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Purpose. To validate Gaussian mixture-model with expectation maximization (GEM)
and variational Bayesian independent component analysis mixture-models (VIM) for
detecting glaucomatous progression along visual field (VF) defect patterns (GEM–
progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with
other methods.

Methods. GEM and VIM models separated cross-sectional abnormal VFs from 859
eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were
decomposed into independent axes. The confidence limit (CL) of stability was
established for each axis with a set of 84 stable eyes. Sensitivity for detecting
progression was assessed in a sample of 83 eyes with known progressive
glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any
defect pattern progressed beyond the CL of stability. Performance of GEM-POP and
VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of
PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index
(VFI).

Results. Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and
93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver
operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for
VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI.

Conclusions. GEM-POP was significantly more sensitive to PGON than PoPLR and
linear regression of MD and VFI in our sample, while providing localized progression
information.

Translational Relevance. Detection of glaucomatous progression can be improved
by assessing longitudinal changes in localized patterns of glaucomatous defect
identified by unsupervised machine learning.

Introduction

Glaucoma is a blinding optic neuropathy that may
cause significant visual impairment when left untreat-
ed. It is the second leading cause of blindness
worldwide.1–4 Detection of glaucomatous visual
function defects and detection of their progression
are critical for management of the disease. Identifying
patterns of visual function defects and tracking their

change over time likely is a promising approach for

clinical management of glaucoma.5

Perimetric visual fields (VF) are used routinely in

clinical practice to assess visual function defects

attributable to glaucoma. In standard automated

perimetry (SAP), the status (e.g., within normal limits

or outside of normal limits) of 52 test locations (of the

24-2 test pattern) is determined by statistical compar-

ison of the test measurements with a normative
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database composed of age normalized SAP exams.
Linear regression of the commercially available SAP
software parameters mean deviation (MD) and visual
field index (VFI) often are used to assess progression
of visual function deficits, over time. Also commer-
cially available, and designed specifically for progres-
sion detection, is the Guided Progression Analysis
algorithm (GPA).6 Because MD and VFI are global
indices, these methods may not be ideal for progres-
sion detection, in that they include visual field
locations that have little impact on the VF progres-
sion.

Since as early as 1990 (GoldbaumMH, et al. IOVS
1990;31;ARVO Abstract 503), studies have used
supervised machine-learning classifiers successfully
to separate healthy from glaucomatous eyes based
on VF and optical imaging measurements and to
predict conversion to glaucoma in glaucoma suspect
eyes.7–23 More recently, we have effectively employed
unsupervised machine-learning techniques to discern
how VF data are organized into patterns. We found it
useful to represent the structure of VFs by clusters of
healthy eyes, early glaucoma eyes, and advanced
glaucoma eyes, and to represent the structure within
each cluster by axes obtained by independent
component analysis. The estimation of the best
structure representation was accomplished with post
hoc assessment of the MD of the clusters, and visual
inspection of the patterns of defect within the
observed clusters.24–28 We aimed to diminish the
effects of human bias by designing a process for
detecting change over time along mathematically
determined glaucomatous patterns obtained by unsu-
pervised learning techniques without human inter-
vention, and we aimed to improve effectiveness by
eliminating noncontributing data and concentrating
on the data that are changing.29–31

Our initially described method, the variational
Bayesian independent component analysis mixture-
model (VIM), is a semiautomatic, unsupervised
machine learning approach that has been shown to
cluster VFs in a meaningful way and to generate
nearly maximally independent, clinically recognizable
patterns of glaucomatous VF defects.24,27,32 The
Gaussian mixture-model with expectation maximiza-
tion (GEM) produces a similar output, but learns 50
times faster and is a fully automated unsupervised
learning approach.28,31 The application of progression
of patterns (POP) to VIM and GEM make the
progression detectors VIM-POP and GEM-POP.29–31

Other approaches also exist for the specific task of
progression detection, including point-wise linear

regression (PLR)33 that evaluates change at each
individual test location over the entire follow-up
duration based on a fixed number of changing test
locations; permutation analysis of PLR (PoPLR),34

an individualized analysis that uses a P value
combination function and permutation analysis to
detect glaucomatous change; combined binomial tests
with PLR,35 and methods based on variational
Bayesian analysis.36

In this paper, we assess the clinical effectiveness of
VIM-POP and GEM-POP methods for detecting
glaucomatous progression along VF defect patterns.
We also compare VIM-POP and GEM-POP with
other methods for detecting progression. Finally, we
validate the specificity of all methods using indepen-
dent datasets.

Methods

In the current study, we use the same data set to
compare GEM-POP and VIM-POP with other
progression-detection methods. We first evaluate the
ability of GEM to cluster healthy and glaucomatous
VFs and to generate patterns of visual field defects
within each cluster.28,31 We then compare the
clustering performance of GEM with VIM, based
on specificity and sensitivity for clustering VFs as
healthy and glaucomatous. Next, we detect glau-
comatous progression in study eyes based on signif-
icant change of longitudinal VF measurements
(exams) along the previously generated GEM and
VIM defect patterns, using POP. Finally, we compare
the accuracy of GEM-POP and VIM-POP, to PLR,33

PoPLR,34 and linear regression of MD and VFI, with
detect progression in VFs from known progressing
eyes.

Participant Selection and Testing

Study participants were selected from two pro-
spective longitudinal studies designed to evaluate
visual function and optic nerve structure in glaucoma:
The University of California at San Diego (UC San
Diego; San Diego, CA)-based Diagnostic Innovations
in Glaucoma Study (DIGS) and the UC San Diego–
based African Descent and Glaucoma Evaluation
Study (ADAGES). ADAGES is a three-site collabo-
rative study among the Hamilton Glaucoma Center
of the Department of Ophthalmology at UC San
Diego, the New York Eye and Ear Infirmary
(NYEEI; New York, NY), and the Department of
Ophthalmology, University of Alabama, Birmingham
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(UAB; Birmingham, AL). Both studies follow iden-
tical protocols and the methodological details have
been described previously.37 The institutional review
boards of UC San Diego, NYEEI, and UAB
approved all DIGS and ADAGES methods. All
methods adhered to the tenets of the Declaration of
Helsinki and to the Health Insurance Portability and
Accountability Act. DIGS and ADAGES are regis-
tered as cohort clinical trials with www.clinicaltrial.
gov (NCT00221897 and NCT00221923, respectively;
September 14, 2005).

