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ABSTRACT 

Practical techniques are developed for evaluating wave functions and 
, 

Green I s functions using the eikonal approxim.S.tion. It is assumed that the 

scattering angle is small. This provides a great ,simplification in analysis 

of the trajectory curves, ~adii of curvature, etc. A sequence of approxi-

mations and the use of variational principles are described. Numerical 

illustrations, particularly for proton-hydrogen atom scattering, are given 

for several of the approximations. 
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I. IN!RODUCTION 

, 1 
In Bart I of this series we formulated a method for studying 

re-arrangement collisions between atoms (or molecules) using the eikonal 

approximation. The method was based on a form of the perturbed stationary 

. state technique, using as basis function the adiabatic states (corrected 

for proper asymptotic boundary conditions). These basi'S states describe 

the elastic scattering of the two atoms (for simplicity, we shall refer to 

the colliding particles as atoms, even though one or both might be a 

molecule or ion) in the potential represented by the adiabatic molecular 

potential curve. The simplification of the theory which results from the 

use of the eikonal approximation for the adiabatic wave functions and 

Green's functions was discussed in I. 

In this paper we discuss the actual construction of the distorted 

wave functions and Green's functions. Before beginning this, it is useful 

to review the range of certain parameters which will be of interest to us. 

The reduced mass, of the two colliding atoms is written as M and 

their relative coordinate R. The potential energy of interaction between 
'" 
2 

them is taken to be, V(R) The interaction V(R) is assumed to have a 

range of order a O ' the Bohr rad;ius; this is interpreted to mean that for 

R sufficiently greater than aO the potential is negligibly small. More 

precisely, we assume that 

d . '1+0 
V(R) $. (J \ constant/R ), (1.1) 

where 0 > O. For R $. aO ' we characterize the strength of V as 

IV(R) I ~ f3j(Ry) (here Ry = Rydberg) recognizing of course that V may 

be singular at R = O. 
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The incident relative momentum of the colliding particles is 

p and their center-of-mass energy is € = p2/2M. In atomic units 
~ p 

this is E;;; € /Ry. Our first assumption is that 
p 

E » 1 • 

This implies the condition (Il.3) that 

-1/2 
[920 Aeff E) «1 • 

Here we have introduced the notation 

where m is the mass of the electron. 

(1.2 ) 

(1.4) 

Using the condition (1.2) we can write the classical scattering 

angle (in the. center-of-mass corrdinate systems) for an impact parameter 

b as 

e (b) 
c = 

_ljOO 
2E 

-00 

(1.5) 

2 2 1/2 
where RO = [b + z] . Our second assumption, seen to be generally 

consistent with (1.2), is that 

I e (b) I « 1. c (1.6) 

For order of magnitude estimates we shall assume that 

I e I .~ ! 
c E 

," 
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for impact parameters of order aO • 

In r the wave function describing the scattering was written 

in the form [E~s. (r4.8) and (r4.35)] 

(2rr) -3/2 A(R) 
is(R) 

\jr(R) '" - e , 
'" '" 

(l.8a) 

where S(R) is the eikonal, 
'" 

S(R) =f '" (B I )ds , 
'" 

and 

(l.8b) 

A(R) = ~/",)1/2 ex{~r ( 1 + 1 ) 
~d? ds 1. (l.8c) 

Here ds is an element of path length, 

",2(R) = p2 _ 2 M V(R) 

and the integra is are taken along the classical trajectory. The ~uantities 

·(j?l (~) am ~)~) are the principal radii of curvature of the surface 

of constant eikonal which passes through ~ • 

The functions3 \jr ±(R) are obtained from E~s. (1.8) by imposing 
. p '" 

the appropriate boundary conditions~ This is illustrated in Fig. 1. 
+ 

For \jrp we have, when ~ lies in the asymptotic region prior to 
'" 

scattering : 

+ . 
S (R) = p.R 
p '" '" '" 
'" 

A(R) = 1, 
'" 

(l.10) 
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where K(R) 
'" '" 

is the relative momentum vector at a point R on the 
'" 

trajectory. For t k - we have, when ~ lies in the asymptotic post 
'" 

scattering region: 

A(g) = 1 ~ (1.11) 

For the applications considered in this paper we may consider k = P • 

The Green's function < RIG I R') satisfies the same 
'" '" 

(Schrodinger) differential equation as 

approximation [see Eq. (rv.25)J 

< RIG I R' ) 
'" '" 

is(&~' ) 
= A(~, ~,) e 

Thus in the eikonal 

, (1.l2 ) 

where S and A are again given by Eqs. (1.8b) and (1.8c). The boundary 

condition imposed on G is [Eq. (I4.27)] 

lim 
R -+ R' 
'" '" 

M 

IR - R' I 
'" '" 

= -',-2:rr 

The relative error resulting from the use of the eikonal 

approximation, Eq,s. (1.8) or (1.l2), is4 of order 

T)(eik) ~ (I ~ec I) ~ [920 Aeff EY(1/2 , 
paO 

except for certain singular regions in the asymptotic domain [at 

R ~ Nra flecl) J. W ha (7\ d e see t t, for particles of atomic mass, 

T)(eik) « 1 

(1.14) 

-. , 
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whenever the condition (1.2) is satisfied. If we make the further 

approximation of setting A(R) = 1 in Eq. (1.8a) the relative error is ...., 

of order 

I e I ~ c 
1 
E· , (1.16) 

except in certain. asymptotic domains [this will be discussed in Sec. IV). 

Making use of the condition (1.2) we shall obtain a series for 

S of the form: 

, 

where for R ~ aO ' 

So = Cf(p a o ) = ~[920 Aeff E]l/2) , . 

Sl = ~p a
O 

lec I) :: $([920 Aeff/E]1/2 ) , 

(1.18 ) 

We shall neglect terms of order S3 and higher •. That is, we shall take 

where 

(1.20 ) 

The approximation in which S2 is neglected, so S is taken to 

be 

(1.21) 
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is called the IIstraight linell approximation. This approximation results 

on evaluating Eq,. (1.8b) fora straight-line trajectory. The relative 

. error in using (1.21) is of order 

(1.22 ) 

The straight line trajectory approximation has long been used in q,uantum 
. . 5 . 

mechanics. It was given by Moliere in 1947 and applied to neutr~n 

scattering from nuclei by Fernbach, Serber, and TaYlor. 6 Applications to 

the optical model of nuclear scattering were made by Francis and Watson 7 

. 8 
and by Glauber. 

Applications of the eikonal approximation to atomic scattering 

have be~n made by Bates and Holt,9 by Smith and his collaborators .10 

.An lIeikonal-likell techniq,ue 'Was recently proposed by Wilets 'and Wallace.ll 

Before closing this 'section, it may be well to emphasize. that the 

criterion (1.14) for validity of the eikonal approximation by no means 

implies that the classical scattering amplitude is accurate. A somewhat 

crude estimate for the validity of the classical description of scattering 
·1 

maybe obta~ed from the condition [a precise estimate 'WaS given in I 

and is given again in Eq,. (5.19)] 

Ie I » 9diff ' (1.23 ) c 

where 

9diff '" "hlP a O (1.24) 

is the characteristic diffraction scattering angle from a potential of 

:" 

,... ,-
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range aO • From these expressions and Eqs. (1.3) and (1.7) we obtain 

the condition 

if the scattering is to be classical. In Section V a more precise 

condition than (1.25) will be given. 
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II. GEOMETRICAL RELATIONS 

In this section we discuss the classical trajectory in the center-

of-mass system. This trajectory is specified by giving B(t) as a 

function of t, having solved Newton's equations of motion: 

dR 

dt = - \l V , 
dt = 

-1 M K 
'" 

(2.1) 

We suppose R(t) to lie in the (x, z) plane of a rectangular coordinate 
'" 

system, the plane being so positioned that B = 0 is at the origin and 

the trajectory is symmetric about the x-axis. This is illustrated in 

Figs. (2a) and (2b), which refer respectively to the case of repulsive 

and'attractive forces. 

