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L-Band Microwave Satellite Data and Model 

Simulations over the Dry Chaco to  

Estimate Soil Moisture, Soil Temperature, Vegetation 

and Soil Salinity 
 

Frederike Vincent1*, Michiel Maertens1, Michel Bechtold1, Esteban Jobbágy2, Rolf H. Reichle3, Veerle Vanacker4, 

Jasper A. Vrugt5, Jean-Pierre Wigneron6, Gabriëlle J. M. De Lannoy1* 

Abstract— The Dry Chaco in South America is a semi-arid 

ecoregion prone to dryland salinization. In this region, we 

investigated coarse-scale surface soil moisture (SM), soil 

temperature, soil salinity and vegetation, using L-band microwave 

brightness temperature (TB) observations and retrievals from the 

Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active 

Passive (SMAP) satellite missions, Catchment Land Surface 

Model (CLSM) simulations, and in situ measurements within 26 

sampled satellite pixels. Across these 26 sampled pixels, the 

satellite-based SM outperformed CLSM SM when evaluated 

against field data, and forward L-band TB simulations derived 

from in situ SM and temperature performed better than those 

derived from CLSM estimates when evaluated against SMOS TB 

observations. The surface salinity for the sampled pixels was on 

average only 4 mg/g and only locally influenced the TB simulations, 

when including salinity in the dielectric mixing model of the 

forward radiative transfer model (RTM) simulations. To explore 

the potential of retrieving salinity together with other RTM 

parameters to optimize TB simulations over the entire Dry Chaco, 

the RTM was inverted using 10 years of multi-angular SMOS TB 

data and constraints of CLSM SM and temperature. However, the 

latter modeled SM was not sufficiently accurate and factors such 

as open surface water were missing in the background constraints, 

so that the salinity retrievals effectively represented a bulk 

correction of the dielectric constant, rather than salinity per se. 

However, the retrieval of vegetation, scattering albedo and surface 

roughness resulted in realistic values. 

 
Index Terms— L-band microwave, soil moisture, vegetation, 

salinity, soil temperature, land surface model, SMOS, SMAP 

I. INTRODUCTION 

oil-vegetation processes and their interaction with the 

atmosphere determine the characteristic features of 

terrestrial biomes around the world. Soil moisture and 
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vegetation are at the center of the coupling between water, 

energy and carbon cycles, they regulate land surface fluxes and 

are constrained by environmental factors such as soil chemical 

properties, terrain, land use or human interventions [1, 2]. In 

dry regions, the soil salinity plays an important role in land 

surface processes, because it influences vegetation growth, and 

alters the water, energy and carbon budgets [3,4]. Therefore, an 

integrated large-scale assessment of soil moisture, vegetation 

and soil salinity is crucial in drylands or biomes with very dry 

seasons, often found in tropical and subtropical regions. 

Large-scale estimates of soil moisture and vegetation are 

routinely available from land surface and vegetation model 

simulations and from satellite observations, or combinations 

thereof [5]. The L-band microwave Soil Moisture Ocean 

Salinity (SMOS, [6]) and Soil Moisture Active Passive (SMAP, 

[7]) missions were launched with the explicit purpose to 

monitor soil moisture globally, and also provide estimates of 

vegetation optical depth [8, 9, 10].  

In contrast to soil moisture and vegetation, large-scale 

estimates of salinity are scarce and often characterized by a low 

temporal resolution. Some global estimates are provided by e.g. 

the Harmonized World Soil Database (HWSDv1.21, hereafter 

HWSD) [11]. However, those salinity estimates are typically 

classified in a few categories and the information is time-

invariant, often relying on soil samples of decades ago. Remote 

sensing offers the potential to address these limitations.  

Optical remote sensing satellites have localized areas 

affected by excess soil salinity using spectral salinity indices 

[12], vegetation proxies [13], or machine learning techniques 

using a stack of optical remote sensing data and other global 

datasets [14]. Thermal remote sensing has also been explored 
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to map salinity [15]. Alternatively, microwave remote sensing 

might prove useful for salinity detection. Passive L-band 

microwave observations from the SMOS and SMAP missions 

are routinely used for sea surface salinity estimation [16], but 

the potential for soil surface salinity monitoring has not been 

fully explored yet. Given that at L-band, the soil water dielectric 

constant is sensitive to salinity [17], it may be possible to 

improve brightness temperature (TB) simulations, improve soil 

moisture retrievals in saline areas, and perhaps even estimate 

soil surface salinity by including the effect of salinity in the 

computation of the dielectric constant for water [18, 19], as part 

of the microwave radiative transfer model (RTM).  

Chaturvedi et al. (1983) [20] suggested that a combination of 

L- and C-band microwave remote sensing data might allow to 

differentiate between soil salinity and soil moisture effects on 

the microwave signal. Jackson and O’Neill (1987) [21] used the 

equations of [19] in the dielectric mixing model of [22] to 

conclude that salinity below 5 parts per thousand (PPT, mg/g) 

is most likely undetectable using L-band and would therefore 

not affect soil moisture retrievals. In contrast, for areas with 

higher salinity levels, up to 128 PPT, [23] reported significant 

overestimations of simulated TB when salinity is not accounted 

for, leading to errors in soil moisture retrieval.  

In short, L-band microwave remote sensing has a proven 

capability to routinely estimate large-scale soil moisture and 

vegetation optical depth and it is also affected by salinity, as 

shown in laboratory and small-scale studies.  However, the TB 

sensitivity to salinity at the coarse spatial resolution of 

spaceborne passive microwave radiometers has not yet been 

widely studied. The key question of this paper is therefore what 

we can learn from L-band TB observations about land surface 

variables such as soil salinity, soil moisture, temperature and 

vegetation. To this end, the South-American Dry Chaco, with 

its naturally saline soils [24] at risk of future salinization, forms 

a unique large-scale testbed.  