Participants underwent a comprehensive ophthal-
mologic examination, including medical history re-
view, best-corrected visual acuity, slit-lamp
biomicroscopy, IOP measurement with Goldmann
applanation tonometry, gonioscopy, dilated examina-
tion of fundus by indirect ophthalmoscopy, stereo-
scopic optic disc photography, and SAP. SAP testing
was performed using the 24-2 Swedish Interactive
Thresholding Algorithm (SITA). Only reliable tests
(�20% fixation losses, �33% false-negative results,
and �15% false-positive results) were included.
Trained reviewers from the UC San Diego-based
Visual Field Assessment Center (VisFACt) ensured
that all VF tests studied were free of apparent
artifacts (e.g., lid or rim artifacts, signs of fatigue).

For analysis of unsupervised learning techniques
(described below), POAG patients were defined as
those with repeatable (two consecutive) abnormal
SAP VFs in one or both eyes. A designation of
abnormal VF required a pattern standard deviation
(PSD) less than or equal to 0.05 or a glaucoma
hemifield test (GHT) outside of normal limits.38 In
this study, participants with normal VFs were defined

as those with no evidence of repeatable abnormal VFs
(as defined above) in each eye.

Because the overall goals of the current study are
to assess the clinical effectiveness of VIM and GEM
methods in generating optimal visual defect patterns
and detecting glaucomatous progression using these
defect patterns, four independent groups of study eyes
were used: (1) the Classification Study Group, (2) the
Stability Definition Group, (3) the Progression Study
Group, and the (4) Validation Group.

Classification Study Group

The Classification Study Group included 1976
eyes (of 1316 study participants). Abnormal SAP
VFs were found in 859 eyes (of 617 study partici-
pants) and 1117 eyes (of 699 study participants) had
SAP VFs within normal limits. Study eyes in this
group were classified as those with VF defects and
those without VF defects, regardless of their optic
disc assessment. We used the visual field status alone
as an indicator of glaucoma because this study group
was used primarily to generate the optimal VIM and
GEM defect patterns of the VF, and not to detect
glaucoma. If classification groups had been defined
based on the presence or absence of apparent
glaucomatous optic neuropathy (GON), it is likely
that a significant number of GON eyes would have
provided VFs within normal limits. Table 1 shows
the demographic information of participants in the
abnormal and normal groups and their mean MD
and PSD values.

Stability Definition Group

The Stability Definition Group included 84 eyes
from 45 study participants with repeatable (i.e., � 2
consecutive) glaucomatous SAP defects at baseline.
Each study eye was tested once a week with one
baseline exam and a mean follow-up of 4.8 exams
over a mean follow-up duration of 4.3 weeks. A total
of 403 SAP VF measurements were collected. We
considered the VF measurements in this group as
stable glaucoma because disease-related progression
in adequately treated glaucoma eyes generally occurs
over years and not weeks. Any changes during this
short follow-up duration likely would be due to
variability in the function of diseased ganglion cells or
in the attentiveness of the patient and not due to
disease-related progression. Table 2 shows the demo-
graphic information of the participants in the
Stability Definition Group.

Table 1. Demographic Information of Study Eyes in
the Classification Study Group for Assessing Diagnostic
Classification Accuracy

Parameter
Abnormal

Visual Field
Normal

Visual Field P Value

Number of
eyes 859 1117 -

Number of
subjects 617 699 -

Age at exam
in years (SD) 58.0 (13.9) 46.6 (14.3) , 0.01

Percent male 42.3 33.6 , 0.01
MD in dB (SD) �4.15 (4.78) �0.43 (1.25) , 0.01
PSD in dB (SD) 4.32 (3.10) 1.50 (0.24) , 0.01
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Progression Study Group

The Progression Study Group included eyes with
known progressive glaucomatous optic neuropathy
(PGON). We defined PGON based on structural
evidence of progression independent of VF measure-
ments so as not to bias the assessment of the methods
that use VF measurements to detect progression. The
baseline and each follow-up photograph of the eyes in
the progression study group were assessed for PGON
by two expert-trained observers viewing digitized
stereoscopic image pairs on a 21-inch or larger
computer monitor. Progressive glaucomatous optic
neuropathy was defined as a decrease in the neuro-
retinal rim width or the appearance of a new or
enlarged retinal nerve fiber layer (RNFL) defect
evident in paired stereoscopic images. Observers were
masked to patient identification and all clinically
relevant results. A third observer adjudicated any
disagreement in assessment between the first two
observers. From 74 participants, 83 eyes were
identified as progressed by PGON. A total of 1161
SAP VF measurement visits were available from this
group. The mean number of follow-up visits was 14.0
(SD¼ 4.8), and the mean follow-up duration was 9.1
(SD ¼ 2.2) years, yielding a mean interval between
exams of 7.8 months. Demographic information for
this group is presented in Table 2.

Validation Groups

In order to validate the 95% limits of stability used
for all progression detection methods described, we
investigated the specificity of each method in two
external datasets. The first datatset was analogous to
our Stability Definition Group and was composed of
115 glaucoma eyes (consecutive abnormal VFs prior
to baseline with GON on ophthalmic examination)
tested five times over 4 weeks and provided by
Douglas Anderson, MD from Bascom Palmer Eye
Institute, University of Miami Health Systems (Mi-
ami, FL; the institutional review board of Bascom
Palmer Eye Institute approved all testing and
methods adhered to the tenets of the Declaration of
Helsinki and to the Health Insurance Portability and
Accountability Act). The second dataset was com-
posed of 54 healthy eyes from UC San Diego DIGS
study tested every 6 months over 2 years (approxi-
mately 5 visits). Research protocol was part of DIGS
and therefore, adheres to all ethics and regulatory
guidelines. All VFs used for validation were reliable,
as described previously.

