < τ

)
≤ limsup

l→∞

1
‖lv‖

logP
(∫

ΦdR̂lv;a,ω < τ + ε

)
.

Theorem 2.2.6. If G⊆MS(Ω) is a compact set then

limsup
l→∞

1
l

logP
(
R̂lv;a,ω ∈ G

)
≤− inf

Q∈G

{
sup

t
sup

Φ∈F ′t

∫ 1
t

ΦdQ

}
.

Proof. Take arbitrary Φ ∈F ′
t , and assume that ‖v‖= 1. Then

P(R̂lv;a,ω ∈ G) ≤ P
(

l
t

∫
ΦdR̂lv;a,ω ≥

l
t

inf
Q∈G

∫
ΦdQ

)
≤ e−

l
t infQ∈G

∫
ΦdQ

·E
(

e
l
t
∫

ΦdRlv;a,ω · e
l
t
∫

Φd(R̂lv;a,ω−Rlv;a,ω )
)

≤ e−
l
t infQ∈G

∫
ΦdQ ·E

(
e

l
t
∫

ΦdRlv;a,ω

)
· ec‖Φ‖.
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Now we have

limsup
1
l

logP(R̂lv;a,ω ∈ G) ≤ −1
t

inf
Q∈G

∫
ΦdQ

+ limsup
1
l

logE
(

e
l
t
∫

ΦdRlv;a,ω

)
.

Assume that l = nt +σ , for some 0≤ σ < t and n ∈ N. We can rewrite

l
t

∫
ΦdRlv;a,ω =

1
t

∫ l

0
Φ(τ−1

a−v+zvω)dz

=
1
t ∑

k∈Zn

∫ (k+1)t

kt
Φ(τ−1

a−v+zvω)dz+
1
t

∫
B

Φ(τ−1
a−v+zvω)dz

=
1
t

∫ t

0

n

∑
k=1

Φ(τ−1
a−v+ktv+zvω)dz+

1
t

∫
B

Φ(τ−1
a−v+zvω)dz,

where B is defined as B = {z : nt ≤ z < l}. Now we will use the Jensen’s inequality and the bound
exp(1

t
∫

B Φ(τ−1
a−v+zvω dz))≤ c to get

E
(

e
l
t
∫

ΦdRlv;a,ω

)
≤ cE

(
1
t

∫ t

0
e∑

n
k=1 Φ(τ−1

a−v+ktv+zvω) dz
)

= c
1
t

∫ t

0
E
(

e∑
n
k=1 Φ(τ−1

a−v+ktv+zvω)
)

dz.

The independence implies

E
(

e
l
t
∫

ΦdRlv;a,ω

)
= c · 1

t

∫ t

0

[
E
(

eΦ(τ−1
a−v+ktv+zvω)

)]n
dz≤ c.

The last inequality follows from Φ∈F ′
t . Hence, this term will dissapear after taking the logarithm

and dividing by l. Therefore

limsup
1
l

logP(R̂lv;a,ω ∈ G) ≤ −sup
t

sup
Φ∈F ′t

inf
Q∈G

∫ 1
t

ΦdQ.

To change the order of sup and inf, let us assume for the beginning that G is compact.
For every ε > 0 let

⋃J
j=1U j be the finite open cover of G with balls U j = B(Q j,ε).
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Then we have

limsup
1
l

logP
(
R̂lv;a,ω ∈ G

)
= limsup

1
l

logP

(
R̂lv;a,ω ∈

⋃
j

U j

)

= limsup
1
l

logP

(⋃
j

(R̂l,ω ∈U j)

)

≤ limsup
1
l

log∑
j

P
(
R̂lv;a,ω ∈U j

)
≤ limsup

1
l

log
[

J ·max
j≤J

P
(
R̂lv;a,ω ∈U j

)]
= max

j≤J
limsup

1
l

logP
(
R̂lv;a,ω ∈U j

)
≤ −min

j≤J
sup

t
sup

Φ∈F ′t
inf

Q∈U j

∫ 1
t

ΦdQ.

Because of the continuity of the linear functional Q 7→
∫

ΦdQ we have that

limsup
1
l

logP
(
R̂lv;a,ω ∈ G

)
≤− inf

Q∈G

{
sup

t

1
t

sup
Φ∈F ′t

∫
ΦdQ

}
.

This completes the proof. �

In order to establish the upper large deviations for the environment we need to prove the previ-
ous theorem for the case of closed sets.

Topology on M (Ω) and MS(Ω)

The sequence ωn converges to ω in vague topology (ωn,ω ∈ Ω) if for every compact set
K ⊆ Rd we have ωn(K)→ ω(K). A set A ⊆ Ω is precompact if there exist a sequence ln of real
numbers such that supω∈A ω([−n,n]d)≤ ln.

In general, if Lk ⊆ Rd are compact sets whose union is Ω and lk ↑ ∞ the set of real numbers
then the set M(Lk),(lk) = {ω ∈Ω : ∀k ω(Lk)≤ lk} is compact subset of Ω. For a sequence mn ↑∞ of
real numbers and a sequence (Ln

k , l
n
k ) of pairs of compact sets and real numbers such that as k→ ∞

ln
k → ∞ for each n, define

L =
{

Q ∈M (Ω) : ∀n Q
(

MC
(Ln

k),(l
n
k )

)
≤ 1

mn

}
.

According to the Prohorov’s theorem, the set L is precompact in M (Ω). This means that the set
L ∩MS(Ω) is precompact in MS(Ω).
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We will frequently use that for every integer α

P(ω(L)≥ α)≤
∞

∑
k=α

e−|L|
|L|k

k!
≤ |L|

α

α!
.

Let us recall the Stirling’s formula:

lim
n→∞

enn!
nn√n

=
√

2π.

If α > m|L| for some constant m then the Stirling formula implies that

P(ω(L)≥ α) ≤ (e|L|)α

αα
≤
( e

m

)α

. (2.2.4)

Theorem 2.2.7. If G⊆MS(Ω) is a csed set then

limsup
l→∞

1
l

logP
(
R̂lv;a,ω ∈ G

)
≤− inf

Q∈G

{
sup

t
sup

Φ∈F ′t

∫ 1
t

ΦdQ

}
.

Proof. Let us find some upper bounds on P(R̂lv;a,ω ∈L C). We have that

P(R̂lv;a,ω ∈L C)≤
∞

∑
n=1

P
(

R̂lv;a,ω

(
MC

(Ln
k),(l

n
k )

)
>

1
mn

)
.

Therefore

R̂lv;a,ω

(
MC

(Ln
k),(l

n
k )

)
=

1
l

∫ l

0
δ

τ
−1
a−lv+zvω lv;a(MC

(Ln
k),(l

n
k ))dz

=
1
l

∫ l

0
1

{
∞⋃

k=1

{
τ
−1
a−lv+zvω

lv;a(Ln
k) > ln

k

}}
dz.

Let kn(l) = min{k : ln
k ≥ 4l}. Let dk be any sequence such that ∑

∞
k=1 dk = 1. Now we can choose

(Ln
k),(l

n
k ) in such a way that mn(1/

√
ln
k )ln

k < exp(−4mnln
k ) and for each k > kn(l) we have

{ω : ω
lv;a(Ln

k) > ln
k} ⊇ {ω : ω

lv;a(Ln
k+1) > ln

k+1}. (2.2.5)

To show how this can be done let us first fix n and construct the sequence (Ln
k , l

n
k )∞

k=1 inductively as
follows: If (Ln

k , l
n
k ) is given, choose (Ln

k+1, l
n
k+1) such that (2.2.5) is satisfied for all l ≤ (k +1)k+1.

Increasing ln
k+1 further won’t ruin the previous relation so we can assume that ln

k+1 > |Ln
k+1|

|Ln
k+1|
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as well as ln
k > e4k. We could also choose ln

k a bit bigger to satisfy: dkln
k

eCmn|Ln
k |
≥
√

ln
k for any constant

C. The last inequality implies that ln
log l ≥ 4l which gives that kn(l)≤ log l.

Then we have

P
(

R̂lv;a,ω

(
MC

(Ln
k),(l

n
k )

)
>

1
mn

)
≤ P

(∫ l

0

kn(l)

∑
k=1

1ω lv;a(τa−lv+zvLn
k)>ln

k
dz >

l
mn

)

≤ P

kn(l)⋃
k=1

{∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz >
dkl
mn

}
≤

kn(l)

∑
k=1

P
(∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz >
dkl
mn

)
.

We will consider two cases:

1◦ If k < kn(l). Then ln
k < 4l. This also means that |Ln

k | is much smaller than l. We can divide
the strip Σlv;a into many smaller strips of size congruent to the diameter of Ln

k . Let Σ|Ln
k |v;zi

be these small strips. Then according to the pigeon-hole principle we have:∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz >
dkl
mn

⇒ |Ln
k |∑

i
1ω lv;a(τzi(2Ln

k))>ln
k
>

dkl
mn

.

However it is easy to see that the last inequality implies that ω([0, l]× [0, |Ln
k |

d−1]) > ln
k

dkl
Cmn
·

1
|Ln

k |
. Here C is some constant depending only on the dimension d. It relates to how many

times the double cube is bigger than the original one and it also has the number of overlap-
ping when the big [0, l] is covered with the smaller Ln

k . Now from (2.2.4) we have that

P
(∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz >
dkl
mn

)
≤

(
eCmn|Ln

k |
dkln

k

) lnk dkl
Cmn|Ln

k | ≤

(
1√
ln
k

) lnk dkl
Cmn|Ln

k |

≤

(
1√
ln
k

)√ln
k l
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2◦ If k = kn(l) then ln
k ≥ 4l. Using Markov’s inequality we get

P
(∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz >
dkl
mn

)
≤ mn

dkl
E
(∫ l

0
1ω lv;a(τa−lv+zvLn

k)>ln
k

dz
)

=
mn

dkl

∫ l

0
P(ω lv;a(Ln

k) > ln
k )dz

≤ mnP(ω lv;a(Ln
k) > ln

k )mn

(
e|Ln

k |
ln
k

)ln
k

≤ mn

(
1√
ln
k

)ln
k

≤ e−4mnl,

because we have chosen ln
k to be bigger than mn.

Therefore we have

P
(

R̂lv;a,ω

(
MC

(Ln
k),(l

n
k )

)
>

1
mn

)
≤ e−4mnl +

kn(l)

∑
k=1

(
1√
ln
k

)√ln
k l

≤ e−4mnl +
∞

∑
k=1

(
1
ln
k

)√ln
k l

≤ e−2mnl.

We finally get

P
(

R̂lv;a,ω ∈L C
)
≤

∞

∑
n=1

e−2mnl ≤ e−lCL ,

where CL can be any pre-assigned constant after which we could choose mn to be big enough.
Therefore

1
l

logP(R̂lv;a,ω ∈L C) ≤ −CL .

We can make sure this thing goes to −∞ and then we would have the large deviations for every
closed set. �

Theorem 2.2.8. If N ⊆MS(Ω) is an open set then

liminf
l→∞

1
l

logP
(
R̂lv;a,ω ∈ N

)
≥− inf

Q∈N

{
sup

t
sup

Φ∈F ′t

∫ 1
t

ΦdQ

}
.
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Proof. This theorem can be now established in the same way as in [11]. It suffices to prove that
for every Q ∈MS(Ω) and every neighborhood N of Q we have

liminf
1
l

logP(R̂lv;a,ω ∈ N)≥−H(v;a,Q).

Using the Jensen’s inequality we get

logP(R̂lv;a,ω ∈ N) = logEQ

(
1R̂lv;a,ω∈N ·

dP
dQ

∣∣∣∣
Fl

)

= logQ(R̂lv;a,ω ∈ N)+ logEQ

(
dP
dQ

∣∣∣∣
Fl

·1R̂lv;a,ω∈N ·
1

Q(R̂lv;a,ω ∈ N)

)

≥ logQ(R̂lv;a,ω ∈ N)+EQ

(
log

dP
dQ

∣∣∣∣
Fl

·1R̂lv;a,ω∈N ·
1

Q(R̂lv;a,ω ∈ N)

)
.

The first quantity on the right is finite, so after dividing by l that will go converge 0. The second
quantity satisfies:

liminf
1
l

EQ

(
log

dP
dQ

∣∣∣∣
Fl

·1R̂lv;a,ω∈N ·
1

Q(R̂lv;a,ω ∈ N)

)

= liminf · 1
Q(R̂lv;a,ω ∈ N)

·EQ

(
1
l

log
dP
dQ

∣∣∣∣
Fl

·1R̂lv;a,ω∈N

)

= lim
l→∞

1
Q(R̂lv;a,ω ∈ N)

· liminfEQ

(
1
l

log
dP
dQ

∣∣∣∣
Fl

·1R̂lv;a,ω∈N

)
= −H(v;a,Q). �

2.3 Large Deviation Estimates
Assuming that the environment has the level 3 large deviations discussed in the section 2.2 we

will establish the large deviations for the solutions of (2.1.1) in the case when the Hamiltonian is
of a special form H(p,x,ω) = K(p)−V (τxω).

We will start by listing the assumptions on the functions K and Ω. Then we will use a result of
Rezakhanlou from [21] to get a representation of the solution as a continuous functional of R x−y

ε
,ω .

