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ABSTRACT
Practical techniques are developed for evaluating wave functions and

Green's functions using the eikonal approﬁimation. It is assumed‘that the

scattering angle is smali. This provides & great-simplification in analysis

of the trajectory curves, radii of curvature, ete. A sequence of approxi-

mations and the use of variational principles are'described. Numerical

illustratlons, particularly for proton-hydrogen atom scattering, are given

for several of the approx1matlons.
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I.l INTRODUCTION
Tn Part I of this-seriésl we formulated a method for studying
're-arrangemenﬁ coilisions between atoms.(or‘moléculeé) usiﬁé the eikonal
apprbximéfion. The method was based on a form'of the‘perturbed statidnary

: state tgchnique, using as basis function the adiébatic states (corrected
. for proper asymptoti§ boundary éonditions)} These basis states describe
.therelastic scattering of the two atoms (for simplicity, we shall refer to

the éolliding particles as atoms, even thqugh one or both might be a

molecule or ion) in the potential represented by the adiabatic molecular

potential curve. The‘simplifiéation of the theory whicthesults from_the
uée of the eikonal approximation‘fof the adiabatic wave functionsuand

‘Green's funétions wa.s discussed‘in I,

: in.this paper we diécuss the actual construétion of the distorted
.wave functions and Green'sﬂfunctions. Before Beginning this, it is useful
to review ﬁhe rahge of certain parameters which will be of interest to us.

. The reduced mass of the two.colliding atoms is writfen”as M _and

their relative coordinate R . The potential energy of interaction between

o

them is taken to be. V(R) . The interaction V(R) is assumed to have a
range of order ag the Bohr radius; this is interpreted to mean that for
R sufficiently greater than ag the potential is negligibly small. More

precisely, we assume that

1im V(@R) = (E?%constant/Rl+8 . - (1.1)
(Rfe..) >
o,
where 6 >0. For R S,ao » We characterize the strength of~ V as
V@R)| = E?%Ry) (here Ry Rydberg) recognizing of course that V may

. be singular at R = 0.
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The incident relative momentum of the colliding particles is

p and their center-of-mass energy is ep L ;?/EM . In atomic units

~

this is E = ep/Ry . Our first assumption is that

E > 1. ' (1.2)

This implies the condition (I1.3) that

, -1/2
8 = = < . .
T %/pa, [®0 A_,. E] < 1 (1.3)
Here we have introduced the notation
Mm = 90 Ao (1.4)

where m 1is the mass of the electron.
Using the condition (1.2) we can write the classical scattering

-angle (in the center-of-mass corrdinate systems) for an impact parameter

. b as
o]
V(R,)
= .2 4 (9. & 2
o.(b) = -3 ®, \ Ry ) Ry " oo, (1.5)
~00
o o 1/2
where RO = [p + 2z ] . Our second assumption, seen to be generally
consistent with (1.2), is that
l ec(b) | < 1. : . (1.6)

For order of magnitude esﬁimates we shall assume that

e, | = 3 | | @
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for impact parameters of order a

the appropriate boundary

-3

. .

0

In I the wave function describing the scattering was written

in the form [Egs. (I4.8) and (I4.35)]

- | 18(R) |

V(R) = (Qﬂ)-3/2 AR) e T, ' (1.8a)

‘where S(R) 1is the‘eikonal,
R _ .

5@®) = 5(B')ds , D | (1.80)

and : o
: : 1/2 - (B
AR) = é;/g) exp| - % ( E%I + E%g-) ds { . - (1.8e)

Here ds dis an eleﬁent of path length,

C®R) = Lp_? _ewv® | (1.9)

.and the integrais are taken along the classical trajectory. The quantities

-_wfRi(B) am é%i(g) are the principal radii of curvature of the surface

of constant eikonal which passes through R .

+ . .
The functions5 W?'(g)_ are obtained from Egs. (1.8) by imposing -
conditions. This is illustrated in Fig. 1.
+

. For WP we hdve, when R 1lies in the asymptotic region prior to

~

scattering:

5B = p
®) = 23X

AR) = 1, . | - (1.10)
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where 5(5) is the relative momentum vector at a point R on the
trajectory. For Wk- we have, when R 1lies in the asymptotic post

scattering region:

£®B) = k
s, ®) = kR
vA(B) = 1. (1z.11)

For the applications considered in this paper we may consider k = p .
The Green's function ¢ R | ¢ | R' ) satisfies the same
: ] *
(SchrBdinger) differential equation as V (B) . Thus in the eikonal
approximation [see Eq. (IV.25)]
15(3,8") |
(glelg ) = A® RDe ~ ; (1.12)
"Where S and A are again given by Egs. (1.80b) and (1.8¢). The boundary
condition imposed on G is [Eq. (Ik.27)]
M eXP[Ln(B)lB - R'[]

lm  (RlG[R") = -5 . (1.13)
R-R " 7 § R - Rl |

The reldtive error resulting from the use of the eikonal
approximation, Egs. (1.8) or (1.12), is)+ of order

#0
c

eik) = v
n(eik) =y

o -1/2
¥ [®oa, B , (1.14)

;except for certain singular regions in the asymptotic domain lat

R% C?fao/lec]) l. We see that, for particles of atomic mass,

n(eik) << 1 | (1.15)
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whenever the condition (1.2) is satisfied. If we make the Purther
" approximation of setting A(R) = 1 in Eq. (1.8a) the relative error is

of order
noleik) = e | & &=, - (1.16)

except in certain asymptotic domains [this will be discussed in.Sec. Iv].
Making use of the condition (1.2) we shall obtain a series for

S of the form:

SR) = 8, + 8 4 8y 4 e, | (1.17)
where for R & aj ‘, |
o & ay) = @{[920 Ao Ev]l/z) ,

L= b ay 19.1) = Ao Aeff/E]l/?) -

> @P %0 9c2) = @{[,920 Aeff/EBJl/2 )“’

0
i

wn
|

wn
i

. S | | (1.18)

. We shall neglect terms of order 85 and higher.  That is, we shall take

8(B) = S5+ 8 +5, + 6’(715) s | , - (1.19)
“ . Where _ /
‘ ‘ 1/2

- 3 . ( D )

g Ny = Dpag lec! x - gloeo Aeff/E ] - - (1.20)

The approximation in which 52 is neglected, so S is taken to

be

€3]
=s]
~

i
(9]
+
[62]

0o 1 ' S (1.21)
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is called the "straight line" approximation. This approximation results
on evaluating Eq.-(l.Bb) for a straight-line trajectory. The relative

“error in using (1.21) is of order

2 _'6! 1/2) : _ '
Pa, 9, = (tseo Aeff/E5] _— | (1.22)
The straight line trajectory approximation has long been used in quantum

. _ , .5 .
mechanics. It was given by Moliere in 1947 ~ and applied to neutron

scattering from nuclei by Fernmbach, Serber, and Taylor.6_vApplicatibns to

7

the optical model of nuclear scattefing were made by Francis and Watson
. 8 '
~and by Glauber.
v Appliéations of the eikonal approximation to atomic scattering

9 by Smith and his collaborators.lo

have beéh_made'by Bates and Holt,
.An "eikonal-like" ﬁechniqpe was recently proposed by Wiléts‘and W’allace.ll
Before élosing this ‘section, it may be well to emphasizg_that the
criterion (1.14) for validity of the eikonal approximation.by no means
implies that the classical scattering amplitude is accurate. A somewhat
“crude e;Fimate for the validity of the classical description of scattering

‘may be obtained from the condition [a precise estimate was given in I

and is given again in Eq. (5.19)]
l o, | > Oqirr o (2.23)
where

is the characteristic diffraction scattering angle from a potential of

«
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range a, - From these expressions and Egs. (1.3) and (1.7) we obtain

the condition

1/2
E
n(class) = —ee < 1 (1.25)
20 A ’
.- eff

-if the scattering is to be classical. In Section V a more precise

condition than (1.25) will be given.
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IT. GEOMETRICAL RELATTIONS
In this section we discuss the classical trajectory in‘the center-
of-mass system. This trajectory is specified by giving R(t) as a

function of + , having solved Newton's equations of motion:

dg a} -1
= = -9V, R (2.1)