The condition (1.1) permits us to construct a circle "A" of 

radius A and with center at B = 0, so chosen that V(R) may be 

neglected for R > A. Thus, outside "A" we may take the trajectory 

to be a straight line. In the asymptotic prior region outside "A", 

henceforth called region I, this ~ine is parallel to the incident 

relative moment1,llIlp. In the asymptotic post region outside "A", 

called henceforth region II, the trajectory is parallel to a fixed 
T,. 

, vector ~O ' obtained by rotating P through an. angle e 
c 

[Note that 
'" 

e is positive (negative) for an effectively repulsive (attractive) c 

force, as obtained from Eq. (1.5).] At an arbitrary point on the 

trajectory, the local momentum vector is ~ and the local.tangent is 
A 

the l.l.l1it vector K. Equations (2.1) of course imply that K (R) may 
'" 

be written as 

U(R)] , (2.2a) 
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where 

U(R) - 1 -

v 
= 2€p - + (2 .2b) 

It will be convenient to choose the coordinate z as the 

independent variable defining points on the trajectory (rather than the 

time t), so we s~ll write R = R(z). The equation of the trajectory 
'" '" 

is then of the form 

xCZ") = d + h(z) , 

. with 

h( 0) = 0, 

h(-z) = h(z) 

Thus d is the distance of closest approach of the trajectory to the 

origin, as is illustrated in Figs. (2a) and (2b). 

The angle between the tangent vector ~(z) and the z axis will 

be called ~ (z) • Thu~, 

tan ~(z) = dx 
dz 

The asymptotic angle ~ is then 

~ = lim ~(z). 

··Ev:i,.dently, 

e = 2 ~ c 

(2.4) 

(2.6) 
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In this coordinate system. S(B) = S(z,p), independent of the azimuthal 

angle ¢ [describing the orientation of the (z,x) plane]. Here we have 

written the radial coordinate as p = Ixl • 

becomes 

and 

In this new coordinate system the equation (2.14) for the trajectory 

xCZ") = [z+ IzlJ sin~+b+ 6 ~(i') dz'+ e( 1~31 a
O

) , 

(2.100.) 

Finally, the radial distance P(z,b)in a cylindrical coordinate system 

is 

p(z" b) = e(z) x(z) , 

e(z) = x(z)/Ix(z) I (2 .16c) 

To calculate the radii of curvature of S(R) , we choose a fixed 
. '" 

'point Bo and consider the surface passing through Bo : 

The normal to this surfa.ce at Bo 
A. 

is the unit vector KO " tangent to 

the trajectory passing through Bo [this is illustrated in Fig.· 4]. 
A. 

For a very small displacement KOD from the point Bo " we. have 
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S(R 
"'0 

[This follows framthe general theory of the eikonal: 

S(R +~) = S(R) + ~ 'V S(R) 
l"V 1"\,.1 '" IV "" 

We now introduce two orthogonal unit vectors, each perpendicular 

A 

(l/K:Hs P A 
] , el = - S k 

z P 

A 

~ (2.18 ) e2 = , 

where 

S = dS~Z.! PL etc., 
Z dz , 

P 

[Here 
A "- .~ and all quantities are evaluated at R •. k, p, are the 

"'0 

three basis vectors of the cylindrical coordinate system.] 
A A 

A small displacement 1 = ~ el + ~2 e2 will represent a 
A 

point on another constant eikonal surface defined by S(~) = s(~o + KOD), 

. where 

+ "-22) 
~. 

Here ~ and· ~ are the principal radii of curvature of the surface 

at ~O. This is illustrated in Fig. 5. We note that positive ~l 
«1(2) corresponds to convex cUrvature as seen from a point ahead of ~O 
on .the trajectory. 

Using Eqs. (2.17) and (2.19), we obtain 
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SC~O + ~) = S(~o + ~OD) 

= S(~O) + · 0~2 
2: ~ + ~2) 

.~ 
(2.20) .' 

~ direct calculation using a Taylor expansion we obtain, on the other hand, 

2 

+ ~ [S 2 S + S 2 S - 2S S S J. . 2 pzz z pp z p zp 
2", 

(2.21) 

Thus, 

1 .!..[ S 2 S - 28 S S + S 2 Spp ] , 
(£ = 

",3 p zz z p zp z 

1 1 S 

,~ 
- -.-e. (2.22 ) p '" 

To lowest order in the small quantity I e I we can considerably 
. c 

~ 

simplify these quantities. The angle which the tangent '" at a point 

z on a given trajectory makes with the z axis is 

e (z, b ) == f3 + f3 (z) , 
c 

(2.23 ) 

where we explicitly indicate the dependence on the impact parameter b, 

which of course acts as a trajectory label. Then 

8 = "'.cos e (z,b) ~. K z c 
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and 

K: sin 9 (z, b ) ~ K: e (Z', b) • 
c c: 

. This lets us write 

1 e (z, b) 
~ 

c 
(j& p 

and 

1 d K e (z, b) 
~ 

c . 
az;. K d P 

d 9 db 
~ 

·c 
db d P 

. Now, to lowest order in e , we obtain £'rom Eq. (2 .16a) c 

db r dp = e(z) 1 
d 9 (b) 1-1 

, 
+ -21 (z + I'Z I) cos t3 c 

d b 

and thus 

(2.24) 

Here e (b) = lim e (z,b) is the scattering angle (1.5) and· e(Z') 
c z-+ro c 

is defined in Eq. (2.l6c). 

We now repeat the above calculation for the wave function ~k-' 
"" 

·as is illustrated in Fig. 3b. In this case Eqs. (2.15) are replaced by 

z = z cos t3 + x sin t3 

..:.. 
x = - z sin t3 + x cos t3 



I 
-J.6 .. 

The trajectory equations (2.J.6) are replaced by 

z(Z') = sec t3 [Z' cos
2 

t3 + !Z'! sin2 t3] + b tan t3 

, LCD 
-tant3 ~ 

, !Z'! 

., , 
"-

The angJ.e of defJ.ection (2.23) from k at any point z on the trajectory 

is now 

e (Z', b ) = t3 - t3 (Z') ,. 
c 

Also, we now have Sp ~ - K e (Z', b), so c 

e (Z', b) 
~, _ ....;c::...-_ 

p 

Instead of Eq. (2.25) we ~ve 

- e(z) [de (Z', b) Jl~ 
c 

r' J. 
_ J. + 2" ( !Z'! 

de (b) ] 
_ Z')cos t3 --...;c~ _ 

db 

.. , 
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III. CALCULATION OF THE ED<:ONAL 

We are now ready to discuss the evaluation of the eikonal, as 

implied by Eq. (1.19). That is, we neglect terms of order 

First, we calculate the eikonal for that part of the trajectory 

which lies inside the circle "All of Figs. 2. Using Eqs. (lo8b), (2.1), 

and (2.12), this is 

-r 

{2 ds -1 I 

S12 2p {S(Z) U(R) = 
dz dz J , 

0 

where 
_2 

(d + h)2 
1/2 

R = [ z + ] 

and z2 is as before the point at which the trajectory intersects the 

upper half of "All. Since we are neglecting terms of order 11S ' we 

may set dS/di = 1 

S12 ~ 2p {Z2 sec~ 

where 

in the second term above. Thus, we have 

-[2 [H~2 _ ~2(z)) + u(Ii) JdZ} + e(~s) 

The quantity S12 may be put into the form of Eq. (1.19) by 

writing it as 

(3.4) 
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r- 100 

U(Ro) -' 
S12 = 2p 1. Z2 

sec t) - dz 

0 

where Ro is defined by Eq. (2.8). 