The objectives of this paper are to (i) evaluate large-scale 

estimates of soil moisture and temperature in the Dry Chaco, 

using data from an extensive field campaign, land surface 

model simulations, and SMOS and SMAP retrievals, (ii) 

simulate L-band TB with and without accounting for salinity and 

compare the simulations to satellite-based observations, and 

(iii) investigate the possibility of jointly retrieving RTM 

parameters related to soil roughness, vegetation and salinity 

over the Dry Chaco, using coarse-scale L-band radiometry and 

modeled constraints of soil moisture and temperature. The latter 

constraints help to set the dominant moisture and temperature 

contributions of the TB signal apart, and to focus on the 

estimation of less dominant variables, incl. salinity. 

Furthermore, the retrieved parameters could be used to optimize 

the forward RTM to produce improved TB simulations for a TB 

data assimilation system that inherently uses modeled soil 

moisture and temperature, such as the SMAP Level 4 Surface 

and Root-Zone Soil Moisture (L4_SM, [5]).  

In Section II, the field data are presented, as well as the 

ancillary data sources and models used for L-band TB 

simulation. Section III describes the methods, including the 

adjustments to the RTM to account for salinity and how the 

RTM is used in forward and inverse mode to simulate 

microwave TB and retrieve land surface properties, respectively. 

The results are shown in Section IV, a discussion is provided in 

Section V, and conclusions and recommendations for future 

research are summarized in Section VI. 
 

 
Fig. 1. A. Location of (green polygon) the Dry Chaco in South 

America, and (blue rectangle) the area of the field campaign. B. 

Location of (black boxes) EASEv2 pixels with in situ sampling 

and locations of (x) deep sampling within (green contour) the 

Dry Chaco region. The background shows the historical excess 

salinity map from the HWSD and open water areas from the 

Global Lakes and Wetland Database. Panel B. also provides a 

(yellow) zoom of one sampling pixel with the corresponding 

sampling sites. 

II. DATA AND MODELS 

A. Study Area 

The South American Gran Chaco hosts a wealth of 

biodiversity in an area where native dry forests and expanding, 

mostly rainfed, agriculture for crops and cattle ranching are 

competing in a changing landscape [24, 25]. Despite its large 

latitudinal extent and vegetative and climatic variability, the 

Dry Chaco is a well-delineated ecoregion in the western part of 

the larger Gran Chaco and covers an area of about 787 000 km2 

in southern Bolivia, western Paraguay and northern Argentina 

[26], east of the Andean mountain range (Fig. 1A.). The 

vegetation is dominated by xerophytic shrubs and trees, making 

up the Earth’s largest sub-tropical dry forest, and savannas. East 

of the Dry Chaco lies the Humid Chaco, characterized by 

wetlands and a lower tree coverage [25].  

The Dry Chaco is one of the planet’s largest level plains with 

slopes < 0.1% and a semi-arid climate. The mean annual 

temperature ranges between 18 and 26 ˚C but maximum 

temperatures can easily exceed 40 ˚C [27]. Rainfall varies 

between 400 and 1000 mm/year and is concentrated in the 

southern hemisphere summer [26]. 

Saline soils are common in the region owing to its semi-arid 

climate, flat topography and shallow groundwater table [24]. 

Large natural salt deposits occur in the presence of paleo-lakes 

(e.g. the Salinas de Ambargasta and Salinas Grandes, marked 

as open water in Fig. 1B.), paleo-channels or floodplains [28]. 

Large-scale deforestation and forest degradation for agriculture 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3193636

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3 

JSTARS-2022-00579 

 

pose a threat for soil salinization in this area. The dry forest 

conversion began in the early 20th century [29] and reached 

record high rates at the turn of the century. Multiple regional 

studies reported an increased downward mobilization of salts 

towards the water table after deforestation, followed by the rise 

of the saline water table, leading to the upward movement of 

salts [30, 25], suggesting the onset of changing hydrological 

conditions in the Dry Chaco. So far, however, there are no 

large-scale data to confirm these suggestions.  

During the months of July and August 2019, a field campaign 

was organized in a part of the Argentinean Dry Chaco (Fig. 

1B.), discussed in Section II.E. Soil moisture, salinity, 

temperature and vegetation were sampled near Añatuya, 

Charata, Frías, Santiago del Estero and Tucuman. 

 

B. SMOS and SMAP Data 

L-band TB (level 1), surface soil moisture (SM) and 

vegetation optical depth (τ) retrievals (level 2) were collected 

from the SMOS and SMAP missions. The SMOS mission was 

launched in 2009 and provides data at a 3-day temporal 

resolution and a nominal (3 dB) spatial resolution of 43 km [6]. 

We used the multi-angular SMOS SCLF1C.v620 TB at 

horizontal and vertical polarization (Hpol, Vpol), reprojected to 

the Equal-Area Scalable Earth (EASEv2) 36-km grid, and the 

SMOS-IC version 2 level 2 SM and τ product [8], resampled to 

36 km. The TB preprocessing and filtering was done as in [31], 

i.e., excluding pixels where TB observations are impacted by 

open water, radiofrequency interference, etc. as provided in the 

product quality flags. The SMAP satellite was launched in 2015 

and collects data at a similar temporal and spatial resolution as 

SMOS [7]. The SMAP level 1 Hpol and Vpol TB data were 

extracted from the SPL1CTB.v004 product, and level 2 SM 

retrievals were extracted from SPL2SMP.v006, which are both 

produced on the EASEv2 36 km-grid. The τ retrievals were 

extracted from the 9-km SPL2SMP_E.004, using the ‘option 3’ 

dual-channel algorithm [9], conservatively filtered using the 

provided quality flags and aggregated to 36 km.  

