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Brief Communications

S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via
AMP Kinase in Caenorhabditis elegans

Thomas Hubert,1 Zilu Wu,1,2 Andrew D. Chisholm,1 and Yishi Jin1,2

1Division of Biological Sciences, Section of Neurobiology, and 2Howard Hughes Medical Institute, University of California San Diego, La Jolla, California
92093

The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In
Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying
conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon
regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of
function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced
regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the
metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote
axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons.

Key words: AMP kinase; Caenorhabditis elegans; laser axotomy; ribosomal S6 kinase; DLK kinase

Introduction
Axons in the adult nervous system have limited regenerative abil-
ity after injury compared with embryonic stages (Schwab and
Bartholdi, 1996). In the mammalian CNS, this phenomenon has
long been attributed to an inhibitory extrinsic environment com-
posed of CNS myelin-associated proteins and chondroitin sulfate
proteoglycans (Yiu and He, 2006). However, a diminished intrin-
sic regenerative capacity is widely documented in many CNS
neurons, including cerebellar, cortical, and retinal cells (Gold-
berg et al., 2002; Liu et al., 2011). Numerous cell-autonomous
factors, such as cAMP and CREB, can stimulate neurite out-
growth on inhibitory substrates (Cai et al., 2001; Gao et al., 2004).
More recently, a decrease in mammalian target of rapamycin
(mTOR) signaling has been associated with the decline of intrin-
sic regrowth ability. Deletion of the gene for phosphatase and
tensin homolog, PTEN, a negative regulator of mTOR, promotes
axon regrowth after injury to the optic nerve or spinal cord, even
in an inhibitory environment (Park et al., 2008; Christie et al.,
2010). Moreover, neurons derived from embryonic neural cells
undergo extensive axon growth in the injured adult spinal cord (Lu

et al., 2012). Overexpression of a constitutively active (CA) version
of the transcriptional factor KLF7 also enhances axon regeneration
in the adult spinal cord (Blackmore et al., 2012). These studies have
led to the emerging view that manipulation of the intrinsic growth
state of neurons can improve axon regeneration despite the inhibi-
tory environment of the mammalian CNS. Nonetheless, our under-
standing of the intrinsic signaling pathways operating in the adult
nervous system to promote regenerative ability remains limited.

Caenorhabditis elegans is a tractable experimental model with
which to dissect the mechanisms of axon regeneration (Chen and
Chisholm, 2011). Single axons can be severed using laser axo-
tomy, and their regrowth can be analyzed quantitatively and un-
ambiguously in vivo. We screened mutants in a set of 25 genes
affecting mitochondrial function, protein translation, the
insulin/IGF-1 signaling pathway, and cellular stress responses to
identify intrinsic regulators of axon regrowth after injury (Chen
et al., 2011). We find that axon regrowth is significantly enhanced
in loss-of-function mutants of rsks-1, which encodes the C. el-
egans ortholog of p70 ribosomal S6 kinase (p70S6K). RSKS-1
likely acts in parallel to the DLK-1 MAPK cascade, which is crit-
ical for the initiation of axon regeneration (Hammarlund et al.,
2009; Yan et al., 2009). RSKS-1 acts cell autonomously to restrain
axon regrowth through the AMP kinase AAK-2. We further show
that the antidiabetic drug phenformin can enhance axon re-
growth, likely in an AAK-2/AMPK-dependent manner. Our re-
sults uncover a previously unknown function for p70S6K, and
suggest that regenerative axon regrowth can be enhanced by
stimulation of the AMPK pathway.

Materials and Methods
Genetics. C. elegans was grown on nematode growth medium agar
plates at 20°C. For drug experiments, metformin (PHR1084, Sigma)
or phenformin (P7045, Sigma) was added to the agar to a final con-
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centration of 50 or 4.5 mM, respectively. L4 hermaphrodites were put
on drug plates and their L4 progeny were used for axotomy. AICAR
(5-aminoimidazole-4-carboxamide ribonucleoside; A9978, Sigma)
was dissolved in DMSO before dilution in M9. We incubated worms
in drug solution (containing Escherichia coli OP50) for 3 h before
axotomy and recovered in drug solution for 24 h after axotomy.
Control animals were incubated in M9-containing DMSO solvent to
the equivalent concentration.