We suppose B(t) to lie in the (%, z) plane of a rectangular coordinate
system, the plane being so positioﬁed that R =0 .is'at the origin and
fhe trajectory is symmetric about the X-axis. This is illustrated in
Figs. (2a) and (2b), which refer respectively to the case of repulsive
andfattractive forces. |

The condition (1.1) permits us to construct a circle "A" of
radius A and with center at R = O, so chosen that V(R) ‘may be
 neglected for R > A . Thus, outside "A" we may take the trajectory
to be a straight line. In tﬁe asymptotic prior region outside "A",
.fhenceforth called region I , this line is parallel to the incident
relative momentum b - In the asymptotic post region outside "A",
_\called henceforth Fegion IT, the trajectary is parallel to a fixed
,yector By » obtaieed by rotating P through an angle ec . [Note that
'Aec is pbsitive (negative) for an effectiyely repulsive (attractive)
| force, as obtained from Eq. (1.5).] At an arbitrary point on the
trajectory,‘the local mqmentum vector is K and the local tangent is
>£he wit vector E . Equations (2.1) of course imply that «(R) may

"be written as

k(R) = pl1 - UR)], - (2.2a)

-~



where
UR) = 1 - [1- V(R)/ep]l/2 |
- S & (v/e )2 I (2.2p)
2€P 8 P . ’

It will be convenient to choose the coordinate 2z as the
independent variable defining points on the trajectory (rather than the .
time t), so we shall write R = R(z) . The equation of the trajectory

is then of the form

@) = a + u@, | (2.3a)

-with

h(0)

]

0,

h(-z) = n(z) . (2.3b)
Thus d 1is the distance of closest approach of the trajectory to the
origin, as is illustrated in Figs. (2a) and (2b).

The angle between the tangent vector. Q(E) and the z axis will

be called B(z) . Thus,

tan p(z) = & y (2.4)
dz
- The asymptotic angle B 1is then
S B = 1im 8(z) . l ' (2.5)
zZ > ®
*Evidentlyy
& = 2. : (2.6)

c
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In this coordinate system S(R) = S(z,p) , independent of the azimuthal
‘angle $ [describing the orientation of‘the (z,x) planel. Here we have
written the radial coordinate :é.s o= x| . |

In this new coordinate system the equation (E,lh) for the trajéctéry

becomes

; ' ® '
x(z) = [E.+ IZI] sin B‘+ b + o AB(3') az'+ 691'55, aO) s
| |z |
(2.16a)
and ,
2(z )= secVB[E‘cos2 B - |z] sin2 Bl - b tan B
g m N
-tanB |  Ap(z')dz! +,@fal‘ ag) -
’|z ]
(2.16b)

Finally, the radial distance p(z,b) .in a cylindrical coordinate system

is
oz, b) = e(@) x(z),
e(z) = x(z)/|x(z)] . - (2.16¢)
To calculate the radii of curvature of S(R) ; we choose a fixed
‘point R, and cbnsider the surface passing through R, :
s@® = s -

: : : A _ "
The normal to this surface at EO is the unit vector Ko s -tangent to

‘the trajectory passing through R ‘[this is illustrated in Fig. b4].

0

. A
For a very small displacement «.D from the point BO" we, have

o)
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SR, + KD = S@®y) + D@y . (2a7)

[This follows from the general theory of the eikonal:

SR+2) = SR +) VSR and WER) = x@® .

We now introduce two orthogonal unit vectors, each perpendicular
. .

K.O,

k1,

o>
1

(1/n)[sz'5 - 8,

o>
i

> = B, | | | " (2.18)

where

(O]
|

' 0s(z
2 _ %z—l—pl- B e'tc"
' e

and all quantities are evaluated at R [Here %, 3, 3 are the

0 °
three basis vectors of the cylindrical'coordinate system. ]

A

A small displacement b'='Ai gl + AQ € will represent a

- R
point on another constant eikonal surface defined by S(R) = S(EO + ROD),

"where- . :
2 2
2\ R, + &R |- (2.19)

Here éﬁi and GEZ are the principal radii of curvature of the surface

D =

at BO . This is illustrated in Fig. 5. We note that positive éﬁ?l .
(6%;) corresponds to convex curvature as seen from a point ahead of go

. on the trajectory.

Using Egs. (2.17) and (2.19), we obtain
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2]
o~
v}
+
>
~r
1l

N
S(EO + 5OD)

5®,) + %(% * (%Z) (2.20)

By direct calculation using a Taylor expansion we obtain, on the other hand,

1l

_ o Aéz
s(gO + ) = s(go) .+: 55~ S,
2 _
+ N [s®s +8%s -25 5 8 1. (2.21)
‘ 2n2 p “zz z PP Z p zZp
Thus,
11 2 | 2
7S [ 8, S,, =25, 8,85, +8,° 8, 1,
s
1. 1 T (2.22)
@ -

To lowest order in the small quantity ,Iecl we can considerably
‘simplify these quantities. The angle which the tangent Q at a point

z on a given trajectory makes with the z axis is
ec(E;b) = g8 + B(z), ' (2.23)

»'ﬁhere we'ekplicitly indicate the dependencéron the impact parameter b ;

‘which of course acts as a trajectory label. Then

5, = &.cos ec(z,b) ~



x
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. and

'k sin ec(E}b) ¥ ec(E;b) .

0
1]

.This lets us write

l vec(z}b)

&

e

and ‘
3« 6,(z,b)

gﬁgp

K o Dp
o aec 9.2.
3b dp

© Now, to lowest order in 6, , we obtain from Eq.. (2.16a)

%Q% = e(z) 1 + % (z + |Z|) cos B g—;SEEZ B ,

and thus
¥ e(Z) Eifgleﬁl 1+ (z +,,Eﬁ)cos B f;EEEEz - .
éii: 3 2 a d b

‘Here 6_(b) = _lim 6 _(2,b) is the scattering angle (1.5) and e

: z > o
is defined in Eq. (2.16c).

We now repeat the above calculation for the wave function

‘as is illustrated in Fig. 3b. In this case Egs. (2.15) are replaced by

Z cosPB + xsin B -

N
il

X = -2 sinB + X cospB .

(2.24)

(2.25)

(z)

v,

C

(2.15%")
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The trajectory equations (2.16) are replaced by

x(z) = [|z] -% 1 sinp +b+ FA&(E')dZ' + @f!ﬁil ag) »

|z

z(z) = sec B [z cos® B+ |z] sin® Bl + bptanB

- tan B [ CAB(zt)azt + @/(1[351 'ao) .
Z1z] |

(2.16V7)

. Y : : o) -—
The angle of deflection (2.23) from k at any point 2z on the trajectory

is now

6,(zb) = B - B(z) . (2.23V7)
Also, we now have S, ¥ - & ec(E,b) , SO

1 ec(z,b)

@Z % - S '.‘ - o (?.ehW'),

Instead of Eq. (2.25) we have:

- e(@) [aec(a,bn/ab
>

’ F i (o) 1 °
@I [l+%(l§|-2)-cosﬁ < ]

a

(?.esw’)
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III. CALCULATION OF THE EIKONAL
We are now ready to discuss the evaluation of the eikonal, as
implied by Eq. (1.19). That is, we negiect terms of order
1/2
D1 - (3.1)

g = pay lo I’ » [woa ./

First, we calculate the eikonal for that part of the trajectory
‘which lies inside the circle "A" of Figs. 2. Using Egs. (1.8b), (2.1),

and (2.12), this is

{ Z, “z
5, = 2p{s(z,) - uE Lz, , (3.2)
-0 0 : dz j :

> 1/2 ) | _
+ (@ +1n) ] : (3.3)

where

and Eé is as before the point at which the trajectory intersects the

upper half of "A" , Since we are neglecting terms of order Ng» We

_ may set ds/d;: = 1 in the second term above. Thus, we have
- 2 o - N B
812 = gp z, sec B‘ - { % (32.- 52(z)) T+ U(R}j}dz \ +'(E%“s)_
0 o '
= 2psecpz, + f0) + Hng), G
.where
o) = -» [LE-2@) + v ]a . 6o
. : -m .