Generating Vim and Gem Clusters and Axes
Used for Detecting Progression

VIM and GEM methods assigned each of the 1976
VF exams in the Classification Study Group to
several clusters and further generated several VF
defect patterns (axes) within these clusters. Each
cluster centroid contains information about disease
severity and each axis contains information about the
pattern (shape) of VF defect that can be investigated
further for progression by looking at points projected
along that axis. During classification, no prior
knowledge was provided to VIM or GEM as to
whether the input VFs were abnormal or normal (i.e.,
the learning was unsupervised).

For VIM, all of the visual fields in each cluster
were decomposed into different axes using indepen-
dent component analysis (ICA).39 Independence of
axes was forced within each cluster, not between
different clusters. The generated visual field at 62 SD
from the cluster mean on each axis, and the VFs
associated with each cluster, characterized the pat-
terns of visual defect. To avoid working with a large
number of axes, only axes with significant contribu-
tions (described later) were retained in each cluster.
VIM-POP was equipped with a sliding window
because it is expected that glaucoma-associated
change in visual function and structural imaging is
nonlinear in some eyes. For example, a 5-visit spurt of

Table 2. Demographic Information of Study Eyes in
the Stability Definition Group and Progression Study
Group for Assessing the Accuracy of Detecting
Glaucomatous Progression

Parameter Stable
Progressed
by Photo P Value

Number of eyes 84 83 -
Number of

subjects 45 74 -
Mean number of

follow-ups (SD) 4.8 (0.8) 14 (4.8) , 0.01
Months of follow-

up (SD) 1.2 (0.2) 109.2 (26.4) , 0.01
Age at baseline

in years (SD) 70.8 (9.4) 62.5 (12.4) , 0.01
Percent male 53.3 48.2 0.19
Baseline MD in

dB (SD) �7.3 (8.1) �4.4 (5.8) , 0.01
Baseline PSD in

dB (SD) 6.1 (4.1) 5.0 (4.2) 0.13
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progression in a trend of 10 visits might be missed by
a 10-visit linear regression while regression in a sliding
5-visit window along the 10-visit range would be more
likely to capture the progression spurt.

For GEM, we investigated a modular use of ICA
to generate defect patterns (axes) within each of the
two classes of disease severity (within each cluster).
The visual field patterns were represented as axes
through each cluster centroid and each cluster axis
had the property of representing the visual field loss
patterns from mild to advanced disease. Like VIM-
POP, GEM-POP also was equipped with a nonlinear
progression detection algorithm, which uses a sliding-
window of size 5 (approximately 3 years of follow-
up).

For cross-sectional VF assessment, clinicians
typically rely on the total deviation (TD) or pattern
deviation (PD) plots supplied by the Humphrey Field
Analyzer (HFA; Carl Zeiss Meditec, Inc., Dublin,
CA) StatPac analysis. Because clinicians are accus-
tomed to the TD display, we used simulated TD plots
to display the patterns of VF defects identified by
VIM and GEM, relative to healthy eyes. The
simulated TD plot is a vector obtained by subtracting
absolute sensitivities at the centroid of the healthy
cluster from individual VF points in absolute
sensitivity space. Total deviation plots were generated
at 62 SD along each of the axes and displayed. The
simulated TD plots were displayed in color to help
visualization, with green denoting positive values
(more sensitive than normal) and red denoting
negative values (less sensitive than normal). The
626 dB simulated VF sensitivities were displayed in
equal steps of color from red to green, with �26 as
pure red and þ26 as pure green, representing the
entire range of normalized measures of deviation
from normal in each location. With this representa-
tion, it is easier to visualize increasing VF defect
severity as deviations from the healthy mean along
each glaucoma axis.

Variational Bayesian Independent Components
Analysis Mixture Model (VIM)

VIM has been described in detail in previous
publications.29,32 Briefly, VIM is a combination of
multiple ICA models weighted in a probabilistic
manner. This combination allows the unsupervised
identification of independent clusters of data, each
containing statistically independent axes of informa-
tion. Clustering and axis development are done
simultaneously in VIM. VIM is a semiautomatic
clustering method because the user selects the model

with the highest average of sensitivity and specificity
among a very large number of VIM models and the
optimal model is retrained to further improve its
diagnostic accuracy. In the current study, the VIM
training feature set had 53 features; the absolute
sensitivity values from 52 of the 54 VF test points (2
blind spot points excluded) and participant age, for
each of the 1976 SAP tests. VIM varied the maximum
number of clusters, the maximum number of axes
within each cluster, and the number of Gaussians to
create 720 models. Each model was iterated 500 times,
employing a different number of axes and several
random seeds at initialization. It was assumed that the
single best model (highest average of sensitivity and
specificity for identifying abnormal and normal VFs)
would provide the best environment for finding
glaucomatous patterns and for detecting progression.
The optimal number of axes within each cluster was
chosen based on the contribution of each axis in
cluster decomposition. This number was called a
‘‘knee point’’ and was chosen by ranking the axes in
each cluster based on their lengths or magnitudes and
including the number of axes with the largest
magnitudes and excluding axes with smaller magni-
tudes.32 On a graph of axis contribution versus
number of axes, the chosen number of axes occurred
at the point where the slope of the graph changed
from steep to nearly horizontal; hence, the term knee
point. The optimal model was retrained 500 times to
determine the final best specificity and sensitivity.

Gaussian Mixture Model with Expectation
Maximization (GEM)

GEM has been described in detail in a previous
publication.28 Briefly, GEM combines multivariate
Gaussian components to model the VF data points
and uses the expectation maximization (EM) proce-
dure to estimate the parameters of the model,
iteratively. Similar to VIM, we used absolute sensi-
tivity at 52 SAP locations and participant age as
inputs to GEM. Clusters were created by selecting the
component that maximized the maximum a posteriori
probability, based on the EM-estimated parameters.
GEM is a probabilistic approach with a hierarchical
modular framework that allows identification of
clusters first, followed by identification of axes within
each cluster using ICA. Unlike VIM, where clustering
and axis development are done simultaneously, GEM
is sequential. To select an optimal GEM model that
represents glaucoma categories and VF defect pat-
terns, we generated 600 GEM models (to be roughly
comparable to VIM for assessing the computational
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complexity, however we have observed that 50 models
generally are sufficient for GEM), and selected the
model that provided the highest average of sensitivity
and specificity for discriminating between abnormal
and normal VFs. The optimal number of axes within
each cluster was chosen based on the previously
described knee point.

