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Does active learning lead to better teaching of novel perceptual categories?
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Department of Cognitive Science, Central European University, Quellenstraße 51
Vienna, 1100 Austria

József Fiser (fiserj@ceu.edu)
Department of Cognitive Science, Central European University, Quellenstraße 51

Vienna, 1100 Austria

Abstract

To be efficient, both active learners and teachers need to be
able to judge the relative usefulness of a piece of information
for themselves or for their students, respectively. The current
study assessed whether experience of active learning facilitates
subsequent teaching from imperfect knowledge. Following
a visual category learning task, dyads (N=40) of active and
yoked passive learners taught (imagined) näive learners how
to categorize the same visual stimuli by providing them with a
small number of self-generated examples. Active learners nar-
rowed down the possible categorization boundaries more than
yoked learners. However, the active learning advantage was
modest and limited to categories that were more difficult to
learn and, overall, teachers were overly conservative, provid-
ing the least ambiguous category examples.

Keywords: teaching; active learning; yoked design

Introduction
Unquestionably, teaching by more knowledgeable and help-
ful others contributes to the efficiency of human learning and,
more broadly, to our success as a species. Here, we focus on
teaching by providing examples, which is particularly use-
ful to teach concepts which are complex and difficult to ver-
balize, or for which explicit instruction does not aid learning
(e.g., Rosedahl, Serota, & Ashby, 2021). While example giv-
ing is a mainstay of educational practice and the focus of the
growing field of machine teaching, we know relatively little
from an experimental standpoint about how humans explicitly
generate examples, the extent to which they can intentionally
modulate their sampling to meet different teaching goals, and
how they can be scaffolded.

Generating teaching examples is a normatively hard prob-
lem, not least because teaching needs to be tailored to
the learner’s prior knowledge and their inferential process.
Shafto, Goodman, and Griffiths (2014) proposed a solution
by formalizing a rational-agent model of teaching as a recur-
sive process: the teacher chooses examples for the learner
such that the learner is most likely to adopt the hypothesis-
to-be-taught, and the learner makes Bayes-rational inferences
based on the examples received under the assumption that the
teacher selected them as described above. The optimal (min-
imally sufficient) teaching set is converged upon by iteration.

Beyond the useful simplifying assumption of rational
learners, another straightforward way to facilitate building
a good learner model for teaching is for the teacher to first
take the role of the learner (Stanciu, Lengyel, & Fiser, 2019),

given that the ability to mentalize and take the perspective
of the learner is prerequisite for good teaching (Bass, Shafto,
& Gopnik, 2017). Being an active learner, that is, engaging
in tasks where the learner can exert control over the learning
curriculum (e.g., choosing which stimuli to get feedback on),
should be the most beneficial to subsequent teaching since it
would provide experience determining the potential useful-
ness of examples. The similarity between active learning and
teaching is apparent when considering that the goal of active
learners (who, unlike teachers, do not have access to the target
hypothesis) is to sample their environment to maximize their
expected information gain in light of their prior knowledge
and the hypotheses that they wish to test. Based on the simi-
larity at the computational level (see Yang and Shafto (2017)
for a formalization of active learning as self-teaching), it may
be the case that they rely on shared abilities which support
the efficient sampling of data. As such, we expect that ac-
tive learning experience will facilitate teaching (above and
beyond passive forms of learning), even in the absence of ex-
plicit transfer of knowledge.

The current experiment tested this hypothesis by compar-
ing the teaching performance of participants who learned how
to categorize perceptual stimuli actively (i.e., by designing
the stimuli they wanted to see labelled) versus yoked learn-
ers (i.e., learners who passively saw the labelled data selected
by the the active learners). Expanding on previous literature
(e.g., Avrahami et al., 1997), to reflect some of the complexity
of teaching by giving examples in ecological contexts, learn-
ing was extended in time, the teacher did not have perfect
knowledge of the hypothesis to be taught, and had to generate
rather than select teaching examples. To titrate the difficulty
of the task, two categorization rules were used, which also
differed in their verbalizability (Rosedahl & Ashby, 2021).