The quantity S may be put into the form of Eq. (1.19) by

12

writing it as



8, = 2p z, sec B‘ - U(Ro).dE'
0
] (L6 - 2@ + dg;'%]d;'
0. .
4 @/018) | (3.6)

‘where R, 1is defined by Eq. (2.8).

We observe that when we evaluate 515 [or S(R) generally] to

within the accuracy implied here, the angle B(z) need be evaluated only

-~ to the lowest order that given by Eq. (2.7).

We also observe that according to the principle. of least action12

S12 is sﬁétionary with respect to a variation of trajectory about the
exact trajectory. This means that we can use Eq. (3.6) to give a
1o 1s

insensitive to the precise trajectory. [In Section VII we shall discuss

variational principle for obtaining B(z) . It also means that S

the variational principle in more detail.]

We now calculate SP+(§) , the eikonal for W§+ s to the same -

order. In the region I , prior to entering the circle "A" we have

SP+ = p.R , as in Eq. (1;10). In all other domains we evidently have
[recall that zl =, - 221

+ ' =y . - ' =y :
s, ®) = p ¢s(z) - s(z)) - UR) dz'} +pR) 5 - (.7

~

R
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where R. 1s the vector from the origin to the point at which the

1.

trajectory intersects "A" . Now, from Figs 2a , we see that

E B = -0D Eé secp - pbtanp . (3.8)

This lets us re-write Eq. (3.7) as [to order fg I

. -0 - . 7
S;(g) = ps(z) ~-pbtanp - g 8 - 82(2)1dz - p U(R)dz"
~ 200 -0
= pzseeB - D b tan B+ Bz, v), ' (3.9)
where .
BE@ v - -» [2 6 -@)) + v®la . (20)
-0 :

Equation (3.9) is valid over all R space if we let the radius
of "A" become infinite. In the asymptotic regime II, following the
scattering we can write v

sp*(g) = pyR - 2 Pbtanp + 'ﬁ(bv) , (3.11)

~

where §(b) is given by Eq. (3.5). Here p, is the asymptotic final

momentum, as in Fig. 2a.

The eikonal Sk-(g) for the wave function Wk- is subject to
the boundary condition (1.11). Referring to Fig. 2b and following the
argument given above, we obtain to CY(HS)

o

s}é'(g) = kzsecB + kbtanB +k [%(62 - B2 (7 )) + U(ﬁ)}dg’.

(3.12)
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" In the asymptotic region I ahead of the scattering this is

5 ®) = kB + 2kbtanp - $(v) , © (3.13)

since k, ‘R = x[|z| sec® + b tan Bl in region I .
In the "straight line" approximation we may>drop the term S, in

Eq. (1.19). In this case we may replace Egs. (3.9) and (3.12) by

z |
+ _ .= , - z'
S, (B) = pzsecB - pbtanp -p URy)az' + @‘(nes‘)‘ ;
~ ~o0
g3}
8, (B) = kzsecB + kbtanB + k U(Ry)dz' + @/(nes) p
z (3.14)
where
: ' e - 1/2 : :
- 2 ~ 5
feg = Py [0, % = lon /BT . L (3.15)
Again R, is defined by Eq. (2.8).
Also, in the "straight line" approximation we can write:
‘ rz.
For z<0, sp*(g) = pR - p UR,)EZ" ,
, ? g
. - N rz K
> - + = R. - 3 71 - R
For z >0, Sp (R) poB-P U(Ro)dz Pb6.,
L - 00 ’

(Eq. 5.16 cont.)



For z>0, 5 (B) = kR + U(R,)az' ,
_ , oy
. < - = P —' : .
.For z<0, Sg (R) kR o+ & ~ U(Ro)dz +DPb 8,
. k

(3.16)

Note that our "straight line" approximation does not strictly correspond

to a straight line. This is because IE pl may be arbitrarily large

in the asymptotic domain.
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IV, THE AMPLITUDE A(R)

We consider first the amplitude (1§8c) for \lfp+(§) and evaluate

this only to within relative order (eca) .
For x(z) > 0 we have from Eq. (2.16a) )

c_n,

oF o) - e+ + | ap@)a + O6R) .

Mol

If we hold b constant and vary z , we obtain from this .

do(z, b) (B + 8(z)ldz

e (z z .
c:(z, b)dz ,

" according to Eq. (2.23). 'I'hus;, usihg Eq. (2._2'&) we find

[ % = [ e 5)/19)'.

- Also, using Eq. (2.25) we obtain

fm&r [ v (2)

-00

' ' ’ 2 -1
w || 2 b)) (=00, b) > .
4y 0b "db '

in [Bp(g b 1.

Substitution of ‘these results in't’ov- Eq. (1.8(_:) now 'grive'sl'us ,

(%.1)

(1.2)

(4.3)

(1.4)
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which is just the exact expreséion (I %.9). Equation (4.5) may be
" evaluated using Eq. (k4.1).

We note that A(R) 1is singular in the asymptotic post region II

for | 4
z 6,(b) - ,V 6,(b) < 0 B o (4.6a)
and for |
dzg(_b.) = -1, degéb) < d - - (ﬁ6b)

These singularities are suggestive of the familiar Stokes phenomenon
‘occurring in the WKB solution. The eikonal approximation (l.a) breaks
down at either of these singularities. To integrate past these, more
elaborate methods than those given here are required. Fortﬁnately, for
the applications which we have in mind,'the wave}functions Wbt are not
required in the far ééymptofic region implied by Eqs. (4.6). ” \

It is evidené from Eg. (L4.1) that Eq. (h.5)_doés'not approach
its correct asymptotic form when either 8 = 0 or dB/db = 0 , This

can be seen by writing A(g) in the approximate form, valid for large z s

‘ | e )/ , ae -2/2
A ~ U z + |z| “e z + |z] %% ]
. AR) = 1 + -) 1+ = 1+ .
ME) ( 2 2 b L\ 2 . ab _[
The case that 'ec(b) = 0 is called a "glory", while dec/db = 0

13

gives "rainbow" scattering. Ford and Wheeler have shown that the
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classical description of scattering fails in eitﬁer of these cases.
This is clear from the above expression, Since,then A(g) , does not
approach its correct asyﬁptotic form., 'Equation (5.11) of the next
section may be used to describe scattering at angles near either a -
{rainbow or a glory. The resulf is of course equivalent to that of Ford
and_Wheeler.13 |
' To obtain the amplitude factor A(R) for ¥~ , we first use

the first of Egs. (2.15V ) to write, for  x(z) > 0

' (00
oz, b) = (|z] -2 + v + Cap@) az o+ @) .
o . A |

OURYD,

_ 'The expression (4.5) remains valid, but is now to be evaluated using

' ‘Eq. (L.1v7) .

-
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v. THE ELASTIC SCATTERING AMPLITUDE
Using the eikonal wave function (1.8) we may write the T matrix

for scattéring from an asymptoﬁic momentum D into an asymptotic momentum

b k as
~

. R |
T = (21()-_3/? R e V(R);Ilfpf(ﬁ)

i

(2:r)f3 &R V(R) A(ﬁ) exp i[s;(g) - ,15-3]15 s
- | ) - (5.1)

where in the second writing the relative error is of order n(eik),
Eq. (l.lh). We showed in I that the classicai amplitude is obtained
from (5.1) when condition (1.25) is met. In this case, of course, we

have € = lecl s where © is the scattering'angle:defined by -
A A
cos ® = k+«p .