Procedure for Detecting Glaucomatous
Progression

Using the VIM and GEM environments composed
of the VF defect patterns or axes; we first defined the
limits of stability using the Stability Definition
Group. Progression by VIM and GEM was identified
based on the progression of each study eye along each
VIM and GEM axis. Details of identifying the limits
of stability and detecting progression using the VIM
and GEM environments are described next. More
detailed technical descriptions are available else-
where.28,31

Stability Definition
Glaucoma boundary limits were detected by

projecting the longitudinal sequence of VFs (each
field in a 52-dimensional space) of each stable eye
(i.e., eye from the Stability Definition Group) onto
each of the predefined VIM or GEM glaucoma axes.
Because eyes in the stable group presumably showed
no disease related progression, the variability in this
group was used to define the limits of stability or the
progression limits. The VF exams of each stable eye
were randomly resampled with replacement (i.e.,
bootstrapped) to simulate an eye with seven visits.
One thousand resampled VF series were used to
determine the progression limit, or limit of stability,
on each axis. The slope of each visual field sequence
was determined for each window (of size 5) using least
squares linear regression for each VIM and GEM
axis. The 95th percentiles (one-tailed toward the
direction of deterioration) for each of the multiple
axes and windows (described in the Results section)
for detecting glaucoma progression were calculated
and compensated to accommodate an overall 95%
specificity based on each axis and the sliding window
(i.e., specificity along each axis was adjusted upward
to result in a total 95% specificity for all axes and
windows combined for both VIM and for GEM). For
each axis, the rate of progression of an eye along an
axis was normalized to the adjusted 95th percentile
threshold value for that axis. An eye with a
normalized rate of progression (of VF threshold)
greater than or equal to 1 was classified as progressed,

and an eye with a normalized rate of progression less
than 1 was classified as nonprogressed. This method
of defining progression along each VIM and GEM
axis is called POP.

Glaucoma Progression Detection
Each visit of a longitudinal VF series of each study

eye in the Glaucoma Study Group was projected onto
each of the VIM and GEM axes. The mean rate of
progression (slope) of the longitudinal sequence of
windows along each axis was determined for each eye
using the least squares linear regression model. A
study eye was classified as progressed when the
normalized rate of progression on any one of the
axes equaled or exceeded 1 (i.e., when the regression
line fell below the lower limit of stability); otherwise,
the eye was classified as having no evidence of
progression. The axis demonstrating the most change
was identified as the progressing axis. The pattern of
that axis was then considered as the glaucoma pattern
of progression.

The 95th percentile progression limits for MD and
VFI were computed separately using the Stability
Definition Group (there was no need to adjust the
progression limits because MD and VFI each have
only one axis). Then, for each eye in the Progression
Study Group, the MD and VFI slopes were computed
over the follow-up period. If the slope of MD or VFI
exceeded the corresponding progression limit, the eye
was classified as progressed; otherwise the eye was
classified as nonprogressed.

Point-wise linear regression was conducted using
the methods described by Fitzke et al.33 To detect
progression for PLR, for each of 52 VF points, two
different parameters; the slope and the significance
of the slope (P value) were considered. Progression
of the VF was defined based on one to three
deteriorating points with significant P value (smaller
than 0.01) of the slope exceeding the specified
threshold, allowing six different criteria for VF
progression (two different slopes and three possible
locations). We applied these six criteria to our
stability definition group to compute specificity
and to our progression study group to compute
sensitivity to identify sensitivity/specificity trade-offs
at several discrete points along the receiver operating
characteristic (ROC) curve similar to O’Leary et al.34

We also implemented PoPLR according to method
described by O’Leary et al.34 We combined the
significance values across the VF and compared it
with the null distribution of P values of all
combinations of the VF sequences obtained by
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permutation of visits. We considered progression if
the combined significance value of actual visits was
greater than 95th percentile of the null distribution
of all permuted visits and computed the full ROC
curve.

Full and partial (0.85–1.0 specificity) ROC curves
were generated for VIM-POP, GEM-POP, PoPLR,
linear regression of MD, and linear regression of VFI,
for comparison.

Results

For both VIM and GEM, environments were
automatically built that separated SAP VFs into
normal and abnormal clusters and identified patterns
of field defects (axes) within each cluster. Subsequent-
ly, these environments were used for progression
analysis (i.e., POP).

SAP MD 6 SD was�0.43 6 1.25 dB and�4.14 6

4.78 dB for normal and abnormal VFs, respectively,
within the Classification Study Group. For both VIM
and GEM, three clusters were identified: clusters N
(representing normal VFs), G1 (representing early to
moderate glaucoma, based on post hoc assessment of
MD), and G2 (moderate to advanced glaucoma,
based on post hoc assessment of MD). The best
VIM model was composed of nine axes: two axes for
each of the first two clusters (N and G1) and five axes
for the third cluster (G2). Similarly, the best GEM
model was composed of nine axes: two axes for each

of the first two clusters and five axes for the third
cluster.

VIM and GEM Degrees of Disease Severity
(Clusters)

For VIM, cluster N contained primarily VFs from
healthy participants (normal VFs, 1084 of 1117 eyes;
specificity ¼ 97.0%). Clusters G1 and G2 combined
contained primarily VFs from participants with
glaucoma (abnormal VFs, 799 of 859, sensitivity ¼
93.0%). Cluster G1 contained 503 eyes with abnormal
VFs and 32 eyes with normal VFs. Cluster G2

contained 296 eyes with abnormal VFs and one eye
with a normal VF.