We observe that when we evaluate S12 [or 8(;B) generally] to 

within the accuracy implied here, the angle t)(z) need be evaluated only 

to the lowest order that given by Eq. (2.7). 

We also observe that according to the princiPle of least action12 

8
12 

is stationary with respect to a variation of trajectory about the 

exact trajectory. This means that we can use Eq. (3.6) to give a 

variational principle for obtaining t)(z). It also means that S12 is 

insensitive to the precise trajectory. [In Section VII we shall discuss 

the variational principle in more detail.] 

We now calculate S +(R) , the eikonal for 
p '" 

,1, + 
'!' ,to the same 
p 

order. In the r~gion I, prior to entering the circle "A" we have 

S + = p.R , as in Eq. (1.10). In all other domains we evidently have 
p '" "" '" . 

[recall that zl =, - z21. 

p {S(Z)- s(~) U(H) ~} + p.RI ' ",,'" 
8 +(R) . = 

p '" 
'" 
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where ~l is the. vector from the origin to the point at which the 

trajectory intersects "A". Now, from Figs 2a , we see that 

- P b tan f3 • 

This lets us re-wri te Eq. (3.7) as [to order TJS ] 

= p z sec f3 - p b tan f3 + pCi, b) , 

where 

l(i, b) = - p 
jZ 
-00 

(3.9) 

Equation '(3.9) is valid over ailE space if' we let the radius 

of' "AI! become inf'inite. In the asymptotic regime II, f'ollowing the 

scattering we can write 

S +(R) = p.R - 2p b tan f3 + j(b) , 
p '" '" 0 '" 
'" 

where jf(b) is given by Eq. (3.5). Here £0 is the asymptotic f'inal 

momentum, as in Fig. 2a. 

The eikonal Sk-(~) f'or the wave f'unction *k- is subject to 
'" '" 

the boundary condition (1.11). Ref'erring to Fig. 2b and f'ollowing the 

argument given above, we obtain to cr(~s) 

~ -(gl = k z sec ~ + k b tan ~ + 1 [}(jl2 - ~2(z· l) + u(Rl]di'. 
z 
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In the asymptotic region I ahead of. the scattering this is 

8
k

-(R) = k. 'R + 2 k b tan ~ - 'p(b) , 
'V "':ul '" 

'" 

since k. ·R = -k [ !z' sec ~ + b tan ~]. in region I • 
·"'~n 'V 

In the "straight line" approximation we may drop the term 8
2 

in 

Eq. (1.19) • In this case we may replace Eqs. (3.9) and (3.12) by 

8 +(R) = P z sec ~ pb tan ~ - p JZ U(Ro)a.Z' + 8{lles ) , p '" 
'" -00 

8
k

- (~) = k z sec ~ + k b tan ~ + k[ U(RO)dz' + e'(lles ) , 
'" z (3.14) . 

where 

lles = (3.l5 ) 

Again RO is defined by Eq. (2.8). 

Also, in the "straight line" approximation we can write: 

For z < 0 , 8 +(R) = p·R - p LZ U(RO)dz f 
, 

'p - 'V _ 

'" 

8 +(R) = p .;13 _ P j Z U(RO)dz' -pb6·, 
p - _0 c 
'" .,' -00 

For z > 0 , 

(Eq. 3.16 cont.) 
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For z > 0 , , 

For z < 0 , k. ·R 
"'~n '" 

Note that our "straight line" approximation does not strictly correspond 

to a straight line. This is because Ii p I may be arbitrarily large 

in the asymptotic domain. 
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IV. THE AMPLITUDE A(R) 
.", 

I .' 

We consider :fir,st the amplitude (L8c) :far 'If +(R) 
P '" 

and evaluate 

this 
·2' 

only to within relative order (e ). c . 
'" 

• 
For x(z) > 0 we hB.ve :£'rom Eq. ,(2.100) 

I:f we -hold b constant and vary z, we obtain :£'rom this _ 

dP(Z, b) = [/3 + /3(z) Jdz 

= e (Z', b)dz , 
c 

(4.2 ) 

according to Eq.(2.23). Thus, using Eq. (2.24) we :find 

JZ 
-co 

JZ 
-00 . 

= 
I 

I 

Also, using Eq. (2.25) we obtain 

jZ 
-00 

IZ dt';(~) 
-00 

= 

~ [('OP(Zlb») (OP(-OO, b)' )'1J. 
= vn '.' a b . a b . 

(4.4) 

Substitution o:fthese results into Eq. (l.8c) now gives us 
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A(R) 
'" 

= , 

which is just the exact expression (I 4.9). Equation (4.5) may be 

evaluated using Eq. (4.1). 

We not~ that A(R) is singular in the asymptotic post region II 
'" 

for 

i e (b) 
c -b , e (b) < 0 

c 
(4.00 ) 

and for 

de (b) de (b) 
z c = -1 , c 

db 
< O. (4.6b) 

db· 

These singularities are suggestive of the familiar Stokes phenomenon 

occurring in the WKB solution. The eikonal approximation (1.8) breaks 

down at either of these singUlarities. To integrate past these,. more 

elaborate methods than those given here are required. Fortunately, for 
+ 

the applications which we have in mind, the wave:f1inctions 1jr - are not 
p 

required in the far a~ymptotic region implied by Eqs. (4.6). 

It is evident from Eq. (4.1) that Eq. (4.5) does not approach 

its correct asymptotic form when either ~ = 0 or ~/db = 0 • This 

can be seen by writing A(R) in the approximate form, valid for large 
'" 

(1+ n[(1+ e<bl)(l dec )Yi/2 
A(R) '" z + Iii z + Iii + dbJ . '" 2 2 

The case that e (b) = 0 is called a "glory", while de /db = 0 c . c 

gives "rainbow" scattering. Ford and Wheeler13 have shown that the 

z , 
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classical description of scattering fails in either of these cases. 

This is clear from the above expression, since then A(~), does not 

approach its correct asymptotic form. Equation (5.11) of the next 

section may be used to describe scattering at angles near either a 

rainbow or a glory. The result is of course equivalent to -that of Ford 

and Wheeler.13 

To obtain the amplitude factor A(~) for "k - , we first use 
'" 

the first of Eqs. (2.15"-) to write, for -x(z) > 0 

p(z, b) ;: ( /Z" / - Z")t3 + b + Leo
IZ"/ 

The expression (4.5) remains valid, but is now to be evaluated using 

Eq. (4.1,,-) • 
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V. TEE EIASTIC SCATTERING AMPLITUDE 

Using the eikonal wave function (1.8) we may write the T matrix 

for scattering from an asymptotic momentum ~ into an asymptotic momentum 

k as 
'" 

T = 

= 

. / J -ik·R 
(21!) -3 2 d3R e '" '" 

(2~r3 J d~ V(R) A(R) - l\·.\!l ~ , 
) 

where in the second writing the relative error is of order ~(eik), 

Eq. (1.14). We showed in I that the classical amplitude is obtained 

from (5.1) when condition (1.25) is met. In this case, of course, we 

have e = Ie I ,where Q is the scattering angle defined by c 

,... ,... 
cos e = k· P 

In addition to the assumed condition (1-6) that Ie I « 1, 
c' 

we shall also suppose that 

e « 1 . 

• 
Finally, we continue to assume that the expression (1.19) for S + is 

P 
'" 

valid, quantities of order 

being negligible. We shall also consider ~e == p a O g3, to be negligible. 