2.3.1 Introduction
Let (Ω,P) be a probability space on which we have a group (τz)z∈R of transformations. Assume

that P is invariant under τz, and that the environment is ergodic and satisfies the level-3 large
deviations formulated in the section 2.2.
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Assume that H(p,τxω) = K(p)−V (τxω), where K : R→ R is strictly convex, non-negative,
and satisfies K(0) = 0. Assume that A+ : [0,+∞)→ [0,+∞) and A− : [0,+∞)→ (−∞,0] are the
inverses of K. Assume further that V : Ω→ R is bounded, stationary, integrable, and satisfies:

lim
n→∞

1
n

logP
(

1
n

∣∣∣∣∫ n

0
A±′(V (τzω))dz

∣∣∣∣≤M
)

=−∞, for all M > 0. (2.3.1)

Theorem 2.3.1. Assume that uε is a solution to the initial problem (2.1.1) with δ = 0 and gε = g
does not depend on ε . Then there exists a continuous function Λx,t,δ on MS(Ω) such that

lim
ε→0

ε logP(uε(x, t,ω)≥ α) ≤ − lim
δ→0

inf{H(Q) : Q ∈MS(Ω),Λx,t,δ (Q)≥ α}, and

lim
ε→0

ε logP(uε(x, t,ω)≤ α) ≥ − lim
δ→0

inf{H(Q) : Q ∈MS(Ω),Λx,t,δ (Q)≤ α}

We will use a theorem of Rezakhanlou (5.3 from [21]) to express the solution to (2.1.1) in a
form convenient enough to allow us to use the contraction principle.

Let us first go over the general idea. Consider the following cell problem

K(∇w(p,x,ω))−V (τxω) = H̄(p),
w(p,x,ω) = p · x+o(|x|), as |x| →+∞. (2.3.2)

In order for this to be solvable we need ∇w(p,x,ω) = A±(H̄(p)+V (τxω)). For this quantity to
be defined we must have H̄(p) +V (τxω) ≥ 0, and we will have this under suitable conditions.
Assume for the moment that p > 0. In order to have w(p,x,ω) = p · x+o(|x|) we need

lim
x→∞

1
x

∫ x

0
A+(H̄(p)+V (τzω))dz = p.

However, from the ergodic theorem we have that the previous limit is equal to E(A+(H̄(p) +
V (·))). Let us denote ϕ±(λ ) = E(A±(λ +V (·))). The function ϕ is fully determined for λ 6∈
[λ−,λ+], where λ− and λ+ are two real numbers. Denote by ψ± the inverses of ϕ . The solu-
tion w is now given by w(p,x,ω) =

∫ x
0 A+(ψ(p)+V (τzω))dz. The idea is that the existence of

such a solution for sufficiently large class of p’s would allow us to make the following solutions
z(p,x, t,ω) = w(p,x,ω)−tH̄(p) to the initial value problem zt(p,x, t,ω)+H(zx(p,x, t,ω),τxω) =
0, z(p,x,0,ω) = w(p,x,ω). Then, “inverting” the variational formula enables us to retrieve valu-
able information on S.

2.3.2 Large Deviations
Now we present the rigorous argument. We start by defining:

H̄(p) =


ψ−(p), if p≤ ϕ−(0)
ψ+(p), if p≥ ϕ+(0)
0, if φ−(0)≤ p≤ ϕ+(0).
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Denote p± = ϕ±(0), and let L̄ denote the convex conjugate of H̄. Furthermore, let us define

v±(x,λ ,ω) =
∫ x

0
A±(λ +V (y))dy, λ ≥ 0

w(p,x,ω) =
{

v+(x, H̄(p),ω), if p≥ p+,
v−(x, H̄(p),ω), if p≤ p−.

(2.3.3)

Also set
Γ
±(z,λ ,ω) =

1
K′ (A±(λ +V (τzω)))

.

The following three lemmas are proved in [21] (lemmas 5.1-5.3):

Lemma 2.3.1. If there exists some real λ such that H(x,wx(x)) = λ has a solution w, then
S(x,y, t) =

∫ t
0 L(x, ẋ)ds = w(x)−w(y)− tλ where x(·) solves ẋ(s) = Hp(x,wx(x)).

Lemma 2.3.2. If for some λ , t > 0 we have
∫ x

y Γ+(z,λ ) = t, then

S(x,y, t,ω) =
∫ x

y
A+(λ +V (τzω))dz−λ t.

The analogous relation holds when Γ+,A+ are replaced by Γ−,A−.

Lemma 2.3.3. Define z±(x, t) implicitly by∫ x

z+(x,t)
Γ

+(z,0,ω)dz =−
∫ z−(x,t)

x
Γ
−(z,0,ω)dz = t.

Then for y 6∈ [z+(x, t),z−(x, t)] we have

S(x,y, t,ω) = sup
p6∈[p−,p+]

[w(p,x)−w(p,y)− tH̄(p)] . (2.3.4)

For each measure Q ∈M (Ω) and each p 6∈ [p−, p+] let us denote

Λp,x,y,t(Q) = g(y)− tH̄(p)+ |x− y| ·
∫

Ap(H̄(p)+V (ω̃))dQ(ω̃),

where Ap = A+ for p > p+, and Ap = A− for p < p−. Let us denote Cε =
[
z+ ( x

ε
, t

ε

)
,z−
( x

ε
, t

ε

)]
.

Assume that B is a measurable subset of R. Our goal is to relate the probability P(uε(x, t,ω) ∈ B)
to the probability P(Φ(R̂ x−y

ε
,ω)) for some continuous functional Φ and then use the contraction

principle to establish the large deviations. Let Cε =
[
z+ ( x

ε
, t

ε

)
,z−
( x

ε
, t

ε

)]
. Restricting ourselves to
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the sets of the form B = [α,+∞) and using the equality (2.1.3) we get that for each δ > 0:

P
(

εuε

( x
ε
,

t
ε
,ω
)
≥ α

)
= P

(
inf

y

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α

)
≤ P

(
inf

y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α

)
= P

(
inf

y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε ⊆ Bδ (x)

)
+P
(

inf
y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε 6⊆ Bδ (x)

)
. (2.3.5)

Here Bδ (x) = (x− δ ,x + δ ). We will prove that the probability P(εCε 6⊆ Bδ (x)) is negligible in
comparison to the probability of the first summand in (2.3.5). In order to do this we will use the
assumption (2.3.1). If εCε 6⊆ Bδ (x) then x−δ > εz+( x

ε
, t

ε
) or x+δ < εz−( x

ε
, t

ε
). Assume that the

first of these two inequalities is taking place. From the definition of z+ we obtain the inequality∫ x/ε

(x−δ )/ε
Γ+(z,0,ω)dz≤ t/ε. Therefore

ε

δ

∫ x/ε

(x−δ )/ε

dz
K′(A+(V (τzω)))

≤ t.

We know that 1
K′◦A+ = A+′, hence if we assume (2.3.1) we derive the following inequality from

(2.3.5):

lim
ε→0

ε logP
(

inf
y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε ⊆ Bδ (x)

)
≤ lim

ε→0
ε logP

(
inf

y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α

)
≤ lim

ε→0
ε log

[
P
(

inf
y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε ⊆ Bδ (x)

)
+P(εCε 6⊆ Bδ (x)

]
≤ lim

ε→0
ε log

[
2P
(

inf
y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε ⊆ Bδ (x)

)]
.
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The last inequality will follow once we prove that the given limit is not −∞. Hence

lim
ε→0

ε logP
(

inf
y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α

)
= lim

ε→0
ε logP

(
inf

y6∈Bδ (x)

{
g(y)+ εS

( x
ε
,

y
ε
,

t
ε
,ω
)}
≥ α,εCε ⊆ Bδ (x)

)
= lim

ε→0
ε logP

(
inf

y6∈Bδ (x)
sup

p6∈[p−,p+]
Λp,x,y,t

(
R |x−y|

ε
,ω

)
≥ α,εCε ⊆ Bδ (x)

)
.

In the same way as before we use the fact that the probability P(εCε 6⊆ Bδ (x)) is of the smaller
order of magnitude than e−1/ε to prove that

lim
ε→0

ε logP

(
inf

y6∈Bδ (x)
sup

p6∈[p−,p+]
Λp,x,y,t

(
R |x−y|

ε
,ω

)
≥ α,εCε ⊆ Bδ (x)

)

= lim
ε→0

ε logP

(
inf

y6∈Bδ (x)
sup

p6∈[p−,p+]
Λp,x,y,t

(
R |x−y|

ε
,ω

)
≥ α

)
.

For Q ∈M (Ω), consider the following functional:

Λx,t,δ (Q) = inf
y6∈Bδ (x)

sup
p∈[p−,p+]

Λp,x,y,t(Q).

Lemma 2.3.4. The functional Λx,t,δ (Q) is continuous in Q, where M (Ω) is equipped with the
weak topology.

Proof. Recall that a sequence of measures Qn converges weakly to a measure Q if for all bounded
continuous f we have

∫
f dQn →

∫
f dQ. We first prove that Λx,y,t(Q) = supp6∈[p−,p+] Λp,x,y,t(Q)

is continuous. Assume that Qn weakly converges to Q, and let us prove that limn→∞ Λx,y,t(Qn) =
Λx,y,t(Q). We immediately get that Λp,x,y,t(Qn)→ Λp,x,y,t(Q) since H̄ and A± are continuous. For
each ε > 0 there exists pε 6∈ [p−, p+] such that Λpε ,x,y,t(Q) > Λx,y,t(Q)− ε . Now for each n ∈ N
we have

sup
p6∈[p−,p+]

Λp,x,y,t(Qn)≥ Λpε ,x,y,t(Qn)→ Λpε ,x,y,t(Q)≥ Λx,y,t(Q)− ε

which gives that
liminf

n→∞
Λx,y,t(Qn)≥ Λx,y,t(Q).

Assume now that there exists θ > 0, a subsequence nk ∈ N, a sequence pnk 6∈ [p−, p+] such that
Λpnk ,x,y,t(Qnk)→ Λx,y,t(Q) + θ as k→ ∞. Let us now prove that Λp,x,y,t(Q)→ −∞ as p→ −∞

uniformly in Q. Since V is bounded we have that Λp,x,y,t(Q) ≤ g(y)− tH̄(p)+ |x− y|A+(H̄(p)+
‖V‖∞). Since H̄(p)→ ∞ as p→ ∞ it suffices to prove that limh→∞

A+(h+γ)
h = 0 for each γ > 0.
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The last limit can be established using the L’Hospital’s theorem. Indeed, from A+′ = 1
K′◦A+ we

conclude that limh→∞
1

K′(A+(h+γ)) = 0 because K′ and A+ both go to +∞ as h→ ∞. Similarly
we prove that Λp,x,y,t(Q)→−∞ as p→−∞ uniformly in Q. Therefore we may assume that pnk

belong to a bounded interval, and there is a convergent subsequence of the sequence (pnk). For
simplicity let us denote that sequence by pnk as well, and let us assume that its limit is p∗. Λp,x,y,t
is continuous in p uniformly in Q. Indeed Ap(H̄(p)+V (ω)) is Lipschitz in p when p is bounded.
Therefore

Λpnk ,x,y,t(Qnk) = (Λpnk ,x,y,t(Qnk)−Λp∗,x,y,t(Qnk))+(Λp∗,x,y,t(Qnk)−Λp∗,x,y,t(Q))+Λp∗,x,y,t(Q).

We now take k→∞. We deduce that Λx,y,t(Q)+θ = Λp∗,x,y,t(Q)≤Λx,y,t(Q) which contradicts our
assumption θ > 0.

In order to prove that Λx,t,δ is continuous in Q, assume again that Qn weakly converges to Q.
Notice that as y→±∞ we have for arbitrary p0 6∈ [p−, p+]:

sup
p
{g(y)− tH̄(p)+ |x− y|

∫
Ap(H̄(p)+V (ω))dQ(ω)} ≥ g(y)− tH̄(p0)+ |x− y|Ap(H(p0))

→ +∞.

Hence limy→±∞ Λx,y,t(Q) = +∞ uniformly in Q which yields that there is N > 0 such that

inf
y6∈Bδ (x)

Λx,y,t(Q) = inf
y6∈(Bδ (x)∪[−N,N]C

Λx,y,t(Q).

For each ε > 0 there exists y0 such that Λx,y0,t(Q) < Λx,t,δ (Q) + ε . From the continuity of
Λx,y0,t(Q) we conclude that Λx,y0,t(Qn)→ Λx,y0,t(Q) hence

limsup
n→∞

Λx,t,δ (Qn)≤ Λx,t,δ (Q).

Assume now that there exists θ > 0, a sequence nk→ ∞ and a sequence ynk ∈ [−N,N]\Bδ (x)
such that Λx,ynk ,t(Qnk) → Λx,t,δ (Q)− θ . There is a subsequence of ynk (that we will continue
calling ynk) with a limit y∗. We have proved above that he function Λx,y,t(Q) is continuous both in
Q. Moreover, it is uniformly (in Q) continuous in y. The last follows from the fact that the function
is Lipschitz because the supremum over p is attained in a bounded interval. This now implies that:

Λx,ynk ,t(Qnk) = (Λx,ynk ,t(Qnk)−Λx,y∗,t(Qnk))+(Λx,y∗,t(Qnk)−Λx,y∗,t(Q))+Λx,y∗,t(Q).

The previous equality now implies that Λx,t,δ (Q)−θ = Λx,y∗,t(Q) ≥ Λx,t,δ (Q) which is a contra-
diction. This completes the proof of the continuity of Λx,t,δ . �

Proof of the Theorem 2.3.1. Applying the contraction principle yields the following large devia-
tions bound:

lim
ε→0

ε logP(uε(x, t,ω)≥ α)≤− lim
δ→0

inf{H(Q) : Q ∈MS(Ω),Λx,t,δ (Q)≥ α}.

The other inequality is analogous. �
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Chapter 3

Deterministic Walks in Random
Environments

3.1 Introduction
Let (Ω,P) be a probability space. We study a random sequence Xn defined recursively as

Xn+1−Xn = b(Xn,ω), for suitable function b : Zd ×Ω→ Zd . Our aim is to establish some large
deviation estimates for Xn.