The SMOS and SMAP SM and TB data for July-August 2019 

were compared to in situ and model SM, and to evaluate 

forward RTM simulations, respectively, at pixels visited during 

the field campaign.  The multi-angular SMOS TB for 2010-2019 

were used for RTM inversions, whereas the time-average <τ> 

retrieval products for 2015-2019 (both SMOS and SMAP) were 

used to evaluate the <τ> estimates obtained from the RTM 

inversion. The SMOS and SMAP τ retrievals were earlier 

evaluated with a range of independent vegetation datasets [32]. 

 

C. Land Surface Modeling 

The Catchment Land Surface Model (CLSM, [33]), part of 

the NASA Goddard Earth Observing System (GEOS) model, 

was forced with meteorological data from the Modern-Era 

Retrospective Analysis for Research and Applications version 

2 (MERRA-2, [34]) to simulate land surface processes over the 

Dry Chaco on the 36-km EASEv2 grid from 2010 through 

2019, after 30 years of spin-up. The CLSM version is similar to 

that used for the SMAP L4_SM product version 4 [5]. The 

system simulates soil moisture in the surface (0-5 cm) and root 

zone (0-100 cm), surface temperature in a layer of 0-5 cm, and 

soil temperature in 6 layers with the first layer pertaining to 5-

15 cm depth. For surface soil moisture, the simulated and in situ 

sampled layer depth is similar (0-5 cm), and both will be 

referred to as SM. For temperature, the CLSM surface 

temperature (Tsurf, 0-5 cm) and soil temperature in the first 

layer (Tsoil1, 5-15 cm) will be compared to in situ temperature 

data collected in the upper 5 cm (T5). Because the CLSM Tsoil1 

is used as temperature input to the forward RTM in the SMAP 

L4_SM product, a statistical relationship between Tsoil1 

simulations and in situ T5 observations (frequently sampled 

during the day) was established to bias-correct the model Tsoil1 

towards in situ T5, and also to extrapolate point-based in situ T5 

measurements to upscaled 36-km EASEv2 estimates at specific 

times of the day (Section IV.A). These bias-corrected CLSM 

soil temperature estimates will therefore also be referred to as 

T5. The SM and Tsoil1 (or Tsurf) simulations were compared to 

in situ measurements and satellite retrievals, and then used for 

forward TB simulation, or as a constraint to invert SMOS TB and 

derive land surface properties (RTM parameters, incl. salinity 

and τ).  

It is important to note some shortcomings of the CLSM. First, 

explicit deforestation or the vegetation response to salinity is 

not included in the CLSM, and a historical climatology is used 

to describe the vegetation instead. The CLSM leaf area index 

(LAI) values over the Dry Chaco are based on a multi-year 

average climatology, obtained from GEOLAND2 [35]. This 

poses no problem for long-term deforested areas, but for 

recently deforested areas, the vegetation and SM may locally 

deviate from historical climatological conditions [36]. Second, 

it can be expected that soil salinity alters the water retention 

curve in a soil and affects the soil moisture profile and 

evapotranspiration response [37]. That would affect the 

satellite-observed TB signal but is not captured in the CLSM or 

any other state-of-the-art land surface model.  

 

D. L-Band RTM 

Given static and dynamic information about the land surface, 

a zero-order omega-tau RTM was used to simulate L-band TB 

at the top of the vegetation at horizontal or vertical polarization 

p (Hpol or Vpol) as follows:  

𝑇𝐵,𝑝 = 𝑇(1 − 𝑟𝑝)𝐴𝑝 + 𝑇𝐶(1 − 𝜔𝑝)(1 − 𝐴𝑝)(1 + 𝑟𝑝𝐴𝑝)   (1) 

Atmospheric contributions were not included, because they 

were already removed from the L-band satellite data, 𝑇 [K] is 

the effective soil temperature (either T5 or Tsoil1), 𝑇C [K] is the 

effective canopy temperature (assumed to equal 𝑇), rp [-] is the 

rough surface reflectivity, ωp [-] is the scattering albedo and Ap 

[-] is the vegetation attenuation, calculated as follows: 

𝐴𝑝 = 𝑒𝑥𝑝 (
−𝜏𝑝

𝑐𝑜𝑠(𝜃)
)             (2) 

The vegetation optical depth 𝜏p [-] is depends on a vegetation-

structure parameter, 𝑏p [-], and the vegetation water content 
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(VWC), which is the product of LAI [m2/m2] and leaf equivalent 

water thickness (LEWT) [kg/m2]: 

𝜏𝑝 = 𝑏𝑝𝑉𝑊𝐶, and 𝑉𝑊𝐶 = 𝐿𝐸𝑊𝑇 𝐿𝐴𝐼            (3) 

The rough surface reflectivity, rp [-] is defined following [38]:  

𝑟𝑝 = [𝑄𝑅𝑞 + (1 − 𝑄)𝑅𝑝] 𝑒𝑥𝑝(−ℎ) 𝑐𝑜𝑠𝑁𝑝 (𝜃)          (4) 

and requires Q, the polarization mixing ratio [-] (assumed to 

equal 0 for L-band), 𝜃, the incidence angle [rad], ℎ, a SM-

dependent roughness parameter [-], and Np, the angular 

dependence [-]. The roughness ℎ varies in time between hmax for 

SM at or below transition SM and hmin for SM at saturation. Rp 

is the smooth surface reflectivity [-], which is calculated using 

the Fresnel equations:  

