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Abstract 

Skyrmions of large topological quantum number, N, or large energy scale, 
f1r' are studied in general relativity. No stable or metastable sol~tions are found 
between the nucleon with N = 1 and mini-black holes with N '" ~AfPlank/ f1r' 
On the nuclear scale (f1r '" 90 Me V) this corresponds to N '" 1019 . 

PACS 11.15Tk, 12.38Lg, 97.60.L£ 
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Skyrme Topological Soliton Coupled to Gravity 

Norman K. Glendenning, Takeshi Kodama 
and 

Frans R. Klinkhamer 

June 17, 1988 

Introduction 

In a recent series of papers, Friedberg, Lee and Pang [1] carried out an investigation 
of non-topological soliton stars and black holes. It was shown that, corresponding 
to a simple Lagrangian for a scalar field together with a meson or fermion field, a 
variety of interesting structures might exist, ranging from mini to massive soliton 
stars and black holes. Inspired by these results, we investigate the Skyrme topolog­
ical soliton for large topological quantum number or large energy scale in general 
relativity. The Skyrme soliton [2] has attracted much interest, in the last several 
years because of developments in QCD concerning the large Nc limit and because 
its properties resemble those of nucleons at the 30-40 % level [3,4]. Why might 
such a soliton possess interesting solutions when coupled to gravity? Consider the 
expression for the soliton mass without gravity, 

M = 411 roo dr r2 (J; (FI2 + 2sin2 F) + _1_sin
2 

F (2F'2 + sin
2 

F)') 
, 10 2 r2 2e2 r2 r2 , (1) 

where the chiral function F( r) obeys the boundary conditions, 

F(O) = N1I, F(oo) = 0 (2) 

with the nucleon corresponding to N --.:. 1. As a rough estimate for large N, we take 

F(r) = 0, r > R (3) 

and replace the rapidly oscillating sin2 F(r) by 1/2. We obtain, in leading order, 

M(N) _ 2113 N 2 (J;R + _1_) = 411
3 

J1r N2 
3 e2 R V3e 

The second equality follows for the radius that minimizes this mass, 

" v'3 
R=­

eJ1r 

1 

(4) 

(5) 



Thus we see that M varies as N2, as if there were a pairwise interaction of N 
particles. As could be expected for strongly interacting particles that all experience 
each others force, the radius is independent of N to leading order. Therefore, for 
large enough N, gravity must become important, and ultimately the Schwarzschild 
radius, Rs , will exceed R, for some critical N s . The soliton will then become a 
black hole. In this note we investigate the possibility of there being a finite range of 
N below the critical Ns for which gravity is strong enough to stabilize the soliton 
against single-particle (N = 1) decay. The scale at which gravity becomes strong is 

Rs = 2GM(N) = 871"3 G(NJ )2 '" 1 
R R 3 ~ 

(6) 

or roughly for N f~ '" MPlanck, (where MPlanck = G-~). Note that because both 
mass and size depend on the inverse of e, this parameter drops out of the scale, 
Eq.(6). 

For the purpose of investigating the above possibility, both at the nucleon scale 
(f~ ",90M e V) or at some other scale, for example the strongly interacting Higgs 
sector of the electroweak interaction ('" TeV), we develop the coupled equations for 
the matter and gravitational fields, and discuss the properties of an approximate 
solution. 