We see from Eq. (4.5) and (4.1) that to relative order Ie I , c 

we may set 
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A(R) = 1 
'" 

in Eq. (5.1). We have then to evaluate 

We now shall use a cylindrical coordinate system, with variables 
.. 

(z, P, ¢). to carry out the integration above. Then 

In this coordinate system we may re-write" Eq. (3.9), using Eq. (2.15b), 

as 

for z >0, 

and 

: for z < ° , 

S +(R) = P z sec e + p ~ 
" p '" c 

'" 

+ pCz, b) "+ fj(f)s) , 

L
oo . 

S +(R) = P z +1' ~" !J. ~(zr) ai' 
p '" 

"'/z / " 

. + l(z, b) ~ e1~s) . 

(5.4b) 

Also, usingEq. (2.100) with p = x(z) , 

.'" 

"~ 
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k·R = P z cos 9 + P p sin 9 cos ¢ ........ 

" p z cos e + p sin e cos P (Z + Iz I) sin ~ 

+ b + L~ 6 ~ dZ' J 

This lets us write, to relative order "S' "9' etc., 

z> 0, S + [1 " " ] for - k·R = P z sec 9 - P ·k 
P '" .... c 0 .... 

+ 

p 11
00 

I:::. ~ dz' [sin ~ - sin 9 cos ¢] 

- P b sin 9 cos ~ + J (z, b) , 

(5.5a) 

and 

for z < 0 , 

s + -' l5.~ = P z[l - cos 9] + p JOO

·6 ~ dz' [ sinll - sin6cosP 1 p .... 
Izl 

- P b sin 9 cos ¢ + pCz, b) 

Now, we saw in I that in the classical limit the important con

tribution to the integral in (5.2) comes from z in the near asymptotic 

post scattering region. This means that in the classical limit we can 

set 
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100 

/', ~ dz' = ert~2) • 

z 

Also, in the classical limit p.~ = o. Therefore in the classical 
"",0 '" 

limit we have 

s + 
P 
'" 

15·B . = lc;:, b) - p.b sin e cos ¢ , 

to within the order ~s' ~e' etc. 

The classical limit fails, as we have seen, when 

Thus, when the classical limit is not, valid, we have ec 
2 p aO « 1, 

2 epa «1, o . e Ie c I p a O « 1. In this case we again see that 

Eq. (5.6) may be used. In any case, we may now write Eq. (5.2) as 

T (2rr)-3 ~ p dp dz d¢ VCR) exp (-i p b sin e cos ¢ } e 

= J 
W(z,b) 

(2rr)-2 p dp dz VCR) Jo(p b sin e) e 

To relative order Ie I we have 
c 

p dp dz = b db dz , 

and, to the same relative order, 

v aJ , 

{j 

(5.10), 



where 

T = 

where 

v::: p/M 
I 

v 
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is the asympt~tic relative velocity. 

[ 
'p(b) = lim .PC;', b) 

Z -+ +00 

is defined by Eq. (3.5). 

This lets us write· 

I 
I 

Equation (5.11) would reduce to the familiar expression of 

Moliere5 if we were to drop the termS2 in Eq. (1.19). The increased 

generality in the quantity J(b) has not, therefore, altered the simple· 

form of (5.·11). 

It is instructive to retrieve the class:tcal limit from Eq. (5.11). 

To do this, we ,introduce the classical scattering angle e , defined to c 

accuracy of 1, 
j, 

p e (b) 
d 'p(b) 

- , 
c db 

f 
d e 

e (b) c - Tb' , 
c 

and 

el - e (b)/ Ie (b) I c c 

Then, on using the asymptotic form for the Bessel functton, we have 

00 

T -
v 

[ 
·]1/2 

2/rcOp I - 2 
. 2i(2rc) 
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Now, the stationary phase point at 

.. , 

b = b c 
is obtained f'rom 

9...L = p(-e (b) + e· e\ = 0, o b c c 1 'I 
c 

e = ·Ie (b ) 1 c c 

def'ines b c This lets us write in the integrand of' Eq. (5.15), 

where 

o e . 
r(b) = r(bc ) + [ 0 bC (b - bc )2 + 8'(Tl(class)), 

c 

Tl(class) = 
o e 

c 

1

,3/2 ]-1 
ob . 

(5.18) 

. [This provides a more precise def'inition than that given by Eq. (1.25).] 

A stationary phase evaluation of' Eq. (5.15) now leads directly to the 

classical scattering matrix 

T " _[(2n)2 M)-l [b~ ::e\ t2 exp (l@"(be) -e1 p be e)] 

Xexp [
1 * (e1 + : :: D : :: I r -2)] 

(5.20 ) 
/. 

Finally, we see f'rom Eqs. (3.10) and (1.5) that 

1.· .• , 

It 



'. 

': 

-31-

Thus, e = e to within the accuracy with which we have calculated the 
c c , 

classical scattering. 

A familiar expression' for the total scattering cross section may 

be obtained from Eq. (5.11). We have 

Now, if we write 

'!He obtain 

/ 

~ ~ [o(b .;. b')]/b , 
P 
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VI. THE GREEN'S fUNCTION 

The Green's :f'unction (~ IG I ~,) was given in the eikonal 

approximation by Eq. (1.12). The eikonal in this case is 

S (& ~ I) = r~ K (it) ds , JR , 
'" 

(6.1) 

where the integral is taken from a point ~ I to a point R along the .-
. trajectory linking these two points. We may evidently so rotate our 

(z, x) coordinate axes that Figs. 2 apply. We may then use Eq. (3.9), 

writing 

S(R R') :::: 
... ",J '" 

S +(R') 
p - , 

(6.2 ) 
'" 

where ~ and the impact parameter are chosen to ensure that the trajectory 

pas s through both Rand R f • 
'" '" 

Theprinci~le of least action may be used as a variational principle 

to calculate S (R, R'). That is, S(~, ~') is stationary if we hold R 
~ '" .. ~ 

and ~' fixed and make small variations in the trajectory. 

For our applications to atomic reactions the points Rand R' 
'" '" 

will ordinarily both lie within the range of strong interaction. 

means that we can, for most applications,' approximate A(R, R') 
'" '" 

Eq. (1.12) as 

M 
2n: 

-1 
( IR - R I I ) 

'" '" 

This 

in 

(6.3 ) 

.. 
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The principal radii of curvature may then be approximately written as 

IR - R' I ,..., ,..." .' 
The relative error in both cases above is of ~(Iecl) 

( 

(6.4) 



, 
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VII. APPROXIMATION METHODS 

We have already noted that according to the principle of least 

action the ~uantity S12 [E~. (3.2)J is stationary if we hold the end 

points fixed and vary the trajectory about its correct value. This 

suggests that the eikonal is somewhat insensitive to the actual trajectory 

chosen. It also means that we can use (3.2) to provide a variational 

principle for calculating the trajectory. 

The simplest generalization of the straight line trajectory is 

that consisting of two straight line segments intersecting at an angle 

2~ , as is illustrated in Fig. 6. [If we consider ~ to be a variational 

parameter, and vary ~ to minimize S12 ' we of course obtain 2~ = e , c 

as given by E~. (1.5). J In this case, which we call the "angle" approximation, 

E~. (2.13b) reduced to 

b d cos ~ , 

and E~. (2.12) becomes 

s CZ") = z sec ~ • 

The expression (3.10) simplifies to the form 

.lei, b) = z<O 

= - p j Z(+) 

/" U(Rl)d(: + 2 p U(d)d sin ~ , -z > 0 , 
-CD 

where z(.:t) z sec ~ :!:. d sin ~ and R 2 = b2 + (:2 • 
1 

In obtaining 

.. 