The learning task was adapted from Markant and Gureckis
(2014), who showed that active selection of training data
improves categorization of two-dimensional visual stimuli
with rule-based (RB) and information-integration (II) cate-
gory structures. Both category boundaries were determinis-
tic, but differed in the number of features one which they were
based: one feature for RB and two for II. The active learning
advantage was explained by Markant and Gureckis (2014) as
a consequence of the fact that active learners generate individ-
ual hypotheses sequentially and choose the most informative
queries to test their current hypothesis.
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We speculated that the advantage of active over yoked
learners in teaching may be larger for the II category struc-
ture, as judging the informativeness is potentially more dif-
ficult when two features need to be taken into account. Fur-
ther, previous work has showed that explicit written and ver-
bal instruction did not improve performance in the II category
learning task, but did so for RB category structures (Rosedahl
et al., 2021), suggesting that teaching by example may be par-
ticularly well suited for this type of category structure.

Methods
Participants
80 adult participants (61 female, Mage = 26.67 years, range
= 18 - 50 years old), predominantly university students, were
recruited for a lab-based experiment in Budapest, Hungary 1.
Participants either volunteered their time in return for course
credit, or received vouchers or monetary compensation (ap-
proximately e4). Ethical approval was obtained from EP-
KEB in Hungary.

Tasks
Category learning task The category learning task, includ-
ing the cover story, was adapted from Markant and Gureckis
(2014). Participants were told that they would see depic-
tions of loop antennas that received one of two television
channels. The antennas (see Figure 1) were visually repre-
sented by circles varying along two dimensions: the circle
radius and the angle of a central diameter line. Which chan-
nel was received depended on how the antennas looked and
the participants’ task was to distinguish Channel 1 receiv-
ing antennas from Channel 2 receiving antennas. Unknown
to the participants, the categorization boundary was either
one-dimensional (based on either orientation or radius length,
RB structure) or two-dimensional (II structure). Participants
learned about the antennas either (actively) by designing their
own and checking which channel they received, or (passively)
by being shown antennas alongside the channel received.

Active learning trials started with the presentation of a
randomly generated stimulus. The participant then modified
the size of the circle and/or the orientation of the diameter
line by moving the mouse horizontally while pressing one of
two keyboard keys. Once the participant was satisfied with
the designed stimulus, they could check the label by making
a mouse click. The stimulus features could only be changed
one at a time. Participants were required to manipulate at
least one stimulus dimension to see the category label. There
was no time limit for making alterations to the stimuli. The
stimulus and category label were then presented together for
1,500 ms.

Crucially, the stimuli shown to yoked learners were the ex-
act stimuli designed by their paired active learner, and were
presented in the exact same order. Trials started with a brief
fixation cross (250 ms), followed by the stimulus, which was

1An additional participant was excluded due to lack of task com-
pliance.

Figure 1: Illustration of a teaching task trial. The participant
first chooses the category by clicking on one of the channel
buttons and then produces the example by modifying a ran-
dom stimulus.

shown for 250 ms on its own before the channel label was
added. The stimulus and label were jointly presented until the
participant pressed a button corresponding to the label shown
on the screento ensure that participants attended the stimuli.

Test trials were identical across the two learning condi-
tions. A stimulus was presented on the screen and the par-
ticipant had to press one of two buttons corresponding to its
category. Participants only received aggregated feedback at
the end of every block. Test stimuli were sampled uniformly
from the quadrants of the stimulus space to avoid biasing par-
ticipants’ category representations and to ensure chance per-
formance was 50%.

Teaching task Participants designed example stimuli us-
ing the same procedure that active learners used to generate
queries. To ensure that yoked learners were equally compe-
tent at producing samples, after familiarization with the setup,
they performed (at least four trials) of an additional practice
task. Specifically, participants had to manipulate stimuli un-
til they perfectly matched a target antenna presented on the
screen.

Participants were instructed to teach another (fictitious)
participant, who they were told was yet to take part in our
experiment, which antennas receive Channel 1 and Channel
2. It was stressed that these participants were naı̈ve and that
they will complete the same categorization test. Participants
were then told that the only constraint for the teaching task
was that they can only provide a maximum of six antenna ex-
amples. They were encouraged to give examples that would
be as helpful as possible to the learner.

Participants first had to choose the channel their example
antenna received by clicking on one of two buttons (see Fig-
ure 1). Then, a randomly generated antenna was drawn on the
screen and they could manipulate it to design their intended
example. An example counter was always presented in the
bottom corner of the screen to ensure participants knew how
many examples they had selected so far. Example selection
was unspeeded.