2 Field Equations 

For the gravitational fields the action density is (cf. [5]), 

1 
Lg = -1671"GRv=g (7) 

where G is Newtons constant, R is the Ricci scalar curvature and g is the determi­
nant of the metric, gJ.tI/' We also define Lm = Lmv=g for the Lagrangian, Lm, of 
the matter field F, and construct the total action 

(8) 

The coupled field equations for the matter and metric functions emerge as the 
conditions that yield vanishing variation of the action with respect to the metric 
and matter fields. They can be written as 

OLm OLm 
of - f:}J.t o( f:}J.tF) = 0 (9) 

GJ.t1/ = -871"GTJ.t1/ (10) 

where GJ.t1/ = RJ.t1/ - ~gJ.tI/R is Einstein's curvature tensor and TJ.t1/ is the matter 
stress-energy tensor, 

(11) 

2 
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For static, spherical geometry, the metric tensor takes the Schwarzschild form, 

goo 

gJ1.0 

e2v(r) , 2'\(r) 2 gu = ....,.e , g22 = -r , 

- 0, (J-l =f:. 0); goo gOO = 1, etc.; 

and the line element is, 

(12) 

(13) 

where the metric functions v and.\ depend only on r. Then the matter field equation 
can be written, (writing now for brevity L :- L m ), 

(14) 

where primes denote derivatives with respect to r. 
We now specialize to the Skyrme Lagrangian (cf. [4]), 

L L2 + L4 

L2 - 1tr(OJ1.UOJ1.ut) 

L4 ~tr[(OJ1.U)ut,(avU)ut]2= 212tr(FJ1.vFJ1.V) 
32e 3 e 

(15) 

where the field U is a unitary SU(2) matrix, so that 

(16) 

which is used to obtain, 

(17) 

The hedgehog ansatz is 

U = cosF(r) + iT' rsinF(r) (18) 

where the components of T are the Pauli matrices for isospin, and r is a unit 
radial vector. Because we want to study the Skyrmion in strong gravitational fields 
and because of the spherical symmetry of the problem we rewrite the Lagrangian 
using the metric of gravitating, static, spherically symmetric geometry, ie. the 
Schwarzschild metric. The derivatives of U in spherical coordinates are, 

(- sinF + iT' rcos F)F' 

iT' iJ sinF 

iT' 4> sin F sin () 

3 

(19) 



This allows us to express L2. We also need· the FI'-v in spherical coordinates to 
express L 4 . 

2i( T' iJ sin2 F + T' ¢sinF cos F)F' 

2i( T . ¢ sin2 F - T . iJ sin F cos F)F' ~in fJ 

2iT . r sin fJ sin2 F 

Hence, after some algebra, 

J'; (gIl F,2 + l2 sin2 F + l3 sin2 fJ sin2p) 
2 

-~ (gIl F,2 sin2 F[l2 + l3 sin2 fJ] + l2l3 sin2 fJ sin4 F) 
2e2 

, " 

'(20) 

(21) 

We can now compute the four non-vanishing components of the matter stress-enE(rgy 
tensor, TI'-v = TI'-pgpv, and then insert the Schwarzschild metric to obtain Einst~in's 
field equations, which together with the matter field equation, are coupled differen­
tial equations in the two metric functions'\ and v and the matter field, F. Einstein's 
equations are, 

e-2'\(1- 2r'\') - 1 = 87rGr2 L 

, e-2'\(1 + 2rv') - 1 = 

87rGr2 (L + (I: + ~ Si~~F)F'2e-2'\) 
v' - ,\' 

e-2,\(v" + v,2 - ,\'v' +' ) = 
r 

87rG( L + (I; + e12 [e-2,\ FI2 + si~~FJ) Si~~F) , 

2 '3 2 G2 , T3 = T2 

where Eqs.(21) give, 

j 2 • 2 Fl' 2 F . 2 F 
L = _-2:.. (e-2'\F'2 + 2sm ') ~ _" _sIn (2e-2'\F'2 + sm ) 

2 r2 2e2 r2 r2 

Th~ matter field equa:tion, Eq.(14), can now be written, 

(1 2 sin
2 
F) F' sin 2F'F' 2 (~ (. _ ') ( 2sin

2 
F)), . + 2 ,+ 2 ++ V A 1+ 2 F 

x xx x. ' 
_ (sin 2F . sin2 F sin 2F) 2,\_ 

--2-+ 4 e-O 
x x 

F = dF/dx 

In summary, we have to solve the coupled field equations, Eqs.( 22, 24). 
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3 Topological Charge 