Touch neurons were visualized using either muIs32[Pmec-7-GFP] or
zdIs5[Pmec-4-GFP], as described previously (Wu et al., 2007). Alleles
used are as follows: aak-1(tm1944 ), aak-2(ok524, rr48), dlk-1( ju476,
tm4024 ), hif-1(ia4 ), rskn-1(tm4834 ), and rsks-1(sv31, tm1714, ok1255).
Deletion mutations were outcrossed to N2 wild type at least twice before
analysis; primer sequences for genotyping are available on request.

Molecular biology and transgenes. rsks-1 expression transgenes were
generated from the rsks-1 cDNA yk290d1 (a gift from Yuji Kohara, Na-
tional Institute of Genetics, Mishima, Japan). The cDNA was PCR
amplified using primers 5�-atggctgacgtgttcgagtt (YJ9494) and 5�-
tcagaaaaagtggaagaaca (YJ9495), and was subcloned into pCR8 (Invitro-
gen) to generate a Gateway entry clone. The rsks-1 entry clone was
recombined with an appropriate destination vector to generate final clones
pCZGY1870 (Pmec-4-RSKS-1) and pCZGY1872 (Pmec-4-GFP::RSKS-1). To
generate CA RSKS-1, we mutated residues involved in S6K activation

(Pullen and Thomas, 1997) by substituting T404 (T389 in p70S6K) to
glutamate or S439 (S411 in p70S6K) to aspartate. Kinase-dead (KD)
RSKS-1 was made by mutating K115 to glutamine. These constructs were
used to generate pCZGY2249 (Pmec-4-RSKS-1T404E), pCZGY2250
(Pmec-4-RSKS-1S439D) and pCZGY2248 (Pmec-4-RSKS-1K115Q).

aak-2 genomic DNA was amplified from fosmid WRM067cF08 using
primers 5�-tgggattccgtcaaagaaggacatg (YJ9492) and 5�-ctgaaaatgaaagcggcact
(YJ9493). The resulting fragment contained 3.0 kb sequences upstream
of and 241 bp downstream of the aak-2 coding sequence. aak-2 cDNA
was amplified using RT-PCR from wild-type mRNAs using primers 5�-
atgttttctcatcaagatcgaga (YJ9781) and 5�-ctgaaaatgaaagcggcact (YJ9493),
and was subcloned to generate pCZGY2244 (Pmec-4-AAK-2).

We used standard procedures to generate transgenic animals (Mello et
al., 1991). Plasmid DNAs were used at 25–50 ng/�l, a linear PCR frag-
ment of aak-2 genomic DNA was used at 15 ng/�l, and coinjection
marker Pttx-3-RFP or Pttx-3-GFP was used at 50 ng/�l. For each con-
struct, at least two extrachromosomal transgenic lines were analyzed.

