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Abstract

We introduce a dimension reduction framework (CDR) that
sheds light on how individuals simplify the multidimensional
world to guide decision-making and comprehension. Our pro-
posal posits that cognitive limitations prompt the adoption of
simplified models, reducing the environment to a subset of di-
mensions. Within these limitations, we propose that individu-
als exploit both environment structure and goal relevance. Em-
ploying information theory, we formalize these principles and
develop a model that explains how environmental and cogni-
tive factors influence dimension reduction. Furthermore, we
present an experimental method for CDR assessment and ini-
tial findings that support it.

Keywords: dimension reduction; grouping; information the-
ory

Introduction
Various decisions we make, such as when to invest in the
stock market, entail a great amount of cognitive process-
ing. We constantly make decisions based on streams of dy-
namic, high-dimensional information with limited cognitive
resources (Dominik & Raymond, 2012). The last decades
have seen the emergence of influential theories, according to
which we make such decisions using various simplifications.
For example, schema theory hypothesizes cognitive struc-
tures that define relations between relatively few dimensions
or categories (Gilboa & Marlatte, 2017; Rumelhart, 1980).
In reinforcement learning, it has been suggested that people
select a small subset of all dimensions to learn about in a
process known as representation learning (Gershman & Niv,
2010; Wilson & Niv, 2012). A central tenet of these theo-
ries is that behavior and comprehension are based on a subset
of prominent dimensions, which partition the world based on
continuous and categorical features.

In computational terms, behavior is shaped by a
dimension-reduction process. For example, an investor might
sell a stock based on its past performance while ignoring
other dimensions, such as the market’s trend. This paper lays
out principles of cognitive dimension reduction: finding a
subset of dimensions that exploit the environment’s structure
and are goal-relevant. Crucially, this process is performed un-
der the constraints of limited resources. We formulate these
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principles using information theory and propose a quantita-
tive model called Cognitive Dimension Reduction (CDR ).
We conclude by proposing an experimental method for test-
ing the CDR model and initial findings that support its va-
lidity.

The principles of cognitive dimension reduction
People are often motivated to learn the relationships between
dimensions of items or events in their environment. We de-
fine the dimensions of an item based on its attributes. For
instance, a stock possesses dimensions such as home country
and value fluctuation. Thus, dimensions can take both cate-
gorical and continuous values. Furthermore, dimensions can
be based on any property and are not restricted to categorical
taxonomies. For example, a dimension indicating whether a
stock is related to pharmaceuticals or not. Similarly, dimen-
sions of events correspond to attributes or aspects of the en-
vironment. For instance, at a party, the music being played,
the people one interacts with, and one’s enjoyment level are
all dimensions.

Learning the relationships between dimensions can aid in
understanding causal connections and predict outcomes of
interest. For instance, understanding how fluctuations in a
stock’s value are influenced by events in its home country can
inform investment decisions. However, cognitive limitations
and time constraints restrict the ability to process and learn re-
lations across dimensions. The solution to limited cognitive
capacity, which we propose in the model, is to use a subset of
dimensions that approximate the environment’s structure and
are goal-relevant.

The structure of the environment
The scholarly consensus is that the world is, and perceived to
be, structured (e.g., Rosch (1975); Rosch and Mervis (1975)).
Rather than consisting of orthogonal dimensions with uni-
form distributions, the world consists of correlated dimen-
sions (Berlin, Breedlove, & Raven, 1973). Humans and an-
imals take advantage of structure to enhance comprehension
and learning (Gershman & Niv, 2010; Kemp & Tenenbaum,
2009). This is also evident at the neuronal level (Barlow et
al., 1961; Simoncelli, 2003).

One way to take advantage of structure is through ab-
straction. By abstraction, we refer to the belief that two or
more subjectively distinguishable objects have the same value
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along some dimension (Gilead, Trope, & Liberman, 2020).
For example, referring to companies such as Pfizer and John-
son&Johnson as pharmaceutical companies is an abstraction
(along the industry dimension). Abstraction is thus a di-
mension reduction process that highlights some dimensions
(such as involvement in pharmaceuticals) while ignoring oth-
ers (such as involvement in consumer products).

Relevance for goals
People are sensitive to the extent that dimensions are relevant
to their tasks and goals (Barsalou, 1991; Eitam & Higgins,
2010; Solomon, Medin, & Lynch, 1999). To illustrate, dif-
ferent dimensions might become prominent when buying a
stock, depending on whether the goal is short-term or long-
term revenues. When learning, people can consider relevance
alongside environment structure (Bates, Lerch, Sims, & Ja-
cobs, 2019).