Theorem 3.1.1. Let (ηz)z∈Zd be a stationary Zd-valued random field that satisfy the assumptions
(i)–(iii) (we refer to the assumptions from the section 2). The random variable Xn is defined as
X0 = 0, Xn+1 = Xn +ηXn . Then there exists a convex function Λ : Rd → R such that

lim
n→∞

1
n

logE
[
eλ ·Xn

]
= Λ(λ ).

Assume that b(x,ω) = ηx, where η is a random field on Zd . η itself could be understood as the
random environment in which the walk occurs. When the particular realization of the environment
is fixed, the walk becomes deterministic. One of the main characteristics of this walk is that once
the loop occurs, the walk will start repeating the loop forever.

Let us make some connections of this model with the one of the random walk in a random envi-
ronment. The random walk in a random environment could be defined as Xn+1−Xn = b(Xn,ω,π).
Here b : Zd ×Ω×Π→ Zd is a random variable, and (Ω,P), (Π,P) are probability spaces. In
this model, (Ω,P) is the environment, and for each fixed ω ∈Ω, the walk Xn could be understood
as a random walk on probability space (Π,P). Recent works [30] and [20] have established the
quenched and annealed large deviations for the random walk in a random environment under cer-
tain non-degeneracy assumptions on (Π,P). The articles [25] and [32] found variational formulas
for the rate functions and some connections between the two rate functions. The model we are
studying is related to the annealed (averaged) case stdudied in the mentioned papers. Here, the
probability space (Π,P) is very degenerate.
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The motivation for studying deterministic walk in random environment comes from the impor-
tance of understanding the behavior of solutions of certain ODEs that appear in [16] and [24].

Many of the arguments here involve the consideration of the position of the particle at the time
of the first self-intersection. Other interesting results regarding self-intersection times of random
walks can be found in [1] and [2].

We are assuming that the environment has finite-range dependence. The special case is the
iid environment where many of the presented arguments can be simplified. We are not assuming
that the walk is nearest–neighbor. We do assume however, certain ellipticity conditions on the
environment: There is a nice set of vectors such that using only these vectors the walk can move in
any direction. Our ellipticity condition is the assumption that the probability that the walk at any
position of the environment takes any particular vector from the nice set is uniformly positive.

The organization of the article is as follows. In the next section we state the assumptions we
impose to the model and state the theorem 3.2.1 that will be the main focus of our study. In
order to prove it we will need some deterministic lemmas that establish the uniform bounds on the
probabilities that the walk can go virtually in any direction. These statements are stated and proved
in the third section.

The main idea for the proof is the adaptation of the subadditive argument. However, we need
some work to find a quantity that happens to be subadditive. This quantity is found in the section 4
where we prove that it has the same exponential rate of decay as our large deviation probabilities.
After that we are ready for the proofs of the main theorems which are presented in the section 5.
Section 6 contains an easy consequence, i.e. the law of large numbers. The law of large numbers
with limiting velocity 0 for the deterministic walk in random environment is not a surprising fact.
It is intuitive that the loop will occur, the expected time of the occurrence of the loop is finite,
hence the walk can’t go to far.

3.2 Definitions and Assumptions
Definition 3.2.1. The set of vectors {u1, . . . ,um} ⊆ Zd is called nice if for every l ∈Rd there exists
i ∈ {1,2, . . . ,m} such that l ·ui > 0.

Let (ηz)z∈Zd be a stationary Zd-valued random field that satisfies the following conditions:

(i) There exists a positive real number L such that |ηz| ≤ L for all z ∈ Zd .

(ii) There exists a real number M such that (ηz1,ηz2) are independent whenever |z1− z2|> M.

(iii) There exist a nice set of vectors {u1, . . . ,um} ∈ Zd and a constant c > 0 such that P(ηz =
ui|Fz) > c for all i ∈ {1,2, . . . ,m}, where Fz is a sigma-algebra generated by all ηw for
w ∈ Zd such that 0 < |w− z| ≤M.

The last assumption implies the existence of a loop in any half-space with a positive probability
(see theorem 3.3.1). It also implies that there exists a constant c > 0 such that P(ηz · l > 0|Fz) > c
for every z.
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A special case is the iid environment when in condition (ii) we require M < 1. The condition
(iii) is then replaced by P(ηz = ui) > c for all i. Many of the arguments would become simpler
and/or less technical if we assumed that the environment is iid.

The random variable Xn is defined recursively as X0 = 0 and:

Xn+1 = Xn +ηXn .

We will use the following equivalent interpretation of Xn. Xn behaves like a random walk until
the first self intersection. The increments of the random walk are sampled at every step according
to the law of the random field ηz. After the self intersection occurs, the walk becomes deterministic
and repeats the loop.

Here is the precise definition of the walk Xn that we will use. Let ξn be a Zd-valued random
sequence defined recursively: ξ0 = 0, and ξn = ηξ0+···+ξn−1

. Let us define Yn = ∑
n
k=1 ξk and

τ = inf{n : Yn ∈ {Y1, . . . ,Yn−1}}.

Let θ ≤ τ be the smallest integer such that Yτ = Yθ . We define the walk Xn using the formula:

Xn =
{

Yn, n≤ τ,
Yθ+v, n− τ = u(τ−θ)+ v,0≤ v < θ − τ.

Let l ∈ Rd be a unit vector. Define T l
m = inf{n : Xn · l ≥ m}. Denote by Zl

x the hyperplane
through x ∈ Zd orthogonal to the vector l. Let us further denote by H l

x the half-space through x
determined by the vector l as

H l
x = Zd ∩

{
x+ v : v ∈ Rd, l · v≥ 0

}
.

Our goal is to prove the large deviations for Xn (see the theorem 3.5.2). We will be able to use
the Ellis-Gartner theorem to get some further bounds once we establish the following result:

Theorem 3.2.1. Let Xn be the random walk defined as above. Assume that the random environment
satisfies the conditions (i)–(iii). For each unit vector l ∈ Rd there exists a concave function φ l :
R+→ R̄ such that for all k ∈ R+:

lim
n→∞

1
n

logP(Xn · l ≥ nk) = φ
l(k). (3.2.1)

Remark. Notice that φ l(k) = φ tl(tk) for all t ∈R+. Therefore φ l(k) = Φ
(1

k l
)

for a suitable function
Φ : Rd → R̄.
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3.3 Existence of a Loop
In this section we prove that the previously defined random walk will have a loop in each half-

space with a positive probability. This fact will be a consequence of the following elementary
lemma. The lemma states that there exists a loop consisting entirely of vectors from a nice set.

Lemma 3.3.1. Let {u1, . . . , um} be a nice set of non-zero vectors. There exist non-negative integers
q1, q2, . . . , qm not all equal to 0 such that q1u1 + · · ·+qmum = 0.

Proof. We will prove the statement using the induction on the dimension d. The statement is
easy to prove for d = 1 and d = 2. We may assume that {u1, . . . ,um} is a minimal nice set, i.e.
there is no proper nice subset of {u1, . . . ,um}. If not, take the proper nice subset and repeat the
argument. Let us fix the vector um, and let vi = ui− ui·um

|um|2
um for i = 1, . . . ,m− 1. All vectors

v1, . . . , vm−1 have rational coordinates. Let r be the common denominator of those fractions and
consider the lattice D of size 1/r in the vector space determined by the span W of v1, . . . ,vm−1.
Let us prove that the set {v1, . . . ,vm−1} is nice in W . Let l̃ ∈W be a vector with real coordinates.
There exists i ∈ {1,2, . . . ,m} such that ui · l̃ > 0. Since l̃ ∈W we immediately have that um · l̃ = 0
and ui · l̃ = vi · l̃ hence vi · l̃ > 0. This implies that {v1, . . . ,vm−1} is a nice set of vectors in W .
According to the inductional hypothesis there are non-negative integers q′1, . . . ,q

′
m−1 such that

q′1v1 + · · ·+q′m−1vm−1 = 0. We now have

|um|2(q′1u1 + · · ·+q′m−1um−1) =
(
q′1u1 ·um + · · ·+q′m−1um−1 ·um

)
um.

Let us now prove that q′1u1 ·um + · · ·+ q′m−1um−1 ·um ≤ 0. Assume the contrary, that this number
were greater than 0. Since {u1, . . . ,um−1} is not a nice set (due to our minimality assumption for
{u1, . . . ,um}) there exists a vector l ∈Rd such that l ·um > 0 but l ·uk ≤ 0 for each k ∈ {1,2, . . . ,m−
1}. This gives that

0 ≥ l · (q′1u1 + · · ·+q′m−1um−1)|um|2 =
(
q′1u1 ·um + · · ·+q′m−1um−1 ·um

)
um · l > 0,

a contradiction. Therefore q′1u1 · um + · · ·+ q′m−1um−1 · um ≤ 0. We can now choose qi = |um|2q′i,
i = 1,2, . . . ,m− 1, and qm = −(q′1u1 · um + · · ·+ q′m−1um−1 · um) to obtain q1u1 + · · ·+ qmum = 0.
This completes the proof of the lemma. �

The following theorem says that in each half-space H l
x a walk Xn starting from x can have a

loop in H l
x with a probability that is strictly greater than 0. Because of the stationarity it suffices to

prove this for half-spaces through the origin.

Theorem 3.3.1. There exist constants m ∈N, c1 ∈R+ such that: For each unit vector l ∈Rd there
exist an integer s≤ m and a sequence x0 = 0, x1, x2, . . . , xs ∈ Zd such that:

(i) ∑
p
i=0 xi · l ≥ 0 for all 0≤ p≤ s,

(ii) ∑
p
i=0 xi 6= ∑

q
i=0 xi for all 0≤ p < q≤ s−1,
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(iii) ∑
s
i=0 xi = 0, and

(iv) For yi = x0 + · · ·+ xi−1, let us denote by Fy1,...,ys the σ -algebra generated by all random
variables ηz for z ∈ Zd \{y1, . . . ,ys} such that min1≤i≤s |z− yi| ≤M. Then:

P(ξ1 = x1,ξ2 = x2, . . . ,ξs = xs|Fy1,...,ys)≥ c1.

Proof. Let us prove that there exist vectors x1, . . . ,xs ∈ {u1, . . . ,um} for which (i)–(iii) are satis-
fied. Then (iv) will be satisfied as well. To see that let us denote by G

y1,...,ys−1
ys the sigma algebra

generated by all random variables ηz for z ∈ Zd \{ys} such that min1≤i≤s |z− yi| ≤M.

P(ξ1 = x1,ξ2 = x2, . . . ,ξs = xs|Fy1,...,ys)
= E

(
E
(
1(ξ1 = x1) · · ·1(ξs = xs)|G y1,...,ys−1

ys

)∣∣Fy1,...,ys

)
= E

(
1(ξ1 = x1) · · ·1(ξs−1 = xs−1) · E

(
1(ξs = xs)|G y1,...,ys−1

ys

)∣∣Fy1,...,ys

)
> c ·P(ξ1 = x1, . . . ,ξs−1 = xs−1|Fy1,...,ys)
= c ·P(P(ξ1 = x1, . . . ,ξs−1 = xs−1|Fy1,...,ys−1)|Fy1,...,ys).

Now we can continue by induction to obtain that

P(ξ1 = x1, . . . ,ξs = xs|Fy1,...,ys) > cs.

Using the lemma 3.3.1 we have that there exists a sequence z1, . . . ,zs ∈ {u1, . . . ,um} such that
z1 + · · ·+ zs = 0. Assume that this sequence is the sequence of minimal length. Let us choose the
index π such that that (z1 + · · ·+zπ) · l is minimal (of all j = 1,2, . . . ,s). Then x1 = zπ+1, z2 = yπ+2,
. . . , zs = yπ+s (indeces are modulo s) satisfy z1 + z2 + · · ·+ zs = 0, and

(x1 + x2 + · · ·+ x j) · l ≥ 0 for all j = 1,2, . . . ,s.

Let us prove the last inequality. Assume the contrary, that (x1 + · · ·+ x j) · l < 0. Assume first that
π + j≤ s. Then (z1 + · · ·+ zπ+ j) · l = (z1 + · · ·+ zπ) · l +(x1 + · · ·+x j) · l < (z1 + · · ·+ zπ) · l which
contradicts the choice of π . If π + j > s and π + j≡ t (mod s) then 0 = l ·(z1 + · · ·+zπ +x1 + · · ·+
xs−π) < l · (z1 + · · ·+ zt + x1 + · · ·+ xs−π) = l · (x1 + · · ·+ x j) < 0, a contradiction. This proves (i).
The condition (ii) follows from the requirement that the sequence z1, . . . ,zn is the shortest. �

Using the previous two lemmas we can establish the equality analogous to the one from the
theorem 3.2.1 in which k = 0.

Theorem 3.3.2. For each vector l ∈ Rd and Xn defined as before the following equality holds:

lim
n→∞

1
n

logP(Xn · l ≥ 0) = 0.
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Proof. The inequality P(Xn · l ≥ 0) ≤ 1 implies that limsup 1
n logP(Xn · l ≥ 0) ≤ 0. For the other

inequality we use the theorem 3.3.1. Let x1, . . . ,xs be the sequence whose existence is claimed by
that theorem. Let yi = x0 + · · ·+ xi−1 as before. Notice that

P(Xn · l ≥ 0) ≥ P(ξ1 = x1,ξ2 = x2, . . . ,ξs = xs)
= P(P(ξ1 = x1,ξ2 = x2, . . . ,ξs = xs|Fy1,...,ys))
≥ c1.