Prgef-1-DLK-1L( juSi50) was inserted at the ttTi5606 site, as described
previously (Yan and Jin, 2012). Primers F (YJ9683; 5�gtcctccgacttctcta-
cag) with R (YJ9684; 5�gccattcaagttcggagatag) and F (YJ9685; 5� gagattct-
tgaagacgacgag) with R (YJ9686; 5� tcttgataaggagttccacg) were used to
distinguish the juSi50 insertion from the endogenous dlk-1 locus.
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Figure 1. Ribosomal S6 kinase RSKS-1 inhibits axon regrowth in C. elegans. A, Representative images of PLM axons 24 h postaxotomy in animals, with genotypes indicated. GFP::RSKS-1 fully
rescues the rsks-1(0) increased regrowth. Stars, Location of axotomy; arrows, tip of regrowing axon. B, PLM regrowth at 24 h postaxotomy in rsks-1(0) mutants, normalized to the appropriate control
axotomized on the same day. Touch neuron-specific expression of rsks-1 cDNA or of GFP::RSKS-1 rescues rsks-1(0)-enhanced regrowth. Constitutively active forms of RSKS-1, T404E, and S439D
inhibit regrowth when expressed in wild-type background, while the expression of a KD RSKS-1 fails to rescue rsks-1(0). C, ALM regrowth at 24 h postaxotomy in rsks-1(0) mutants shows increased
regrowth. D, GFP::RSKS-1 is diffusely localized in the soma and axon of PLM, and is concentrated in the synaptic branch (arrow) in the ventral nerve cord. E, Examples of growth cones in control and
rsks-1(0) mutants at 6 h after axotomy. F, rsks-1(0) mutants display increased axon regrowth at 24 and 48 h postaxotomy. G, The growth rate is higher in rsks-1(0) mutants at 0 – 6, 10 –24, and
24 – 48 h. ANOVA: *p � 0.05; **p � 0.01; ***p � 0.001. ns, Not significant. Scale bars: A, D, E, 20 �m.
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Axon regeneration. Touch neuron axotomy and measurement of axon
regeneration were essentially as described previously (Wu et al., 2007).
New regrowing processes were considered neurites if they were �5 �m in
length. Regenerating axons fused with distal process were excluded from
measurement. To compare data from distinct genetic backgrounds or
collected on different days, total axon regrowth was normalized to a
wild-type control dataset from the same day. All statistical analyses used
GraphPad Prism. The distribution of the total regrowth length of axons
in wild-type cells and controls passed tests of normality. For compar-
isons of two groups, we used a two-tailed Student’s t test or Fisher’s
exact test for proportion; for comparison of multiple groups, we used
one-way ANOVA followed by Bonferroni’s correction or Dunnett’s
post hoc test.

Quantitation of GFP::RSKS-1. z-stacks of Pmec-4-GFP::RSKS-1( juEx4484)
fluorescence in posterior lateral microtubule (PLM) neurons were taken
using the spinning disk confocal microscope using constant imaging
parameters. Maximum intensity projections were made, and fluores-
cence was quantitated in a 1 � 10 �m line scan ROI close to the axotomy
site using MetaMorph.

Results
Ribosomal S6 kinase rsks-1 is a cell-autonomous inhibitor of
axon regrowth
The axon outgrowth of mechanosensory neurons is normal in
rsks-1 loss of function mutants. To examine the role of RSKS-1

in axon regeneration, we performed laser axotomy on PLM axons
in L4 larvae, and imaged regrowth 24 h later (see Materials and
Methods). Three genetic null mutations of rsks-1 caused signifi-
cantly increased PLM axon regrowth (Fig. 1A,B; Table 1). Ani-
mals mutant for the related p90 S6K homolog rskn-1 showed
normal regrowth (Table 1; see Fig. 3B). We also examined axon
regeneration of anterior lateral microtubule (ALM) neurons, and
observed significantly increased regrowth in rsks-1(0) mutants
(Fig. 1C). PLM axons do not regrow when cut distally from their
synaptic branch, but show significantly enhanced regrowth if the
synaptic branch is also cut (Wu et al., 2007). Loss of RSKS-1
strongly enhanced distal PLM regrowth only when the synaptic
branch was also cut (Table 1), suggesting that, although RSKS-1 is
not the synaptic branch inhibitory signal, it functions in a related
growth-inhibitory process.

To address whether RSKS-1 functions cell autonomously in
regrowth, we expressed an rsks-1 cDNA specifically in touch neu-
rons. Expression of this cDNA did not affect regrowth in the
wild-type background and fully rescued enhanced regrowth in
rsks-1(0) mutants (Fig. 1B). Functional GFP::RSKS-1 was dif-
fusely localized throughout the PLM axon, with notable concen-
tration in the synaptic branch (Fig. 1D); the level and localization
of GFP::RSKS-1 was not appreciably altered after axotomy (Fig.