For GEM, cluster N contained primarily normal
VFs (1048 of 1117 eyes; specificity ¼ 93.8%). Clusters
G1, and G2 combined contained primarily VFs from
participants with glaucoma (772 out of 859, sensitivity¼
89.9%). Cluster G1 contained 478 eyes with abnormal
VFs and 69 eyes with normal VFs. ClusterG2 contained
294 eyes with abnormal VFs and no eyes with normal
VFs. Figure 1 shows scatter plots of the mean threshold
values in the superior hemifield plot versus the inferior
hemifield plot, to demonstrate cluster variability and
Figure 2 shows MD versus PSD of all eyes assigned to
each of the VIM and GEM clusters, to demonstrate
clustering by VF defect severity.

VIM Patterns of Glaucomatous Defect (Axes)

The centroid of a VIM cluster represents the mean
defect severity in that cluster. The mean of cluster G2

Figure 1. Scatter plot of mean threshold of superior hemifield versus mean threshold of inferior hemifield to show 2-dimensional
margin displayin each VIM (left panel) and GEM (right panel) cluster. Each cluster is color coded for identification according to the Figure
legend. N indicates the primarily normal cluster and G1 and G2 indicate the early to moderate and moderate to advanced glaucoma
clusters, respectively.
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was farther from the mean of cluster N than the mean
of cluster G1, indicating that the overall defect was
more severe in G2. Within each cluster, axes
represented the pattern (shape) of each VF defect.
VIM efficiently identified the magnitude of the
various patterns of defect present in each study
cluster by projecting each VF along each axis. If a
point moved along any axis away from the cluster
mean, the direction of motion would be positive if the
distance (vector) of the point from the normal mean
increased with movement, and the direction would be
negative if the vector from the normal mean to the
point decreased with movement.

To discern whether there was progression in an eye,
each visit for that eye was projected onto an axis.
Change from the cluster centroid in a positive direction
(towardþ2 SD) along a given axis generally resulted in
an increase in depth of defect or an increase in area of
defect. Change in the negative direction (toward �2
SD) generally resulted in a decrease in depth of defect
or a decrease in area of defect.

Figure 3 shows the various VIM defect patterns
(simulated TD plots) that were generated at 62 SD
from the respective cluster centroids on each axis in
clusters N, G1, and G2. Similar to the total deviation
plot in SAP, these patterns represent the degree of
defect severity and deviation from normal. The two
defect patterns of cluster N shown are normal,
without glaucomatous damage. Cluster G1 includes
eyes with early to moderate glaucomatous damage
(average MD ¼�2.15, SD ¼ 1.52 dB); consequently,
the patterns shown illustrate primarily mild defects.
Axis 1 of G1 (at þ2 SD) displays early superior and

inferior nasal steps and arcuate reductions of sensi-
tivity. Axis 2 of G1 (at þ2 SD) suggests an early
superior arcuate defect. Cluster G2 includes eyes with
more moderate to advanced glaucomatous damage
(average MD¼�7.98, SD¼ 6.27 dB); hence, the axis
patterns shown in Figure 3c are more advanced. Axis
1 of G2 (atþ2 SD) represents a diffuse depression with
increased depression in the superior hemifield. Axis 2
of G2 (at þ2 SD) shows early diffuse reduction of
sensitivity with an inferior hemifield defect. Axis 3 of
G2 (at þ2 SD) represents a peripheral defect with
increased defect at the nasal steps and the superior
arcuate zone. Axis 4 of G2 (atþ2 SD) presents a nasal
step defect with inferior nasal exaggeration and axis 5
of G2 (at þ2 SD) suggests a central-to-nasal defect,
with inferior weighting.

GEM Patterns of Glaucomatous Defect (Axes)

Similar to VIM, points at 62 SD on GEM-defined
axes in clusters N, G1, and G2 were displayed as TD
plots. These generated TD plots at points on the axes
within each cluster represented distinct VF defect
patterns.

Figure 4 shows the various GEM defect patterns
(axes) at 62 SD from the cluster centroids of axes in
clusters N, G1, and G2. The defect patterns of cluster
N are normal, without glaucomatous damage. Cluster
G1 includes eyes with early to moderate glaucomatous
damage (average MD¼�2.19, SD¼ 1.55 dB). Axis 1
of G1 (atþ2 SD) represents a mild peripheral superior
arcuate depression, and axis 2 of G1 (at þ2 SD)
represents early superior arcuate and nasal step
defects. Cluster G2 includes eyes with moderate to

Figure 2. Scatter plot of MD versus PSD in each VIM (left panel) and GEM (right panel) cluster. Each cluster is color coded for
identification according to the figure legend.
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Figure 3. Visual field defect patterns that constituted the VIM environment. Cluster N shows patterns at�2 SD andþ2 SD in the normal
cluster. Cluster G1 shows defect patterns at�2 SD andþ2 SD in the early to moderate glaucoma cluster. Cluster G2 shows defect patterns
at �2 SD and þ2 SD in the moderate to advanced glaucoma cluster.
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Figure 4. Visual field patterns that constituted the GEM environment. Cluster N shows patterns at �2 SD and þ2 SD in the normal
cluster. Cluster G1 shows defect patterns at�2 SD andþ2 SD in the early to moderate glaucoma cluster. Cluster G2 shows defect patterns
at �2 SD and þ2 SD in the moderate to advanced glaucoma cluster.
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advanced glaucomatous damage (average MD ¼
�8.07, SD ¼ 6.26 dB). Axis 1 of G2 (at þ2 SD)
represents moderate diffuse reduction of sensitivity
with a more pronounced superior hemifield defect and
axis 2 of G2 (atþ2 SD) represents a diffuse reduction
of sensitivity with increased defect in the nasal step
positions. Axes 3, 4, and 5 (at þ2 SD) primarily
represent nasal step defects, with some variation in
weighting among these three axes.

VIM and GEM Progression

SAP mean deviation (6SD) was �7.44 6 8.20 dB
and �4.41 6 5.79 dB at baseline in the Stability
Definition Group and the Progression Study Group,
respectively.

