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Abstract

It is a well-known observation that people tend to dislike risky
situations that could potentially lead to a loss, a phenomenon
that is called loss aversion. This is often explained using
valuation bias, i.e., the subjective value of losses is larger than
the subjective value of gains of equal magnitude. However,
recent work using the drift-diffusion model has shown that
a pre-valuation bias towards rejection is also a primary
determinant of loss-averse behavior. It has large contributions
to model fits, predicts a key relationship between rejection
rates and response times, and explains the most individual
heterogeneity in the rejection rates of participants. We
analyzed data from three previously published experiments
using the drift-diffusion model and found that these findings
generalize to them. However, we found that valuation
bias plays the most important role in predicting how likely
a person is to accept a given gamble. Our findings also
showed that a person’s loss aversion parameter, λ, which
captures their propensity to avoid losses is closely related
to valuation bias. These results combined highlight the
importance of valuation bias in understanding people’s choice
patterns. Finally, using the leaky, competing accumulator
model, we show strong mimicking between valuation bias
and an attentional bias wherein people pay more attention
to losses as compared to gains. This finding suggests that
behaviors that seem to arise due to valuation bias may arise
due to such an attentional bias. Our code is available at:
https://github.com/nishadsinghi/valuation-bias-ddm

Keywords: loss aversion, decisions under risk, valuation bias,
drift-diffusion model, attentional bias

Introduction
Suppose you are presented with the following gamble: an un-
biased coin is flipped. You earn $11 if it lands heads but lose
$10 otherwise. Would you play this gamble? Numerous stud-
ies have shown that people dislike such gambles, even when
it is statistically advantageous to accept them (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992). This suggests
that people dislike risky situations which could potentially
lead to a loss, or in other words, people are loss averse.

Kahneman and Tversky (1979) initially coined the term
loss aversion. In the framework of their prospect theory, loss
aversion arises due to a valuation bias, i.e., the subjective
value of losses is larger than the subjective value of gains
of equal magnitude. Mathematically, the subjective utility of
a gain of x is equal to x, whereas the subjective utility of a
loss of x is equal to λx, with λ > 1. In the case of gam-
bles with an equal probability of resulting in a gain or a loss
(gambles that can result in both gain or loss are referred to as
mixed gambles), the utility is U = 0.5 ·G− 0.5 ·λ ·L, where

G is the potential gain, L is the potential loss, and λ is the
prospect theory loss aversion parameter, which captures how
people weigh losses relative to gains (the larger the value of
λ, the more loss averse someone is). A person’s degree of
loss aversion, λ, is often estimated using logistic regression,
with Ai = σ(βGGi −βLLi +α) and λ = βL/βG, where βG and
βL are the regression coefficients for the gain Gi and loss
Li in gamble i, Ai is the decision (1: accept, 0: reject), and
σ(x) = (1+ e−x)−1. α is a constant term known as fixed util-
ity bias, which captures a person’s bias towards acceptance
(α > 0) or rejection (α < 0) regardless of the gain and loss.

The valuation bias formulation is widely influential and the
predominant explanation for loss aversion. However, some
studies have challenged this view and have proposed other
explanations for loss aversion (See Gal and Rucker (2018)
for a review). One such mechanism which can lead to loss
aversion is the status quo bias (Gal, 2006; Gal & Rucker,
2018). According to this, people have a tendency to maintain
the status quo, and they reject the gamble because accepting it
would change the status quo. This reflects a prior bias toward
rejecting gambles (i.e., a pre-valuation bias) even before the
gamble is presented. Since pre-valuation bias comes into play
before the agent has any knowledge of the gamble, it acts in
the same way on all gambles. It is important to note that while
both pre-valuation bias and fixed-utility bias are independent
of the specific gamble, they differ in some ways. In particu-
lar, fixed-utility bias affects the utility of a gamble (although
this effect is the same on all gambles) whereas pre-valuation
bias is unrelated to utility. Further, pre-valuation bias acts be-
fore the decision-maker starts to evaluate the gamble, whereas
fixed-utility bias affects the process of evaluating the gamble
and deciding which action to choose.

Recently, Zhao, Walasek, and Bhatia (2020) employed
the computational framework of the drift-diffusion model
(Ratcliff, 1978) to understand the psychological mechanisms
that give rise to loss aversion, and found that pre-valuation
bias is a primary determinant of loss aversion. In particular,
they found that pre-valuation bias has a distinct behavioural
signature expressed in the relationship between participants’
choices and response times (RTs), which was also observed
in empirical data. Pre-valuation bias also captured the most
individual heterogeneity in the rejection rates of participants.