At the end of the task, participants were prompted to type
answers to open-ended questions about their teaching strate-
gies, and how they would have taught another participant if
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they could verbally communicate to them.

Stimuli and materials
The stimuli were circles defined by the size of the radius
and the orientation of the diameter, two features shown to
be perceived as independently by Nosofsky (1989). The
same range of circle radius and orientation (90◦, to avoid
use of circular variables) was used for every participant, but
the minimum radius and angle values were pseudo-randomly
sampled.The category boundary always halved the stimulus
space. Since every participant had a different boundary in
perceptual space, stimuli are rescaled to an abstract stimulus
space for analyses and illustrations.

All variables governing the presentation of the stimuli were
counterbalanced: the feature relevant for RB classification,
the diagonal used for the II categorization, the mapping be-
tween keyboard buttons and features, and between the mouse
movement direction and the direction of changes in the stim-
uli.

The number of teaching examples was fixed to six to ensure
a meaningful comparison between participants. A relatively
low number of examples (but sufficient to optimally describe
the boundaries) was used to stress the importance of select-
ing good examples, but also because pedagogical and random
sampling become harder to distinguish with larger numbers
of samples.

The task was implemented in PsychoPy3 (Peirce et al.,
2019).

Design and Procedure
Participants completed a category learning task followed by
a teaching task. Importantly, participants were not informed
that they will be asked to teach before starting the learning
task. The learning task had a 2 (learning condition: active,
yoked passive) by 2 (category structure: RB, II) between
participants design. Participants were pseudo-randomly as-
signed to conditions as each passive participant was yoked to
an active learner (creating 40 dyads comprising an active and
a yoked passive learner). There were eight blocks, each con-
sisting of 16 learning trials immediately followed by 32 test
trials. On average, the task took 44 minutes and 21 minutes
for active learning and yoked participants, respectively.

Data analysis
Category learning task Active and yoked learners’ test ac-
curacy was compared using both between-group and within-
dyad comparisons. The sampling behavior of the active learn-
ers was quantified by the distance from their queries to the
true boundary, as well as to their subjective boundaries, fitted
for every block using a decision-bound model. Participants
were assumed to provide probabilistic category membership
responses for a stimulus as a function of its location relative
to a linear boundary traversing the two-dimensional stimulus
space. The likelihood of one stimulus being categorized as
‘Channel 1’ is given by Equation 1 where x is the stimulus
as defined by the two perceptual dimensions, θ is the angle

of the linear boundary, b is the orthogonal distance from the
center of the space to the boundary, and σ expresses how de-
terministic the category responses are (high values indicating
more deterministic responses).

P(xtrial = CH1|θ,b,σ) = 1
1+ exp(−σ(xtrial

1 · cos(θ)+ xtrial
2 · sin(θ)−b))

(1)

Reference to subjective boundaries is especially relevant in
the II condition, where many participants did not converge to
the true boundary. For every participant, the decision-bound
model was compared (using the Aikaike Information Crite-
rion, AIC) to a random-response model in which participants
categorized stimuli based on a fixed probability, uninformed
by the distance of stimuli to the boundary. Participants who
were not better fitted by the decision-bound model (≈ 10%)
were eliminated from the analysis.

Figure 2: Teaching sets selected by the pedagogical model
(red) for each hypothesis (black). Heatmaps illustrate the
likelihood of choosing examples at different locations in the
stimulus space.

Teaching performance quantification and predictions
As a preliminary check, we tested whether the chosen ex-
amples in the different conditions significantly departed from
random uniform sampling across the stimulus space using
Kolmogorov-Smirnoff tests (KS). More meaningfully, the in-
dividual decision-bound model fits were used to compute the
likelihood of examples under random sampling assuming the
decision bound model (strong sampling). This intuitively pre-
dicts that an example is more likely to be selected if its or-
thogonal distance to the category boundary is larger, but leads
to a large number of equiprobable teaching tests. Using ran-
dom sampling to teach would provide accurate examples for
learners, but would be inefficient. To provide a normative
benchmark, predictions were also generated from the Shafto
et al. (2014) iterative pedagogical sampling model (see Fig-
ure 2) using a simplified, tractable set-up. This model pre-
dicts that teaching examples should be located closely around
the boundary if teachers are certain about the location of the
boundary.