The left panel of Figure 5 shows the distribution of
the slopes of the projection magnitudes of all VFs in
the Stability Definition Group along the first axis in
G2 cluster of VIM. The left tail of the 95th percentile
limit is shown as a blue line that indicates the stability
limit for this axis toward progression. The right panel
of Figure 5 shows the distribution of the slopes of
projected points on each axis from all eyes from the
Progression Study Group on the first axis of the G2

cluster of VIM. The red circle shows the stability limit
computed from the distribution of the slopes of the
Stability Definition Group on the first axis of cluster
G2 (Figure 5, left, blue line). For a test eye, if its slope
(estimated by least square regression of projected
VFs) exceeded this limit, the eye was classified as a
progressed along this axis.

The left panel of Figure 6 shows the distribution of
the slopes of the projection magnitudes of all VFs in
the Stability Definition Group along the first axis in
the G2 cluster of GEM. The right panel of Figure 6
shows the distribution of the slopes of all Progression
Study Group eyes on the first axis of the G2 cluster of
GEM. The red circle shows the stability limit that was
computed from the distribution of the slopes of the
Stability Definition Group on the first axis of cluster
G2 (Figure 6, left, blue line). As above, if the slope of
a test eye exceeded this limit of stability, the eye was
classified as a progressing eye along this axis.

Figure 7 shows progression detection using GEM-
POP in two example eyes. The orange circles
represent the magnitude of the defect pattern given
by the first axis of cluster G2 present in the 52-
dimensional VF space. The blue line indicates the
slope (linear regression of the orange circles). The
gray line indicates the 95% progression limit for the
slopes of the first axis of cluster G2. If the linear
model approximating the slope falls below the gray
line (progression zone), then the eye is classified as
progressed; otherwise, the eye is classified as non-
progressed. Therefore, GEM-POP is detecting pro-
gression in the study eye in Figure 7 (left) and is
detecting no evidence of progression in the study eye
in Figure 7 (right) along the first axis of cluster G2. In
addition to event-related information, Figure 7 (left)
provides information about the rate of progression in
the example eye (blue circles).

Figure 8 shows ROC curve areas for VIM-POP,
GEM-POP, PoPLR, PLR, linear regression of MD,

Figure 5. Limits of stability in the VIM environment. (Left panel) Histogram distribution of the slopes of the projected VFs (estimated
using linear regression) of all eyes in the Stability Definition Group along the first axis in the G2 cluster. The blue line indicates the left tail
95th percentile, or the stability limit. (Right panel) Actual observed rates of the projection coefficients of all Progression Study Group eyes
along the first axis in the G2 cluster. The red circle indicates the stability limit (obtained from the left panel with overall specificity shifted
to adjust to 95%, to control for multiple axes). All eyes that exceed this limit (or fell to the left of the red circle) were classified as
progressed along this axis.
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and linear regression of VFI. For PLR, we applied six
criteria to our stability definition group to compute
specificity and to our progression study group to
compute sensitivity, resulting in discrete points along
the ROC curve. Therefore, the area under the ROC
curve was not computed for PLR. The areas under
the ROC curves for VIM-POP, GEM-POP, PoPLR,
linear regression of MD, and linear regression of VFI
are 0.82, 0.86, 0.81, 0.69, and 0.76, respectively. It can
be observed that the ROC curve area of GEM-POP is
similar to that of VIM-POP and is significantly
greater than the ROC curve areas for PoPLR, linear

regression of MD, and linear regression of VFI.
Figure 9 shows the partial ROC curves for VIM-POP,
GEM-POP, PoPLR, linear regression of MD, and
linear regression at high specificities for better
visualization. Table 3 shows the statistical difference
among all methods.

Validation of Specificity of All Methods Using
External Independent Datasets

Table 4 shows the specificities using all limits of
stability (progression limits) in two validation groups
(stable glaucoma and longitudinal healthy). These

Figure 7. Progression detection by GEM in two example eyes. The gray line indicates the 95th percentile limit of stability for the rate of
change of the projection coefficient parameter. The orange circles represent the actual projected VF values on the first axis of cluster G2,
and the blue circles are the projection coefficients estimated by a linear regression line approximating the projected visual field values on
the first axis of cluster G2. GEM is detecting progression along the first axis in the study eye in Figure 7 (left) and is detecting no
progression along the first axis in the study eye in Figure 7 (right).

Figure 6. Limits of stability in the GEM environment. (Left panel) Histogram distribution of the slopes of the projected VFs (estimated
using linear regression) of all eyes in the Stability Definition Group along the first axis in the G2 cluster. The blue line indicates the left tail
95th percentile, or the stability limit. (Right panel) Actual observed rates of the projection coefficients of all Progression Study Group eyes
along the first axis in the G2 cluster. The red circle indicates the stability limit (obtained from the left panel with overall specificity shifted
to adjust to 95%, to control for multiple axes). All eyes that exceed this limit (or fell to the left of the red circle) were classified as
progressed along this axis.
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Figure 8. Full ROC curves for VIM-POP, GEM-POP, PLR, PoPLR, linear regression of MD, and linear regression VFI for detecting
progressive glaucomatous optic neuropathy.

Figure 9. Partial ROC curves for VIM-POP, GEM-POP, PLR, PoPLR, linear regression of MD, and linear regression VFI for detecting
progressive glaucomatous optic neuropathy.
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results indicate that the limits of stability used were
applicable when applied to independent stable data
sets, although specificities for one version of PLR and
for linear regression of MD were somewhat low,
suggesting dataset-dependence (i.e., reduced general-
izability).