Therefore liminf 1
n logP(Xn · l ≥ 0)≥ liminf 1

n logc1 = 0. �

We will also need the following deterministic lemma.

Lemma 3.3.2. Assume that {u1, . . . ,um} ⊆ Zd is a nice set of vectors. Let ρ : Rd → R+∪{0} be
the function defined as ρ(l) = maxi{ui · l}. Then

inf
l:|l|=1

ρ(l) > 0.

Proof. First notice that ρ(l) > 0 for each l ∈ Rd \ {0}. Otherwise the set {u1, . . . ,um} would not
be nice. Notice also that ρ is a continuous function (because it is a maximum of m continuous
functions) and the unit sphere is a compact set. Thus the infimum of ρ over the unit sphere must
be attained at some point, and we have just proved that value of ρ at any single point is not 0. �

3.4 Hitting Times of Hyperplanes
The main idea for the proof of the theorem 3.2.1 is to establish the asymptotic equivalence of

1
n logP(Xn · l ≥ nk) and a sequence to which we can apply the deterministic superadditive lemmas.
First we will prove that the previous sequence behaves like 1

n logP(T l
nk ≤ n). Then we will see that

the asymptotic behavior of the latter sequence is the same as the behavior of 1
n logP(T l

nk ≤ n,T l
nk ≤

Dl
1) where Dl

1 is the first time the walk returns over the hyperplane Zl
0. This probability captures

those walks that don’t backtrack over the hyperplane Zl
0.

We will be able to prove the existence of the limit of the last sequence using a modification of
the standard subadditive lemma that states that lim an

n = inf an
n if an+m ≤ an +am for all m,n ∈ N.

From now on let us fix the vector l ∈Rd and let us omit the superscript l in the variables. Also,
some of the new variables that will be defined would need to have a superscript l but we will omit
it as well.

Our first result in carrying out the formerly described plan is the following lemma:

Lemma 3.4.1. The following inequality holds:

limsup
n→∞

1
n

logP(Xn · l ≥ nk) ≤ limsup
n→∞

1
n

logP(Tnk ≤ n)
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In addition, for each ε > 0 we have:

liminf
n→∞

1
n

logP(Tn(k+ε) ≤ n) ≤ liminf
n→∞

1
n

logP(Xn · l ≥ nk).

Proof. Clearly, {Xn · l ≥ kn} ⊆ {Tkn ≤ n}. Therefore P(Xn · l ≥ kn)≤ P(Tkn ≤ n). This establishes
the first inequality. Let x0, . . . ,xs be the sequence whose existence follows from the theorem 3.3.1.
We now have have

P(Xn · l ≥ kn) = P(Xn · l ≥ kn,Tkn ≤ n)
≥ P

(
Xn · l ≥ kn,Tkn ≤ n− s,XTkn+1−XTkn = x1, . . . ,

XTkn+s−XTkn+s−1 = xs
)

= P
(
Tkn ≤ n− s,XTkn+1−XTkn = x1, . . . ,

XTkn+s−XTkn+s−1 = xs
)

(3.4.1)
= E [1(Tnk ≤ n− s)E [1(ξTkn = x1) · · · ·
·1(ξTkn+s−1 = xs)

∣∣FTkn

]]
≥ c1 ·P(Tkn ≤ n− s) .

Here FTkn denotes the σ -algebra defined by ηz for z∈Zd such that |z−Xi| ≤M for i = 1,2, . . . ,Tkn.
The equality in (2) holds because if Tkn ≤ n− s and XTkn+1−XTkn = x1, . . . , XTkn+s−XTkn+s−1 = xs,
then the walk will enter in a loop. This loop will be in the half-space Hkn which would guarantee
that Xn · l > kn.

For each ε > 0, if n > s+ sk/ε we have {T(k+ε)(n−s) ≤ n− s} ⊆ {Tkn ≤ n− s}. This completes
the proof of the lemma. �

Remark. In the same way we could obtain the analogous inequalities with the walk Xn replaced by
Xn∧τ .

For each integer i ≥ 1 denote by Di the time of the ith jump over the hyperplane Z0 in the
direction of the vector l. Define D0 = 0 and we allow for Di to be ∞.

Lemma 3.4.2. Let k and k′ be two real numbers such that 0 < k′ < k. Then the following two
inequalities hold:

limsup
1
n

logP(Tnk ≤ n) ≤ limsup
1
n

logP(Tnk′ ≤ n,Tnk′ ≤ D1)

liminf
1
n

logP(Tnk ≤ n,Tnk ≤ D1) ≤ liminf
1
n

logP(Tnk ≤ n) .

Proof. We have:

P(Tu ≤ n) =
n

∑
i=1

P(Tu ≤ n,Di ≤ Tu ≤ Di+1) .
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We will prove that each term from the right-hand side of the previous equality is bounded above
by Ldnd−1 ·P(Tu−L ≤ n,Tu−L ≤ D1). Let Z′0 be the set of all points z ∈ Zd such that z · l > 0 and
the distance between z and Z0 is at most L. We have:

P(Tu ≤ n,Di ≤ Tu ≤ Di+1)
= ∑

z∈Z′0,|z|≤nL
E [1(Tu ≤ n) ·1(XDi = z) ·1(Tu ≥ Di)

·1(Tu ≤ Di+1)]
= ∑

z∈Z′0,|z|≤nL
E [E [1(Tu ≤ n) ·1(XDi = z) ·1(Tu ≥ Di)

· 1(Tu ≤ Di+1)|FDi,Tu ]] .

Here FDi,Tu denotes the σ -algebra generated by the random environment that is contained in the
M-neighborhood of the walk from Di to Tu. When conditioning on this σ -field we essentially
understand our environment in the following way: It consists of two walks: One deterministic that
goes from z to Zu without crossing the hyperplane Z0, and another walk that starts at 0 and ends
in z by making exactly i crossings over Z0, not intersecting the other deterministic walk, and not
crossing over Zu. Therefore:

∑
z∈Z′0,|z|≤nL

E [E [1(Tu ≤ n) ·1(XDi = z) ·1(Tu ≥ Di)

· 1(Tu ≤ Di+1)|FDi,Tu ]]
≤ ∑

z∈Z′0,|z|≤nL
E
[
1(T̃u−L ≤ n−Di) ·1(T̃u−L ≤ D̃1)

·E [1(XDi = z) ·1(Tu ≥ Di)|FDi,Tu]]
≤ ∑

z∈Z0,|z|≤nL
E
[
1(T̃u−L ≤ n) ·1(T̃u−L ≤ D̃1)

]
,

where T̃u is defined in analogous way as Tu to correspond to the new walk X̃ j = XDi+ j. In the
last equation D̃1 is defined as the first time of crossing over the hyperplane Γ parallel to Z0 that is
shifted by the vector −L l

|l| . Let us now prove that P(Tu−L ≤ n,Tu−L ≤ D̃1) ≤ Ldnd−1 ·P(Tu−2L ≤
n,Tu−L ≤ D1). Denote by J the closest time the walk comes to the hyperplane Γ. The number of
possible positions of the walk is at most Ldnd−1 and similarly as above, conditioning on the σ -filed
between J and Tu−L we get P(Tu−L ≤ n,Tu−L ≤ D̃1)≤ Ldnd−1 ·P(Tu−2L ≤ n,Tu−L ≤D1). We now
have

P(Tu ≤ n,Di ≤ Tu ≤ Di+1)≤ L2dn2d−2P(Tu−2L ≤ n,Tu−2L ≤ D1).

This implies that P(Tu ≤ n)≤ L2dn2d−1P(Tu−2L ≤ n,Tu−2L ≤ D1). Therefore

limsup
1
n

logP(Tnk ≤ n)≤ limsup
1
n

logP(Tnk−2L ≤ n,Tnk−2L ≤ D1).
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For each k′ < k we have

limsup
1
n

logP(Tnk ≤ n)≤ limsup
1
n

logP(Tnk′ ≤ n,Tnk′ ≤ D1).

On the other hand, it is obvious that

liminf
1
n

logP(Tnk ≤ n,Tnk ≤ D1)≤ liminf
1
n

logP(Tnk ≤ n) ,

because {Tnk ≤ n} ⊇ {Tnk ≤ n,Tnk ≤ D1}. �

3.5 Large Deviations Estimates
Now we are ready to prove the main theorem:

Proof of the Theorem 3.2.1. We will prove that for each unit vector l there exists a concave
function ψ : R+→ R̄ such that

lim
n→∞

1
n

logP(Tnk ≤ n) = ψ(k). (3.5.1)

Because of the Lemma 3.4.2 it suffices to prove that there exists a concave function γ : R+→ R̄
such that

lim
n→∞

1
n

logP(Tnk ≤ n,Tnk ≤ D1) = γ(k). (3.5.2)

Let w ∈ Zd be a vector such that w · l > 0 and P(ηz = w|Fz) ≥ c > 0 for some constant c.
Assume that r is an integer such that the distance between the hyperplanes Zrw and Z0 is at least M.
If u,v, p,q are any four positive real numbers such that q > r, then the following inequality holds:

P(Tu+v ≤ p+q,Tu+v ≤ D1) ≥ c ·P(Tu ≤ p,Tu ≤ D1) ·
P(Tv ≤ q− r,Tv ≤ D1). (3.5.3)

If the environment were iid this could have been done by conditioning on Fu. In our situation the
idea is the same, we just need some more work to compensate for the lack of independence.

P(Tu+v ≤ p+q,Tu+v ≤ D1)
≥ P(Tu+v ≤ p+q,Tu+v ≤ D1,Tu ≤ p)
≥ E [1(Tu ≤ p) ·1(Tu ≤ D1) ·1(ξTu = w) · · · ·
·1(ξTu+r−1 = w) ·1(Tu+v ≤ p+q) ·1(Tu+v ≤ D1)]

= E [E [1(Tu ≤ p) ·1(Tu ≤ D1) ·1(ξTu = w) · · · · ·1(ξTu+r−1 = w)

·1(Tu+v ≤ p+q) ·1(Tu+v ≤ D1)|F[XTu ,XTu+rw]
]]

,
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where F[a,b] is a σ -algebra determined by the environment outside of the strip [Za,Zb]. Let us
introduce the following notation: X̂i = XTu+r−1+i, D̂1 the first time X̂i jumps over ZXTu+rw, and
T̂v = inf{i : X̂i · l ≥ v}. We now have that

P(Tu+v ≤ p+q,Tu+v ≤ D1)
≥ E [E [1(Tu ≤ p) ·1(Tu ≤ D1) ·1(ξTu = w) · · · · ·1(ξTu+r−1 = w)

·1(T̂v ≤ q− r) ·1(T̂v ≤ D̂1)
∣∣F[XTu ,XTu+rw]

]]
= E

[
1(Tu ≤ p) ·1(Tu ≤ D1) ·1(T̂v ≤ q− r) ·1(T̂v ≤ D̂1)·

E
[

1(ξTu = w) · · · · ·1(ξTu+r−1 = w)|F[XTu ,XTu+rw]
]]

≥ c ·P(Tu ≤ p,Tu ≤ D1) ·P(Tv ≤ q− r,Tv ≤ D1).

This establishes (3.5.3). Let δ (m,x) = logP(Tmx ≤ m,Tmx ≤ D1). Applying the inequality (3.5.3)
to the numbers u = nk, v = mk, p = n, q = m yields to:

δ (m+n,k) ≥ logc+δ (n,k)+ logP(Tmk ≤ m− r,Tmk ≤ D1)
≥ logc+δ (n,k)+δ (m− r,k′),

where k′ is any real number greater than k for which (m− r)k′ ≥ mk. For now on we will write c
instead of logc. In other words, for each k, and each k′ > k we have

δ (m+n,k) ≥ c+δ (m,k)+δ (n− r,k′), (3.5.4)

for all m, n such that n≥ rk′
k′−k . Let

δ (k) = liminf
n→∞

δ (n,k)
n

, δ (k) = limsup
n→∞

δ (n,k)
n

.

If k < k′ then for each α < δ (k′) there exists a sequence nt that goes to infinity such that
δ (nt ,k′)

nt
≥ α . For each fixed nt and each n ≥ nt there exist integers a ≥ 0 and b ∈ {0,1,2, . . . ,nt +

r−1} such that n = a(nt + r)+b. Therefore

δ (n,k)
n

=
δ (a(nt + r)+b,n)

a(nt + r)+b
≥ (a−1)δ (nt ,k′)+δ (nt + r +b,k)+(a−1)c

a(nt + r)+b

≥ δ (nt ,k′)
nt

· (a−1) ·nt

a(nt + r)+b
+

δ (nt + r +b,k)
a(nt + r)+b

+
(a−1)c

a(nt + r)+b

≥ α · (a−1) ·nt

a(nt + r)+b
+

δ (nt + r +b,k)
a(nt + r)+b

+
(a−1)c

a(nt + r)+b
.

For each µ > 0 there exists t0 such that for all t > t0 we have∣∣∣∣ (a−1)c
a(nt + r)+b

∣∣∣∣< µ
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uniformly in a and b. There exists n0 such that for all n > n0, the number a =
[

n
nt+r

]
would be

large enough to guarantee∣∣∣∣δ (nt + r +b,k)
a(nt + r)+b

∣∣∣∣< µ and
∣∣∣∣ (a−1)nt

a(nt + r)+b
−1
∣∣∣∣≤ µ

|α|+1
.

This implies that δ (k) ≥ α−3µ for all µ > 0, therefore δ (k) > α for all α < δ (k′). This imme-
diately yields to δ (k)≥ δ (k′) for all k < k′. Obviously δ (k)≥ δ (k) hence we have

δ (k′)≤ δ (k′)≤ δ (k)≤ δ (k), for all k < k′.