In this study, we seek to build on the work of Zhao et al.
(2020) and better understand the psychological mechanisms



underlying loss aversion using the drift-diffusion model. In
particular, we argue that a primary goal of economists is to
predict how people would react to a given gamble (i.e., peo-
ple’s choices), and it is not clear how people’s choices are
affected by the psychological mechanisms discussed so far.
Since pre-valuation bias is independent of the specific gam-
ble, it may not be sufficient to capture fine-grained informa-
tion about which particular gambles a person likes, and valu-
ation bias may be necessary to do so. We empirically tested
this hypothesis in two ways. Using the drift-diffusion model,
we analyzed data from three previously published studies (in-
cluding Zhao et al. (2020)) and found that models without
valuation bias were not able to properly predict people’s prob-
ability to accept a given gamble. Further, we found that the
loss aversion parameter, λ, estimated via logistic regression
has the strongest correlation with valuation bias. These re-
sults combined highlight the importance of valuation bias in
predicting people’s choice patterns.

We also used computational modeling to better understand
the nature of valuation bias. Using eye-tracking, Sheng et al.
(2020) showed that people with a higher degree of valuation
bias spend more time looking at the loss value as compared to
the gain value of a gamble. This suggests an attentional bias,
wherein agents pay more attention to losses as compared to
gains during the decision-making process. Using the frame-
work of the leaky, competing, accumulator model (Usher &
McClelland, 2001, 2004), we found that valuation bias and
attentional bias are empirically indistinguishable from each
other, which hints that behaviors appearing to arise due to
valuation bias may arise due to attentional mechanisms.

Computational Models

As previously discussed, several theories have been proposed
to explain loss aversion in mixed gambles (see Gal & Rucker,
2018 for a review), and it can be hard to tease them apart,
as they often make qualitatively similar predictions. Com-
putational models allow us to quantify their predictions and
perform ablative analyses to isolate their contribution to be-
haviour. However, traditional economic models like prospect
theory are not sufficient for this purpose, as they cannot ac-
count for mechanisms that do not depend on the utility of
a gamble but may still influence the decision, such as pre-
valuation bias. Additionally, these models do not incorporate
response times, which can provide important insight into the
decision-making process (Konovalov & Krajbich, 2019).

One family of models that can help overcome these limita-
tions is of evidence accumulation models. Models from this
family, such as the drift-diffusion model and the leaky, com-
peting accumulator have successfully explained data from a
wide range of perceptual and value-based decision-making
tasks (Gold & Shadlen, 2007). These models can also cap-
ture people’s prior bias toward the rejection of gambles as
well as predict their response times.

Drift-Diffusion Model
The drift-diffusion model (DDM) assumes that the decision-
maker starts from a starting point γ and deliberates over time
in a stochastic manner, accumulating information about its
preferences over time. The rate of accumulation is controlled
by the drift-rate (ν) which depends on the utility of the gam-
ble as νi = βGGi −βLLi +α. The decision is made when the
accumulated evidence reaches one of the two thresholds (the
gamble is accepted if it reaches +θ and rejected if it reaches
−θ). Response time is the sum of the time taken to reach
the threshold and a non-decision time (denoted by τ) which
embodies the time taken by processes such as perception and
motor execution. This process is illustrated in Fig. 1.

Figure 1: The evidence accumulation process in DDM. The
red and blue solid lines show how two independent trials un-
fold over time beginning from the starting point γ and ending
at the two thresholds, +θ and −θ respectively. The arrow
represents the expected trajectory without the effect of noise.
The slope of this arrow is equal to the drift rate.

In this model, pre-valuation bias is captured by the start-
ing point γ. In particular, if γ < 0, less evidence is required
to reach the lower threshold, making it easier to reach it and
subsequently reject the gamble, even in the absence of valua-
tion bias. Valuation bias, which captures that losses may have
higher subjective utility, is given by the ratio λDDM = βL/βG.
Further, fixed-utility bias, which captures how subjective util-
ity is biased towards rejection irrespective of the gain and loss
values, is given by α.