Discussion

VIM and GEM are novel unsupervised clustering
approaches that identify intuitive (i.e., recognizable)
patterns (axes) of VF defect that create an environ-
ment usable for detecting glaucomatous progression.
The clusters identified using VIM and GEM in the
current study were composed primarily of normal,
early to moderate glaucoma, or moderate to advanced
glaucoma VFs, based on MD. The diagnostic
accuracy (average of sensitivity and specificity) of
VIM to cluster VFs as abnormal and normal was not
statistically different from that of GEM (95% and
92%, respectively). The diagnostic accuracy of VIM
and GEM methods were similar with and without age
as an input to the clustering step indicating that age
had little effect (see also Bowd et al.,24 for a similar

VIM result using frequency doubling technology
perimetry VFs). With VIM, the clusters and axes that
constituted the VIM environment were determined
simultaneously. In contrast, GEM used a modular
approach to first generate the clusters of disease
severity followed by identification of axes or defect
patterns.

The area under the ROC curve of GEM-POP was
significantly greater (for detecting PGON eyes) than
areas under the curve of PoPLR (P value ¼ 0.03),
linear regression of MD (P value ,0.001), and VFI (P
value ,0.001). The area under the ROC curve of
GEM-POP was similar to the area under the curve of
VIM-POP (P value¼0.12). Progression of patterns by
VIM and GEM is based on progression along any one
of seven (in the current environment) axes, whereas
progression by linear regression of MD and VFI is
based on a single metric, indicating that detecting
localized change in defect patterns likely is a more
sensitive technique than detecting global change. This
superiority is expected, because in VIM-POP and
GEM-POP, uncontributing VF locations are ignored;
whereas for change in global indices the noncontri-
buting VF locations are included. In fact, all
progression detection methods that relied on local
analysis (VIM-POP, GEM-POP, PLR [based on best
performing parameter sets], and PoPLR) outper-
formed methods that relied on global analysis. It
should be noted that PLR sensitivities can be
significantly changed based on the selection of
particular parameters (e.g., varying the required
number of deteriorating locations or varying the
slope).

From a machine learning perspective, both VIM
and GEM first identified the hidden structures

Table 3. Statistical Significance in Difference
Between Area Under the ROC Curves Among VIM-
POP, GEM-POP, PoPLR, MD, and VFI

Method GEM-POP PoPLR MD VFI

VIM-POP 0.12 0.54 , 0.001 0.02
GEM-POP 0.03 , 0.001 , 0.001
PoPLR , 0.001 0.09
MD 0.05

Table 4. Validation of Specificity of all Methods Using Validation Groups

Method
Specificity (95% CI) on
Miami Stable Dataset

Specificity (95% CI) on
DIGS Normal Dataset

VIM-POP 97.5 (94.1, 100) 98.1 (93.6, 100.0)
GEM-POP 96.3 (92.2, 100.0) 96.3 (90.3, 100.0)
PoPLR 99.1 (96.7, 100.0) 96.3 (90.3, 100.0)
PLR (P value , 0.01; deterioration � �1 dB/y,

and at least 1 deteriorated point) 77.0 (69.0, 86.0) 72.0 (59.0, 85.0)
PLR (P value , 0.01; deterioration rate � �1 dB/y,

and at least 2 deteriorated points) 95.0 (91.0, 100.0) 89.0 (80.0, 98.0)
PLR (P value , 0.01; deterioration rate � �1 dB/y,

and at least 3 deteriorated points) 98.0 (95.0, 100.0) 96.0 (90.0, 100.0)
LR of MD 88.7 (82.2, 95.2) 81.5 (70.2, 92.8)
LR of VFI 90.6 (84.6, 96.6) 96.3 (90.3, 100.0)
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(glaucoma defect patterns) and then created their
respective environments for detecting progression. By
extracting clinically meaningful patterns of VF defects
in an unsupervised manner and studying their
progression, VIM and GEM provide an optimal
environment to detect progression. Because the
extracted patterns are both visible to the health care
provider and have shapes that are familiar and
understood, these progression detection classifiers
are not black boxes. Rather they provide the clinician
with an understanding regarding change over time of
specific patterns of defect. The modular approach
developed in GEM has several advantages over the
simultaneous convergence approach of VIM. Clus-
tering of disease severity is a grouping process that is
only weakly related to the discovery of independent
axes or defect patterns. With a modular design, GEM
allows the use of several classes of clustering
algorithms and several classes of axes discovery
approaches available for machine learning, by sepa-
rating the clustering and axes discovery processes. As
an example, the Gaussian mixture model used in
GEM can be replaced with a simple k-means
algorithm for clustering. In place of ICA used in
GEM for axes discovery, principal component
analysis (PCA) or other axes discovery approaches
can be easily applied. The simultaneously converged
VIM is far less adaptable.

We used GEM with ICA in the current study to
make GEM consistent with VIM, because VIM also
uses ICA. Post-hoc analyses on the current data
revealed that sensitivity of GEM for detecting
progression in PGON eyes improved somewhat when
PCA was used instead of ICA (49.4% and 45.8%,
respectively; a difference of 3 PGON eyes detected).
PCA-generated axes are perpendicular to each other,
which allows a more accurate calculation of the
progression of defect pattern along each axis.
Technically, because of the orthogonality of the
PCA axes, calculation of the projection coefficients
along each axis or the strength of a defect present in a
VF is exact, unique and the calculations are simple.
However with ICA, because of the lack of orthogo-
nality of ICA axes, coefficient calculations are not
exact, not unique and are computationally more
complex. It is likely that lack of perpendicular axes
resulted in a slight decrease in the PGON sensitivity
of GEM with ICA. We observed, post hoc, that the
PCA-based GEM defect patterns were not as visually
representative of clinically observable defect patterns
in glaucoma as ICA-based defect patterns. In other
words, the addition of a measure of dissimilarity in

ICA, which yields maximally different VF patterns,
may increase the recognizability of the VF patterns at
the expense of slightly reducing the sensitivity of
progression detection compared with PCA; whereas,
the orthogonality of PCA axes may increase the
sensitivity of progression detection at the expense of
finding and displaying maximally different VF
patterns.

Another advantage of the modular design of
GEM, compared with the simultaneous convergence
of VIM, is the significant reduction in computational
resources and time needed for training, due to a
significant reduction in GEM’s computational com-
plexity. Reduced time for generating the final
classifier means that there is more time to change
variables and experiment with different classifiers.
Creating the GEM environment took approximately
3 hours in a quad-core machine (8 gigabytes of
memory). In contrast, VIM took approximately 168
hours (7 days) on the same machine to train all the
classifiers and select the one used to generate the VIM
progression environment.