• 
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etc. The phase (5.12) appearing in the T matrix is obtained from (7.3) 

as 

j(b) = - p 

The "angle',' I3.pproximation thus differs :from the"straight line" approxi-

mation only by the addition of the term 2 p ~ U(d) • 

We mention that when it is possible to write U(R) in the form 

U(R) = 

with the a coristant, the integrals (7.4) and (2.7) can be done s 

analytically. Also, if we write 

~(z) ." Co + :2.: 
s=2 

(7.6) 

the integrals (2.11) and (2.12) can be done analytically. In this case 

the coefficients . CO" ••• cQ may be treated as variational parameters 

in 8
12 

• 

To provide a simple numerical comparison of the "straight line" 

and "angle" approximations with the "exact" expression (3.5) for .f(b) , 

we write 
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The expression for ~, as obtained from Eqs. (2.5) and (2.7), is 

= 

The corresponding expressions for 1 in the "straight line" and "angle" 

"t" th 14 apprOXlma lons are en 

- 2 pb ~ (straight line) 

- 2 P b ~ (1 - ~ ~) (angle) • rc 

In Fig. 7 we show the resulting values of J given as a function 

of e = 2~. In this calculation we chose D = 0.025 and p = 136 
c 

(both in atomic units). We have given 1 here for ~ extending over 

. the range 0 < ~ < 1. The "exact" expression is of course no longer 

exact for ~::::: 1 since we have replaced cos ~ 

Eq. (3.5) and tan ~ by ~ in Eq. (2.9) for h 

1 2 
by 1 - - ~ 2 

in 

The results of 

Fig. 7 do suggest, however, that the "angle" approximation, which 

represents an almost trivial generalization of the "straight line" 

approximation, can be considerably more accurate than the latter. 

.. 

; ; 

. ! 

.... 
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VIII. + APPLICA TION TO THE (H ,H) SYSTEM 

As a first application of the approximate methods developed in the 

previous sections to physical processes in an actual collision system, we 

consider the elastic scattering and resonant electron-transfer processes 

+ 
in the (H , H) collision system. Since the adiabatic potentials for this 

system are known accurately, 15 we are in a position to evaluate directly 

the validity of the various approximations without ambiguities resulting 

from uncertainties in the potentials. 

+ . 
The (H , H) collisic;>n system is a system having symmetries with 

respect tO,the interchange of the protons and upon reflection of the electron 

coordinates in the internuclear plane. As a consequence. we have the 

"gerade" and "ungerade" symmetries for the electronic states and a parity 

restriction for the angular momentum states of the nuclear motion. For a 

given electronic state .the angular momentum quantum number L for the 

motion of the protons is limited either to even or odd values. We have the 

symmetry properties for the scattering amplitude f( 9 ) 

f( 9) = f( TT - 9 ) Leven 

f(9) = -f(TT-9), L odd. 

This would give rise to oscillations in the differential cross sections 

resulting from the interference between f(9) and f(TT -9). 16, 17 Such 

(8. 1) 

interference would become app:reciable only at large L and large scattering 

angles. For the present interest in small angle scattering [see Eqs. (1. 6) 
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and (1. 7) ] we neglect for the moment such interference. 

The "gerade" and "ungerade" symmetry of the electronic states 

+ 
which give rise to separate potential energies of interaction between H 

and H must explicitly be considered. In dealing with the elastic scattering 
.- -- -------- --- --_._----_.- --- - ----- ---------.- ------ -_ .. _---_._-+ 

. and resonant electron-transfer processes between Hand H, we assume 

Z + + 
that the interaction potential is given by the L: g HZ (gerade) and the 

ZL:: H z+ (ungerade) adiabatic potentials. This assumption neglects any 

coupling of the elastic -scattering and electron-transfer channels with the 

collisional excitation, electron-transfer excitation and ionization channels. 

This would be a reasonable assumption if the condition for the near-

adiabatic scattering 'Il
2

« 1 [Eq. (11. Z) ] is satisfied and if there is no 

+ near crossings of the adiabatic states. For the (H , H) system such an 

assumption, is, however, an oversimplification since in the united atom , 

limit the 2pa and 2pn + states of H2 are degenerate and therefore strongly 

coupled. This oversimJ?1ification nevertheless should not affect our study 

of the trajectory problem. 

In this approximation, the elastic -scattering and electron-transfer 

amplitude may be obtained from appropriate linear combinations of the 

collision amplitudes resulting from the gerade and the ungerade potential 

interactions. The differential cross section then takes the expression, for 

elastic scattering, 

da 
s 

em 
da da . daI 

=---&+ u+ 
dO dO em (8.2) 
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and. for electron transfer. 

da et 
da da dar 
-K + u = --

dO dO dO dO 
(8.3) . 

with 

da 
4 1 Tg 12 -2 = 4n 

dO 
. (8.4) 

da 
4n 4 M I Tu \2 u = dO 

(8. 5) 

dar 4 
[Tg Tu} "-- = 8n MRe 

dO 
(8.6) 

da da 
where J u 

dO • dO 

dar 
and dO correspond to the contributions to the cross 

section coming from the gerade interaction. the ungerade interaction and 

their, interference. 

Calculations of the differential cros s section are carried out in 

the classical limit of the eikonal approximation for the "straight-line" and 

clas sical [to the order 1 S 1
3 aoJ trajectories as well as for the "angle" 

approximation (Sec. VII). More specifically we will adopt the classical 

scattering matrix [Eq. (5.20) J obtained from the eikonal expression 

given'by Eq.(5. 11); [ to <9 (1l ) J by means of the stationary-phase approxi-
.1 s 

mati on [Eq. (5. 17) J. !n paper II! of this series. we shall illustrate the 

I 

application of the eikonal approximation to scatterings where the classical 

de s c r iption fails. 
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The condition for the validity of the classical scattering is given by 

Eq. (1.25}). In Fig. 8, the region of classical scattering obtained from 

Eq. (1;.2-5') is displayed for both the gerade and the ungerade adiabatic 

potentials in the straight-line approximation... The clas sical region is then 

given by the areas lying below the curves labelled ll(class.) = 1. It is seen 

that the gerade potential is more restrictive than the ungerade potential. 

This is clear since the gerade potential has an attractive portion and would 

give rise to rainbow scattering for which, as mentioned before, the clas sical 

description of scattering fails. From Fig. 8, it is apparent that collisions 

with impact parameters in the neighborhood of 2 to 3.4 a
o

. are essentially 

nonclassical. (It will be seen later that rainbow scattering corresponds to 

an impact parameter of about 2. 7 a .) At very small impact parameters 
·0· 

(i. e. at b -> 0), the ll(c1ass.) = I curves for both the gerade and the ungerade 

potentials dip down to effective zero energy. (Due to the scale in Fig. 8, it 

is indistinguIshable. from the ECM-axis.) 

Utilizing the known adiabatic potentials
18 

the classical scattering 

angle may be determined as a function of the impact parameter. For 

straight-line trajectory where the impact parameter equals the distance of 

closest approach, this is particularly simple since the energy dependence 

of 9
c 

can be factored out [see Eq. (1. 5) ] • This permits us to define 

a reduced clas sical scattering angle 9 (b) (; -2 which is energy independent. 
c 

We have 



,or 

9 (b) C -2 = 
c 

with 

= (~ ) 

b 
M 
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J d .(V(RO)) dZ + 
dR Ry. R 

o 0 

(8. 7) 
o 

(8.8) 

where C is a dimensionless quantity.· In Fig. 9, we have plotted the 

reduced scattering angle as a function of impact parameter. It is seen that in 

the gerade mode. of interaction we have at b ~ 

would give rise to a rainbow. 