A consequence of the previous inequality is the monotonicity of the functions δ and δ . They are
both non-increasing. Let α and β be two positive rational numbers such that α +β = 1. Let k1 and
k2 be any two positive real numbers. According to (3.5.3) we know that for each n ∈ N we have:

δ (n,αk1 +βk2) = logP(Tn(αk1+βk2) ≤ αn+βn,Tn(αk1+βk2) ≤ D1)
≥ logP(Tnαk1 ≤ αn,Tnαk1 ≤ D1)+

logP(Tnβk2 ≤ βn− r,Tnβk2 ≤ D1)+ c
≥ δ (αn,k1)+δ (βn,k′2)+ c,

for sufficiently large n, where k′2 is any number larger than k2. This implies that

δ (αk1 +βk2) ≥ limsup
1
n

(
δ (αn,k1)+δ (βn,k′2)

)
≥ αδ (k1)+βδ (k′2). (3.5.5)

Let us justify the second inequality. The previous limsup is definitely larger than the liminf over
the sequence of those integers n that are divisible by the denominators of both α and β .

Consider now two positive real numbers k < k′ for which δ (k′) is a real number (i.e. not −∞).
Let αn and βn be two sequences of positive rational numbers such that αn→ 1, βn→ 0, αn +βn = 1.
Let k′′ be a real number such that k < k′′ < k′. Then the inequality (3.5.5) implies:

δ (αnk +βnk′′)≥ αnδ (k)+βnδ (k′).

Taking the limit of both sides as n→ ∞ and using the monotonicity of δ we get:

lim
ε>0,ε→0

δ (k + ε)≥ δ (k).

This inequality together with δ (k + ε/2) > δ (k + ε) implies that δ is right-continuous.
Let us now choose the sequences αn, βn, k1

n, k2
n, k3

n that satisfy:

αn,βn ∈Q+, k1
n,k

2
n,k

3
n ∈ R+,

αn +βn = 1, αn→ 0, βn→ 1,

k2
n < k3

n < k < k1
n, k2

n,k
3
n↗ k, k1

n↘ k,
αnk1

n +βnk2
n = k.
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Then the inequality (3.5.5) implies

δ (k)≥ αnδ (k1
n)+βnδ (k3

n).

Letting n→ ∞ and using the monotonicity of δ gives us:

δ (k)≥ lim
ε>0,ε→0

δ (k− ε).

Using the fact δ (k− ε)≥ δ (k− ε/2) gives that δ (k)≥ δ (k−0). Here δ (k−0) is defined as

δ (k−0) = lim
ε→0+

δ (k− ε).

In other words, δ is left-continuous.
Let us now choose the sequences:

αn,βn ∈Q+, k1
n,k

2
n,k

3
n ∈ R+,

αn +βn = 1, αn→ 1, βn→ 0,

k3
n > k2

n > k > k1
n, k2

n,k
3
n↘ k, k1

n↗ k,
αnk1

n +βnk2
n > k.

Placing these sequences in the inequality (3.5.5) gives us the following relation:

δ (k)≥ δ (αnk1
n +βnk2

n)≥ αnδ (k1
n)+βnδ (k3

n)≥ αnδ (k)+βnδ (k3
n).

Letting n→ ∞ implies δ (k) ≥ δ (k). Summing up all the facts we got for δ and δ we have that
δ (k) = δ (k) = γ(k) for some function γ . Moreover, γ is continuous and γ(αk1 +βk2)≥ αγ(k1)+
βγ(k2) for α,β ∈ Q+ such that α + β = 1. Because of the continuity, the last inequality holds
for all α,β ∈ R+ such that α + β = 1. This means that γ is concave and the equality (3.5.2) is
established. Now we have the relation (3.5.1) and the concavity of the function ψ . Namely, the
lemma 3.4.2 implies that ψ = γ .

Using the lemma 3.4.1 we get that

limsup
n→∞

1
n

logP(Xn · l ≥ nk) ≤ ψ(k), and

liminf
n→∞

1
n

logP(Xn · l ≥ nk) ≥ ψ(k + ε),

for all ε > 0. If k belongs to the interior of ψ−1(R), we can take ε → 0 in the previous inequality
and use the continuity of ψ to obtain

liminf
n→∞

1
n

logP(Xn · l ≥ nk)≥ ψ(k).

This in turn implies (3.2.1) and the concavity of φ . �

The Gartner-Ellis theorem will enable us to get some more information on lower and upper
bound large deviations for general sets.
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Definition 3.5.1. Assume that Λ∗ is a convex conjugate of the function Λ. y ∈ Rd is an exposed
point of Λ∗ if for some λ ∈ Rd and all x 6= y,

λ · y−Λ
∗(y) > λ · x−Λ

∗(x). (3.5.6)

λ in (3.5.6) is called an exposing hyperplane.

We are now ready to prove the theorem stated in the introduction.

Theorem 3.5.1. There exists a convex function Λ : Rd → R̄ such that limn→∞
1
n logE

[
eXn·λ

]
=

Λ(λ ). The origin belongs to the interior of the set {λ ∈ Rd : Λ(λ ) < +∞}.

Proof. As noted in the remark after the theorem 3.2.1 there exists a function Φ : Rd→ R̄ such that
for all l ∈ Rd and k ∈ R+:

lim
n→∞

1
n

logP(Xn · l ≥ kn) = Φ

(
1
k

l
)

.

For each λ ∈ Rd and each k > 0 we have that

liminf
1
n

logE
(

eXn·λ
)
≥ liminf

1
n

logE
(

eXn·λ ·1(Xn ·λ > kn)
)

≥ liminf
1
n

logE
(

ekn ·1(Xn ·λ > kn)
)

= k +Φ

(
1
k

λ

)
.

Moreover, from the theorem 3.3.2 we get

liminf
1
n

logE
(

eXn·λ
)
≥ liminf

1
n

logE
(

eXn·λ
)

≥ liminf
1
n

logE
(
e0 ·1(Xn ·λ ≥ 0)

)
= 0.

Therefore

liminf
1
n

logE
(

eXn·λ
)
≥max

{
0,sup

k>0

{
k +Φ

(
λ

k

)}}
.

From the boundedness of jumps of the random walk Xn we have that |Xn ·λ |< L|λ |. Let r ∈N and
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0 = k0 < k1 < k2 < · · ·< kr = L|λ |. Then

lim
1
n

logE
(

eXn·λ
)

= lim
1
n

log
(
E
(
(eXn·λ ·1(Xn ·λ ≤ 0)

)
+

r−1

∑
i=0

E
(

eXn·λ ·1(nki < Xn ·λ ≤ nki+1)
))

≤ lim
1
n

log

(
P(Xn ·λ ≤ 0)+

r−1

∑
i=0

enki+1 ·P(Xn ·λ > nki)

)
≤ lim

1
n

log(P(Xn ·λ ≤ 0)+

r max
0≤i≤r−1

enki+1 ·P(Xn ·λ > nki)
)

= max
{

0, max
0≤i≤r−1

{
ki+1 +Φ

(
λ

ki

)}}
.

The last equality is true because r ∈ N is a fixed number as n→ ∞ and the lemma 3.3.2 implies
that limn→∞

1
n logP(Xn · (−λ ) ≥ 0) = 0. The theorem 3.2.1 implies that the function Φ

(1
k λ
)

is
continuous in k hence taking r→ ∞ and ki+1− ki constant we get:

limsup
1
n

logE
(

eXn·λ
)
≤max

{
0,sup

k>0

{
k +Φ

(
λ

k

)}}
.

This proves the existence of the limit in from the statement of the theorem with

Λ(λ ) = max
{

0,sup
k>0

{
k +Φ

(
λ

k

)}}
.

We will not use this representation for Λ to prove its convexity. Notice that all functions Λn(λ ) =
logE

(
eXn·λ

)
are convex when n is fixed. Indeed, for all α,β ∈ R+ with α +β = 1 and all λ ,µ ∈

Rd according to the Holder’s inequality we have:

eΛn(αλ+β µ) = E
[(

eXn·λ
)α

·
(
eXn·µ)β

]
≤

(
E
[
eXn·λ

])α

·
(
E
[
eXn·µ])β

= eαΛn(λ )+βΛn(µ).

Since the limit of convex functions is convex, as well as the maximum of two convex functions,
we are able to conclude that Λ is convex. Obviously, the origin belongs to the interior of the set
{λ ∈ Rd : Λ(λ ) < +∞} because Λ is bounded. �

Theorem 3.5.2. Let Xn be the previously defined deterministic walk in a random environment that
satisfies the conditions (i)–(iii). Let Λ be the function from the theorem 3.5.1 and let Λ∗ be its
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convex conjugate. Let F be the set of exposed points of Λ∗ whose exposing hyperplane belongs to
the interior of the set {λ ∈ Rd : Λ(λ ) < +∞}. For any closed set F ⊆ Rd ,

limsup
1
n

logP
(

1
n

Xn ∈ F
)
≤− inf

x∈F
Λ
∗(x),

and for any open set G⊆ Rd

liminf
1
n

logP
(

1
n

Xn ∈ G
)
≥− inf

x∈G∩F
Λ
∗(x).

Moreover, there exists δ > 0 such that Λ∗(x) < +∞ for |x|< δ .

Proof. The conditions for Gartner-Ellis theorem are now satisfied because of the theorem 3.5.1.
Direct application of that result proves the first part of the statement.

For the second part, we will use the lemma 3.3.2. There exists κ > 0 such that for each λ ∈Rd

there exists i ∈ {1,2, . . . ,m} such that λ ·ui > κ|λ |. Then we have Λ(λ )≥ κ|λ |+Φ

(
λ

κ|λ |

)
and:

Φ

(
λ

κ|λ |

)
≥ liminf

1
n

logP(ξ1 = ξ2 = · · ·= ξn = ui)≥ c,

for some constant c. Therefore Λ(λ )≥ κ|λ |+ c, and

Λ
∗(x)≤ sup

λ

{λ · x−κ|λ |− c≤−c+ sup
λ

{|λ | · |x|−κ|λ |}.

Hence if |x| ≤ κ then Λ∗(x)≤−c < +∞. �

3.6 Law of Large Numbers
Let us end with a note about the law of large numbers for this deterministic walk in a random

environment. It is not surprising that the walk will have 0 limiting velocity because it is expected
that the walk will eventually end in a loop.

Theorem 3.6.1. If Xn is defined as before then

lim
n→∞

1
n

E(Xn) = 0.

Proof. It suffices to prove that limn→∞
1
nE(Xn · l) = 0 for each l ∈ Rd , because the zero vector is

the only one orthogonal to the entire Rd . Furthermore, the problem can be reduced to proving that
1
nE[Xn · l]+ converges to 0 because Xn · l = (Xn · l)+ +(Xn · (−l))+. By the Fubini’s theorem we
have

E

[(
1
n

Xn · l
)+
]

=
∫ +∞

0
P(Xn · l > nt)dt.
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Since {Xn · l > nt}= /0 for t > L the previous integration could be performed on the interval (0,L)
only. Let x1, . . . , xs be a sequence from theorem 3.3.1, and let yk = ∑

k
i=1 xi. Define the random

walk Yi as Yi = Xs+i. The probability that the walk will reach the half-space H l
nt before time n is

smaller than the probability of the following event: The walk does not make a loop in first s steps,
and after that it reaches the half-space H l

nt−sL. Therefore we deduce that for each t ∈ (0,L) the
following inequality holds:

P(Xn · l > nt) ≤ E [1((X1, . . . ,Xs) 6= (y1, . . . ,ys)) ·1(Yn−s · l ≥ nt− sL)]
= E [E [1((X1, . . . ,Xs) 6= (y1, . . . ,ys))·

1(Yn−s · l ≥ nt− sL)|FY1,...,Yn−s

]]
,

where FY1,...,Ys is a σ -field determined by ηz for all z∈Zd \{X1, . . . ,Xs} such that minn
i=1 |z−Xi| ≤

M. The previous inequality now implies that

P(Xn · l ≥ nt) ≤ E [1(Yn−s ≥ nt− sL)·
E
[
1((X1, . . . ,Xs) 6= (y1, . . . ,ys))|FY1,...,Yn−s

]]
.

From theorem 3.3.1 we have that E
[
1((X1, . . . ,Xs) 6= (y1, . . . ,ys))|FY1,...,Yn−s

]
≤ 1− c for some

constant c > 0. Let us denote g = 1−c. We know that g∈ (0,1). Using mathematical induction, we
can repeat the previous sequence of inequalities [nt/sL] times to obtain that P(Xn · l ≥ nt)≤ g[nt/sL].
Now we have that for all t0 > 0 the following inequality holds:

1
n

E(Xn · l)+ =
∫ L

0
P(Xn · l > nt)dt

=
∫ t0

0
P(Xn · l > nt)dt +

∫ L

t0
P(Xn · l > nt)dt

≤ t0 +(L− t0) ·g[nt0/sL]

≤ t0 +L ·g[nt0/sL].

If we keep t0 fixed and let n→ ∞ it is easy to see that the last quantity converges to 0. Therefore
limsup 1

nE(Xn · l)+≤ t0. However, this holds for every t0 > 0 hence limsup 1
nE(Xn · l)+ ≤ 0. This

finishes the proof of the theorem. �
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Chapter 4

Homogenization for Stochastic
Frenkel-Kontorova Models

4.1 Introduction
Let (Ω,P) be a probability space such that P is invariant under the family (τz)z∈Rd of transfor-

mations on Ω. We also assume that τz are ergodic. In other words, we are assuming P(τzA) = P(A)
for all z and A; and only trivial sets (i.e. those of measure 0 or 1) can satisfy P(A∆τzA) = 0 for all
z ∈ Rd . Here ∆ denotes the symmetric difference of sets: A∆B = (A\B)∪ (B\A).