Table 1. PLM and ALM axon regrowth length measurement in selected genotypes

Strain Genotype PLM regrowth (�m)a ALM regrowth (�m)b

CZ10175 Pmec-4-GFP(zdIs5) 117.1 � 6.8 90.23 � 5.1; 204.4 � 18.3
CZ10969 Pmec-7-GFP(muIs32) 107.9 � 8.5 ND
CZ17112 zdIs5;rsks-1(sv31) 153.3 � 9.9 158.8 � 10.6
CZ15318 zdIs5;rsks-1(tm1714) ND 145.7 � 14.9
CZ15317 muIs32;rsks-1(tm1714) 135.6 � 5.2 ND
CZ14511 zdIs5;rsks-1(ok1255) 157.1 � 8.2 149.6 � 8.6
CZ11327 zdIs5;dlk-1(ju476) 15.9 � 2.4 68.2 � 5.8; 111.9 � 7.8
CZ18141 zdIs5;dlk-1(ju476);rsks-1(sv31) 17.9 � 2.3 87.2 � 8.5; 181.8 � 14.0
CZ16351 zdIs5;dlk-1(tm4024) 33.4 � 2.8 86.6 � 10.5
CZ19019 zdIs5;dlk-1(tm4024);rsks-1(sv31) 45.6 � 6.5 129.4 � 8.4
CZ15571 zdIs5;Prgef-1-DLK-1L(juSi50) 173.5 � 9.0 122.0 � 7.5
CZ17120 zdIs5;Prgef-1-DLK-1L(juSi50);rsks-1(sv31) 154.5 � 9.4 190.6 � 8.3
CZ16434 zdIs5;aak-2(ok524) 57.7 � 7.0 36.6 � 7.7
CZ19720 zdIs5;aak-2(ok524); dlk-1(tm4024) ND 50.8 � 7.7
CZ14507 zdIs5;aak-2(rr48) 75.2 � 8.0 ND
CZ17121 zdIs5;rsks-1(sv31);aak-2(ok524) 83.5 � 8.0 ND
CZ17111 rskn-1(tm4834);muIs32 136.7 � 7.4 ND
CZ11879 zdIs5;hif-1(ia4) 108.4 � 7.3 ND
CZ18142 zdIs5;rsks-1(sv31);hif-1(ia4) 156.2 � 7.1 ND
CZ19017 zdIs5;aak-1(tm1944) 130.6 � 9.4 ND
CZ19016 zdIs5;aak-1(tm1944);rsks-1(sv31) 152.2 � 10.1 ND
CZ15745 zdIs5;Pmec-4-RSKS-1(juEx4395) 110.7 � 8.2 ND
CZ17167 zdIs5;rsks-1(sv31);Pmec-4-RSKS-1(juEx4395) 111.0 � 14.1 ND
CZ17809 zdIs5;rsks-1(sv31);Pmec-4-GFP::RSKS-1(juEx4484) 97.4 � 8.8 ND
CZ17814 zdIs5;Pmec-4-RSKS-1(T404E) (juEx5315) 81.4 � 8.2 ND
CZ17812 zdIs5;Pmec-4-RSKS-1(S439D) (juEx5313) 51.4 � 9.2 ND
CZ18135 zdIs5;Pmec-4-RSKS-1(K115Q) (juEx5420) 165.0 � 11.0 ND
CZ18139 zdIs5;rsks-1(sv31);Pmec-4-RSKS-1(K115Q) (juEx5420) 174.1 � 11.4 ND
CZ19022 zdIs5;juSi50;Pmec-4-RSKS-1(T404E) (juEx5316) 107.9 � 10.7 ND
CZ16432 zdIs5;aak-2(ok524);Paak-2-AAK-2(juEx4742) 168.1 � 6.9 ND
CZ17106 zdIs5;Paak-2-AAK-2(juEx4742) 155.4 � 11.8 ND
CZ17800 zdIs5;aak-2(ok524);Pmec-4-AAK-2(juEx5309) 135.9 � 9.4 ND
CZ17118 zdIs5;rsks-1(sv31);Paak-2-AAK-2(juEx4742) 163.6 � 10.9 ND
CZ10175 zdIs5 PLM distal �1.8 � 1.2 ND
CZ17112 zdIs5;rsks-1(sv31) PLM distal 0.7 � 1.0 ND
CZ10175 zdIs5 PLM distal � branch 6.0 � 4.3 ND
CZ17112 zdIs5;rsks-1(sv31) PLM distal � branch 39.6 � 4.4 ND
aValues are given at 24 h.
bRoman type indicates values at 24 h; bold type indicates values at 48 h.
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2E,F). We next addressed whether the ability of RSKS-1 to in-
hibit regrowth depends on its kinase activity. We generated KD
RSKS-1 by mutating the ATP binding site (von Manteuffel et al.,
1997). Expression of RSKS-1 (KD) failed to rescue the enhanced
regrowth of rsks-1(0) mutants, and did not affect regrowth in an
rsks-1(�) background (Fig. 1B). Conversely, we generated two
CA forms of RSKS-1 by making phosphomimetic changes T404E
or S439D, predicted to cause S6K activation. When expressed in
wild-type animals, both RSKS-1 (CA) transgenes significantly
inhibited regrowth (Fig. 1B). Together, these data indicate that
RSKS-1 can act cell autonomously to inhibit axon regrowth
through its kinase activity.