Leaky, Competing Accumulator
The leaky, competing, accumulator (LCA) is a biologically
inspired model of decision-making belonging to the class of
accumulator models of choice (Usher & McClelland, 2001,
2004). In the context of mixed gambles, it consists of two
accumulators, A1 and A2, corresponding to accepting and re-
jecting the gamble, respectively. At every time t, the atten-
tional switching mechanism randomly selects whether to pay
attention to gain or loss (see Usher and McClelland (2004)).
Then, the subjective value of the gain or the loss selected in
the previous step is fed to A1, while A2 receives an input of
0 (because the gain/loss associated with rejecting the gam-
ble is 0). In addition, both accumulators receive fixed inputs
I0,1 and I0,2 respectively, that do not depend on the selection
made by the switching mechanism. The accumulators com-
pete against each other, and the first one to reach its threshold
wins. This process is illustrated in Fig. 2.



Figure 2: Schematic of the LCA. Accumulators A1 & A2 cor-
respond to the two options - accept and reject gamble. At any
instant, the attentional selection mechanism attends to one of
the attributes defining the gamble (gain or loss). The red and
blue arrows show the information flow when the selection
mechanism is attending to gains and losses respectively.

In this model, pre-valuation bias is reflected in the start-
ing points of A1 and A2. Concretely, if A2 has a larger
starting point than A1, less evidence is required for it to
reach the threshold, making rejection the more likely choice.
Valuation bias is captured by the subjective value function
v(x) = x,x ≥ 0 and v(x) = λx,x < 0 with λ > 1. A fixed util-
ity bias towards rejection can be induced by having I0,2 > I0,1.
In addition to these mechanisms, LCA can account for the
decision-maker paying more attention to losses as compared
to gains during the deliberation process. In the unbiased case,
the switching mechanism selects gain or loss with equal prob-
ability. However, in the biased case, it could select loss with a
higher probability, increasing its influence over the decision.

Methods
Experiments
Dataset-1 The first experiment we analyzed is Experiment
1 of Zhao et al. (2020). Participants (n = 49) had to play a
series of 200 mixed gambles. Each gamble could result in
either a gain or a loss with equal probability. The values of
gain and loss were selected from the set {10, 20, 30, 40, 50,
60, 70, 80, 90, 100}. These values were converted to USD
by multiplying them with 0.1. Participants were informed
that at the end of the experiment, one of the gambles would
be selected randomly and if they had accepted that gamble,
it would be played out in front of them by the experimenter.
The result of this gamble would decide their bonus payment
on top of a fixed show-up fee.

Dataset-2 The second experiment we analyzed is Study 1
(non-adaptive) of Konovalov and Krajbich (2019). Partici-
pants (n= 39) had to complete a series of trials, each of which
consisted of a choice between a sure non-negative amount and
an equiprobable mixed gamble. The total number of trials per
participant was 276, and in 224 of these trials, the value of the
sure option was $0. To maintain similarity with dataset-1, we
analyzed only these 224 trials.

Dataset-3 The third experiment we analyzed is from Sheng
et al. (2020). Participants (n = 94) had to play a series of

200 equiprobable gambles, in which the values of gain and
loss were chosen from the set USD {1,2,3,4,5,6,7,8,9,10}.
Participants were told that at the end of the experiment, one
gamble would be randomly selected, and their final payoff
would be determined by their response in the selected gamble.

Model Fitting
Following the approach of Zhao et al. (2020), we used the
HDDM (Wiecki, Sofer, & Frank, 2013) package to fit DDM
on the three datasets with the free parameters being βG,βL,α,
and γ. This package allows for hierarchical Bayesian estima-
tion of individual and group-level parameters using MCMC
(Gamerman & Lopes, 2006), with group-level parameters
forming the prior for individual parameters. We first used
the library’s in-built function to find a good starting point for
the sampling process, followed by running 4 separate chains
of 5,000 samples each, the first 1,000 samples of which were
discarded as burn-in. The R̂ of all parameters was less than
1.1, suggesting convergence (Gelman, Rubin, et al., 1992).

LCA model was fit to the datasets using the Metropolis al-
gorithm (Usher & McClelland, 2001). The goodness of fit
was approximated by comparing model simulations with ex-
perimental data using a χ2 cost function:

χ
2 = ∑

G
∑

i

N(pi −πi)
2

πi
(1)

where G is the set of all gambles, pi is the proportion of
RTs generated by the model and πi is the proportion of ex-
perimental RTs that lie in the ith bin, and N is the number of
observations for the given value of loss and gain. The bound-
aries of the bins correspond to the 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles of the empirical data, computed separately for ac-
cept and reject RTs (i.e., 12 bins, 6 for each response).