𝑅𝐻(𝜃) = |
𝑐𝑜𝑠(𝜃)−√𝜀−𝑠𝑖𝑛2(𝜃)

𝑐𝑜𝑠(𝜃)+√𝜀−𝑠𝑖𝑛2(𝜃)
|

2

, and  

𝑅𝑉(𝜃) = |
𝜀𝑐𝑜𝑠(𝜃)−√𝜀−𝑠𝑖𝑛2(𝜃)

𝜀 𝑐𝑜𝑠(𝜃)+√𝜀−𝑠𝑖𝑛2(𝜃)
|

2

            (5) 

with 𝜀 the complex dielectric constant of the soil, 𝜀 = 𝜀′ + 𝑖𝜀′′, 
where 𝜀′ is the real part of the dielectric constant, 𝜀′′ is the 

imaginary part and 𝑖 is the solution of the equation 𝑖2 = -1. As 

will be discussed below, 𝜀 is a function of soil texture, SM, T 

and S. 

This paper used the same RTM structure as that used in 

Version 4 of the SMAP L4_SM product [5]. In short, the RTM 

uses dynamic CLSM SM and T (Tsoil1 or T5) as input, along 

with seasonally varying climatological LAI, and a set of lookup 

or calibrated RTM parameters (see below). The lookup 

parameters were based on the dominant vegetation cover, 

determined by the MODIS IGBP landcover map. The RTM 

simulations were also performed for a small sample of in situ 

SM and T5 observations described below. 

 

E. In Situ Data 

During the months of July and August 2019, a total of 26 

pixels on the EASEv2 36 km grid (Fig. 1) were sampled to 

facilitate comparison with satellite and model data. The pixels 

were chosen based on satellite imagery, deforestation history, 

expected salinity level (historical mapped data, unmapped 

natural or upcoming salinity as suggested by literature or 

satellite imagery), elevation and accessibility. A multitude of 

sites were sampled within each pixel, each pixel was sampled 

entirely within a day, and each pixel was visited only once. In 

the Dry Chaco, the months of July and August are typically dry, 

and in 2019, there was a clear dry-down after an anomalously 

wet austral summer. Table I provides an overview of all 

sampled pixels, the number of sample sites within the pixel and 

the dominant vegetation type.  

We collected extensive surface soil data in areas with 

diversified levels of salinization, and deeper soil samples at 

locations where deforestation had taken place either recently or 

in the past. Surface (0-5 cm) soil data were gathered on soil 

moisture (SM), temperature (T5), electrical conductivity (EC), 

and dielectric constant (ɛ) at multiple sample sites along a 

transect within each sampled EASEv2 pixel. The transect was 

situated to best capture the variability of the pixel, and consisted 

of minimally three (F6) and maximally 27 (A1) sample sites. 

An example of a transect is depicted in Fig. 1B. At ten locations, 

marked with crosses in Fig. 1B., additional deeper soil 

measurements were taken. Those are discussed in Appendix 1, 

to frame our findings within the scientific discussion about the 

salinization potential of the Dry Chaco.  

For SM, we used two different probes (Stevens HydraGO and 

the Delta-T Devices ThetaProbe). The HydraGO was used with 

the factory calibration that is also used for the widely used Soil 

Climate Analysis Network of the Natural Resource 

Conservation Service [39]. At each sample site, measurements 

were taken in two or three different pits (1 m apart) by 

horizontally inserting the probes into a cleared surface of an 

undisturbed soil at a depth of approximately 2.5 cm. The probes 

have a sensing volume that covers 5 cm in the vertical direction, 

i.e. the measurements represent the top 5 cm of soil. A high 

Pearson correlation (0.87) and a small bias (0.028 m3/m3) were 

found between all individual SM measurements from both 

probes (931 measurements with each sensor). Per site, an 

average SM was calculated based on the measurements of the 

HydraGO and the ThetaProbe in all pits. Given the strong 

agreement between both SM sensors and given that the 

composition of soils in the Dry Chaco is not too different from 

those used in the factory calibration of the HydraGO sensor, we 

believe that the averaged data are reliable to serve as reference 

in terms of relative accuracy metrics. Furthermore, 38 texture 

samples were collected. 

To measure in situ dielectric properties and salinity in the 

field, several methods were used. The Stevens HydraGO probe 

was used to measure porewater EC and the real and imaginary 

parts of ɛ (ɛ’ and ɛ’’) at 0.05 GHz (i.e., a much lower frequency 

than the L-band frequency of interest to this paper). Two other 

probes, a Hanna sensor and the YSI proDSS, were used to 

measure the EC of a soil-water paste (hereafter referred to as 

EC) of a mixed soil sample that was taken from the top 5 cm at 

each sample location along the transect. With the soil sample, a 

soil-water mixture was prepared on a 1:1 ratio; adding 50 ml of 

water to 50 g of the sample. The 1:1 ratio was chosen to 

minimize probe sensitivity difficulties because of dilution 

(which occurs more at the typical 1:5 ratio) and to allow 

reproducibility. After mixing and resting, the EC was measured 

with both probes. The measurements by both probes correlated 

well (R=0.94), with a slight underestimation by the Hanna 

probe (bias = -0.82 dS/m), due to saturation at 20 dS/m. In the 

following, only the YSI proDSS EC measurements were used.  