In addition to the assumed condition (1.6) that lec[ < 1,

‘ ﬁe shall also supposé that

6 << 1.

~ Finally, we con?inﬁe to assume that the expression (1.19) for Sp+ is

~

valid, quantities of order

o | 15
v Ng = Pag I8,
_being negligible. We shall also consider ne =p ag 95’ to be negligible.
We see from Bq. (4.5) and (L4.1) that to relative order lecl ,

we may seb
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A(g) = 1

_in Eq. (5.1). We have then to evaluate »

T = (21z)'3f &R V(R) exp[i-s;(g) - kRl . | (5.2)

~r

We now shall use a cylindrical coordinate system, with variables

(z, p, }é) " to carry out the integration above. Then

&R = pdpapdz . » | : (5.3)

In this coordinate system we may re-write Eq. (3.9), using Eq. (2.15b),

as
. . - ®
"f'or'-z-_>AO y ,.Sp+(1-3,) = p z sec 6, +PB - AB(z') az'
E: 7|
N (AR E  (CYS I (5.4)
and
m v .
“for z<0, ' SP+(§)‘=pz+pB ' A 8(z') az'

~

+ Bz, v) + Olng) .
' (5.4b)

‘Also, using Eq. (2.16a) with p = x(z) ,
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oy
2
]

pzcos®+ppsin®cos P

it

Pz cos ©+psin® cos P (;+ [Z]) sin B

.00 _
+b+ aABaz' |.

gl

This lets us write, to relative order Mg s Ng > ete.,

z>0 s - kR | -5,k
for =z 0o, SP - kB = pz sec ch - Po.k |
oo
+ p AB’dE_'[sinB - sin © cos B
z|
-pbsin @ cos/f+5(2, ),
| | (5.5a)
and
for z<0,
©
Sp+ - k<R = pz[l-cosel +p AB dz'lsing- si_necos;é]
lz| |
-pbsin®cos P + _Zo'(;, b) .
(5.5b)

Yow, we saw in I that in the classical .limit the important con-

tribution to the integral in (5.2) comes from z in the near asymptotic

:'post scattering region. This means that in the classical limit we can

set :-',- _ ‘ |
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o) - ‘
] - 2
rpaz = B0 -
. |

Also, in the classical limit 30'2 = 0 . Therefore in the classical

limit we have

Sp+ - k-R = ﬁ('z_, b) - pb sin.G cos ¢ P | ' (5.6)

to within the order ns, ne, efc.

The classical limit fails, as we have seen, when

lecl D a, < 1. (5.7)

';Thus, when the classical limit is not, valid., we have 6c2 P ao-<< 1,

5 _ :
& p ag <1, e lecl P a, << 1 . In this case we again see that

Eq. (5.6) may be used. In any case, we may now write Eq. (5.2) as

_5 o - - if
T = (on) pdpdz af V(R) exp {-i pbsin@cos f } e
-2 ' '@(-Z—’b) :
= (2n) o dp dz V(R) Jo(p b sin 8) e .
(5.8)
To relative order lec[ we have
pdpdz = bdbdz, (5.9)

and, to the same relative order,

\?(R)d? = -vaf, o o | (5.10),
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where v = p/M is the asymptotic relative velocity. This lets us write-

X . 1
o if(v) |

\
babJy(pbe)e  -1], (5.11)

o) = 1m Bz v) , (5.12)
Z —* +00 | '

-is defined by Eq. (3.5).
Equation (5.11) would reduce to the familiar expression of

5

Moliere’ if we were to drop the term S, 1in Eq. (1.19). The increased
‘generality in the quantity j(b) has not, therefore, altered the simple -
form of (5.11). 1 |

Tt is instructive to retrieve the classical limit from Eq. (5.11).

To do this, wé introduce the classical scattering angle @c » defined to

accuracy of 15 »

P & (b) = aaﬁib) ’
] : : .
@c'(b) = = ; , e, __ (5.13)
and | | |
e s ,ec(b)/lec(b)lf . ~ (5.14)

Then, on using the asytﬁptotic form for the Bessel function, we have

o0
7T

— {.2/ﬂ6p}l/2 w2 g ei7(b) eieluj,
~2i(ex)? _ - o

,a .
ne

(5.15)
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where
y(®) = F) - ey PbO. (5.16)
Now, the stationary phase poiﬁt at b= bc is obtained from
%%: = ‘p(-Qc.(bc) + el-. e) = o‘,
. or N L
o = o (o) D (5.17)‘

defines bc . This lets us write in the integrand of Eq. (5.15),

: 36 o | o
() = (b)) + 2 =2 (-1 )" + @llciass)) , . (5.18)
c : : v
- vhere : _
o £ e Jae 72 ~
n(class) = S éc_ pl/2 abc . - (5.19)
| b | | o

_‘[This provides a more precise definition than that given by Eq; (1.25).]

A stationary phase evaluation of Eg. (5.15) now leads directly to the

- elassical scattering matrix

: : b | db '1/2 |
T o -[(211:)2 Mt —ec' d_ec" exp .[i@(bc) -e PD, e)}
r | 41 | -
d K ,
xoo[rg(n- 2 [l]] - o)
. L a.bc . T C ) :

(5.20)

A

Finally, we see from Egs. (3.10) and (1.5) that
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i

o,(b) + @’(ecg) . (5.21)

6_(b)

'Thus, @c-= ec -to‘within the éccuracy with which we have calculated the
classical scattefing.
A familiar expression for the total scattering cross section may

be obtained from Eq. (5.11). We have

o * 2x f éinede (2n_)L‘M2 Iz P . (5.22)
‘Now, if we write
7t - »
sin 6 40 I (p b ©) J,(p b’ 8) = L [8(6 = )1/b , (5.23)
o s P .
we obtain
g = 8 jb db sin2 .(ﬁ(b)/e) . ‘ : g (5.24)¢

ih_



-32-

'VI. THE GREEN'S FUNCTION
The Green's function ¢ R le 5') was given in the eikonal

.'approximation by Eq. (1.12). The eikonal in this case is

n(ﬁ) ds , 5 (6.1)

where the integral is _{;aken from a point B' to a point 5 along the
. trajectory linking these two polnts. We may evidently so rotate our
(z, X) coordinate axes that Fligs. 2 apply. We may then use Eq. (3.9),

- writing

' o +.‘, =
. 8® B') = s;1@B) - s 7(R'), (6.2)

“where P and the impact parameter are chosen to ensuft_a ‘that the traje'ctory

pass through both R and R' .

" The principle of least action may ‘be used as a variational principle

to calculate S(g, R'). 'That is, S(,13, R') is stationary if we hold R

and R' fixed and make small variations in the tr;a.jector'y.

( For our abplications to atomic reactions the points. R and R'
will ordinarily both lie within the range of strong interacfion.. This
means that we can, for most applicatioﬁs,' approximéte A(R, R') in

Eq. (1.12) as

R4

‘ -1 . .
AR R T -2 (R-B'1) . o (6.3)
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The principal radii of curvature may then be approximately written as

@%‘@% B-rl . - (6.4)

The relative error in:both cases above is of é?%lecl) .

(
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VII. APPROXIMATION METHODS

We have already noted that according to the principle of least

action the quantity S [BEq. (3.2)] is stationary if we hold the end

12
points fixed and vary the trajectory about its correct value. This
suggests that the eikonal is somewhat insensitive to the actual trajectory
chosen. It also means that we can use (3.2) to provide a variational
principle for calculating the trajectory.