Information processing constraints
When confronted with high-dimensional information, time
constraints and cognitive limitations prevent people from
making optimal decisions (Gigerenzer & Selten, 2002; Si-
mon, 1955). In such situations, decisions are often formed af-
ter reducing the environment to a few prominent dimensions
(Brewer & Treyens, 1981; Kleider, Pezdek, Goldinger, &
Kirk, 2008; Sims, 2010). One advantage of using only a sub-
set of the dimensions is that it requires less memory capacity
(Brady, Konkle, & Alvarez, 2009). In addition, focusing on
fewer dimensions reduces the attention load, which may facil-
itate learning (Bhui & Jiao, 2023; Leong, Radulescu, Daniel,
DeWoskin, & Niv, 2017).

In the next section, we propose an information-theoretic
model of cognitive dimension reduction that ties together the
aforementioned principles. The model offers a quantitative
method for determining the dimensions to which the environ-
ment is reduced.

CDR: cognitive dimension reduction model
Consider an investor who thinks that the value of Pfizer’s
stocks depends on two dimensions: the general trend of
the stock market and Pfizer’s achievements. The value of
the stock and the two dimensions used to explain its value
can be formulated as random variables. In information the-
ory, the Shannon entropy of a random variable is a mea-
sure of the average information inherent in the variable’s out-
comes (Shannon & Weaver, 1949). The Shannon entropy is
suited for measuring the joint information of these two di-
mensions since it considers the redundancies between them.
The amount of information regarding the stock value obtained
from observing the other dimensions can be measured using
their mutual information (see also Cover and Thomas (2012)
for detailed explanations on information theory).

We use the Shannon entropy not only as a measure of in-
formativeness but also as a proxy for the cognitive complex-
ity of attending, memorizing, and using dimensions. This
hypothesis builds on previous work that applied information

theory across a range of cognitive processes (for a review,
see Sayood (2018)). For example, the time it takes to pro-
cess and recognize elements is linearly related to their entropy
(Hick, 1952; Hyman, 1953). Recently, links between entropy
and cognitive neuroscience were established in the predictive
brain framework (Clark, 2013). Within this framework, the
free energy principle postulates that the brain copes with the
overload of high-dimensional information by striving to mini-
mize the entropy of its prediction errors (e.g., Friston (2010)).

The model
We assume that the set of dimensions in the environment
D = {d1, ..,dk} and their distributions are known. Cognitive
Dimension Reduction outputs a subset of these dimensions
D′ ⊆ D in the context of comprehending or predicting a tar-
get dimension V .

CDR (D,V ) = argmax
D′⊆D

(
I
(
D′;V

))
(1)

subject to
H
(
D′)≤C (2)

Equation 1 represents the incentive to accurately learn the
dimensions D′ most informative of the target dimension V .
The mutual information I measures the amount of informa-
tion from V that can be learned by observing a subset of
dimensions D′. Equation 2 represents the information pro-
cessing constraint on the dimensions that can be used. The
Shannon entropy, H, measures the expected information in
dimensions D′. The cost parameter, C > 0, may be affected
by situational factors such as time constraints and individual
abilities such as working memory and attention capacities.

Put together, the dimensions CDR (D,V ) are maximally
informative of dimension V , out of all subsets of dimensions
whose entropy is upper bounded by C.

Experimental evidence
Next, we introduce an experiment that demonstrates an appli-
cation of the CDR model and initial evidence supporting it.
This experiment examines the dimensions used for decisions
and evaluations, tapping into the downstream consequence of
cognitive dimension reduction. We stress that the experiment
was not run to test the CDR model, but rather, it inspired
the model. Therefore, we present the experiment as an exam-
ple of the model’s application rather than a verification of its
validity. Moreover, the experiment only examines one set of
values for the model’s variables, and additional work should
test the model’s predictions with other values.

Grouping and averaging
Researchers have demonstrated that people evaluate aggre-
gate options by averaging across values in various domains
(Anderson, 1965; Brusovansky, Vanunu, & Usher, 2019) in-
cluding stock market evaluations (Betsch, Kaufmann, Lin-
dow, Plessner, & Hoffmann, 2006). The grouping and av-
eraging approach (Shah & Oppenheimer, 2011) extends this
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Figure 1: For each portfolio, participants saw a sequence of
stocks. For each stock, they saw what industry it belonged to
(e.g., Banking, Food) and if its value rose or fell.

observation by showing that people first group information
and then evaluate each group by averaging the values associ-
ated with the group; finally, an overall evaluation is formed by
averaging groups’ evaluations. Our experimental results are
consistent with the hypothesis that the dimension that CDR
outputs is the one according to which grouping and averaging
are performed.