Where needed, these in situ EC measurements in dS/m were 

converted to salinity (S) in parts per thousand (PPT) in the 

Practical Salinity Scale, following the YSI proDSS’s internal 

conversion method, i.e. via regression equations (PSS 78, [40]) 

that only consider the EC and the temperature of the soil-water 

mixture. The equations are based on the salinity of seawater, 

and thus not fully representative for the ionic content of the Dry 

Chaco soil water, but the conversion error is expected to be 

small and consistent across all samples. 
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In situ surface soil temperature was measured with the 

HydraGO within the top 5 cm of the soil. Per sample site, T5 

measurements in all pits were taken within less than 15 minutes 

and averaged to one value. All measurements were taken during 

the daytime, and a special effort was done to sample additional 

T5 data close to the SMOS and SMAP satellite overpass times. 

 

Vegetation type was visually assessed at each location along 

the transect, and sampling was done in all different vegetation 

types that were representative for that pixel, and in zones with 

different elevations and expected salinity, i.e., the sample sites 

were chosen after close inspection of satellite imagery and 

ancillary spatial datasets (see below). 

 

F. Pixel-Scale In Situ Data 

To allow for comparison with satellite observations and 

model simulations on the 36-km EASEv2 grid, point 

measurements of surface SM, S (measured as EC in the field) 

and ɛ were upscaled via a weighted average to obtain in situ-

based ‘observations’ that are representative of a pixel area. The 

values of the limited number (mostly > 15) of samples for the 

one pixel were weighted based on elevation from the 30 arc-

second Multi Error Improved Terrain (MERIT, [41]) digital 

elevation model. This choice was based on the notion that both 

SM and S vary spatially with depth to the water table and the 

proximity of streams, which in turn are linked to elevation.  

The upscaling of in situ soil temperature (T5) measurements 

leveraged CLSM simulations (Section II.C). In short, the 

simulated diurnal cycle of CLSM Tsoil1 at the 36-km pixel 

scale was compared to T5 site measurements taken at many 

different times in the day, to establish a mapping function 

between both. This allowed to bias-correct the 36-km Tsoil1 

simulations to in situ T5 observations, and to obtain a pixel-

scale “in situ-based” T5 estimate at any time of the day. 

The visual inspection of vegetation (Table 1) within each 

sampled pixel was aggregated to a dominant impression of the 

landscape. For each visited EASEv2 pixel, a dominant 

vegetation class was selected by 3 observers during the field 

campaign from the 17 possibilities of the International 

Geosphere-Biosphere Program (IGBP) land cover 

classification [42]. 

Fig. 2 summarizes all surface soil data gathered during the 

field campaign. In panels A.-C., the within- and between-pixel 

variability in SM, S (EC in dS/m), and T5 are shown. The 

variability also includes temporal variability, which is limited 

within a pixel for SM, because each EASEv2 pixel was always 

completely sampled within a day. In contrast, the variability in 

T5 samples is largely driven by diurnal and daily temperature 

fluctuations. The blue dots indicate the upscaled values for SM 

and S (EC), whereas the red dots are T5 estimates at 6 am local 

time on the sample day (extrapolated to 6 am, discussed below). 

Except for T5, the upscaled values for all other variables are 

close to the simple pixel median values (center line of boxplot). 

For T5, the median value is associated with the sampled subset 

of the diurnal temperature variation, whereas the upscaled value 

is at a fixed time. The figure indicates that there is a large 

variability between pixels. For certain pixels and variables, 

there is also a large within-pixel variability. Our study only 

focuses on the variability between – and not within – pixels. 

 

 

TABLE 1 

OVERVIEW OF SAMPLED EASEV2 PIXELS IN JULY AND AUGUST 2019: NAME, NUMBER OF SAMPLE SITES PER PIXEL (#), SAMPLE 

DATE (DAY/MONTH) IN THE YEAR 2019 AND DESCRIPTION OF THE LAND COVER. NAMES ARE BASED ON THE MUNICIPALITY CLOSEST 

TO THE PIXEL LOCATION: A = AÑATUYA, C= CHARATA, F=FRÍAS, S=SANTIAGO DEL ESTERO AND T=TUCUMAN. 

 

name # date description name # date description name # date description 

A1 27 13/08 Forest F1 20 22/08 
Forest and 

pastures 
S5 16 25/07 

Mainly forest, 

cotton fields 

A2 19 12/08 
Mainly forest, 

some bushes 
F2 19 24/08 

Forest and 

pastures 
S6 13 26/07 Mainly forest 

A3 25 14/08 
Forest and 

bushes 
F3 19 23/08 Forest  S7 16 29/07 

Forest, bushes 

(halophytic) 

A4 22 16/08 Agriculture F4 20 21/08 Mainly bushes S8 20 31/07 Mainly forest 

A5 6 17/08 
Bushes, close 

to salt lakes 
F5 5 18/08 

Forest and 

bushes near 

saline lakes 

S9 21 01/08 Agriculture 

C1 20 06/08 
Post-harvest 

agriculture 
F6 3 23/08 Bushes T2 20 26/08 Agriculture 

C2 20 07/08 
Post-harvest 

agriculture 
S2 11 19/07 

Agriculture and 

forest 
T3 20 27/08 

Agriculture, 

some bushes 

C3 21 08/08 
Post-harvest 

agriculture 
S3 19 23/07 

Mainly forest 

and bushes 
T4 16 30/07 

Mainly dense 

forest 

C4 19 09/08 
Post-harvest 

agriculture 
S4 19 24/07 Mainly forest      
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Fig. 2. Boxplots showing the within-pixel variability of in situ 

measurements for the visited EASEv2 pixels, for A. soil 

moisture (SM), B. salinity (EC) and C. soil temperature (T5). 