Results
DDM Group-Level Parameters
In this section, we present the parameter estimates obtained
by fitting DDM onto the three datasets, following the ap-
proach of Zhao et al. (2020). The posterior mean (group level
distribution) of the valuation bias parameter, λ, was 1.49 in
dataset-1, 1.44 in dataset-2, and 1.57 in dataset-3. The 95%
credible interval for βL was strictly greater than the interval
for βG in all datasets, implying that the utility function is
steeper for losses than gains. Average value of λ across all
participants was 1.88 in dataset-1, 1.51 in dataset-2, and 1.82
in dataset-3. The number of participants with βL > βG was
40 (81.6%), 32 (82%), and 84 (89.3%) for the datasets re-
spectively. These results suggest that participants in all three
experiments showed a valuation bias towards rejection.

The posterior mean (group-level) of the pre-valuation bias
parameter, γ, was -0.214 in dataset-1, -0.135 in dataset-2, and
-0.075 in dataset-3. 37 (75.5%) participants in dataset-1, 28
(71.8%) participants in dataset-2, and 68 (72.3%) participants
in dataset-3 had γ < 0. The number of participants with a
strictly negative 95% confidence interval of γ was 33 (67.3%),



23 (58.9%), and 35 (37.2%) in the three datasets respectively.
These findings suggest that participants in all three experi-
ments had a pre-valuation bias toward rejecting gambles.

In summary, these results indicate the presence of both
valuation bias and pre-valuation bias toward rejection in the
three experiments.

Behavioural Marker for Pre-valuation Bias
In addition to parameter estimates, Zhao et al. (2020) pre-
dicted a behavioral marker for pre-valuation bias. Concretely,
pre-valuation bias has a larger impact on faster trials because
its effect diminishes as the decision process unfolds. Hence, a
starting bias towards rejection would predict more rejections
in faster trials as compared to slower trials after controlling
for the effect of different drift rates. To test if this behavioural
marker was present in experimental data, we plotted accep-
tance rates vs. response times adjusted for different drift-
rates (referred to as choice-RT plots, see Zhao et al. (2020)
for more details). We found this marker was present in all
three datasets, as shown in Fig. 3, which indicates the pres-
ence of a pre-valuation bias towards rejection in participants.

Figure 3: Acceptance rate vs. choice-factor adjusted (for gain
and loss value of gamble) RT bins of experimental data. Re-
sponse times increase from left to right. Acceptance rates
increase with choice-factor adjusted RTs, indicating the pres-
ence of a pre-valuation bias towards rejection.

Following Zhao et al. (2020), we constructed three re-
stricted DDM models (1) no valuation bias (setting βG = βL),
(2) no pre-valuation bias (setting γ = 0), (3) no fixed-utility
bias (setting α = 0) and compared them against experimental
data in terms of this behavioral marker (i.e., choice-RT re-
lationship). We found that the model without pre-valuation
bias is the worst at capturing the choice-RT relationship, fur-
ther highlighting the importance of this mechanism in captur-
ing this behavioral marker (Table 1). These results combined
provide further evidence for the presence of a pre-valuation
bias in people toward the rejection of gambles.

Capturing Choice Patterns
While Zhao et al. (2020)’s finding that pre-valuation bias is
necessary to capture choice-RT relationship holds up across
all three experiments, we remark that valuation bias may af-
fect behavior in a distinct way. In particular, we focus on a
person’s probability to accept a given gamble. Intuitively, this
can be broken down into two components. The first compo-
nent is the overall tendency to accept or reject gambles. The

Table 1: Mean Absolute Error (MAE) values of choice-
RT (adjusted for choice factor) patterns for full and con-
strained DDM models. Smaller is better.

Full Model βG = βL γ = 0 α = 0
Dataset-1 0.023 0.019 0.034 0.020
Dataset-2 0.020 0.019 0.041 0.018
Dataset-3 0.019 0.015 0.029 0.022

second component pertains to how their responses change as
a function of the gain and loss. For instance, person A and
person B both might have an acceptance rate of 50% when
presented with an equiprobable gamble with possible out-
comes +10 and -10. However, their acceptance rates might
change to 20% and 45% respectively for the gamble with out-
comes +10 and -12, in which case we would say that person
A is more sensitive to the ratio of gain and loss in the gamble.
Since pre-valuation bias is independent of the specific gam-
ble, it is plausible that it would be able to capture a person’s
overall tendency to accept or reject gambles. However, pre-
valuation bias may not be sufficient to capture fine-grained
information about which particular gambles a person likes,
and valuation bias may be necessary to do so.