Experimental method
Participants were told they would be presented with two stock
portfolios, each consisting of equal stock shares. Participants
were then shown two sequences of 19 stocks, one for each
portfolio (the order portfolios were presented was counter-
balanced between participants). For each stock, they first saw
what industry this stock belonged to, and then, if the value of
the stock rose or fell over the previous week (Figure 1). Af-
ter the stocks’ presentation, participants were asked to choose
the portfolio that performed better and only then to evaluate
the performance of the industries. (The method of this exper-
iment was adapted from Woiczyk and Le Mens (2021)).

The two portfolios in the experiment had the same se-
quence of rising and falling stocks and, hence the same over-
all performance (Figure 2). The stocks’ assignment to indus-
tries differed between the two portfolios. When grouping and
averaging based on industries, one portfolio, i.e., the better
grouping by industry portfolio, was more favorable. How-
ever, if participants grouped and averaged based on individual
stocks (or did not group at all), they would be equally likely
to choose either portfolio.

Relation to the CDR model
As we describe next, conditions in this experiment were such
that the CDR model predicts most participants would re-
duce the information to the industry dimension and use it for
grouping and evaluating a portfolio’s performance. Each ob-
servation a participant saw in the experiment corresponded to
a single stock. We model an observation as a sample from
a three-dimensional space (S, IN,V ), where S is the stock
name, IN is the stock’s industry, and V is the change in stock
value. The dimension of stock name S has a different value

for each stock, the industry dimension IN has three possible
values (known to participants in advance), and V is the binary
change in stock value (rise or fall).

The change in stock value was the target dimension in
this experiment. Consequently, we expected that participants
would attempt to predict the change in stock value using the
other dimensions. A priori, participants can predict a stock’s
performance V by reducing the information to the industry di-
mension IN, the stock dimension S, both, or neither of these
dimensions.

Since there were 19 stocks in each portfolio, the stock
dimension S had relatively high entropy (H(S) = log19 =
4.25). The industry dimension had relatively low entropy
since there were only three industries (i.e., H(IN) ≤ log3 =
1.59). Following Miller (1956), we expected most partici-
pants’ parameter C (in Eq. 2) to be in the range that the infor-
mation constraint would be satisfied for the industry but not
for the stock dimension.

In addition to being a sufficiently simple dimension, the
industry dimension is highly informative in this experiment.
For every industry, either the values of all its stocks rose, or
they all fell (i.e., I(IN;V ) = H(V )> 0). Participants saw sev-
eral stocks in each industry, allowing them to learn the associ-
ation between industries and values throughout the task. The
remaining alternative of ignoring all the dimensions would
not reveal any information about a stock’s value before it was
presented (I( /0;V ) = 0). It follows that out of the options that
satisfy the entropy constraint of equation 2, the industry di-
mension attains argmaxD′⊆D (I (D′;V )).

To conclude, according to CDR , the industry dimension
would become prominent in the context of explaining and
predicting change in stock value. Due to the prominence
of the industry dimension, participants should then use it for
evaluating the performance of the entire portfolio. Thus, even
though the two portfolios participants see have the same per-
formance, we expect participants would prefer the portfolio
with better grouping by industry performance.

Results
One hundred and twelve participants recruited via Prolific
completed the experiment. We excluded from the analysis
the ten percentile of participants with the lowest accuracy on
the industry evaluation questions, leaving 101 participants.
Even though both portfolios had the same performance, when
asked which portfolio performed better, a significant majority
of the participants chose the portfolio with better grouping by
industry performance (68%, i.e., 73 of the 101 participants,
chi-square: χ2 = 19.17, p < 0.0001).

Discussion
According to the CDR model, people prioritize a subset of
the possible dimensions in the environment that allow them
to achieve high values without incurring a high informational
cost. In computational terms, people perform a lossy dimen-
sion reduction, which is optimal once accounting for cogni-
tive and environmental limitations.
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Figure 2: A summary of the portfolio information participants saw in the experiment. The sequence of stocks was presented
according to the above order. The cells’ colors represent the industries (e.g., Food, Utilities, Products) which were randomly
assigned in the experiment.

Figure 3: Due to the low entropy of the industry dimension
and its informativity for value, we expected participants to
reduce the information to the industry dimension. This will
lead participants to group and choose a portfolio based on the
industry performance.

CDR is a static model that assumes dimensions and dis-
tributions are fixed and known. As a result, the model is less
suited for predicting behavior when there are misconceptions
regarding the distributions of the dimensions or their informa-
tiveness, which hinders revealing the best dimensions. Such
misconceptions may occur when uninformative dimensions
are salient. CDR should fare better when predicting the be-
havior of experienced individuals or when the environment is
relatively stable.
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