The blue and red dots indicate the upscaled EASEv2 pixel 

value, with the red dots representing soil temperature 

extrapolated to 6 am. Also shown are D. July-August 2019 

average of MODIS-derived LAI (.) and in situ observed 

vegetation class, with o = mixed forest, * = agriculture and x = 

open shrubland, and E. HWSD-derived sand (.) and clay (*) 

fraction. Sampling dates differ across pixels and range from 

July 19 to August 27, 2019 (Table I).  

 

G. Ancillary Data for In Situ Pixels 

Additional data sources complement the in situ data 

collection. For every sampled 36-km EASEv2 pixel, an LAI 

value was calculated from 4-day 500-m MODerate resolution 

Imaging Spectroradiometer (MODIS; onboard the NASA Terra 

and Aqua satellites) retrievals (version 006) [43] for July and 

August 2019. Fig. 2D. shows the pixel-average LAI and the in 

situ observed vegetation class.   

Soil texture information was derived from the HWSD, and 

soil hydraulic parameters were derived as in [44]. Fig. 2E. gives 

the HWSD sand and clay fraction per EASEv2 pixel. A 

comparison with 38 soil samples (laboratory analysis, not 

shown) within 20 of the 26 sampled EASEv2 pixels showed 

high sand and low clay fractions in both datasets. Given the 

small set of in situ texture samples, we relied solely on HWSD 

estimates in the remainder of this paper.  

 

H. Regional Reference Data 

We further consulted the HWSD excess salts map (Fig. 

1B.) as a reference for salinity over the entire Dry Chaco. This 

map indicates the historically observed and expected severity 

of growth limitations due to salinity, sodicity or both, and does 

not account for possible recent salinization. Fig. 1B. illustrates 

that the occurrence of excess salinity is higher in proximity of 

(paleo-)lakes and streams. The static open water areas in the 

figure originate from the Global Wetland and Lake Database 

[45]. The 25-km dynamic open water estimates retrieved from 

the Advanced Microwave Scanning Radiometer 2 (AMSR2) 

[46] were also consulted to evaluate the results. 

As a reference dataset for vegetation, 1-ha above ground 

biomass (AGB) estimates for the year 2010 [47] were used. The 

1-ha AGB data were obtained from a combination of radar, 

optical and lidar data and were aggregated to the EASEv2 36-

km resolution. Since AGB is the oven-dry weight of the woody 

parts (stem, bark, branches and twigs) of all living trees 

excluding stump and roots, it represents a very different 

quantity than the L-band 𝜏, which is a microwave-based index 

that strongly varies with vegetation water content. However 

relative spatial patterns in AGB estimates can be reliably related 

to L-band 𝜏 patterns [48].  

III. METHODOLOGY 

A. Accounting for Salinity in the RTM 

In the RTM, the soil dielectric constant 𝜀 is calculated using 

a dielectric mixing model. Soil, water and air components all 

contribute to the dielectric properties of the soil mixture. 

Salinity also has an influence on the dielectric properties of a 

soil, and reduces TB, but is generally not included in global land 

RTMs. In line with the SMAP L4_SM product, we used the 

empirical [22] dielectric mixing model to calculate 𝜀 based on 

the dielectric constants of air (𝜀𝑎), rock (𝜀𝑟), ice (𝜀𝑖), and water 

(𝜀𝑤) with a distinction between bound and free water (see 

Appendix 2 for detailed equations, similar results were found 

with the [49] model). The dielectric constant of free water 

(𝜀𝑤) can be calculated by the Debye expression:  

εw = ε∞ +
εs−ε∞

1+(𝑖ωt)1−α − 𝑖
σ

ωε0
 ,            (6) 

where 𝜀∞ is the dielectric constant at an infinite frequency 

(set to  𝜀∞ = 4.9), 𝜔 = 2𝜋𝑓 with 𝑓 the frequency [Hz], 𝜀0 is the 

permittivity of free space (equal to 8.854 ∙ 10−12) and  is an 

empirical parameter describing the distribution of relaxation 

times, and is set to zero [19].   

In most operational RTMs, 𝜀𝑤  is calculated for pure water 

with the ionic conductivity 𝜎 equal to zero. The remaining 

variables in Eq. 6, i.e., the ionic conductivity 𝜎 [mhos/m], the 

relaxation time t [s] and the static dielectric constant 𝜀𝑠 [-], are 

calculated based on regressions equations using only T as an 

explanatory variable [49].  
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In this study, we replaced these equations for 𝜎(𝑇), 𝑡(𝑇) and 

𝜀𝑠(𝑇) in pure water with 𝜎(𝑆, 𝑇), 𝑡(𝑆, 𝑇) and 𝜀𝑠(𝑆, 𝑇), i.e. with 

the regression equations of [19] for saline water in the Debye 

expression (Eq. 6) to calculate 𝜀𝑤  for the dielectric mixing 

model of [22]. These regression equations of [19] build further 

on the equations of [18], which are valid for salinity ranging 

from 4 to 35 PPT. However, the authors note that the lower limit 

is not restrictive, and that only for distilled water a different set 

of equations should be used. For the detailed regression 

equations, we refer to [19].  

 
Fig. 3. A. Real (solid lines) and imaginary (dashed lines) 

dielectric constant of pure (0 PPT) and saline (32.5 PPT) water 

based on [18] for frequencies between 0 and 100 GHz and for a 

temperature of 20 oC. Effect of salinity on the (B.) real and (C.) 

imaginary part of the dielectric constant of water at L-band (1.4 

GHz) for a realistic range of soil water temperatures (˚C). 

 Fig. 3A. illustrates the 𝜀𝑤
′ and the 𝜀𝑤" of pure (0 PPT) and 

saline (32.5 PPT) water at frequencies ranging from 0 to 100 

GHz following [19]. Increasing salinity leads to a decrease in 

the real part and an increase in the imaginary part of the 

dielectric constant of saline water, in line with [17]. Fig. 3B. 

and C. illustrate the influence of soil water temperature on the 

sensitivity of 𝜀′𝑤  and 𝜀′′𝑤  to salinity at L-band (1.4 GHz). Fig. 