The simplest geperalization of the straight line trajeétory is
that cohsisting,of twb straight line segments intersecting at an angle

v 2B , as is iilustrated in Fig. 6. [If we consider B to be a variational

parameter, and vary B +to minimize 812 » we of course obtain 28 =6 ,

c

as given by Eq. (1.5).]_ In this case, which we call the "angle" approximation,

Eq. (2.13b) reduced to

b = dcosB, : (7.1)

and Eq. (2.12) becomes

s(z) = z secB . (7.2)

‘The expression (3.10) simplifies to the form

z(-)

- » u(R,)at , Z<o

Bz, v)

z(+)

U(Rl)dC +2 pU(@d)d sin B , z>0,

= - P ’
-®
(7.3)
Z(t) = % + : 2 _ 2 2 inid
where z(+) = zsecB Idsinf and Rl =b + £ . In obtaining

Eq. (7.3) we have set



sin B
“ U(R)at ¥ U(a) asinp,
0

etc. The phase (5.12) appearing in the T matrix is obtained from (7.3)

as

, oo ' _
Fo) = - J[ uRDAL + 2ppav@ + Gloakl) . (7.4
=00 .

The "angle" approximation thus differs from the"straight line" approxi~
mation only by the addition of the term 2 p B U(a) .

We mention that when it is possible to write U(R) in the form

o) - i, (7.5)
5= )
with the a_ constant, the integrals (7.4) and (2.7) can be done
analytically. Also, if we write

Q

B(z) = ey * E cS/RS s : (7.6)

s=2

the integrals (2.11) and (2.12) can be done analytically.v_In this case
the coefficiénts _CO’ cee gQ may be treated aé variational parameters
in 812 .

To provide a simple numerical comparison of the "straight line”
and "angle" approximations with the "exact" expression (3.5) for ‘ékﬁ) ,
we write

UR = DR . | (7.7)
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The expression for { , as obtained from Egs. (2.5) and (2.7), is
Tt
B - E —§ 4 (7-8)

The corresponding expressions for  in the "straight line" and "angle”

1k

aprroximations are then

B(o)

-2pbB (straight line)

1l

-2pbp(1 - % B) (angle).
‘ (7.9)

In Fig. 7 we show the resulting values of j5 given as a fﬁnction
of ec = 2B, Inlﬁhis calculation we chose D = 0.025 and p = 136
(both in atomic units). We have given ’é. here for B extending over
- the range O.< 5 <1. The‘"eiact" expression is of course no longer
exact for B X~ 1 since we have replaced cos B by 1 - % 62 in
Eq. (3.5) and tan B8 by B in Eq. (2.9) for h . The results of
Fig. 7 do suggest, however, that the "angle" approximation, which
represents an almost trivial generalization of the "straight line"

approximation, can be considerably more accurate than the latter.

!
i
i
1
i
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. +
VIII, - APPLICATION TO THE (H , H) SYSTEM

As a first application of the approximate methods developed in the
[ ' previous sections to physical processes in an actual collision system, we
consider the elastic scattering and resonant electron-transfer processes
in the (H , H) collision system. Since the adiabatic potentials for this
. 15 : o :
system are known accurately, we are in a position to evaluate directly

the validity of the various approximations without ambiguities resulting

|
/

from uncertainties in the potentials, ~

+ .
The (H , H) collision system is a system having symmetries with

respect to the interchange of the protons and upon reflection of the electron

coordinates in the internuclear plane. As a consequence, we have the

"gerade' and "ungerade' symmetries for the electronic states and a parity

restriction for the angular momentum states of the nuclear motion. For a

1 ' given electronic state the angular momentum quantum number L for the
motion of the protons is limited either to even or odd values. We have the

symmetry prope“r;cies for the scattering amplitude £(8)

| f(g) = £(n-9), L even _
o ) (8.1)
| () = -f(rn-0) , L odd.
‘ v This would give rise to oscillations in the differential cross sections
o R | )

resulting from the interference between f(8) and f(m-8). 6,17 Such

interference would become appmreisile only at large L and large scattering

angles. For the present interest in small ahgle scattering [ see Egs. (1. 6)
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and (1.7)] we neglect for the moment such interference.

1

The "gerade”vand "ungerade' symmetry of the electronic states

which give rise to separate potential energies of interaction between H

and H must explicitly be considered. In dealing with the elastic scattering

-and resonant electron-transfer processes between H and H, we assume

: . VU 2_+ .+,
that the interaction potential is given by the Zg HZ (gerade) and the
2_+ F s . . -
: Zu H2 (ungerade) adiabatic potentials. This assumption neglects any
coupling of the elastic-scattering and electron-transfer channels with the
collisional excitation, electron-transfer excitation and ionization channels.
~This would be a reasonable assumption if the condition for the near-
adiabatic scattering n, << 1 [ Eq. (I1.2)] is satisfied and if there is no

. _ + |
near crossings of the adiabatic states. For the (H ,H) system such an

assumption, is, howevér, an oversimplification since in the united atom

+

limit the 2pg and 2pm s'tates of H2

are degenerate and therefore strongly

coupled. This oversimplification nevertheless should not affect our study

of the trajectory problem. - : ‘ B

In this approximation, the elastic-scattering and electron-transfer
amplitude may be obtained éfom appropriate linear cornbinainns of the
COll%’LSiOn amplitudes resulting from the gerade and the ungerade pofential
inte'.ractiOns. The differential cross section theh takes the expres‘sion, for

elastic scattering,

i | (8. 2)
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and, for electron transfer,

do » do do do

et - g + u _ I - ' (8. 3) .
dQ dQ dn dan -
with
do .
g _ 4 2 .
-5 = 4 T 8.4
o m | Tg| | | (8. 4)
do
u , 4 2 , ,
—_— = T - 8.5
an 47" M | u[ ( )
doy 4 :
—= = 8m MRe {Tg Ty} (8.6)
dQ o ‘
‘ dag dou doI . _
where —aa- , —&Q— and -d-a- correspond to the contributions to the cross

section coming from the gerade interaction, the ungerade interaction and
their. interference,
Calculations of the differential cross section are carriéd out in

"straight-line' and

the élassical lirﬁit of the eikonal approximation fér the
classical [ to the order | 13 a_o] trajectoriesvas well as for the "angle"
approximation (Sgc. VII). More spéciﬁcally we will adépt the classical
scattérin_g matrix [ Eq. .(5. 20)] obtained from the eikonal expression
gi&gn“by Eq. (5. 11)2 ‘[ to @(ns)] by means of the stationary-phase approgi-
mation [Eq. (5 17)M] . In paper III of “‘fhis series, we shallvillustrate the
appli’cation of the eikonal approximati{)n tovscatterings where the cblassical

i
description fails, 1
’ i
l

P
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The condition for the validit'} of the cléssical scattering ié given by
Eq. (1.25). In Fig. 8, the region of classical scattering obtained from
Eq. (1.25') is displayed for both fhe gerade a.ncv14 the ungerade adiabatic
potentials in the straight-line appr0x'1nl‘1at10n.<. The classical region is then
given by the areas lying below the curves labelled m(class.) = 1. Itis seen
tha;c the gerade potential is more restrictive than the ungérade potential.
This is clear since the gerade potential has an attractive portion and would
givé rise to rainbow scattering for which, as mentioned ‘t;efore, the classical
description of scattering fails. From Fig. 8, it is apparent that collisions
with impact paramefers in the neighborhood of 2 to 3 4 a  are essentially
nonclassical. (It will be seen later that rainbow scattei-ing corresponds to
an impact parameter of about 2.7 ao.) At very small-impact parameters
(i.e. at b - 0), the n(class.) =1 cur\}es for both the gerade and the ungerade
potentials dip down to effective zero energy. (Due to the scale in Fig. 8, it

is indletinguishable: from the E -axis.)