2. 7 a a minimum. 
o 

This 

For classical trajectory, the relation between the impact parameter 

and the distance of closest approach is no longer simple. To order 

3 I s lao' they are related by Eq. (2.l3b). This relationship is shown in 

Fig. 10. As expected the deviation from d = b straight line becomes more 

pronounced with decreasing energy. The classical scattering angle for H + 

on H along clas sical trajectory may be obtained to the accuracy of ~ (b). 

We have from Eq. (3.5) 

<Xl 

where R is given by Eq. (3.3). The calculated 

(8. 9) 

e is compared with that 
c 

obtained in the straight-line trajectory approximation in Table 1. 
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In the stationary-phase approximation, the contributing impact 

parameters to the classical scattering are defined by Eq. (5. 17). They are 

shown in Fig. 11 as a function of the das,sical scattering angle ® c 
for 

several center -of-mass energies. The corresponding stationary phase 

y(b ) [see Eq. (5. 16) J 
c 

(8. 10) 

are shown in Fig. 12. Differences are found in the stationary phases as 

predicted by the "straight-line" trajectory approximations and ,by the 

classical trajectory approximations. These differences should become 

appreciable in the interference pattern. 

Having determined the impact parameters and the stationary phase 

we are now in position to evaluate the differential cross section. The 

result for elastic scattering and resonant electron-transfer cross section 

. using the classical scattering matrix given by Eq. (5.20) is shown in Figs. 

13 to 15 as a fUnction of scattering angles for several center -of -mass 

energies. The regular pattern of oscillation comes from the inteference 

[Eq. (8.6)J between the gerade- and ungerade- mode of interactions. It 

is seen that the interfere,nce depends sensitively upon their phases. In 

Fig. 16 the constituent components [given by Eqs. (8.4) to (8.6) ] of the 

differential cross sections are shown for one of the energies. As expected 

the interferenace term dcr/ dO. oscillates with increasing amplitude and 

rapidity as the scattering angle decreases. The sum of the elastic-
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scattering and resonant e1ectron-transfer differential cross sections denoted 

by dcr/ dO is. however. a smooth function of the scattering angle. 

For comparison. the results obtained in the "angle" approximation 

[Eq. (7.4) ] are also included in these figures. It is observed that the 

"angle" approximation yields values which are consistently close to the 

values obtained from the more elaborate calculation following the classical 

trajectory up to the order I S ,3 a
o

• This seems to suggest that the simple 

generalization of the "straight-line" approximation offered by the "angle" 

approximation do constitute a significant improvement. 

At angles smaller than the rainbow angle. the one -to-one relation 
\ 

betWeen the impact parameter and scattering angle as shown in Fig. 11 for 

the stationary-phase approximation is nO longer satisfied. 'The scattering 

observed at a single' angle arises' from the scatterings through several 

separated impact parameters. This would then give rise to interesting 

interference patterns. Such a behavior is expected for scatterings due to 

the gerade mode of interaction. In Fig. 17. the relation [Eq. (5. 17) ] 

between the impact parameters and the scattering angles is given for 

several center-of-mass energies~ It is clear that at angles smaller than 

the rainbow angle 0 • there are three participating impact parameters for 
, , r 

gerade scattering. ;For the ungerade scattering where the potential is 

repulsive and has nO rainbow scattering, only One impact parameter partici-

pates for each scattering angle. Their corresponding stationary phases 

y (b ) are given in Fig. 18. 
c 

I 

\ 
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To account for the scatterings coming from separated impact 

parameters in the gerade case, Eqs. (8.4) and (8.5) must be modified. 

We have 

da 
4n4 M L T. 

2 
J = 
dO . Jg 

J 

(8. 11) 

dar 
BTl 

4 
M Re { 2> . T 1 -- = 

dO . Jg u 
J 

(8. 12) 

where the sum over j runs over all the particpating impact parameters 

for each scattering angle. Re sults for da g/ dO and d a / dO calculated 

from these equations are given in Fig. 19. The interference structure in 

da / dO is apparent. This interference within the gerade scattering also 
g 

gives rise to further struc,ture in dar/dO. Superimposed on the regular 

gerade -ungerade oscillations in d a / dO are the oscillations coming from 

interference within the gerade scattering. The elastic scattering and 

resonant electron-transfer differential cross sections at these scattering 

angles are shown in Fig. 20. The differences in the differential cross 

section at these small angles coming from the "straight-line" approximation, 

the "angle II approximation and the classical trajectory are small and become 

indistinguishable in these figures. 

An investigation of the energy dependence of the differential cross 

sections has also been carried out. The results are given in Figs. 21 to 24 

for a few scattering angles in the "straight-line ""and the "angle" 

.' 
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approximations. In general the behavior of these quantities as a function 

of energy is similar to that as a function of scattering angles. For a fixed 

sca,ttering angle, the rainbow scattering appears at certain critical energies 

and below which again,we observe interference coming from separated impact 

parameters. The result obtained from the "angle" approximation agree 

reasonably well with that obtained by following the das sical trajectory for 

all the energies that we have checked. 

To our knowledge, no experimental measurement on the differential 

+ 
cross section for Hand H is available in the literature for a direct com-

-' 

parison with the theoretical result. Detailed measurements on the electron 

. + . 
transfer probability in the (H , H) collision system has been carried out by 

Helbig and Everhart. 19 This then provides an indirect assess of the 

theoretical result for the differential cross section. 

The electron transfer probability Pet can be calculated from the 

differential cross section by the relation 

(8. 13) 

where dcrt 1/ dO. ota 
+ is the total differential cross section for the (H ,'H) 

. collision system. In the two-state approximation , the total differential 

cross sectioh is approximated by dcr/ dO.. Hence 

dcrtotal 

dO. 

dcr et dcr 
= + __ s 

dO. dO 
(8. 14) 
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In this approximation, the differential excitation cross sections are 

neglected. 

The calculated electron transfer probability P t is compared with 
e . 

the experimental measurements in Fig. 25 as a function of the incident 

proton energy for several fixed scattering angles and in Fig. 26 as a function 

of the scattering angle .. for several fixed incident proton energies. It is seen 

from Fig. 25 that the agreement between the theoretical and experimental 

electron-transfer probabi'lity as a function of proton energy is not quantitative. 

The improvement over the straight-line approximation introduced by the 

"angle" approximation in the positions of the oscillation is too small. No 

further appreciable improvement is obtained if the classical trjectory is 

followed up to the order 
3 . 

\13 I a . The theoretical result also fails to 
. . 0 

predict the Everhart damping. 20 These are, however, expected of the 

adiabatic two-state approximation as was pointed out by a number of 

workers.
2l

-
25 

The discrepancy (displayed in Fig. 25} which is apparently 

larger than the experimental uncertainty comes partly from the approxima-

tion in dOtotal/!io as given by Eq. (8. l4) and partly from the inaccuracy 

in the calculated differential cross sections as a result of the classical and 

adiabatic two-state approximations. 

The agreement between the theoretical and experimental electron-

transfer probability is, however, much better as a function of scattering 

angle, except for the case with an incident proton energy of 151 ev (the 

lowest energy measured). This agreement appears to be further improved 
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by the "angle" approximation. However experimental measurements of 

Pet at angles larger than those reported are needed to settle this point. 