The modular design of GEM allows the use of
various classes of clustering and axes discovery
techniques, which allow the building of an optimum
GEM environment tailored to a specific modality or
data source (for example, optical imaging data instead
of visual function measurements, frequency doubling
technology perimetry instead of SAP). Identifying an
efficient clustering method and an axes discovery
approach to build an optimal progression environ-
ment is difficult when each experimental run takes
several days to complete. Therefore, the modular
design in GEM also may facilitate building or
improving optimal progression environments for
various modalities.

In VIM, after the clustering step, the specific axes
that constitute the VIM environment are manually
chosen (based on the knee-point concept) and the
initial VIM environment is further retrained. Hence,
the VIM procedure is semiautomatic. In contrast, the
modular nature of GEM separates the clustering and
axes identification steps without the need for retrain-
ing the GEM environment. Therefore, GEM is fully
automatic. A potential difficulty with semiautomatic
methods is the need to have a both computational
expertise to develop and modify algorithms and a
clear understanding of the factors involved in
glaucomatous progression to choose appropriate
appearing axes, from a clinical standpoint.

Regarding methodological similarities with other
studies, the axes discovery step in GEM is similar to
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the Proper Orthogonal Decomposition (POD) frame-
work for detecting progression from a baseline
condition, described previously using confocal scan-
ning laser ophthalmoscopy images.40 In GEM, one set
of axes that are discovered a priori describe the
general patterns of glaucoma defects. Progression in a
study eye is determined based on progression along
these predetermined defect patterns. Whereas in
POD, a set of axes is identified for each eye that
describes the baseline conditions of the eye (known as
the baseline subspace of the eye). Progression is
determined based on the deviation of follow-up
measurements from the baseline subspace of the eye.

VF progression detection methods recently pro-
posed include Permutation Analysis of PLR
(PoPLR)34 and Analysis with Non-Stationary Wei-
bull Error Regression and Spatial Enhancement
(ANSWERS).41 We compared GEM- and VIM-
based progression detection methods with PoPLR
directly. However, PoPLR34 requires a minimum of
one baseline and six follow-up VF exams (to provide
at least 5000 unique permutations of the VF series
for building null distributions for hypothesis testing)
to generate a reliable and robust outcome.34 Because
the Stability Definition Group in the current study
included an average of five VFs per eye, allowing
120 permutations, we generated sequences of seven
visits for each eye to fulfill the PoPLR requirements
and used the newly generated simulated test–retest
dataset to compute the specificity of all methods.
Therefore, the comparison is valid because all
methods used the same test–retest dataset. AN-
SWERS relies on a mixture of Weibull distributions
to model variability and a Bayesian method to
aggregate spatial correlation of local measurements
to confirm repeatable defects in the same or
adjacent locations in follow-up examinations. The
addition of spatial correlations of measurements
improves this method, compared with ANSWERS’
precursor, without spatial enhancement. We did not
compare GEM- and VIM-based progression detec-
tion methods with ANSWERS because such a
comparison is beyond the scope of the current
manuscript.

Both PoPLR and ANSWERS were designed
specifically to detect progression in SAP VFs and
have not yet been shown to be successful when
applied to other glaucoma-related measurements. Our
GEM-POP and VIM-POP approaches were designed
to be robust; in addition to working with SAP VFs,
they can be applied to frequency doubling technology,
to progressive retinal nerve fiber layer thinning, and

to emerging data types, such as SDOCT mapping, to
uncover patterns of defect and to detect progression
of these defects using POP24,43 (Bowd et al., IOVS
2014;55 ARVO Abstract 3008; Yousefi et al., IOVS
2015;56 ARVO Abstract 4564).

In this study, we modeled the bounds of stability
for detecting progression using a simulated test–retest
dataset specifically for comparison of VIM-POP and
GEM-POP against PoPLR; 1000 stable pseudolongi-
tudinal series generated by bootstrap, or resampling
with replacement approach of each eye resulted in
84,000 sequences to allow us generate the full ROC
curve for all methods. Longer longitudinal series (e.g.,
series with 7 visits) provide more confident bounds of
stability. The distribution, or the region of stability,
provided by the bootstrap resampling approach is
asymptotically exact (i.e., distributions, or the region
of stability, becomes more exact as the number of
stable pseudolongitudinal series increases).43 One of
the limitations of this approach is that the effects of
aging, glaucoma management, and long-term mea-
surement variability cannot be modelled in a longer
pseudoseries using only five exams. Nevertheless, this
limitation does not affect the comparison of progres-
sion detection performance of VIM-POP and GEM-
POP, PoPLR, PLR, MD, and VFI because all of the
progression detection methods used the same simu-
lated test–retest dataset.

The patterns of VF defects reported for the GEM
algorithm is dependent on the disease (VF) status and
demographic characteristics of the Classification
Study Group (Table 1). The Classification Study
Group used currently includes study eyes (with
varying disease status) from three geographically
separate clinical sites. Therefore, the GEM defect
patterns reported in this study should be representa-
tive of general defect patterns in the United States and
possibly internationally, which implies that the
threshold between stability and progression that we
derived can be used for detecting progression in
glaucoma clinics that include patients with various
clinical characteristics (i.e., some evidence exists that
the method is generalizable).

In conclusion, GEM-POP for progression detec-
tion performs significantly better than PoPLR and
linear regression of VFI and MD GEM-POP per-
forms similarly to VIM-POP. However, GEM-POP
provides a less complex environment than VIM-POP,
is computationally more efficient than VIM-POP and
is a fully automated technique. Although GEM-POP
is more complex to develop than PLR and PoPLR,
once the GEM environment for detecting progression
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has been established, determining whether an eye has
progressed by GEM-POP is simple and fast. Finally,
GEM-POP and VIM-POP are designed to be
applicable to other data types besides perimetry.
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