CM
Utilizing the known adiabatic p'otentials'18 the classical scattering
angle may be determined as a function of the i>mpact pé.farheter. For
stréight-line_trajectory where the impact bérameter e.qualé the disténog of
closest approach, this is particularly simple ;ince the énergy dependence
of ec can be factored out‘ [ see Eq. (1.5)]. | Tﬁis permits us to define

a reduced classical scattering angle QC(bA) Q_Z which is energy independent.

We have
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. | v<R‘>> .
-2 _ b d o'} dz . 2
ey ¢ = = -5 f IR ( Ry /R T 6(8.) | (8.7)
_ . o o . o ‘ : :
»with
- _h M ' , :
¢ = s (m) | (8. 8)

where ( 1is a dimensionless quantity. In Fig. 9, we have plotted the
reduced scattering angle as a function of impact parameter. It is seen that in
the gerade rlnode - of interaction we have at b > 2.7 a  a minimum. This
would give rise to a rainbow.

For classical trajectory, the relation between the impact’para‘meter
and.: the distance of closest approabh is no longer simplé. To order
| B3 | at'), they are related by Eq. (2. 13b). This relationship is shown in
Fig. 10. Asrexpected the deviation from d = b straight line becomes more
prénounced with decreasing energy. The classical scaffe;'ing angle for H+
on H along clas s.ical tz;ajectory may be (;btained to the accuracy of §(b).

We have from Eq. (‘3. 5)

_ _/m) d&(b)

®c - Q(K/f) db
_ _.2/m aR 4 J_ 2 2 V&) | 3
=-¢ (M)of D = {E[B -87(2) 1+ “F (az + e

(8.9)

where R is given by Eq. (3.3). The calculated - @C' is compared with that

obtained in the straight-line trajectory approximation in Table I.
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In the stationary-phase apprbximati_o_n, the contributing impact
parameters to the classical scattering are defined by Eq. (5.17). They are
shown in Fig. 1.1 as a funption of the classical scattering angle @C f01;
several center-of-mass energies. The corresponding stationary phase

v(b) [see Eq. (5.16)]

Y(bc) = é(bc') e, pb_8 | (8, 10)

are shown in Fig. 12. Differences are found in the stationary phases as
predicted by the "straight—li'ne" trajectory approximations and by the
clas_sical trajectory a.tpproximatioi_nso These differences should become
appreciable in the inter;ferevn‘c‘e pattern.

Having determined the impact'parame“fers and rthe statio_nary phase
we are now in positi‘on..to evaluate the differential cross section. The
result for elastic scatteriné and resonant electron-transfer cross section

-using the classical scattering matrix given by Eq. (5.20) is shown in Figs.
13 to 15 as a function of scattering angles for several center -of-mass
energies. The regular pattern of oscillation comes from the inteference
[ Eq. (8.6)] bet\;eenlﬁhe gerade.- andvungerade— mode of interactions. It
is seen that the interfc;repce depends sensitiyely upon their phases. In

| Fig. 16 the constituent compbnenj:s [ given by Eqgs. (8.4) to (8.6)] of the |

differential cross sections are shown for one of the energies. As expected
the interferenace term ch/dQ oscillates with increasing amplitude and

rapidity as the scattering angle decreases. The sum of the elastic-



-43-

scattering and resonant electron-transfer differential cross sections denoted
by dot/dQ is, however, a smooth function o‘f‘v the scattgring angle.

For comparison, the results obtained in the "angle' approximation
[ﬁ)q. (7.4)] are also included in these figures. It is observed that the |
"angle'' approximation yields values which are consistently close to the
values obtained from the more elaborate calculation following the classical
trajectory up to the order ] B!3 a- This séerns to suggest that the simple
generalization of the ''straight-line'' approximation offered by the ”ahgle"
approximation do constitute a significant improvement.

ét angles smaller than the rainbow angle, the one-to-one relation
be't\“’;veeri. the impact parameter and.scattering é.ngle as shown in Fig. 11 for
the stationary-iphase approximation is no longer satisfiéd. :T.he scattering
observed at a single angle ariseslfr‘orn’the scatterings through several
separated impact parametefs. Thi_s would then give rise to interesting
interference patterns. Such a behavior is expectea.for scatterings due to
the gerade mode of interaction. In Fig., 17, the relation [ Eq. (5.17)]
between the impact parameters and the scattering angles is given fof
several center-of-mass energies, It is clear that at angles smaller than
the. Jr‘a_inbdw gngle '@r , there are three participating impact parameters for
gerade scattering.'.;For the ungerade sg:a’ttering where the potential is
repulsive and hé.s no rainbow;écattering, only one im.pact' paramet.er partici-
patés for eéch scattering angle. Their corresponding stationary phases

y(bc) are given in Fig. 18.
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To account for the scatterings coming from separated impact

parameters in the gerade case, Eqs. (8.4) and (8.5) must be modified.

We have
dog. 4 2
—= = 4 M 2 T, 8.11
dQ m —~ Jg ( )

J

doy 4
— = 8w M Re T, T (8.12)
dQ 3 jg u .

~where the sum over j runs over all the particpating impact parameters
for each scattering angle. Results for dog/‘dQ and ch/dQ calculated
from these equations are given in Fig. 19. The inte_rfel;énce structure in
dag/dQ is apparent. This interference within ther gerade scattering also
gives rise to further structure iﬂ ch/dQ. Superimposed oﬁ the regular
gerade-ungerade oscillations 1n do‘I/ dQ} are the oscillations COming from
interference within the gerade scattering. The elastic scatter.ing aﬁd
resonant electron-transfer differential cross sections at these scattering
angles are shown in Fig. 20. The differences in the differéntial cross

section at these small angles coming from the '"'straight-line' approximation,

the "angle'' approximation and the classical trajectory are small and become ‘

indistinguishable in these figures.
An investigation of the energy dependence of the differential cross
sections has also been carried out. The results are given in Figs. 21 to 24

for a few scattering angles in the ''straight-line'"and the ''angle"
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approximations. In general the behavior of these quéntities és a function

of energy is similar to that as a function of scattering angles. For a fixed
scaftering angle, the rainbow scattering appears at certain critical energies
and below which again we observe‘ interference coming from separated impact
parameters. The result obtained from the angle'' approximation agree

reasonably well with that obtained by following the classical trajectory for

~ all the energies that we have checked.

To our knowledge, no experimental measurement on the differential
cross section for H and H is available in the literature for a direct com-

parison with the theoretical result. Detailed measurements on the electron

N + .
transfer probability in the (H , H) collision system has been carried out by

1 ,
Helbig.and Everhart. 9 This then provides an indirect assess of the -
theoretical result for the differential cross section.

The electron transfer probability Pe can be calculated from the

t

differential cross section by the relation

p = (dcet)/<dctotal) . .(8 13)
et ~do dQ ’

+
where dototal/dQ is the total differential cross section for the (H , H)

‘collision system. In the two-state approximation , the total differential

cross section is approximated by dot/dQ. Hence

dc7total - 'dct - dcet + d‘cs
dQ TdQ dQ daQ

(8, 14)
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In this approximation, the differential excita.tion cross sections are
neglected.

The calculated el‘e¢tr0n ;’cransfe:r.' pr;)bability Pet i'svcompared with
the experimental measurements in Fig. 25 as a function of the incident
proton energy for several fixed séatteriné angles and in Fig. 26 as a f1.1ncti'on
of T:he scattering an}gleffor several fixed incident proton energies. It is seen
from Fig. 25 that the agreement between the theoretical and expervimental
electron-transfer probability as a function of proton energy is not quantitative.
The improvement over the straigﬁt-line approximation introduced b'y the
"angle' approximation in the positions of the oscillation is too smali., No
further appreciable improvement is obtained if the classical trjectory is

followed up to the order ‘ B !3 a_ The theoretical result also fails to
predict the Everhart damping. 20 These are, however, expected of the
v_adiabatic two-statevapproxima‘tion as was pointed out by a number of

21- ‘ ' '
25 The discrepancy (displayed in Fig. 25) which is apparently

workers.
larger than the experimental uncertainty comes partly from the appr0xima-
tioﬁ in dctotal/'dQ as given by Eq. (8.14) and partly from the inaccuracy
in the calculated differential cross sections as a result of the classical and
adiabatic two-state approximations.