Let L : Rd×Ω→ R be a convex function that is finite in an open neighborhood of 0. Define

Sn(p,q,ω) = inf

{
n−1

∑
i=0

L(qi+1−qi,τqiω)

}
,

where the infimum is taken over all sequences q0,q1, . . . ,qn that satisfy q0 = p and qn = q. Assume
that h : Rd → R is a Lipschitz-continuous function and let us define

un(q,ω) = sup
Q

{
nh
(

Q
n

)
−Sn(q,Q,ω)

}
.

We will assume that L is coercive. In other words, we assume that there are functions C0 ∈
Lr(Ω) (for some real r > 1) and Φ : Rd → R such that Φ is convex, L(p,ω)≥Φ(p)−C0(ω) and

lim
|p|→+∞

Φ(p)
|p|

= +∞.

Assume that for each ε > 0 there exists δ > 0 such that

sup
q,|p|≤δ ,|z|≤δ

|L(q+ p,ω)−L(q,τzω)| ≤C|q| · |p|+ ε.

Under the above assumptions on L we will prove the following result.
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Theorem 4.1.1. There exists convex and coercive function L̄ : Rd → R such that for every η > 0,
all q ∈ Rd , and almost all ω ∈Ω the following holds:

lim
n→∞

E

[
sup

q′∈B(q,η)

∣∣∣∣1nun(nq′,ω)−u(q′)
∣∣∣∣
]

= 0,

where
u(q) = sup

Q
{h(Q)− L̄(Q−q)} .

First we will use methods similar to ones developed by Rezakhanlou and Tarver in [24] for
Hamilton-Jacobi equations to establish the previous theorem. Then we will establish a variational
formula for L̄. In order to formulate the latter result we need to define a class of functions.

Denote by K the set of all functions g : Rd×Ω→ R such that

(i) For each a ∈ Rd the function g(a,ω) belongs to Ld+α(Ω) for some α > 0,

(ii) For almost all ω the function g(a,ω) is Lipschitz continuous,

(iii) For each a ∈ Rd we have E(g(a,ω)) = 0, and

(iv) For each sequence q0,q1,q2, . . . ,qn ∈ Rd such that qn = q0 the following equality holds:

n−1

∑
k=0

g(qk+1−qk,τqkω) = 0.

Theorem 4.1.2. The function L̄ introduced by the theorem 4.1.1 satisfies L̄(Q) = supp{Q · p−
H̄(p)}, where

H̄(p) = inf
g∈K

sup
a∈Rd

esssup{p ·a+g(a,ω)−L(a,ω)} .

In this theorem we need to prove that L̄∗ ≤ H̄ and L̄∗ ≥ H̄. The first inequality is done by using
the existence of the limit and using special initial data to take advantage of the theorem 4.1.1.
For the second inequality one can go by using minimax principle similar to [16]. However, it is
possible to avoid such approach by constructing a subsolution to the cell problem. Similar tricks
have been used by Concordel in [4] and [5].

Functions from K are sublinear at infinity (theorem 4.3.1) so modifying the initial data by
such functions doesn’t change the macroscopic behavior.

With minor modifications, this entire program can be repeated for the case when Rd is replaced
by Zd . The goal is to find appropriate L that corresponds to k-exclusion and v-exclusion processes
defined and studied in [26], [22], and [23]. Also, one hope is to try to apply these methods to the
last passage time in last passage percolation under the condition that the length of a trip has to be
exactly n. In order to apply the methods to percolation, still some work has to be done to modify
the quantity Sn.
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4.2 Homogenization
We are studying the convergence of:

1
n

un(nq,ω) =
1
n

sup
Q
{nh(Q/n)−Sn(nq,Q,ω)}

= sup
Q

{
h(Q)− 1

n
Sn(nq,nQ,ω)

}
.

Let us first prove the following lemma under the above assumptions on L:

Lemma 4.2.1. For each compact set K ∈ Rd there exists µ0 > 0 such that for each µ > µ0 there
exists a real number M such that for all λ > 0 the functions 1

nSn(nq,nQ,ω) of q,Q∈K are equicon-
tinuous as n ∈ N and ω ∈Ω(λ ,µ) where

Ω(λ ,µ) = {ω ∈Ω : sup
z

sup
|p|≤M

L(p,τzω)≤ λ ,C0(ω)≤ µ,C1(ω)≤ µ}.

Moreover, P
(⋃

µ>0
⋃

λ>0 Ω(λ ,µ)
)

= 1.

Proof. Fix q,Q ∈ Rd . Let us choose M to be any real number greater than 2(|Q|+ |q|+ 1) such
that Φ(q) > 2A|q| for |q| > M

2 , where A = 8(5µ + | infΦ|). Let us prove that for each λ > 0 and
ε > 0 there exists δ > 0 such that for all v,V ∈ B0(δ ) the following inequality holds for all n ∈ N
and all ω ∈Ω(λ ,µ):

∣∣1
nSn(n(q+ v),n(Q+V ),ω)− 1

nSn(nq,nQ,ω)
∣∣< ε . From the inequality∣∣∣∣1nSn(n(q+ v),n(Q+V ),ω)− 1

n
Sn(nq,nQ,ω)

∣∣∣∣
≤

∣∣∣∣1nSn(n(q+ v),n(Q+V ),ω)− 1
n

Sn(n(q+ v),nQ,ω)
∣∣∣∣+∣∣∣∣1nSn(n(q+ v),nQ,ω)− 1

n
Sn(nq,nQ,ω)

∣∣∣∣
we deduce that it is sufficient to prove that for each ε > 0 there exists δ > 0 such that the inequality∣∣1

nSn(nq,n(Q+V ),ω)− 1
nSn(nq,nQ,ω)

∣∣ ≤ ε holds for every V ∈ B0(δ ), every n, and every ω ∈
Ω(λ ,µ). Let us take δ = ε

210Mλ
and let n0 be some integer such that dnδe<

⌊n
4

⌋
and dnδe< 2nδ

for all n≥ n0. We now have that

Sn(nq,n(Q+V ),ω)−Sn(nq,nQ,ω)
= Sn(nq,n(Q+V ),ω)−Sdn(1+δ )e(nq,n(Q+V ),ω)

+Sdn(1+δ )e(nq,n(Q+V ),ω)−Sn(nq,nQ,ω). (4.2.1)

If we take any sequence q0 = nq, q1, . . . , qn = nQ we can form a new sequence q′0, q′1, . . . , q′n, q′n+1,
. . . , qdn(1+δ )e such that q′i = qi for i∈ {0,1,2, . . . ,n}, and q′j = nQ+( j−n) · nV

dn(1+δ )e−n for j ∈ {n+
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1, . . . ,dn(1+δ )e} hence Sdn(1+δ )e(nq,n(Q+V ),ω)−Sn(nq,nQ,ω)≤ dnδe ·supz |L(V/δ ,τzω)| ≤
2nδλ . This gives an upper bound for the second term of the right-hand side of (4.2.1).

To bound the first term of the right-hand side of (4.2.1) let us start by taking an arbitrary
sequence q0, q1, . . . , qdn(1+δ )e with q0 = nq and qdn(1+δ )e = n(Q+V ) for which

dn(1+δ )e−1

∑
i=0

L(qi+1−qi,τqiω)≤ ε

210 +Sdn(1+δ )e(nq,n(Q+V ),ω).

Observe that there are at most n/8 elements qi of the previous sequence for which |qi+1− qi| >
M/2. Otherwise we would have ∑L(qi+1− qi,τqiω) ≥ ∑Φ(qi+1− qi)−∑C0(τqiω) ≥ 2nA/8−
n| infΦ|−nµ > 4µn+1. However by choosing µ0 such that ‖L(Q+V −q,ω)‖Q,v∈K ≤ µ0 we can
guarantee that 4µn+1 > Sdn(1+δ )e(nq,n(Q+V ),ω) < 4µn which is impossible.

Therefore there exist dn(1 + δ )e− n indeces i ∈ {1,2, . . . ,dn(1 + δ )e} such that |qi−1− qi| <
M/2, and |qi− qi+1| < M/2. Let us color these indeces in green and the others in red. We may
further assume that none of the green vertices are adjacent. Let r0, r1, . . . , rn be the red subsequence
of the sequence q0, . . . , qn. We clearly have r0 = nq, rn = n(Q +V ) and |ri− ri+1| ≤M for all i.
We are now able to control the difference ∑

n−1
i=1 L(ri+1− ri,τriω)−∑

dn(1+δ )e−1
i=0 L(qi+1− qi,τqiω)

because these two sums have many terms in common. Whenever ri, and ri+1 are two consecutive
terms in the sequence {q j} the term L(ri+1− ri,τriω) will cancel with the corresponding term of
the other sum. The only problem are those pairs (ri,ri+1) that correspond to the pair (q j,q j+2)
such that q j+1 is a green vertex. However we then have |ri− ri+1| = |q j− q j+2| ≤ |q j− q j+1|+
|q j+1−q j+2| ≤M giving us |L(ri+1− ri,τriω)| ≤ λ . We also have |L(qi+1−qi,τqiω)| ≤ λ as well
as |L(qi+2− qi+1,τqi+1ω)| ≤ λ . There are at most (dn(1 + δ )− n) such pairs (ri,ri+1) hence the
difference between two sums can be bounded as follows:

n−1

∑
i=0

L(ri+1− ri,τriω)−
dn(1+δ )e−1

∑
i=0

L(qi+1−qi,τqiω) ≤ ε

210 +3(dn(1+δ )e−n)λ

≤ ε

210 +6nδλ .

Now (4.2.1) implies that∣∣∣∣1nSn(nq,n(Q+V ),ω)− 1
n

Sn(nq,nQ,ω)
∣∣∣∣≤ 2δλ +6δλ +

ε

210n
< ε.

The previous inequalities hold for n ≥ n0. However, it is obvious that each Sn is equicontinuous
for ω ∈Ω(λ ,µ) and there are only finitely many of them, so the first part of the lemma is proved.

For each ε > 0 there exists µ > 0 such that P(C0(ω) ≤ µ,C1(ω) ≤ µ) ≥ 1− ε . Once such µ

is fixed we clearly have
⋃

λ>0{ω ∈ Ω : supz sup|p|≤M L(p,τzω) ≤ λ} = Ω almost surely and this
proves the second part of the lemma. �
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Lemma 4.2.2. Under the above conditions on L there exists a function L̄ : Rd → R that is convex,
coercive, finite in an open set around 0, and for which

lim
n→∞

1
n

Sn(0,nq,ω) = L̄(q)

almost surely and in L1. Such L further satisfies

lim
n→∞

E
∣∣∣∣1nSn(nq,nQ,ω)− L̄(Q−q)

∣∣∣∣= 0

for all q,Q ∈ Rd .

Proof. For integers m < n and any q ∈ Rd let us denote:

Am,n(q,ω) = inf

{
n−m−1

∑
k=0

L(qk+1−qk,τqkω) : q0 = mq,q1, . . . ,qn−m = nq

}
.

Obviously, we have Am,n(q,ω) ≤ Am,k(q,ω) + Ak,n(q,ω) for all m < k < n. The distribution of
Am,n(q, ·) is the same as Am+1,n+1(q, ·). We also have that E(|A0,n(q,ω)|) < +∞ hence by King-
man’s Subadditive Ergodic Theorem we have that there exists a limit

lim
n→∞

1
n

A0,n(q,ω) = L̄(q,ω)

for almost all ω ∈ Ω. Let us now prove that L̄(q,ω) does not depend on ω . Because of the
ergodicity of (τz)z∈Rd it suffices to show that L̄(q,ω) = L̄(q,τzω) for almost all ω . We will use
Sn(0,nq,τzω) = Sn(z,nq + z,ω) and the lemma 4.2.1. For each λ > 0, µ > 0, and each ε > 0
there exists δ > 0 such that

∣∣1
nSn(nu,nq+nu,ω)− 1

nSn(0,nq,ω)
∣∣ < ε whenever |u| ≤ δ and ω ∈

Ω(λ ,µ). For such δ there exists n0 such that |z|n < δ whenever n ≥ n0. This establishes that
there exists L̄(q) such that L̄(q) = L̄(q,ω) for almost all ω ∈ Ω(λ ,µ). This holds for all λ and µ

therefore L̄(q) = L̄(q,ω) for almost all ω .
Since 1

nSn(nq,nQ,ω) = 1
nSn(0,n(Q−q),τnqω) and the last quantity has the same distribution

as 1
nSn(0,n(Q−q),ω) we conclude that

lim
n→∞

E
∣∣∣∣1nSn(nq,nQ,ω)− L̄(Q−q)

∣∣∣∣= 0.

Let us prove that L̄ is convex function. Let α,β ∈ Q∩ (0,1) satisfy α + β = 1. We will now
prove that for any two Q1,Q2 ∈ Rd L̄(αQ1 +βQ2)≤ αL̄(Q1)+β L̄(Q2). Assume that n is integer
such that αn and βn are both integers. Let q0, q1, . . . , qn be elements of Rd for which q0 = 0,
qαn = αnQ1, qn = αnQ1 +βnQ2. We have

1
n

Sn(0,n(αQ1 +βQ2),ω) ≤ α · 1
αn

αn−1

∑
k=0

L(qk+1−qk,ω)+

β · 1
βn

n−1

∑
k=αn

L(qk+1−qk,ω).
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Therefore

1
n

Sn(0,n(αQ1 +βQ2),ω) ≤ α · 1
αn

Sαn(0,αnQ1,ω)+

β · 1
βn

Sβn(αnQ1,n(αQ1 +βQ2),ω).