3C. indicates that 𝜀′′𝑤 , becomes more sensitive to salinity at 

higher soil water temperatures. 

Note that adding salinity via 𝜀𝑤  in the free water solution is 

a simplification of reality, as salts can be found as ions in the 

bound water fraction or in the form of salt crystals. We assume 

that the salinity measured in the field equals the soil water 

salinity that influences 𝜀𝑤 , and consequently the dielectric 

constant of the soil. In sensitivity tests (not shown), we found 

that the saline-water Double Debye dielectric model [50] 

created by William Ellison [51] produced very similar results 

to [19].  

 

B. Forward TB Simulations 

To understand the forward (and inverse) simulations with the 

adjusted RTM, a global sensitivity analysis of the modelled 

forward TB to various RTM input parameters was performed, 

considering first order interactions between the various RTM 

input parameters. Sobol’s sensitivity indices [52] were 

computed to quantify how much an individual input parameter 

contributes to the variance in TB (either at H- or Vpol), using 

Monte Carlo simulation with 105 samples. The framework of 

[53] was used to calculate Sobol indices for eight input 

parameters (SM, T5, S, porosity (P), wilting point (wp), VWC, 

hmin and ω), with the margins based on the field campaign or 

literature (‘Lit2’, [56]). The global sensitivity analysis is 

followed by a local sensitivity analysis focusing only on the 

influence of S on TB. 

 Next, forward TB simulations were performed using either 

upscaled in situ data or CLSM input of SM, T and vegetation 

for the sampled EASEv2 pixels. For both in situ-based and 

model-based TB simulations, the RTM ran twice: once with and 

once without salinity as an input variable. Hpol and Vpol TB 

simulations at 40˚ incidence angle were evaluated with SMAP 

and SMOS TB observations at the time of the satellite overpass. 

The difference between both sensors is small (< 3 K difference 

between SMAP and SMOS TB over land, [54, 55]) and therefore 

SMOS and SMAP TB were used together to ensure sufficient 

observations for the evaluation of TB simulations at the time of 

field sampling.  

The input of upscaled in situ and CLSM SM and T (T5 and 

Tsoil1) was as described in Section II.F and II.C, respectively. 

When TB was simulated with in situ-based input, the LAI was 

obtained using MODIS imagery at the sampling time, whereas 

the TB simulation with CLSM input used CLSM LAI values 

based on the multi-year average seasonally varying 

GEOLAND2 climatology (Section II.C). For in situ-based 

simulations, the vegetation-related lookup RTM parameters 

were based on the vegetation class observed in the field, 

whereas for the model-based simulations, lookup RTM 

parameters were based on the MODIS IGBP vegetation class 

used in the CLSM RTM. For both in situ- and model-based 

simulations, the soil-related RTM parameters were based on the 

HWSD (Section II.G), and TB simulations that account for 

salinity use the in situ salinity measurements.  The lookup table 

values for the parameters 𝑏p, LEWT, ωp, ℎ, and Nrp per 

vegetation class were compiled from literature and are referred 

to as ‘Lit2’ in [56]. 

 

C. Retrieval of Land Surface Properties 

To retrieve land surface properties over the entire Dry Chaco, 

including RTM parameters related to salinity, vegetation 

optical depth 𝜏, microwave roughness ℎ, and scattering albedo 

𝜔, the RTM was used in inverse mode for each pixel 

individually. To estimate multiple unknowns, multiple types of 

independent observations and constraints are needed. An 

important complexity is that the presence of water and salinity 

both affect the 𝜀 and subsequent TB simulations. Therefore, the 

estimation of salinity requires a priori knowledge or strong 

constraints for the other (more dominant) variables that 

influence TB. 

The multi-angular (7 incidence angles [30o, 35o, …, 60o]) and 

dual-polarized SMOS TB of the previous decade (July 2010 - 

November 2019) were used as observational constraint, and 

CLSM-based SM, LAI and T input data (either with or without 

CLSM Tsoil1 bias correction, i.e. T5 or Tsoil1) were used as 

modeled background constraint (i.e. assumed to be known) to 
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(i) find parameters that are consistent with the modeling system 

and suitable for a subsequent forward RTM application, and (ii) 

to exclude the dominant influence of SM and T from the TB 

signal to retrieve less dominant factors. A set of parameters (𝛼 

[-]) was calibrated (or ‘retrieved’) to minimize the multi-

angular and multi-polarization misfit between long-term mean 

values and standard deviations of SMOS observed TB (TBo) and 

forecasted TB (TBf(𝛼)), following the procedure of [57, 58], i.e., 

using a Bayesian optimization with inclusion of priori 

parameter constraint. The TBf(𝛼) were forecasted using the 

RTM (Eq. 1) with CLSM-based input data.  

The calibrated parameters included ℎmin and ∆ℎ=ℎmax −
ℎmin (Eq. 4) to parameterize a SM-dependent ℎ, the scattering 

albedo 𝜔 (Eq. 1) (here polarization-independent), 𝑏h and 

∆𝑏=𝑏v − 𝑏h (Eq. 3) to parameterize the LAI-dependent 𝜏p (i.e., 

5 parameters), either with or without two additional parameters 

that mimic the presence of salinity: sa and sb. In line with field 

experiments [21], the sa and sb parameters describe that over 

time, when SM (m3/m3) decreases, S (PPT) increases at a single 

pixel: 

𝑆 =  𝑠𝑎 + 𝑠𝑏  𝑆𝑀            (7) 

The initial values and ranges were set to sa = 5 [0 35] PPT 

and sb = -10 [-88 0] PPT/(m3/m3) based on trial-and-error [59]. 