The agreemént between the theoretical and experirﬁental electron-
transfer probability is, however, much better as a function of scattering

angle, except for the case with an incident proton energy of 151 ev (the

lowest energy measured). This agreement appears to be further improved
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by the "angle'' approximation. However experimental measurements of

Pet at angles larger than those repdrted are needed to settle this point.

At angles smaller than the rainbow angle, a increase in the oscillation in

Pet is found. This increase is originated from the interference in the

gerade scattering coming from separated impact parameters. A calculation

of Pet following the classical trajectory up to the order | 8 | a is

carried out as a function of scattering angle for two-fixed incigient- proton

energies at 151 ev and 410 ev. The result is in gdod agreement with that

obtai{ned in the ''angle'' approximation. This further supports our observa-
tion mentioned earlier that the ''angle' approximation, despite its simplicity,

_ constitutes a significant improvement over the ''straight-line' approximation.
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APPENDIX A

' The Error Resulting from the Eikonal Approximation

The error resulting from the use of the eikonal approximation
may be estimated by replacing A -in Egs. (1.8a) and (1.12) by fhe
product A'A. Here A is gi;ren by Eq. (1;&;) and A' répresénts a
correction to this. The exact equation to determine A" is
[see Eq. (I 4.31)] |

X

. g_M_ - - @aaxi)TF @) . - (A1)
3 .
To estimate ~A', we set A' =1 on the right-hand side of (A.1).

Using Eq. (1.8¢), we obtain

N'X'J' [r1 2 an] o |
Al X exp tElK- {<@I +@;)+5—x_n§—— s (A2)

from which the estimate (1.14) follows.
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Table I. Comparison of the scattering angle as a function of the impé.cit parameter in the
"straight-line'' and the ''classical trajectory O(| _Bl3 ao)" approximations.
Bg(ag) ®g Og Bylao) By Oy
EcMm = 75.5ev EcM = 75.5 ev

.53714 | 3.4633x10°1 | 4.4610x10-1 | .40643 | 5.7277x10-1 | 9.1860x10"!
.76686 |.1.9749x10-1 | 2.2679x10"1 .61844 || 4.7074x10-1 | 6.2399x10-!
. 98764 1.1065%x10-1 | 1.1871x10-1 .82942 | 3.9215x10-! | 4.7957x10"1
1.20264 5.6279%x10-2 | 5.7015x10"2 | 1,04047 3.3247x10-1 | 3.9066 x10-!
1.41358 2.0682x10-2° 1.8975x1072 | 1,25182 2.8537x10°1 | 3.2791x10"1
1.62147 | -3.1303x10"3 | -5.3668x10"3 | 1.46339 | 2.4677x10-1 | 2,7957x10-1
1.82702 | -1.9067x10-2 | -2.1068 x10-2 | 1.67499 2.1427x10-1 | 2.4023 x10-}!
2.03073 | -2.9509x%x10-2 | -3.1007x10-2 | 1.88641 .| 1.8637x10-1 | 2.0715x%x10-1
2.23299 | -3.6017x1072 | -3.6974x10°2 | 2.09745 | 1.6216x10-1 | 1.7881x10-1
2.43411 | -3.9677x1072 | -4,0154x10"2 | 2.30795 | 1.4100x10-1 | 1.5429x10~!
2.63435 | -4.1273x1072 | -4.1369x102 | 2.51782 | 1.2244x10-1 | 1.3299x10"1
2.83392 | -4.1387x1072 | -4.1203x1072 | 2.72696 | 1.0616x10-1 | 1,1448x10"!
3.03298 | -4.0455x10"2 | -4.0084%x1072 | 2.93536 | 9.1885x10-2 | 9.8390x 102
3.23166 | -3.8808 x10-2 | 23,8326 x10-2 | 3.14300 7.9381x10-2 | 8,4435x1072
3.43009 | -3.6694x10-2 | -3,6159x1072 | 3.34990 |. 6.8455x10-2 | 7.2354x10~2
3.62835 | -3.4301x102 | -3.3756x10"2 | 3.55608 5.8929 x10-2 | 6.1919x10-2
3.82652 | -3.1767x1072 | -3,1241x10"2 | 3,76161 5.0645x10-2 | 5,2912x10-2
4.02464 | -2.9194x10-2 | -2,8711x10-2 | 3,96651 | 4.3459x1072 | 4.5188x10"2
5.01587 | -1.7653x10"2 [-1,7408x10-2 | 4,98351 1.9855x10-2 | 2.0264x10-2
6.00939 | -9.8121x10"3 |-9,7209x10-3 | 5.99212 | 8.9006x10-3 | 8.9907x 103
8.00290 | -2.6907x10-3

7.99834"

1.7476 x 103

-2.6820x%x 103

1.7437x10"3
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.ECM =205 ev

ECM =205 ev’

57921 | 1.3276x10-1 | 1.4446x10°1 | .53580 | 2.3411x10°! | 2.6183x10"!

. 78878 7.4658 x 1072 | 7.8433x10-2 . 73880 1.8154x10-1 | 1.9588x 10"}

.99583 | - 4,1530x10-2 | 4.2632x10-2 . 94193 1.4847x10"1 | 1.5754x10"!
1.20109 | 2.1008x10-2 | 2.1126x10-2 | 1,14530 1.2508x10-1 | 1.3156x10"!
1.40502 | 7.6706x1073 | 7.4452x10-3 | 1.34891 | 1.0713x10-! | 1.1209x10-1
1.60791 | -1.1946x10"3 | -1.5007x10"3 | 1.55267 | 9.2584x1072 | 9,6520x10-2
1.80997 {-7.0916x10-3 |-7.3696x10-3 | 1.75649 8.0365x 102 | 8.3546 x10-2
2.01137 |-1.0932%x1072 |-1.1142x10"2 | 1.96029 | 6.9879x10-2 | 7.2462x10-2
2.21223 | -1.3309x1072 |-1,3445x10-2 | 2.16400 | 6.0768x10-2 | 6.2861 x 10-2
2.41267 | -1.4634x1072 |-1.4703x10-2 | 2,36756 5.2800x10-2 | 5,4486 x10-2
2.61278 | -1.5200x1072 |-1.5215x10"2 | 2.57092 | 4.5812x10-2 | 4.7160x10-2
2.81263 | -1.5224%x102 | -1,5200x10"2 | 2.77406 3.9680x10°2 | 4.0808 x10-2
3.01229 | -1.4868x1072 | -1.4818x 1072 | 2.97696 | 3.4306x1072 | 3,5148 x10°2
3.21180 | -1.4254x1072 | -1.4188x10"2 | 3.17962 2.9605x 1072 | 3.0263 x102
3.41121 | -1.3471x10-2 |-1,3398x10-2 | 3,38203 2.5502x 1072 | 2.6012x1072
©3.61056 | -1.2589%x107% | -1.2514x1072 | 3.58420 | 2.1929x1072 | 2.2322x10°2
3.80988 | -1.1657x1072 | -1.1584%x10"2 | 3.78615 1.8827x1072 | 1.9128 x 1072
4.00917 | -1.0712x10-2 |-1.0645%x10°2 | 3,98789 1.6140x10°2 | 1.6369x 1072
5.00589 | -6.4803x10"3 |-6.4468x10"3 | 4.99399 7.3460x10"2 | 7.4007x10"3
6.00348 | -3.6056 x10-3 |-3.5932x10"3 | 5,99711 3.2857x 1073 | 3.2978 x10"3
8.00107 | -9.9015x10"%4 |-9,8898x10~% | 7.99939 | 6.4253x10-4 | 6.4306x10-%
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FIGURE CAPTIONS
Tllustration of the eikonal trajectories and boundary conditions
for V. and ¥,
o D an. x * |
Description of the trajectory in the (x,z) coordinate system.