Define, in close analogy to Skyrme, 

BIJ. _c_f.IJ.(JI{3-Y S S{3S 
~ a-y 

y-g 
1 

So' UtoaU, c = 247f2 (25) 

The covariant divergence is, 

(26) 

where f.lJ.a{3-y is the (constant) fully antisymmetric tensor. The second line vanishes 
for the same reason that the divergence of the Skyrme current vanishes (ie. it 
vanishes as an algebraic identity and not as a Noether current arising from an 
invariance of the Lagrangian). Corresponding to the vanishing of the covariant 
divergence, the conserved charge is. 

Q J ~Bod3x 
aOa{3-y J Sa S{3S-y d3

x (27) 

For the hedgehog ansatz, Eq.(18), this gives Q = N for boundary condition Eq.(2). 

4 Approximate Solution 

The first of Einstein's equations can be written, 

(28) 

with L given by Eq.(23). Because the metric function is contained in L, this cannot 
be used to calculate >., but its "solution", 

(29) 

suggests the identification of the mass, 

M(r) = 47f foT To °r2 dr (30) 

For weak gravitational fields, this with Eq.(23) yields Eq.(l). While Eq.(30) does 
not provide a means of calculating M, it shows that it requires only a partial solution 
to the metric to calculate it, namely >'(r), 

M(r) = ~(1 - e-2'\(T)) 
2G 
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Keeping in mind the scale, Eq.(6), at which we want to solve this problem, we 
introduce, in addition to the dimensionless length, x, of Eq.(24), the dimensionless 
mass, 

Then we can write Eq.(28) as 

dp(x) 
--

dx 

p(x) 

q(x) 

p(x) = eftrGM(x) 

(1 - 2P;X))p(x) + q(x) 

3 Rs (X2 . . 2 ) ( F )2 
2" R 2+ sm F N7r 

3 1 Rs (2 sin
2 F) sin

2 F 
--- x +--
27r2 N2 R 2 x2 

(32) 

(33) 

In order of magnitude, FIN is independent of N (see Eq.(2)). So far we havejust 
rewritten Einstein's first equation in terms of the mass. However, by writing, 

(34) 

we can show, after some algebra, and using the second of Einstein's equations 
in Eq.(22), that the vanishing of the "functional variation of M with respect to 
F(r), implies that the matter field equation, Eq.(24), is satisfied. We shall use this 
principle to get an approximation to M. 

According to Eq.(6), gravitational binding will be important either' for large N, 
or large ftr or both., The analysis is dictated by the size of N. Consider first large 
N. In that case 

q(x) ~ p(x), sin2 F ~ 1/2, (for large N) (35) 

Then 

dx 
(1- 2P;X))p(x) 

p(x) ~ Rs (1 + x2 ) (~)2 
4 R N7r 

(36) 

We see that in the large N limit, the problem depends only on Rsl Rex G(JtrN)2, 
and not on e, or separately on ftr or N provided that F(x) scales with N. Therefore 
it can be solved universally for all energy scales so long as Eq.(35) is satisfied. We 
sol ve this equation using for F( x) an ansatz whose parameters we vary to get a 
minimum M. Numerical integration of Eq.(24) in the absence of gravity shows that 
F(r) is a concave function [4], and we have verified for N rv 10 that it approxi~ately 
scales with N. Therefore two improved forms for the ansatz over Eq.(3) are 

(37) 
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or 

F(x) = N7re-x
/
x (38) 

and we vary X and a. The second proves to yield a slightly lower mass. 
The dependance of the mass on the size is shown in Fig. 1 for several values of 

the parameter Rsl R in the vicinity where radial stability is lost to collapse. To 
interpret this on the nucleon scale, we adopt constants for the Lagrangian that 
yield a nominal "nucleon" of mass M(l) = 1 GeV and radius R = 1 fm. These are 
J7r = 69.1 MeV and e = 4.95, according to Eqs.(4,5). Then loss of radial stability 
occurs at a little over N = 1019 , (where "little" is measured in 1018 units of baryon 
charge). In contrast, neutron stars loose stability at a few times 1057 baryons. Also 
shown on this figure is the limit R = 2GM, the Schwarzschild radius of the mass 
M. We note that instability already occurs at Rsl R ~ 0.26. 