We wanted to determine when in axon regrowth RSKS-1 has
its inhibitory effect. In wild-type animals, �30% of injured PLM
axons display growth cones at around 6 h postaxotomy, while
�90% of injured PLM axons in rsks-1(0) mutants developed
growth cones (Fig. 1E). We analyzed regrowth at multiple time
points after axotomy (Fig. 1F). rsks-1(0) mutants displayed slight
increased regrowth at 6 h postaxotomy, although the increase did
not become statistically significant until 24 h. By pooling regrowth
measurements at different time points, we found that compared

with wild type, the rate of axon extension
initially increased, then decreased from 6 to
10 h, and later increased between 10 and
48 h postaxotomy (Fig. 1G). These results
suggest that RSKS-1 may play distinct roles
in inhibiting growth cone formation early
after injury and also later in inhibiting axon
extension.

Regrowth in rsks-1 mutants is partly
dependent on DLK-1
As the DLK-1 MAPKKK pathway is a key
intrinsic determinant of axon regrowth in
several neuron types (Hammarlund et al.,
2009; Yan et al., 2009), we next addressed
the relationship between RSKS-1 and
DLK-1 in double mutants. dlk-1(0)-null
mutants blocked PLM regrowth, with no
visible growth cone formed after axo-
tomy. rsks-1(0) did not significantly sup-
press dlk-1(0) phenotypes in PLM (Fig.
2A,B; Table 1). Animals expressing the
DLK-1 long isoform under the control of
the pan-neuronal rgef-1 promoter (dlk-
1(��), genotype juSi50) display normal
PLM development and enhanced PLM
axon regrowth (Yan and Jin, 2012). PLM
axon regrowth in dlk-1(��);rsks-1(0)
double mutants was comparable to either
single mutant over the course of 48 h po-
staxotomy (Fig. 2A–C). In addition, over-
expression of DLK-1 was able to partly
overcome the regrowth inhibition caused
by rsks-1 (CA) (Fig. 2B).