Trajectories in the coordinate systems (2.15) and (2.15 v) are

 illustrated in (a) and (b), respectively.

Illustration of trajectory and eikonal surface throughlpoint' RO.
Tllustration of the displacement D of Eq. (2.19) and of the two
surfaces of Eq.~k2.20).

Trajectory for the "angle" approximation.

Comparison of the phase ® for the potential (7.7) of the
"straight line," "angle, " and "exact" methods.

Thg region of classical scattering for H+ on H as predicted

by Eq. (5.19) and the condition (1.25) in the "straight-line"
5 ,

- trajectory approximation for the adiabatic Zg+(—————) and

2. + + ..
z, (====) H, potentials.

The impaqtsparameter dependence of the reduced claséical scattering

. , -2 . . . . 2.+
angle © { as given by Eq. (8.7) for the adiabatic Zg‘ and

2
% + H2+ potentials.

u

The relation between the distance of closest approach and the
impact parameters along the classical trajectory (O(IB[5 ao)]
as given by Eq. (2.13b) for the "gerade" and the "ungerade"

interactions for the (H&,H) collision system at three center-

of -mass energies.
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Fig. 12.

Fig. 13.

Fig. 1h4.
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The stationary-phase impact parameter bc as a function of the

ik
center-of-mass scattering angle for the (H ,H) collision system

at three center-of-mass energies. bg and bn denote those of

the b, 's for the 'hamde" qu the "ungerade" modes of interactionms,
respectivély.- The diffefeﬁces in bc found at these angles in
the ?stfaight-line,"Aand thé "elassical trajectory" [o(lsl5 ao)]
appfoximgtion are too small to be seen fpr the scale adopted iﬁ
the figure. l. ‘ | |
Comparison of the stationary phase y [Eq. (8.10)] as a function
of the center-of-mass scattering angle in the "straight-line"
(== =), and "angle" (~=~-- ) and the "classiqal trajectory"
lo(ls1” a,)1 (

n_u

system at three center-of-mass energies. The subscripts g

-) approximations for the (H+,H)'collision

. n

and "u" denote the "gerade"

and the "ungerade" potential of
interactiog, respectively. |

Compar;son‘of the scattering and electron-transfer differential

cross sections and their sum as functions of the scattering

angles in the "straight-line" (- — =), the "angle" (----- )

g s ' 1 5 :
and the "classical trajectory" [0([B] ao)} ( ) approximations
for’ the (H+,H) collision system at an energy of 75.5 eV in the
center-of-mass system. |

Comparison of thefxattéring and electron-transfer differential

cross sections and theirésum as functions of fhe scattering

~angles in the "straight-line" (= — =), the "angle" (-'-f') and

the "classical trajectory"f[O(lB’B‘ao)] ( )} approximations
: + ‘ ' .
for the (H ,H) collision 'system at an energy of 205 eV in the

center-of-mass system.
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Fig. 16.

Fig. 17.

Fig. 18.
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Comparison of the scattering and electron-transfer differential
cross sections and their sum as functions of the scattering

angles in the "straight-line" (— — —), the "angle" (----- ) and

the "classical trajectory" [O(_[B,3 ao)] ( ) approximations
for the (H+,H) collision system at an energy.of 500 eV in the
center-of-mass system.

Comparison of the differential cross sections for the gerade-
potential scattering, the ungerade-botential scattering and

their interference [see Eqs. (8.4), (8.5) and (8.6), respectively)
as fﬁnctions of th;vscatterihg angle in the "straight-line"

(- = =), the "angle" (~---- ) and the "classical trajectory"

lo(lp P a )] (

system at an energy of 205 eV in the center-of-mass system.

) approximations for the (H%,H) collision

Comparison of fhe stationéryéphasevimpact parameters bc as a

function of the absolute center-of-mass scattering angle ]@CMI
in the "straight-iine" (= = =) and the "classical trajectory"”
lo(lp” a,)] (

system at two center~of-mass energies. bg and bn denote those

) approximations for the (H%,H) collision

of the%bé's for thé "gerade" and the "ungerade” modes of
interéctions, respectively.

The statibnary‘phase y [Eq. (8.10)] as a function of the absolute
center-of-mass scattering angle '®CMJ for the (H+;H) collision
"o

system at two center-of-mass energies. The subscripts g and

mn_n

respectively. The difference in 7 found in the "straight-line,”

‘the "angle" and the "classical trajectory" [O(,BI5 ao)] approxi-

mation at these angles are too small to be seen for the scale

sdopted in the figure.

u" denote the "gerade" and the "ungerade"” potential of interaction,



‘Fig. 19.

Fig. 20.

Fig. 21.
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The differential cross sections for the gerade~potential scattering,

the ungerade-potential scattering and their interference [see

Egs. (8.11), (8.5) and (8.12), respectj&ely] as functions of the
scattering angle for the (H#}H)‘colliéion system at an energy of
75.5.eV in the center-of-mass system. The difference in the
differential cross section found in the "straight-line, " the
"angle" and the Classical trajectbry" [O(IBI5 ao)] approximations
at these anglesbare too small to be seen for the scale adopted

in the figure. |

The scattering and electron-transfer differential cross sections

. ' ) : . +
and their sum as functions of the scattering angle for the (H ,H)

collision system at an energy of 75.5 eV in the center-of-mass

system. The difference in the differential cross sections found

in the "straight-line," the "angle" and the "classical trajectory”

‘[O(IBIB ao)] approximations at these angles are too small to be

seen for the scale adopted in the figure.

Comparison of the differential cross sections for the gerade-
potential scattering, the ungerade-potential scattering and their
interference [see Egs. (8.4), (8.5) and (8.6), respectively] as

+ )
functions of the energy for the (H ,H) collision system in the

" "straight-line" (— — —) and the "angle" (=) approximations

Fig. 22.

, o , ‘
at a scattering angle of 6 in the center<of~mass system.

Comparison of ?he scattering and electron-transfer differential

cross sections and their sum as functions of the energy in the

"straight-line" (= — =) and the "angle" ( ) approximations

o
for the (H',H) collision system at a scattering angle of 4 in

the center-of-mass system.
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Fig. 23. Comparison of the differential cross sections for the gerade-
potential écattering, the ungerade-potential scattering and their
interference [see Egs. (8.11), (8.5) and (8.6), respectively]

as functions of the energy in the "straight-line" (— — —) and the

"angle" ( ) approximations for the (H+,H) collision system
at a.scattering angle of 20 in the center-~of-mass system.

Fig. 24. Comparison of the scattering and eléctron transfer differential
crossléectioﬁs and their sum for the (H+,H) collision system as

functions of the energy in the "straight-line” (-~ — —), and the

o]
) approximations at a scattering angle of 2 in

"angle" (
.the center-of-mass system.

Fig. 25. Comparisbn of the calculated electron-transfer probability Eét
in the (H&,H) collision system as a function of the incident

proton energy in the "stréight-line" (— = ~) and the "angle"

19

( —) approximations with that measured by Helbig and Everhart
(crosses) at four laboratory scattering angles.
Fig. 26. Comparison of the calculated electron-transfer probability Pét in

- ,
the (H',H) collision system as a function of the laboratory scat-

tering angle in the "straight-line" ( ) and the "angle" ("-;'-
and the "classical trajectoryﬁ [O(IB'5 ao)] (=~ =) approximafions
with that measured by Helbig and Everhart19 (crosses) at six

ineident proton energies.. The "classical trajectory"” [O(lﬁ[5 ao)]

approximation is carried out only for the incident proton energy

of 151 eV and 410 eV,
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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