Descriptive metrics of teaching performance were com-
puted to provide an intuitive understanding of the different
(likely implicit) teaching “strategies” used by participants
(see Figure 3) and, in an exploratory analysis, tested within-
dyad differences. First, whether the learner is näive or not
(i.e., assumes they are taught or not), example sets which are
compatible with fewer boundaries are more useful. Using a
fine grid over the bivariate space of parameters governing the
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(a) Learner inference (b) Example participants

Figure 3: (a) Possible boundary inferences of a learner based
on a set of labeled examples: The black and gray (but not the
green) boundaries perfectly separate the examples. The black
line minimizes the orthogonal distance between the 2 closest
examples of a different category. The gray line maximizes it.
A näive learner will exclude the inconsistent boundary, but
would not have any reason to prefer one consistent bound-
ary over another. Learners who know they are taught may
believe that the black boundary is more likely because it min-
imizes the distance between categories. (b) Teaching samples
(dots) chosen by 6 participants alongside their fitted subjec-
tive boundaries (purple line). Dot colors represent the cate-
gory labels chosen by the participant, area shading indicates
ground truth. The orthogonal distances from the examples
to the subjective boundaries of participants 6 and 7 are very
small, but a näive participant observing P6 examples might
infer a diagonal boundary leading them to wrongly classify a
large area of the stimulus space. The potential for misclassi-
fication based on P7 is low.

linear boundaries, we calculated the proportion of discretized
boundaries consistent with the teaching set (i.e., separated ex-
amples from the two conditions, Figure 3). A related strategy
(but which does not assume linear classification) is to give ex-
amples which cover the entire (or as much as possible) of the
category space. To measure this, we calculated and summed
the area of the polygons inscribed by the examples labeled as
the same category (generally, triangles), removing intersect-
ing areas.

Another proxy for fewer boundaries being compatible with
the teaching set is to provide at least two examples that are as
close as possible to the subjective boundary. To measure this,
the ‘boundary distance’ was computed as the minimal orthog-
onal distance of the closest examples on either side of the
teacher’s subjective boundary. It is also possible, that learn-
ers viewing pedagogically produced sets, may reason that, if
multiple boundaries are compatible, the one minimizing the
distance between example of different categories may be the
intended one (e.g., the black line in Figure 3).

Further, if teachers are sensitive to their own limitations as
learners, there should be a negative correlation between how
deterministic they were in the categorization (σ fitted in the
last test block of the experiment) and the boundary distance
measure described above. In other words, poor learners, who
were still uncertain about the location of the boundary by the
end of the training, were expected to choose teaching exam-

ples farther apart to avoid mislabeling them, and therefore,
misguiding the learner.

Lastly, especially when teaching RB categories, teachers
can highlight the feature relevant for classification by manip-
ulating variability, namely, by keeping one feature constant
while introducing maximal variance in the irrelevant (or or-
thogonal) feature. The ratio of the variances of the two fea-
tures of examples was used to measure this.

The distribution of each metrics in the sample was com-
pared to random expectations (i.e., when choosing examples
uniformly at random from the true category), and within-
dyad differences were tested. Since active learners were ex-
pected to overperformed yoked learners in categorization test
by the end of the task, this raised the concern that any within-
dyad differences in teaching performance stem solely from
the yoked learners’ more uncertain/poorer category represen-
tation. Within-dyad differences in teaching were regressed on
within-dyad differences in accuracy in the final test block.

Results
Categorization Performance
Results were highly consistent with the findings of Markant
and Gureckis (2014). Participants learning the RB structure
outperformed participants learning the II structure at test(see
Figure 4). Active learners, regardless of condition, were more
likely to be correct in the categorization test than yoked learn-
ers. A 2x2 between participants ANOVA resulted in signifi-
cant main effects of learning mode, F(1,76) = 7.04, p < .01,
and category structure, F(1,76) = 18.64, p < .001, without a
significant interaction, F(1,76) = .01, p = .99. These differ-
ences remained significant in the last test block of the exper-
iment. Further, within-dyad differences between active and
yoked learners were statistically significant in paired t-tests,
t(19) = 3.04, p = .01,BFalt = 7.13, for the RB structure, and,
t(19) = 2.82, p = .01,BFalt = 4.75, for the II structure.