At angles smaller than the rainbow angle. a increase in the oscillation in 

Pet is found. This increase is originated from the interference in the 

gerade scattering coming from separated impact parameters. A calculation 

of Pet following the clas sical trajectory up to the order I S 1
3 

a is 
. 0 

carried out as a function of scattering angle for two-fixed incident proton 

energies at 151 ev and 410 eVe The result is in good agreement with that 

obtained in the "angle" approximation. This further supports our observa- i 

tion mentioned earlier that the "angle" apprOximation, despite its simplicity. 

constitutes a significant improvement over the "straight-line" approximation. 
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APPENDIX A 

The Error Resulting from the Eikonal Approximation 

The error resulting from the use of the eikonal approximation 

... may be estimated by replacing A in Eqs. (l.8a) and (l.12) by the 
, 

I 

product A A. Here A is given by Eq. (1.8c) and A' represents a 

correction to this. The exact equation to determine A' is 

[see Eq. (r 4.31) ] 

= (A.l) 

To -estimate A', we set A' -_ 1 th "ht ha d "d f (A I') on e r~g - n s~ eo. • 
" 

Using Eq. (1.8c), we obtain 

~ ~ exp{i. [<t (A.2 ) 

from which the estimate (1.i4) follows. 
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Table I. Comparison of the scattering angle a~ a function of the impact parameter in the 

"straight-line" and the "classical trajectory O( Isl 3 
a

o
}" approximations. 

Bg(ao } ®g 9g Bu(ao} ® u 9u 

ECM = 75.5 ev ECM := 75.5 ev 

• 53714 3. 4633 X 10 - 1 4. 4610 X 10- 1 .40643 5.7277x10- 1 9.1860 X 10- 1 

. 76686 _1.9749xlO- 1 2.2679xlO- 1 .61844 . 4.7074 X 10-'1 6.2399X10- 1 

.98764 1. 1065 X 10- 1 1.1871xlO- 1 .82942 3.9215 X 10- 1 4.7957X10- 1 

1.20264 5.6279 X 10-2 5.7015 X 10-2 1. 04047 3.3247X10-1 3.9066 X 10.,1 

1.41358 2.0682 X 10-2 . 1. 8975 X 10-2 1. 25182 2.8537 X 10- 1 3.2791 X 10- 1 

1.62147 -3.1303 X 10-3 -5.3668 X 10-3 1. 46339 2. 4677 X 1 0 - 1 2.7957 X 10- 1 

1. 82702 -1. 9067 X 10-2 -2. 1068 X 10-2 1. 67499 2. 1427 X 10- 1 2.4023 X 10- 1 

2.03073 -2.9509 X 10-2 -3. 1007 X 10-2 1. 88641 . 1.8637 X 10- 1 2.0715xl0- 1 

2.23299 -3.6017 X 10-2 -3.6974 X 10-2 2.09745 1. 6216 X 10- 1 1. 7881 X 10- 1 

2.43411 -3.9677 X 10-2 -4'.0154 X 10-2 2.30795 1. 4100 X 10- 1 1. 5429 X 10- 1 

2.63435 -4.1273 X 10~2 -4.1369 X 10-2 2.51782 1.2244x10- 1 1. 3299 X 10- 1 

2.83392 -4.1387 X 10-2 -4.1203 X 10-2 2.72696 1. 0616 X 10- 1 1. 1448 X 10- 1 

3.03298 -4. 0455 X 10-2 -4. 0084 X 10-2 2.93536 9.1885 X 10-2 9.8390 X 10-2 

, 3.23166 -3.8808 X 10-2 -'3.8326 X 10-2 3. 14300 7.9381x10- 2 8.4435 X 10-2 

3.43009 -3.6694 X 10-2 -3.6159 X 10-2 3.34990 6.8455x10-2 7. 2354X 10-2 

3.62835 -3.4301 X 10-2 - 3. 3756 X 10 - 2 3.55608 5.8929 X 10-2 6. 1919 X 10-2 

3.82652 ~3. 1767 X 10-2 -3.1241 X 10-2 3.76161 5.0645 X 10-2 5.2912 X 10-2 

4.02464 -2.9194 X 10-2 -2.8711 X 10-2 3.96651 4.3459xl0- 2 4.5188 X 10-2 

5.01587 -1. 7653 X 10-2 -1. 7408 X 10-2 4.98351 1.9855Xl0-2 2.0264 X 10-2 

6.00939 -9.8121 X 10-3 -9. 7209 X 10-3 5.99212 8.9006x10-3 8.9907 X 10-3 

8.00290 -2.6907 X 10-3 -2.6820 X 10-3 7.99834 1. 7437 X 10-3 1. 7476 X 10-3 

- ,-, ,- - ---~ 

, -

l 

j. 
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Table 1. (Continued) 

' .. 
ECM :0: 205 ev ECM :0: 205 ev' 

. 57921 1. 3276 X 10- 1 1. 4446 X 10- 1 .53580 2.3411 X10- 1 2.6183 X 10- 1 

. 78878 7. 4658 xl 0-2 7.8433 X 10-2 • 73880 1. 8154 X 10- 1 1. 9588 X 10- 1 

.99583 ·4. 1530 X 10-2 4. 2632 x 10-2 .94193 1. 4847 X 10- 1 1.5754xl0- l 

1. 20109 2. 1008 X 10-2 2. 1126 X 10-2 1. 14530 1. 2508 X 10- 1 1.3156 X 10- 1 

1.40502 7.6706 X 10-3 7. 4452 X 10-3 1. 34891 1. 0713 X 10-1 1. 1209 X 10- 1 

1. 60791 -1. 1946 X 10-3 -1.5007xl0-3 1.5,5267 9. 2584x 10-2 9.6520 X 10-2 

1.80997 -7.0916xlO-3 -7.3696 X 10-3 1. 75649 8.0365 X 10-2 8.3546 X 10-2 

2.01137 -1. 0932 X 10-2 -1. 1142 X 10-2 1. 96029 6.9879 X 10-2 7.2462 X 10-2 

2.21223 -1. 3309 X 10-2 -1. 3445 X 10-2 2. 16400 6.0768 X 10-2 6.2861XI0- 2 

2.41267 -1. 4634 X 10 - 2 -1.4703 X 10-2 2.36756 5.2800 X 10-2 5.4486 X 10-2 

2.61278 -1. 5200 X 10-2 -1. 5215 X 10-2 2.57092 4.5812 X 10-2 4.7160 X 10-2 
, 

2.81263 -1. 5224 X 10-2 -1. 5200 X 10-2 2.77406 3.9680 xl0-2 4.0808 X 10-2 

3.01229 -1.4868xl0-2 -1. 48 18 X 10 - 2 2.97696 3.4306 X 10-2 3. 5148 X 1 0 - 2 

3.21180 -1. 4254 X 10-2 -1. 4188 X 10-2 3.17962 2.9605 X 10-2 3.0263 X 10-2 

3.41121 -1. 3471 xl0-2 -1. 3398 X 10-2 3.38203 2.5502 X 10-2 2.6012 X 10-2 

, 3.61056 -1. 2589 X 10-2 -1. 2514 X 10-2 3.58420 2.1929 X 10-2 2.2322 X 10-2 

3.80988 -1. 1657 X 10-2 -1. 1584 X 10-2 , 3.78615 1. 8827 X 10-2 1. 9128 X 10-2 

4.00917 '-1. 0712 X 10-2 -1. 0645 X 10-2 3.98789 1. 6140 X 10-2 1. 6369 X 10-2 

5.00589 -6.4803 X 10-3 -6.4468 X 10-3 4.99399 7.3460 X 10-2 7.4007 X 10-3 

6.00348 -3.6056 X 10-3 -3.5932 X 10-3 5.99711 3.2857xl0-3 3.2978 X 10-3 

8.00107 -9.9015 X 10-4 -9.8898 X 10-4 7.99939 6.4253xl0-4 6.4306xlO-4 
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Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 
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FIGURE CAPrIONS 

Illustration of' the eikonal traJectories and boundary conditions 

+ -
f'or 'lrp and 'Irk. 

Description of' the trajectory in the (x,z) coordinate system. 

Trajectories in the coordinate systems (2.15) and (2.15 'Ir~) are 

illustrated in (a) and (b), respectively. 