To test this, we compared the rejection rates predicted by
the full and constrained DDM models against those of hu-
mans and found that the model without valuation bias has the
worst fits, both visually and as indicated by R2 values (Fig. 4;
Table 2). This confirms our prediction that valuation bias is
necessary in order to properly capture choice patterns.

Figure 4: Probability-Probability plots for empirical accep-
tance rates (x-axis) and DDM predicted acceptance rates (y-
axis), where each point corresponds to a combination of gain
and loss displayed to the participants (dataset-3 only). Simi-
lar trends were observed for datasets 1 and 2.

Individual Heterogeneity
Zhao et al. (2020) found that among all parameters of DDM, γ

had the strongest correlation with participants’ rejection rates.



Table 2: R2 values for acceptance rates as a function of
gamble values. Larger is better.

Full Model βG = βL γ = 0 α = 0
Dataset-1 0.87 0.79 0.84 0.88
Dataset-2 0.65 0.50 0.62 0.69
Dataset-3 0.92 0.84 0.92 0.94

This led them to speculate that λ computed using logistic re-
gression over choice data (referred to as λLR for clarity) might
have a stronger relationship with pre-valuation bias as com-
pared to valuation bias. In our analyses, we found that γ in-
deed shows a high correlation with rejection rates across all
three datasets (Table 3). However, we argue that this does not
necessarily imply that it also has the strongest relationship
with λLR. Since λLR is estimated from the ratio of the regres-
sion coefficients of gains and losses, we argue that it should
capture information about a person’s sensitivity to the particu-
lar gamble. Due to this, we suspected that λLR might be more
closely linked to valuation bias than to pre-valuation bias. To
test this, we computed the correlations between λLR and the
parameters of the DDM across all experiments. We found that
λLR had the strongest correlation with λDDM in two experi-
ments (Table 4), providing support to our hypothesis. Further,
we performed standardized multiple regression of λLR on the
three parameters of the DDM and found that λDDM had the
largest regression coefficient in datasets 2 and 3 (Table 5).
These results about the relationship between λLR estimated
from choice data and valuation bias further highlight the role
of valuation bias in understanding choice patterns.

Table 3: Pearson correlation between acceptance rates of
participants and DDM parameters (* = p < 0.01).

λ γ α

Dataset-1 -0.13 0.88* 0.45*
Dataset-2 0.16 0.81* 0.89*
Dataset-3 -0.33* 0.65* 0.54*

Table 4: Pearson correlation between logistic regression
λLR of participants and DDM parameters (* = p < 0.01).

λ γ α

Dataset-1 0.22 -0.34 0.07
Dataset-2 0.66* -0.30 -0.26
Dataset-3 0.86* -0.44* 0.18

Model Mimicking
We investigated how similar two mechanisms are to each
other by looking at how well they can mimic each other. Fol-
lowing Ratcliff and Smith (2004), we assessed mimicking be-

Table 5: Standardized regressions of logistic regression
λLR on λDDM , γ and α (parentheses contain standard error
values for the regression coefficients).

λ γ α

Dataset-1 0.27 (0.534) -1.14 (0.494) 0.42 (0.550)
Dataset-2 0.91 (0.091) -0.21 (0.103) -0.49 (0.109)
Dataset-3 1.94 (0.119) 0.17 (0.105) -0.59 (0.104)

tween mechanisms in two ways. First, we fit two models to
the behavioral data, with each model instantiating one of the
mechanisms we wanted to compare. If both models fit exper-
imental data equally well, we could say that the two mecha-
nisms mimic each other from an empirical standpoint. Sec-
ond, we say that two models mimic each other if synthetic
data generated by one could be captured well by the other.
The parameters used to generate this synthetic data were ob-
tained by fitting the model to experimental data (separately
for each of the three datasets). We note that approximating
the goodness of fit of an LCA model using χ2 values can be
noisy as it relies on generating stochastic simulations from
the model. This implies that two different sets of simula-
tions generated from the same model with identical parame-
ters might have a positive χ2 value. To account for this, we
included a baseline wherein we computed the χ2 value of an-
other set of simulations obtained from the generating model
with exactly identical parameter values to estimate the best-
case value of χ2. Please note that we always compare the χ2

values of models with equal number of free parameters.