We know that the left-hand side and the first term on the right-hand side converge almost surely to
L̄(αQ1 + βQ2) and αL̄(Q1). We also know that the second term on the right-hand side converge
to β L̄(Q2) in L1. According to the Riesz-Weyl theorem there exists a subsequence nk for which
this term converge almost surely to β L̄(Q2) which finally gives us

L̄(αQ1 +βQ2)≤ αL̄(Q1)+β L̄(Q2).

Now we will prove that L̄(Q) is continuous. For each ε > 0 there exists a sequence q0 = 0, . . . ,qn =
nQ such that L̄(Q) ≥ −ε + 1

n ∑
n−1
k=0 L(qk+1− qk,τqkω) and |qn− qn−1| ≤ 2|Q|. We now have that

for each z ∈ B0(δ/n)∩B0(ε/n) the following inequalities hold:

L̄(Q+ z)− L̄(Q) ≤ 1
n

(
L(nQ+nz−qn−1,τqn−1ω)−

L(nQ−qn−1,τqn−1ω)+ ε
)

≤ Cn|Q| · |z|
n

+2ε ≤C · |Q| · |z|+2ε.

This implies the lower semi-continuity of L̄, i.e. L̄(Q)≥ limsupz→0 L̄(Q+ z). Let us show that L̄ is
convex. Let α,β ∈ R∩ (0,1) satisfy α +β = 1, and let Q1,Q2 ∈ Rd . Let αn, βn be two sequences
of rational numbers from (0,1) such that αn + βn = 1, αn→ α , βn→ β , and let Qn

1, Qn
2 bet two

sequences from Rd such that Qn
1→ Q1, Qn

2→ Q2, and αnQn
1 +βnQn

2 = αQ1 +βQ2. Now we get

L̄(αQ1 +βQ2) = L̄(αnQn
1 +βnQn

2)≤ αnL̄(Qn
1)+βnL̄(Qn

2).

Taking the limsup on the right-hand side we get L̄(αQ1 +βQ2)≤ αL̄(Q1)+β L̄(Q2) which means
that L̄ is convex.

The coercivity of L̄ follows from the coercivity of L. For every choice of q1, . . . , qn = nQ we
have

1
n

n−1

∑
i=0

L(qi+1−qi,τqiω) ≥ 1
n

n−1

∑
i=0

Φ(qi+1−qi)−
1
n

n−1

∑
i=0

C0(ω)

≥ Φ

(
1
n

n−1

∑
i=0

qi+1−qi

)
−C0(ω)

= Φ(Q)−C0(ω).

It is obvious to see that L̄ is finite for all q’s for which L is finite. �
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Proof of the theorem 4.1.1. There exists a compact set Γ⊆ Rd such that for all n ∈ N

sup
Q

{
h(Q)− 1

n
Sn(nq,nQ,ω)

}
= sup

Q∈Γ

{
h(Q)− 1

n
Sn(nq,nQ,ω)

}
.

In order to prove the previous equality let us start by observing that the quantity on the left-hand
side is bounded below by h(q)−L(0,τnqω)≥ |h(q)|−‖L(0,ω)‖∞. This bound can be obtained by
choosing Q = q, and qi = nq for all i. Using the coercivity of L we get that h(Q)− 1

nSn(nq,nQ,ω)≥
h(Q)−Φ(Q−q)+C0(ω) and this will be definitely smaller than h(q)−‖L(0,ω)‖∞ if |Q| is large
enough.

In a similar way we can prove that there exists a compact set Γ for which

sup
Q
{h(Q)− L̄(Q−q)}= sup

Q∈Γ

{h(Q)− L̄(Q−q)} .

Notice that if u,v : B → R are any two real valued functions then supb u(b)− supb v(b) ≤
supb |u(b)− v(b)|. This means that for each η > 0 we have

lim
n→∞

E

[
sup

q′∈B(q,η)

∣∣∣∣1nun(nq′,ω)−u(q′)
∣∣∣∣
]

≤ lim
n→∞

E

[
sup

q′∈B(q,η)
sup
Q∈Γ

∣∣∣∣1nSn(nq′,nQ,ω)− L̄(Q−q′)
∣∣∣∣
]

.

Assume that Γ ⊆ B0(M). Let λ ,µ > 0 and Ω(λ ,µ) be as in lemma 4.2.1. It is easy to prove that
for each λ ,µ > 0:

lim
n→∞

E

[
sup

q′∈B(q,η)
sup
Q∈Γ

∣∣∣∣1nSn(nq′,nQ,ω)− L̄(Q−q′)
∣∣∣∣1(Ω(λ ,µ))

]
= 0.

The last limit can be made arbitrarily small by choosing first a subset of Ω on which Sn are equicon-
tinuous and a finite grid q′i, Qi on which Sn and L̄ don’t differ by much from the values outside of
the grid. Then the given supremums can be replaced by sums over the grid. Since these sums are
finite and each summand has zero limit we have established the convergence to zero on Ω(λ ,µ).

Outside of Ω(λ ,µ) things are nice because the integrand is bounded uniformly in |q|+ |η |+
|Q|, and P(Ω(λ ,µ))→ 0 by monotone convergence theorem. �

4.3 Sub-linearity of Functions from K

It is immediate that if g ∈K then g(q2− q1,τq1ω) = −g(q1− q2,τq2ω). Therefore g(qn−
q0,τq0ω) = ∑

n−1
i=0 g(qi+1−qi,τqiω). We also have g(q2−q1,τq1ω) = g(q2,ω)−g(q1,ω).
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Lemma 4.3.1. For f ∈K we have

lim
n→∞

sup
|z|≤n

f (z)
n

= 0

for almost all ω .

This lemma is a continuous analog to the theorem 3 from [25] and the proof is quite similar.
We will use the following theorem of Garsia, Rodemich, and Rumsey.

Theorem 4.3.1. Let h : Rd → R be a continuous function on B1. Assume that γ > 2d. If∫
B1

∫
B1

|h(x)−h(y)|d+α

|x− y|γ
dxdy≤ c0

for some c0 ∈ R then for x,y ∈ B1 we have

|h(x)−h(y)| ≤ c1|x− y|
γ−2d
d+α

where c1 depends on c0 and on the dimension d.

We will first prove the following lemma:

Lemma 4.3.2. The functions fn(x,ω) = 1
n f (nx,ω) are equicontinuous.

Proof. We will use the theorem 4.3.1 to establish this fact. Notice that∫
Bd

∫
Bd

| fn(x,ω)− fn(y,ω)|d+β

|x− y|γ
dxdy =

1
n3d+β−γ

∫
Bn

∫
Bn

| f (x,ω)− f (y,ω)|d+β

|x− y|γ
dxdy.

We break the last expression as the sum A1 +A2 where

A1 =
1

n3d+β−γ

∫
Bn

∫
Bn∩Bd(y)

| f (x,ω)− f (y,ω)|d+β

|x− y|γ
dxdy,

A2 =
1

n3d+β−γ

∫
Bn

∫
Bn∩Bd(y)C

| f (x,ω)− f (y,ω)|d+β

|x− y|γ
dxdy.

In order to bound the quantity A1 we use the Lipschitz property of f : | f (x,ω)− f (y,ω)| ≤K|x−y|.
Therefore A1 ≤ 1

n3d+β−γ

∫
Bn

Kd+β ·
∫

Bd
|z|d+β−γ dzdy. In order for this integral to be finite we need

2d +β − γ > 0.
We now want to bound the term A2. For each x ∈ Rd , let us denote by [x] the unique vector

v ∈ Zd for which x− v ∈ [0,1]d \ {(1,1, . . . ,1)}. Since f is Lipschitz we have that | f (x,ω)−



49

f (y,ω)| ≤ 2K + | f ([x],ω)− f ([y],ω)|. For (x,y) in our domain of integration we have [x] 6= [y]
hence |x− y| ≤ 2+ |[x]− [y]| ≤ 3|[x]− [y]|. This implies that

A2 ≤C
1

n3d+β−γ ∑
i, j∈[−n,n]d ,i 6= j

| f (i,ω)− f ( j,ω)|d+β

|i− j|γ
.

Notice that in the previous sum we have | f (i,ω)− f ( j,ω)|d+β =
∣∣∑k f (qk+1−qk,τqkω)

∣∣d+β ,
where the last sum is taken over the sequence q0, . . . ,q| j−i| ∈ Zd of length | j− i| that satisfies

(i) q0 = i, q| j−i| = j, |qk+1−qk|= 1.

(ii) Given the standard basis e1, . . . ,ed of Zd , we assume that if qk+1 and qk differ only in the
coordinate ei then for l > k, ql+1 and ql differ in the coordinate e j for j ≥ i.

Such a sequence q is obviously unique. Using the Hölder’s inequality we get

| f (i,ω)− f ( j,ω)|d+β ≤ | j− i|d+β−1 ·∑
k
| f (qk+1−qk,τqkω)|d+β , hence

A2 ≤C
1

n3d+β−γ ∑
i, j∈[−n,n]d ,i 6= j

∑
k

| f (qk+1−qk,τqkω)|d+β

|i− j|γ+1−d−β
.

Let v ∈ [−n,n]d ∩Zd be fixed. Let us fix a unit vector from Zd . That vector must be of the form
±ei, but for the clarity let us assume that it is e1. We want to see the De1,v coefficient next to
| f (e1,τvω)|. The elements v and v + e1 could be adjacent terms in some of the sums if the first
element i in the sequence has the same projection to the e⊥1 hyperplane as v; and the last element j
has the same projection to e1 as v. Therefore

De1,v ≤C
n

∑
p=1

n

∑
q=1

dq

pγ+1−d−β +qγ+1−d−β
.

The coefficient dq from the last sum represents the number of length q sequences of points in
the integer lattice that satisfy (i) and (ii). Such number is equal to the number of non-negative
integer solutions to x1 + · · ·+ xd = q. This number is equal to

(q+d−1
d−1

)
≤ Cqd−1 hence De1,v ≤

C ∑
n
p=1 ∑

n
q=1

qd−1

pγ+1−d−β +qγ+1−d−β
. Consider the function φ(a) = ∑

∞
i=1

iµ
a+iν where µ,ν are positive

real numbers satisfying µ < ν−1. Then

φ(a) ≤ C
∫ +∞

0

xµ

a+ xν
dx = C

∫ a1/ν

0

xµ

a+ xν
dx+C

∫ +∞

a1/ν

xµ

a+ xν
dx

≤ C
∫ a1/ν

0

xµ

a
dx+C

∫ +∞

a1/ν

xµ

xν
dx

= Ca
µ+1

ν
−1 +Ca

µ−ν+1
ν ≤Ca

µ−ν+1
ν .
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From there we can conclude that De1,v ≤C ∑
n
p=1 p2d+β−γ−1 < Cn, if 2d + β − γ − 1 < 0, or γ >

2d−1+β . We now have

A2 ≤ C
1

n3d+β−γ−1 · ∑
v∈Zd∩[−n,n]d

∑
e∈Zd ,‖e‖=1

| f (e,τvω)|d+β

≤ C
n2d+β−γ−1 ·

1
nd ∑

v∈Zd∩[−n,n]d
∑

e∈Zd ,‖e‖=1

| f (e,τvω)|d+β

≤ C
n2d+β−γ−1 · ∑

e∈Zd ,‖e‖=1

1
nd

∫
Bn

| f (e,τvω)|d+β dv.

We can now use the ergodic theorem to conclude that

lim
n→∞

1
nd

∫
Bn

| f (e,τvω)|d+β dv = E[| f (e,ω)|d+β ].

Therefore the quantity A2 as a function of n converges to 0, hence it is bounded.
We can now use the theorem of Garsia, Rodemich, and Rumsey to conclude that the sequence

of functions fn(x,ω) is equicontinuous. �

Proof of the lemma 4.3.1. The family { fn(x,ω)} of functions is equicontinuous as shown in the
lemma 4.3.2. It is also uniformly bounded because the functions are Lipschitz. According to the
Arzela-Ascoli theorem we get that there is a subsequence fnk that converges to some function g.
We will prove that g has to be zero. This will furthermore imply that even the original sequence fn
has to converge to 0 (because 0 is the only accumulation point of the sequence).

In order to prove that g = 0 we will first prove that g is a constant function. It suffices to prove
that g(x,ω) = g(y,ω) for any two x,y ∈ Rd that differ in the first coordinate only. We will prove
that for any d−1 dimensional box B we have∫

B
g((x1,z),ω)dz =

∫
B

g((y1,z),ω)dz.

It is enough to prove this result only for boxes B of the type [0,b2]× [0,b3]× ·· · × [0,bd], and
y1 = 0. Because of the uniform convergence it is enough to prove that for sufficiently large n we
have that the following quantity is small:

1
n

∫
B

f (n(x1,z),ω)− f (n(0,z),ω)dz =
1
nd

∫
nB

f ((nx1,z),ω)− f ((0,z),ω)dz.
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We have

f ((nx1,z),ω)− f ((0,z),ω) =
n

∑
i=1

f
(
(x1,0) ,τ((i−1)x1,z)ω

)
=

1
|x1|

∫ nx1

0
f ((x1,0),τ(x,z)ω)dx

+
n

∑
i=1

1
|x1|

∫ ix1

(i−1)x1

f ((x1,0),τ((i−1)x1,z)ω)− f ((x1,0),τ(x,z)ω)dx.

The Lipschitzness of f gives that the absolute value of the last term is smaller than or equal to nC
|x1| .

Once divided by nd this will tend to 0 so it suffices to prove that

lim
n→∞

1
nd

∫
[0,nx1]×nB

f ((x1,0),τ(x,z)ω)dxdz = 0.