As dlk-1(0) is completely epistatic to
rsks-1(0) in PLM regrowth, RSKS-1 may act
upstream of DLK-1 in a negative regulatory
pathway. However, the strong dependence
of PLM axon regrowth on the DLK-1 path-
way precludes a precise mechanistic inter-
pretation of these epistasis results. To
attempt to resolve whether RSKS-1 might

act independently of DLK-1, we turned to ALM neurons. ALM and
PLM neurons are known to differ in their capacity to regenerate
axons (Pinan-Lucarre et al., 2012). dlk-1(0) reduced but did not
abolish ALM axon regrowth (Fig. 2D; Table 1). rsks-1(0) dramati-
cally increased ALM regrowth. dlk-1(0);rsks-1(0) double mutants
showed noticeable, although not statistically significant, increased
ALM regrowth relative to dlk-1(0) in 24 h postaxotomy (Fig. 2D);
this enhanced regrowth was significant over 48 h postaxotomy (p �
0.001, Student’s t test; Table 1). rsks-1(0) also significantly sup-
pressed the partial ALM regrowth defect of dlk-1(0) (Table 1). This
result shows that loss of rsks-1 can partly bypass the requirement for
DLK-1 in ALM regrowth, likely through enhancing axon extension.
Notably, in dlk-1(0) single mutants and in dlk-1(0);rsks-1(0) double-
mutant ALM regrew without forming morphologically distinct
growth cones (data not shown). In addition, ALM axon regrowth
was further increased in dlk-1(��);rsks-1(0) double mutants com-
pared with either rsks-1(0) or dlk-1(��) mutants (Fig. 2D).
Pmec-4-GFP::RSKS-1 fluorescence levels were not altered in dlk-1(0)
mutants, and did not significantly change after axotomy (Fig. 2E,F).
In summary, these results are generally consistent with the model
that RSKS-1 can negatively regulate the axonal growth state inde-
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pendently of DLK-1, although some func-
tions of RSKS-1 may depend on DLK-1 in
specific neurons.

Increased regrowth in rsks-1 mutants
requires AMP kinase AAK-2
Several genes act downstream of RSKS-1
in distinct contexts including pha-4/
FOXA, hif-1/HIF1, and aak-2/AMPK
(Sheaffer et al., 2008; Chen et al., 2009;
Selman et al., 2009). pha-4 is essential for
embryonic development, complicating
the analysis of its role in adult axon regen-
eration. hif-1 mutants displayed normal
regrowth and did not further enhance
rsks-1 mutants (Fig. 3B; Table 1). AAK-1
and AAK-2 are the two C. elegans catalytic
subunits of the cellular energy sensor
AMPK (Apfeld et al., 2004). AAK-2 phos-
phorylation is increased in rsks-1 mutants,
and the loss of aak-2 abolishes the longer
lifespan of rsks-1 mutants (Selman et al.,
2009). To address whether AAK-2 is acti-
vated in rsks-1(0) mutants, we took ad-
vantage of an AAK-2 activity reporter
based on the nuclear translocation of the
CREB-regulated transcriptional coactiva-
tor (CRTC-1) in intestinal cells (Mair et
al., 2011). Activation of AAK-2 results in
phosphorylation and nuclear export of
CRTC-1. We found that CRTC-1::RFP was constitutively ex-
cluded from the nuclei of intestinal cells in rsks-1(0), indicating
that AAK-2 is activated in these animals (data not shown). We
therefore tested whether AAK-2 acts downstream of RSKS-1 in
axon regeneration. We found that aak-2(0) mutants showed de-
creased PLM regrowth, while aak-1(0) mutants showed regrowth
similar to that in the wild type (Fig. 3A,B). The expression of
aak-2 driven by its own promoter or a touch neuron promoter
not only rescued the reduced regrowth of aak-2(0), but also re-
sulted in increased regrowth compared with wild type. Moreover,
aak-2(0), but not aak-1(0), abolished the enhanced regrowth of
rsks-1(0) mutants (Fig. 3B; Table 1). Transgenic overexpression
of aak-2(�) also rescued the aak-2(0) regrowth defect to a level
comparable to that of rsks-1(0) single mutant. AAK-2 overex-
pression in wild-type animals increased PLM regrowth, and this
was not further enhanced in an rsks-1(0) background (Fig. 3B).
aak-2(0); dlk-1(0) double mutants displayed reduced ALM re-
growth compared with dlk-1(0) single mutants, although this was
not statistically significant (Table 1). AAK-2 may therefore act
partly in parallel with DLK-1. These results support the conclu-
sion that AAK-2 acts downstream of RSKS-1 in PLM regrowth
and suggest that increased AMPK activity enhances regenerative
capacity.