Relationship between Valuation Bias and
Attentional Bias
In addition to valuation bias, pre-valuation bias, and fixed-
utility bias, we consider another mechanism that can cause
high rejection rates in mixed gambles. Various studies have
shown that negative information draws more attention than
positive information (Anderson, Siegel, Bliss-Moreau, &
Barrett, 2011; Dijksterhuis & Aarts, 2003; Pratto & John,
1991). It has also been shown that attending to a particular
attribute increases its weight in the decision process, which
can bias responses (Fisher, 2017; Krajbich, Armel, & Rangel,
2010). Hence, it is possible that the bias toward rejection of
gambles arises because decision-makers attend to losses more
than gains during the decision-making process.

The switching mechanism of LCA allows us to investigate
the effects of attending to losses more than gains and compare
it with the three mechanisms discussed so far. We did so by
assessing how well an LCA model with attentional bias can
mimic LCA models with these biasing mechanisms. First, we
fitted four LCA models, each having only one biasing mech-
anism, and found that models with attentional bias and valu-
ation bias have similar χ2 values across all three experiments
(Fig. 5). Next, we analyzed how well synthetic data gen-
erated using a model with valuation bias can be fitted by a
model with attentional bias, and vice-versa. We found that



both models are able to capture data generated by the other
quite well (Figures 6 & 7). These findings indicate that from
an empirical standpoint, LCA models with attentional bias
and valuation bias behave in a similar way, hinting towards a
potential link between the two mechanisms.

Figure 5: χ2 fit statistics of LCA models each with one bi-
asing mechanism. The values for the model with attentional
bias are similar to those for the model with valuation bias.

Figure 6: χ2 fit statistics of LCA models with one biasing
mechanism fitted onto data simulated using LCA with atten-
tional bias. As suggested by the small χ2 values, the model
with valuation bias is able to fit simulated data well.

Conclusion
In this study, we aimed to develop a better understanding of
the mechanisms underlying high rates of rejection in mixed
gambles along two dimensions: by analyzing data from stud-
ies that have not been analyzed yet and by performing novel
analyses about the role and nature of valuation bias. Our find-
ings are largely consistent with those of Zhao et al. (2020):
we find that most participants show a pre-valuation bias to-
ward rejecting gambles, and pre-valuation bias is correlated
to their overall tendency to reject gambles (i.e., rejection
rates). However, we feel that the importance of valuation
bias in mixed gambles may not have been highlighted suffi-
ciently in the DDM literature: our analyses show that it plays
an important role in understanding people’s choice patterns

Figure 7: χ2 fit statistics of LCA models with one biasing
mechanism fitted onto data simulated using LCA with valu-
ation bias. As suggested by the small χ2 values, the model
with attentional bias is able to fit simulated data well.

as a function of the gamble. Studies about loss aversion of-
ten favor one mechanism over others (Gal & Rucker, 2018),
whereas our findings indicate that both mechanisms play an
important role and pertain to distinct aspects of behavior, an
effect that is consistent across data from three experiments.

We also empirically tested Zhao et al. (2020)’s claim that
λLR computed from choice data using logistic regression
might reflect people’s degree of pre-valuation bias rather than
valuation bias, since this could have serious implications for
how the effects of various psychological, clinical, and neu-
robiological variables on loss aversion are interpreted. We
found that while λLR from logistic regression is related to
all parameters of the DDM, it shows the strongest relation-
ship with valuation bias, further highlighting the importance
of valuation bias in understanding human choices.

Finally, we observed strong mimicking between models
with valuation bias and attentional bias, suggesting that be-
haviors that seem to arise due to valuation bias could also be
explained by an attentional bias. This is also supported by ex-
perimental findings by Sheng et al. (2020) showing that val-
uation bias is linked to preferential gaze towards loss values.
These findings are also a step toward bridging the computa-
tional frameworks of prospect theory and evidence accumula-
tion models (Zilker & Pachur, 2021). Future research should
focus on better understanding the relationship between valua-
tion bias and attentional bias, and their effect on loss aversion.

Our analyses were restricted to decisions under equiprob-
able mixed gambles. Further research should focus on a
broader range of judgment and decision-making tasks. Com-
putational studies on the effect of various contextual factors
– such as the framing of gambles – on behavior would also
be very interesting. In particular, Ert and Erev (2013) have
shown that the effect of status quo bias can reduce if gambles
are framed in a particular way, and future studies could study
this setting using the drift-diffusion model.
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