However, according to the ergodic theorem, this quantity converges to E( f ((x1,0),ω)) = 0.
Now we have proved that g is constant. The equality g(0,ω) = g(0,ω)+ g(0,ω) implies that

this constant must be 0. This completes the proof. �

4.4 Variational Formula for L̄

In this section we prove the variational formula L̄ that is stated in the theorem 4.1.2. One
direction of the proof involves a method analogous to constructing a subsolution to the cell problem
of the Hamilton-Jacobi equation. Sublinearity of the correctors is necessary in order for them to
form a small perturbation, and in order to guarantee this property we use the lemma 4.3.1.

Proof of the theorem 4.1.2. The lemma 4.3.1 implies that for every g ∈K the following relation
holds:

lim
n→∞

sup
|z|≤n

1
n

g(z,ω) = 0.

Assume that h(q) = p ·q for some p∈Rd . In the theorem 4.1.1 we already proved the existence
of the limit for any initial data. Using this particular initial data we conclude that

lim
n→∞

E
[

1
n

un(nq,ω)
]

= sup
Q
{p ·Q− L̄(Q−q)}= p ·q+ L̄∗(p).

In the last equality we used that supQ {p ·Q− L̄(Q−q)}= p ·q+ supQ {p · (Q−q)− L̄(Q−q)}=
p ·q+ supa {p ·a−L(a)}= p ·q+ L̄∗(p).

Let us denote H̄g(p) = supa∈Rd esssup{p ·a+g(a,ω)−L(a,ω)}. Our first goal is to prove the
following inequality for each g ∈K :

lim
n→∞

E
[

1
n

un(nq,ω)
]
≤ p ·q+ H̄g(p).
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Once the function g is fixed, let us introduce

vg
n(q,ω) = sup

q1,...,qn

{
p ·qn +

n−1

∑
k=0

g(qk+1−qk,τqkω)−
n−1

∑
k=0

L(qk+1−qk,τqkω)

}
.

It is easy to see that limn→∞ E
[1

nvg
n(nq,ω)

]
= limn→∞ E

[1
nun(nq,ω)

]
. For almost all ω we have:

vg
n(q,ω) = sup

q1,...,qn−1

{
p ·qn−1 +g(qn−1−q0,τq0ω)−

n−2

∑
k=0

L(qk+1−qk,τqkω)+

sup
qn

{
p · (qn−qn−1)+g(qn−qn−1,τqn−1ω)−L(qn−qn−1,τqn−1ω)

}}
= sup

q1,...,qn−1

{
p ·qn−1 +g(qn−1−q0,τq0ω)−

n−2

∑
k=0

L(qk+1−qk,τqkω)+

sup
a

{
p ·a+g(a,τqn−1ω)−L(a,τqn−1ω)

}}
≤ vg

n−1(q,ω)+ H̄g(p)≤ ·· ·
≤ p ·q+nH̄g(p).

This implies that 1
nvg

n(nq,ω) ≤ q + H̄g(p), hence L̄∗(p) ≤ H̄(p). To prove the reverse inequality
we need to show that for each ε > 0 there exists a function g such that for almost all ω:

sup
a
{g(a,ω)+ p ·a−L(a,ω)} ≤ ε + L̄∗(p).

Denote Lp(a,ω) = L(a,ω)− p ·a. For each λ ∈ (0,1) let us consider the function

f λ (ω) =− inf
∞

∑
n=0

Lp(qn+1−qn,τqnω)λ n

where the last infimum is taken over all infinite sequences q0,q1, . . . that satisfy q0 = 0. Then
λ f λ (τaω) = − inf∑

∞
n=0 Lp(qn+1− qn,τqnτaω)λ n+1. As a consequence, we derive the following

equality: supa

{
λ f λ (τaω)−Lp(a,ω)

}
= f λ (ω) which further gives us

sup
a

{
λ f λ (τaω)−λ f λ (ω)−Lp(a,ω)

}
= (1−λ ) f λ (ω).

Our next goal is to prove that limsup(1− λ ) f λ (ω) ≤ L̄∗(p) as λ → 1. The idea is to change
the order of summations from the definition of f λ , like in Abel-Dirichlet’s theorem. However,
since we have infimum here in the definition of f λ things don’t follow the standard argument.
Fortunately, we are happy with the inequality only, and infimums go in correct directions so we
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can get rid of them without much trouble. To carry this out, let us start our proof by making the
following observation: For each N ∈ N and each λ ∈ (0,1) we have:

N

∑
n=0

Lp(qn+1−qn,τqnω)λ n

=
N

∑
n=0

(
n

∑
k=0

Lp(qk+1−qk,τqkω)

)
·
(
λ

n−λ
n+1)+ N

∑
k=0

Lp(qk+1−qk,τqkω)λ N+1

= (1−λ )
N

∑
n=0

(
n

∑
k=0

Lp(qk+1−qk,τqkω)

)
·λ n +

N

∑
k=0

Lp(qk+1−qk,τqkω)λ N+1.

The previous equalty now implies that for each N ∈ N and each λ ∈ (0,1) we have the following
upper bound:

(1−λ ) f λ (ω) ≤ −(1−λ )2
N

∑
n=0

inf

{
n

∑
k=0

Lp(qk+1−qk,τqkω)

}
λ

n (4.4.1)

−(1−λ ) · inf
N

∑
k=0

Lp(qk+1−qk,τqkω)λ N+1

−(1−λ ) inf
∞

∑
n=N+1

Lp(qn+1−qn,τqnω)λ n.

Each of the previous infimums was taken over the sequences q0,q1, . . . of elements from Rd such
that q0 = 0.

We will show that the last two terms of (4.4.1) are small, while the first converges to L̄∗(p). Let
us first restrict ourselves to ω ∈ Ω(Λ) for arbitrary fixed Λ > 0. Assume that ε > 0 is a fixed real
number. We have that:

−1
n

inf
n

∑
k=0

Lp(qk+1−qk,τqkω) = sup
a

{
p ·a− 1

n
Sn(0,na,ω)

}
.

From the theorem 4.1.1 we know that 1
nSn(0,na,ω)→ L̄(a) almost surely and in L1. According to

Egorov’s theorem this means that the convergence is almost uniform. Therefore for every δ > 0
there exists a set Ωδ such that P(Ωδ ) > 1−δ and the previous convergence is uniform on Ωδ . This
implies that for each ε > 0 there exists N0 such that for N ≥ N0 we have

1
n

Sn(0,na,ω) ∈ (L̄(a)− ε, L̄(a)+ ε)

for all ω ∈ Ωδ . This further allows us to deduce that for all ω ∈ Ωδ and all n > N0 the following
inequality holds:

−1
n

inf
n

∑
k=0

Lp(qk+1−qk,τqkω)≤ L̄∗(p)+ ε.
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Therefore we have the following bound on the first term of the right-hand side of (4.4.1) for
each ω ∈Ωδ ∩Ω(Λ) and λ ∈ (0,1):

−(1−λ )2
N

∑
n=0

inf

{
n

∑
k=0

Lp(qk+1−qk,τqkω)

}
λ

n

= −(1−λ )2
N0

∑
n=0

inf

{
n

∑
k=0

Lp(qk+1−qk,τqkω)

}
λ

n

−(1−λ )2
N

∑
n=N0+1

inf

{
n

∑
k=0

Lp(qk+1−qk,τqkω)

}
λ

n

≤ (1−λ )2
N0

∑
n=0

N0 (p ·a−Φ(a)+Λ)+(1−λ )2
N

∑
n=0

(L̄∗(p)+ ε)nλ
n + ε

≤ (1−λ )2N2
0 (|Φ∗(p)|+Λ)+ L̄∗(p)+ ε.

So far N0 is chosen. We now choose λ0 such that for λ > λ0 we have (1−λ )2N2
0 (|Φ∗(p)+Λ)≤ ε .

After this we choose N so that the last two terms on the right-hand side of (4.4.1) are small. Take
N to be an integer such that (|Φ∗(p)|+Λ)Nλ N < ε . We notice that for all qn,qn+1 we have

Lp(qn+1−qn,τqnω) = −p · (qn+1−qn)+L(qn+1−qn,τqnω)
≥ −p · (qn+1−qn)+Φ(qn+1−qn)−Λ

≥ −|Φ∗(p)|−Λ

hence we see that the second term of the right-hand side of (4.4.1) is bounded by

Nλ
N+1(1−λ )(|Φ∗(p)|+Λ) < ε.

The third term is bounded by λ N+1 · (|Φ∗(p)|+Λ) which is also smaller than ε .
Since this holds for every ε > 0 we have limsupλ→1(1− λ ) f λ (ω) ≤ L̄∗(p) for all ω that

belongs to the set
⋃

δ>0
⋃

Λ>0 Ωδ ∩Ω(Λ). Hence limsup(1−λ ) f λ (ω)≤ L̄∗(p) for almost all ω as
λ → 1.

Now we will prove that f λ (τaω)− f λ (ω) is Lipschitz continuous in a with a Lipschitz constant
uniform in λ .

For each ε > 0 there exists a sequence q0 = 0, q1, q2, . . . such that

f λ (τaω)− ε ≤−
∞

∑
n=0

Lp(qn+1−qn,τqn+aω)λ n.

Then − f λ (ω)≤ Lp(q1 +a,ω)+∑
∞
n=1 Lp(qn+1−qn,τqn+aω)λ n hence

f λ (τaω)− f λ (ω) ≤ ε +Lp(q1 +a,ω)−Lp(q1,τaω)
≤ ε + |Lp(q1 +a,ω)−Lp(q1,ω)|+ |Lp(q1,ω)−Lp(q1,τaω)|.
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The functions L(q1 + ·,ω) and L(q1,τ·ω) are Lipschitz for bounded q1. We may assume that q1 ∈Γ

because of the coercivity of Lp and this finishes the proof that f λ (τaω)− f λ (ω) is Lipschitz with
a constant independent on λ .

Let us recall the inequality

f λ (τaω)− f λ (ω)≤ 1
λ

(
Lp(a,ω)+(1−λ ) f λ (ω)

)
.

For almost all ω ∈Ω we have limsup(1−λ ) f λ (ω)≤ L̄∗(p). Let us use the following modifi-
cation of the Egorov’ theorem whose proof is presented in the end:

Lemma 4.4.1. Assume that limsup fn(ω)≤ K for almost all ω . Then for every δ > 0 there exists
a set Ωδ ⊆Ω with P(Ωδ )≥ 1−δ such that for all ε > 0 there exists n0 for which fn(ω)≤ K + ε

for every ω ∈Ωδ and every n≥ n0.

Using the previous lemma we see that for each δ > 0 there exists a set Ωδ ⊆ Ω whose com-
plement is of measure at most δ and λ0 ∈ (1/2,1) such that (1− λ ) f λ (ω) ≤ L̄∗(p) + 1 for all
λ ∈ (λ0,1) and all ω ∈Ωδ . For all λ > λ0 we have

f λ (τaω)− f λ (ω)≤ 2(Lp(a,ω)+1+ L̄∗(p)).

We also have f λ (ω)− f λ (τaω)≤ 2(Lp(−a,ω)+1+ L̄∗(p)). For each fixed a we have that there
exists a sequence λi such that f λi(τaω)− f λi(ω) converges to some function g(a,ω) integrable on
Ωδ . Since the function is integrable on each Ωδ with a finite integral, it is integrable on Ω as well.
It is easy to see that the integral of such a function is equal to 0, by the dominated convergence
theorem and the invariance of the measure P under τa.

Using a diagonal argument we can find a sequence λi (i ∈ N) such that f λi(τaω)− f λi(ω)→
g(a,ω) for each a ∈Qd . Let us prove that g defined by previous relation can be extended to entire
Rd to a function that belongs to K . For a ∈ Rd and each ε > 0 there exists b ∈ Qd such that
|a− b| < ε . For all λ > 0 we have f λ (τaω)− f λ (τbω) = f λ (τa−bτbω)− f λ (τbω). We have
proved that the previous quantity is Lipschitz uniformly in ω and λ hence we can continuously
extend g from Qd to Rd . We saw that E(g(a,ω)) = 0 for all a ∈ Qd . Using the Lipschitzness we
see that the previous relation will hold for all a ∈ Rd . Also for any sequence r0, . . . ,rn such that
rn = r0 from Rd we can find a sequence q0, . . . ,qn,q0 sufficiently close to r0, . . . ,rn,r0 such that
ri ∈ Qd and g(qi+1− qi,τqiω)− g(ri+1− ri,τriω) ∈ (−ε,ε). Using the dominated convergence
theorem we conclude that ∑

n−1
i=0 g(qi+1−qi,τqiω) = 0. This further implies that

n−1

∑
i=0

g(ri+1− ri,τriω) ∈ (−ε,ε)

for all ε > 0 meaning that this sum must be 0. This proves that g ∈K . �

For the sake of completeness, we will present the proof of the lemma 4.4.1. It is very similar
in spirit to the Egorov’s theorem, and is probably known in the literature.



56

Proof of the lemma 4.4.1. For each pair (p,q) of positive integers let us denote

Fp,q = {ω ∈Ω : fn(ω)≤ K +
1
p

for all n≥ q}.

We clearly have
⋃

∞
q=1 Fp,q = {ω ∈ Ω : limsup fn(ω) ≤ K}. Since the last set is of measure 1 for

each p there exists qp ∈ N such that P(Fp,qp)≥ 1− δ

2p . We claim that

Ωδ =
∞⋂

p=1

Fp,qp

satisfies the required properties. Indeed, the measure of ΩC
δ

is clearly smaller than δ , and we have
that for each ε > 0 there exists p such that ε > 1

p . For each n > qp we have that fn(ω) < K +1/p <
K + ε for all ω ∈ Fp,qp hence for all ω ∈Ωδ . �
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