Pharmacological activation of the AMPK pathway enhances
axon regrowth
Several antihyperglycemic agents widely used to treat type 2 dia-
betes activate the AMPK pathway, such as the AMPK-activating
agent AICAR and the biguanide drugs metformin and phen-
formin (Hawley et al., 2002). In C. elegans, metformin and phen-
formin treatment increases lifespan via AMPK, and phenformin
has been shown to activate AAK-2 (Onken and Driscoll, 2010;
Cabreiro et al., 2013). To test whether pharmacological activation

of AAK-2 might enhance axon regrowth, we cultured animals in
AICAR, metformin, or phenformin, using concentrations com-
patible with animal health and increased longevity (Onken and
Driscoll, 2010; Cabreiro et al., 2013). Among the three drugs,
phenformin treatment significantly enhanced PLM axon re-
growth in wild-type animals, but not in aak-2 mutants (Fig.
3A,C). Phenformin treatment did not further enhance the axon
regrowth of rsks-1(0) animals (Fig. 3C). These results suggest that
pharmacological activation of AMPK can promote axon re-
growth after injury.

Discussion
The ability to analyze the regrowth of single axons in vivo follow-
ing laser axotomy in C. elegans offers great advantages in dissect-
ing conserved regulators of axon regeneration. Recent studies in
C. elegans have identified multiple intrinsic influences on axon
regrowth capacity, including the DLK-1 MAPK cascade (Ham-
marlund et al., 2009; Yan et al., 2009), microtubule dynamics
(Chen et al., 2011; Ghosh-Roy et al., 2012), and Notch signaling
(El Bejjani and Hammarlund, 2012). Here we show that the ribo-
somal S6 kinase RSKS-1 acts as a cell-autonomous inhibitor of
PLM axon regeneration.

S6 kinases were originally defined by their ability to phosphor-
ylate ribosomal subunit protein S6 (Jenö et al., 1988). However,
this role accounts for only some of their physiological functions
(Pende et al., 2004; Meyuhas, 2008), and other S6K substrates
affect a range of processes, including protein production, lipid
synthesis, and synaptic plasticity (Magnuson et al., 2012). The
function of S6K in axon regeneration has not previously been
tested directly. We find that C. elegans RSKS-1/S6K inhibits axon
regeneration cell autonomously, and that this requires its kinase
activity. Axon regeneration can be broadly divided into two ma-
jor phases of growth cone initiation and axon extension; RSKS-1
appears to inhibit both of these stages. Although the loss of
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RSKS-1 function did not bypass the requirement for the DLK-1
MAPK pathway in PLM regrowth, rsks-1(0) mutants significantly
suppressed dlk-1(0) in ALM. These observations suggest DLK-1
and RSKS-1 do not act in a single linear pathway. Instead, DLK-1
activity is the main determinant of growth cone reformation;
RSKS-1 may inhibit regrowth partly by modulating the DLK-1
pathway itself and via additional growth regulators such as AMPK.

We find that the axon regeneration inhibitory function of
rsks-1 depends on AMPK. AMPK is a conserved sensor of intra-
cellular energy levels; upon activation in stress conditions it trig-
gers ATP production to mediate adaptive changes (Mihaylova
and Shaw, 2011). In both C. elegans and mice, AMPK activity is
increased in rsks-1(0) and S6K1�/� mutants (Aguilar et al., 2007;
Selman et al., 2009). Our results suggest that AMPK is a physio-
logically relevant output for RSKS-1 in axonal regrowth. We
speculate that the S6K/AMPK pathway regulates metabolic pro-
cesses that are limiting in axon regeneration. Our finding that the
AMPK-activating drug phenformin can improve axon regenera-
tion in an AAK-2-dependent manner suggests potential thera-
peutic interventions for the enhancement of axon regrowth by
selective manipulation of S6 kinase and AMPK signaling.
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