In Fig. 2 we show the mass as a function of Rsl R, compared to the linear 
behavior in the absence of gravity. Gravity provides a moderate binding of roughly 
15 % of the mass in its absence (comparable to neutron stars). However, the 
condition for stability against single-particle emission is, 

dM(N) M() 
dN < 1 (39) 

or in terms of the dimensionless analysis in which the elementary mass is 

(1) = v'3 Rs 
P 2N2 R (40) 

we have 

dp v'3 1 
d(RsIR) < 4 N 

( 41) 

This condition is not satisfied for large N even up to the point of loss of stability 
against collapse to a black hole 1 where from the figure we estimate dpld(RsIR) ~ 
0.38. It is satisfied nominally for N = 1, which does not satisfy Eq.(35). We turn 
now to the domain of small N. 

We can systematically search for particle stable solutions of Eqs.(33) in the small 
N domain by a series of calculations in which the critical N = N s for which Rs I R = 

1 is varied from 3, 4, ... , in each case calculating the mass for N = 1,2" .. Ns, and 
testing whether Eq.(39) is ever satisfied. Again we find that radial stability is lost at 
Rsl R ~ 0.25, before gravitational binding is very strong. Consequently, no stability 
with respect to particle emission exists. The results are summarized in Table 1. 

lOur conclusion on the instability to single-particle decay is not absolutely rigorous, since we 
obtain the mass by a variational principle. However the condition expressed in Eq.(39) is so far from 
being satisfied that we believe the opposite inequality holds (by many orders of magnitude at the 
nucleon scale). 
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Table 1: Soliton mass as a function of N for various critical N 
Rsl R = l. No entry for /.l means radial instability. 

Ns I N /.l(N) Rsl R 
3 1 .0575 .11 

2 - .44 
4 1 .0322. .06 

2 .1179 .25 
3 - .56 

5 1 .0215 .04 
2 .0804 .16 
3 - .36 

5 Summary 

Ns at which 

We have investigated Skyrmions in general relativity at all energy scales for the 
purpose of learning whether stable or metastable stars consisting of a single topo­
logical soliton might exist. The size of Skyrmions is independent of the topological 
quantum number, N, so that they must become black holes for sufficiently large N . 
Below the critical point, gravity contributes about 15 % binding. However, loss of 
radial stability against collapse occurs before the binding is great enough to provide 
single-particle stability. On the nucleon scale where !1r ~ 70 MeV, the critical topo­
logical number is Ne ~ 1019 in contrast to neutron stars where the critical baryon 
number is ~ 1057

• The critical mass on the nucleon scale is Me ~ 0.5 X 10-20 MG' 
We do not find stable or metastable Skyrmions between N = 1 and the black hole, 
at any energy scale, !1r' Such mini-black holes could have been created at the be­
ginning of the Universe. It is unlikely that conditions favorable for their creation 
would occur at later times. 
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Fig. 1 Skyrmion mass as a function of variational radius parameter, for sev­
eral values of Rsl R <X G(J1rN)2 in the vicinity of loss of stability to gravitational 
collapse. At the nuclear scale (J1r = 69.1 MeV), the three curves correspond to 
N 11019 

= 0.8, 1.0, 1.2 in order of increasing Rsl R. The Schwarzschild relation is 
also plotted. 
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Fig. 2 Skyrmion mass as a function of Rsl R with and without gravity. The dot 
marks the end of radial stability against collapse (See Fig. 1). 
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