Figure 4: (a) Average categorization accuracy (+/-SE) by ex-
perimental condition and block (Upper panel). Using a unidi-
mensional rule in the II condition results in about 75% aver-
age accuracy. (b) Within dyad accuracy differences. Each dot
is a dyad. Axes display the proportion of correct responses.
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Figure 5: (a) Average query distance to boundary (+/- SE)
for the group (black) and individual participants (gray). The
dashed line is the expected query distance under random sam-
pling for each corresponding category structure and aster-
isks mark blocks that are significantly different in one-sample
two-tailed t-tests (α < .05). (b) Queries made by all partic-
ipants across the 8 active learning blocks of the RB (Upper
panel) and II (Lower panel) categories. Each dot corresponds
to the angle and radius defining an antenna. Stimuli have been
rotated to align true boundaries across participants.

For the RB category structure, subjective boundaries con-
verged by the end of the task to the true boundary, for both
active and yoked participants. In the II structure, subjective
boundaries tended to be axis-aligned, especially in the early
blocks. For yoked participants learning the II structure, there
was no discernible convergence pattern by the end of the task
(65% were better fit by a RB boundary, based on AIC), but
a larger proportion of active learners in the II condition were
fitted by boundaries that were not axis-aligned (85%) and rel-
atively close to the true boundary.

Active learning performance

All active learners started by making average queries that
were farther away from the boundary than can be expected
based on a random sampling strategy, consistent with an early
exploration of the extremes of the stimulus space (see Fig-
ure 5). While participants in the RB condition made average
queries that were lower than the random-sampling expecta-
tion starting roughly from the middle of the task, this never
happened for participants in the II condition (see Figure 5).
In the final block of the task, RB participants made queries
well below chance level, t(19) = −3.90, p < .001,BFalt =
37.80 (2-tailed), but not II participants, t(19) = −1.56, p =
.13,BFnull = 1.52.

Active learners who chose samples closer to the boundary
performed better at test, both in the RB (r(18) = −.57, p <
.01) and II (r(18) = −.64, p < .01) conditions. On the other
hand, there was no significant correlation between the test ac-
curacy of passive learners and the distance from boundary of
the stimuli they saw (RB : r(18) =−.08, p = .72;II : r(18) =
−.20, p = .39). The correlation observed for active learners
was statistically different from that observed for yoked learn-

ers according to a Fisher z-transformation (z = −1.93, p =
.05).

Teaching Performance

What examples did teachers choose? Teachers over-
whelmingly labelled examples correctly (90% of time) and
generally chose to give an equal number of examples from
the two categories (77.50%).

Figure 6: Distribution of teaching examples across the stimu-
lus space (pooled across all participants). Each cell contains
about 3% of samples under uniform sampling of the stimulus
space.

The extremes of the stimulus space (especially corners)
were oversampled, but locations close to the boundary were
not (see Figure 6), and as such participants were best fit by
strong sampling from the decision-bound model. The over-
representation of extreme samples was expected for II cate-
gories given the relatively high uncertainty about the bound-
ary, but was surprising for the RB category since most par-
ticipants were very precise in the last categorization test and
were highly deterministic in their labelling. Visual inspection
also did not reveal consistent order patterns across samples
such as curriculum teaching (i.e., starting with easy examples
far from the boundary and increasing difficulty gradually by
providing examples closer to the boundary). The RB irrele-
vant feature samples produced by yoked, D = .22, p = .34,
but not by active learners, D = .36, p = .02, were consistent
with uniform sampling.

Were active learners better teachers than yoked learners?
As seen in Figure 7, active learners chose example sets which
left fewer compatible boundaries than passive learners in the
II condition, t(15) = −2.26, p = .04,BFalt = 1.82, but not
in the RB condition, t(15) = −.72, p = .48,BFnull = 3.12 .
There was no difference in the number of consistent bound-
aries between the two category structures, t(62) =−.36, p =
.72,BFnull = 3.70.

Active learners selected examples that inscribed a signifi-
cantly larger area of the stimulus space than yoked learners
in the II condition, t(17) = 3.66, p < .001,BFalt = 21.13, but
not in the RB condition, t(17) = 1.87, p = .08,BFalt = 1.02.

There were no significant within-dyad differences in min-
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Figure 7: Proportion of boundaries compatible with the teach-
ing examples. Each dot is a dyad (in grey dyads were ex-
cluded from analysis because one participant did not choose a
linearly separable example set). Crosses mark sample means.

imum example to boundary distances in either condition2,
RB: t(17) =−.72, p = .48,BFnull = 3.11, II: t(15) = .02, p =
.98,BFnull = 3.91. There was also no evidence that par-
ticipants introduced more variance in relevant vs irrele-
vant(RB)/orthogonal(II) feature across any of the groups, all
ps>.5.