Illustration of' trajectory and eikonal surf'ace through point RO. 

Illustration of' the displacement D of' Eq. (2.19) and of' the two 
, 

surf'aces of' Eq. (2.20). 

Trajectory f'or the "angle" approximation. 

Comparison of' the phase ~ f'or the potential (7.7) of'the 

" straight line, " "angle,"· and "exact" methods. 

The region of' classical scattering for H+ on H as predicted 

by Eq. (5.19) and the condition (1.25) in the "straight-line" 

trajectory approximation for the adiabatic 

2.Eu+(----) H2+ potentials. 

and 

The impaGt-paramet~r dependence of the reduced classical scattering 

e I' -2 (8 ) 2" + angle ~ as given by Eq. .7 for the adiabatic "-' and 
g 

2"U+ H_+ t ti 1 "-' -~ po en a s. 

Fig. 10. The relation between the distance of closest approach and the 

impact parameters along the classical trajectory [O( r~r3 ao)] 

as given by Eq. (2.13b) for the "gerade" and the "ungerade" 

interactions for the (H+,H) collision system at three center-

of'-mass energies. 
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Fig. 11. 
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The stationary-phase impact parameter b as a fUnction of the c 

center-of-mass scattering angle for the (H+,H) collision system 

at three center-of-mass energies. band b denote those of 
g n 

the b 's for the '~de" and the "ungerade" modes of interactions, 
c 

respectively. The differences in bc found at these angles in 

the "st~aight-line, "and th~ "classical trajectory" [o( 11313 a ) J o 

approximation are too small to be seen for the scale adopted in 

the figure. 

Fig. 12. Comparison of the stationary phase y [Eq. (8.10)J as a fUnction 

of the center-of-mass scattering angle in the "straight-line" 

(- - -), and "angle" (-----) and the "classical trajectory" 

[O( 11313 ao)J ( ) approximations for the (H+,H) collision 

system at three center-of..;mass energies. The subscripts "g" 

and "u" denote the "gerade" and the "ungerade" potential of 

interaction, respectively. 

Fig.' 13. Comparison of the scattering and electron-transfer differential 

cross sections and their sum as functions of the scattering 

angles in the "straight-line" (- - -), the "angle" (-----) 
3 

and the "classical trajectory" [O( 1131 a) J ( ) approximations 
. 0 

for' the (H+,H) collision system at an energy of 75.5 eV in the 

center-of-mass system.· 

Fig. 14. Comparison of the~attering and electron-transfer differential 
i 

cross sections and their sum as functions of the scattering 

angles in the "straight-line" (- - -), the "angle" (-----) and 

the "classical trajectory"· [o( 11313 a ) J (--) approximations o 

for the (H+,H) collision 'system at an energy of 205 eV in the 

center-of~mass system. 
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Fig. 15. Comparison of the scattering and electron-transfer differential 

cross sections and their sum as functions of the scattering 

angles in the "straight-line" (- - -), the "angle" (-----) and 

the "classical trajectory" [o( 11313 a )] (--) approximations 
. 0 

+ for the (H ,H) collision system at an energy of 500 eV in the 

center-of-mass system. 

Fig. 16. Comparison of the differential cross sections for the gerade

potential scattering, the ungerade-potential scattering and 

Fig. 17. 

their interference [see Eqs. (8.4), (8.5) and (8.6), respectively] 

as functions of the scattering angle in the "straight-line" 

(- - -), the "angle" (-----) and the "classical traj~ctory!! 

[o( 11313 a )] (-----) approximations for the (H+,H) collision 
o 

system at an energy of 205 eV in the center-of-mass system. 

Comparison of the stationary";phase impact parameters b as a . . c 

function of the absolute center-of-mass scattering angle ISCM I 
in the "straight-line" (- - -) and the "classical trajectory" 

[o( 11313 a )] (--) approximations for the (H+, H) collision o ' 

system at two center-of-mass energies. band b denote those 
g n 

of the, b I S for the "gerade" and the "ungerade" modes of 
r c 

interactions, respectively. 

Fig. 18. The stationary phase y [Eq. (8.10)] as a function of the absolute 

center-of-mass scattering angle Ie CM 1 for the (H+, H) collision 

system at two center-of-mass energies. The subscripts "g" and 

"u" denote the "gerade" and the "ungerade" potential of interaction, 

respectively. The difference in y found in the "straight-line," 

the "angle" and the "classical trajectory" [o( 11313 a ) ] approxi-o 

mation at these angles are too small to be seen for the scale 

adopted in the figure'. 

, 
I' , ' 

i 
i 
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Fig. 19. The differential cross sections for the gerade-potential scattering, 

the ungerade-potential scattering and their interference [see 

Fig. 20. 

Eqs. (8.11), (8.5) and (8.12), respectively] as functions of the 

scattering angle for the (H+,H) colli~ion system at an energy of 

75.5·eV in the center-of-mass system. The difference in the 

differential cross section found in the "straight-line, 'i the 

"angle" and the 'classical traject'ory" [o( 1t313 a )] appro~imations o 

at these angles are too small to be seen for the scale adopted 

in the figure. 

The scattering and electron-transfer differential cross sections 

and their sum as functions of the scattering angle for the (H+,H) 

collision system at an energy of 75.5 eV in the center-of-mass 

system. The difference in the diffe~ential cross sections found 

in the "straight-line," the "angle" and the "classical trajectory" 

[o( 1t313 a )] approximations at these angles are too small to be 
. 0 

seen for the scale adopted in the figure. 

Fig. 21. Comparison of the differential cross sections for the gerade-

Fig. 22. 

potential scattering, the ungerade-potential scattering and their 

interference [see Eqs. (8.4), (8.5) and (8.6), respectively] as 

functions of the energy for the (H+,H) collision system in the 

. "straight-line II (- - -) and the "angle" ( ) approximations 
o ' 

at a scattering angle of 6 in the center-of-mass system. 

Comparison of the scattering and electron-transfer differential 
,/;, 

cross sections and their sum as functions of the energy in the 

"straight-line" (- - -) and the "angle" (---) approximations 

for the (H+,H) collision system at a scattering angle of 4
0 

in 

the center-of-mass system. 



Fig. 23. Comparison of the differential cross sections for the gerade-

potential scattering, the ungerade-potential scattering and their 

interference [see E~s. (8.11), (8.5) and (8.6), respectively] 

as functions of the energy in the IIstraight-line" (- - -) and the 

"angle II (---) approximations for the (H+, n) collision system 

o 
at a scattering angle of 2 in the center-of-mass system. 

Fig. 24. Comparison of the scattering and electron transfer differential 

cross sections and their sum for the (H+,H) collision system as 

functions of the energy in the "straight-linell (- - -), and the 
o 

lIanglell (---) approximations at a scattering angle of 2 in 

the center-of-mass system. 

Fig. 25. Comparison of the calculated electron-transfer probability Pet 

in the (H+,H) collision system as a function of the incident 

proton energy in the !I straight-line II (- - -) and the "angle" 

( ) approximations with that measured by Helbig and Everhart19 

(cross~s) at four laboratory scattering angles. 

Fig. 26. Comparison of the calculated electron-transfer probability Pet in 

the (H+,H) collision system as a function of the laboratory scat-

tering angle in the "straight-linell ( ) and the "angle" (-----) 

and the Tlclassical trajectory" [o( 1[313 a ) ] (- - -) approximations 
o 

with that measured by Helbig and Everhart19 (crosses) at six 

incident proton energies. The "classical trajectoryll [o( 1[313 a ) ] 
o 

approximation is carried out only for the incident proton energy 

of 151 eV and 410 eV •. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person ?1cting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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