The fitted σ correlated negatively with the average distance
from the examples to the boundary for teachers who were ac-
tive learners, but it was not significant, RB : r(16)=−.44, p=
.07,BFalt = 1.79; II : r(16) = −.12, p = .62,BFnull = 1.85.
The correlation in the yoked groups was RB : r(16) = .02, p=
.95,BFalt = 2.01; II : r(16) = .05, p = .85,BFalt = 1.99.

Did teaching differences within-dyads rely on within-dyad
categorization differences? The difference in the number
of consistent boundaries for dyad members correlated neg-
atively (as predicted), but not significantly, with accuracy dif-
ferences for the II category, r(14) =−.46, p= .07. There was
no correlation in the RB category, r(14) = .16, p = .55.

Are inter-individual differences in active learning pre-
dictive of teaching performance? Participants who made
queries further away from their subjective boundary tended
to be worse teachers in the II condition (as indexed by
the proportion of compatible boundaries), II : r(15) =
.47; p = .05,BFalt = 2.03, but not in the RB condition (RB :
r(15) = −.16; p > .05). Accuracy correlated positively, but
non-significantly, with teaching performance (RB : r(15) =
−.39, p = .10; II : r(15) = −.44, p = .07). The partial cor-
relation between teaching and active learning performance,
controlling for accuracy at the end of the task, was r(15) =
.32, p = .22, also non-significant.

Discussion
The active learning advantage found by Markant and
Gureckis (2014) in the categorization task was successfully
replicated. Did the active learning experience also improve
selection of examples for teaching? Active learners, com-
pared to yoked learners, generated teaching sets which where
compatible with a smaller proportion of linear boundaries and
inscribed a larger area of the stimulus space, but only for II

2Data from 2 participants who only selected examples from one
category was excluded.

category structures. There were no differences in how close
to the boundary teachers placed their examples or the vari-
ability of the examples across features, leading to a mixed
pattern of results. Given also that the metrics described here
were exploratory and the sample sizes were relatively small,
replication of the findings would be needed before drawing
further conclusions.

On the other hand, what is clear is that across the board,
participants tended to oversample the edges of the stimulus
space, providing unambiguous examples. However, teachers
were very conservative in terms of the distance of the sam-
ples to the boundary, beyond what would be warranted by the
noise in their categorization decisions, at least for RB cate-
gories, where they had very good categorization performance
and were given explicit feedback regarding this. We specu-
lated that the active learning advantage might be larger for II
compared to RB categories because teaching II categories is
more difficult, the poor performance on the RB task, raises
new questions about the origin of the category differences.

Further, we did not find the predicted correlation between
how deterministic participants were in labeling of stimuli
during the final test block (indicative of uncertainty around
the boundary location) and how close they placed examples
to their subjective boundary. However, better active learn-
ers of II categories (who were designing samples closer to
the boundary), were found to generate teaching sets which
eliminated more possible boundaries. It is also interesting to
note that despite following a distinctive pattern in their ac-
tive learning of starting with the extremes of the stimulus
space and finishing by choosing examples very close to the
boundary, participants did not reproduce patterns consistent
with such curriculum learning in their teaching, as observed
in Khan, Zhu, and Mutlu (2017).

All in all, it seems that the participants in our sample were
not efficient teachers. Of course, the best test of their teach-
ing skills would have been to present human learners with the
samples they produced. However, we think it is unlikely that
the small differences observed between teaching sets would
translate into meaningful differences in categorization accu-
racy or category acquisition time for new learners. Follow-up
studies should address whether poor teaching performance on
this task (and in contrast with other work e.g., Shafto et al.,
2014) is related to the participant’s uncertainty around the
true boundary (e.g., by automatically labelling examples as
the participant designs them during teaching and eliminating
uncertainty around the categorization) or the fact that teach-
ers had to construct examples using fine grained continuous
features as opposed to selected sets of individuated category
members (e.g., presented on individual cards), similarly to
the generation/selection gap in question-asking (e.g., Rothe,
Lake, & Gureckis, 2018).

Lastly, it would be interesting to see if more meaningful
teaching examples would be elicited in a truly interactive set-
tings - where teachers can observe and adapt to the impact of
their examples on learners.
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