The proposed equation does not consider temporal variation of 

salt mass in the soil caused, for example, by ongoing 

evaporation. A physically more complex alternative salt model 

formulation could not be justified, for lack of large-scale 

salinity observations to support it (and it will be shown later that 

the calibrated S does not actually reflect salinity but a bulk 

correction to the dielectric constant). After calibration of sa and 

sb, Eq. 7 can be used to calculate S per pixel at any time, given 

its SM value. This allows for an evaluation of S for specific days 

of the field campaign, but our main evaluation will focus on 

spatial patterns in long-term 10-year average <S> estimates. In 

line with 𝑆 = 𝑓(𝑠𝑎 , 𝑠𝑏 , 𝑆𝑀), it should be noted that ℎ =
𝑓(ℎ𝑚𝑖𝑛, ∆ℎ, 𝑆𝑀) depends on time-varying SM, and 𝜏p =

𝑓(𝑏p, 𝐿𝐴𝐼) depends on time-varying LAI, and we will evaluate 

the 10-year average <ℎ> and <𝜏>, where the latter is also an 

average of 𝜏p at Hpol and Vpol. 

Four calibration cases were considered. In a reference case, 

the same 5 parameters (𝛼) were calibrated as in [57, 58] without 

inclusion of salinity or any correction to CLSM input variables, 

similar to what is used for the RTM calibration of the SMAP 

L4_SM product [5]. The three other cases either (i) include an 

in situ-based bias-correction to CLSM Tsoil1 input, or (ii) 

include the calibration of 2 additional parameters related to 

salinity (equivalents), or (iii) include both (i) and (ii). The 

optimization was performed with a Markov Chain Monte Carlo 

algorithm, i.e., DiffeRential Evolution Adaptive Metropolis 

with parallel direction and snooker sampling from past states 

(DREAM(ZS), [60]), with the same settings as in [58]. A major 

advantage of this method is that it provides the entire posteriori 

density distribution of the parameter estimates, i.e. with access 

to the maximum a posteriori density (or ‘best’) and ensemble 

mean parameter estimates, and the associated ensemble 

standard deviation. The latter quantifies the uncertainty of the 

retrievals. 

The multi-temporal retrieval approach with strong 

background constraints of modeled T and SM, and the imposed 

inverse temporal relationship between SM and S limit the 

possibilities for equifinality: if S and SM would be retrieved 

simultaneously at individual time steps without strong 

background constraints, multiple combinations of SM and S 

would be found to be equally good.  However, imposing 

modeled background SM also holds the risk that the S retrievals 

compensate for biases in the background data, as will be 

discussed below. Keeping the multi-temporal approach and 

including a long-term T and SM bias estimation in the retrieval 

is feasible and recommended for future research. 

 
Fig. 4. In situ (IS) upscaled values of A. salinity and B. soil 

moisture. The circles represent the centroid of the EASEv2 

pixels sampled at various dates during the field work. In the 

background, A. the HWSD excess salinity map and B. the 

model-based MODIS IGBP vegetation classification and the 

boarders of the Dry Chaco are shown (green contour). 

IV. RESULTS 

A. Data Analysis: Satellite Pixels with In Situ Sampling 

We start with an inspection of the surface S, T (Tsurf, Tsoil1 

or T5), SM and vegetation in the sampled EASEv2 pixels, 

observed in situ or with satellite data, and simulated with 

CLSM. Given that the temperature shows a strong diurnal 

cycle, whereas the other variables are nearly constant within a 

day in this region during the dry season, we analyzed Tsurf, 

Tsoil1 and T5 at individual sample times within a day, whereas 

in situ SM and salinity samples were first aggregated to an 

upscaled daily value prior to comparison with model and 

satellite data as discussed in Section II.F.  

For S, Fig. 1 and Fig. 4A. show that two pixels with the 

highest in situ values (F4, F5) are indeed located in or near areas 

identified as being limited due to salinity and/or sodicity in the 

HWSD. However, there is only a limited agreement between 

the in situ data and the general pattern of the HWSD, indicating 

that the HWSD estimates likely do not reflect surface salinity 

only or may not be representative of the current situation. Fig. 

4B. shows the associated SM at the times and locations of 

sampling. Pixels with a high in situ S (Fig. 4A.) are also 

characterized by a high in situ SM (Fig. 4B.).   

For SM, Table II gives an overview of spatio-temporal 

accuracy metrics, for various SM products for the 26 sampled 
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EASEv2 pixels, where in situ SM is upscaled and each 36-km 

EASEv2 pixel is sampled only once. CLSM SM does not 

correlate well with in situ data, SMOS or SMAP retrievals. The 

in situ measurements, on the other hand, have a high correlation 

(R~0.7) with SMOS and SMAP SM retrievals. The RMSD 

values are similar for model or in situ SM compared to satellite 

observations. Fig. 5A. further illustrates that the bias between 

CLSM and SMAP SM is only 0.02 m3/m3 when computed 

across the years 2015-2019 and all 26 sampled EASEv2 pixels. 

For some individual pixels, however, large biases between in 

situ SM, retrievals and model simulations exist, with a 

noteworthy deviation (significantly higher bias of 0.09 m3/m3) 

between CLSM and SMAP estimates for saline pixels (> 4 PPT, 

indicated in blue).  

TABLE II 

COMPARISON OF DIFFERENT SM DATA PRODUCTS AT 26 IN 

SITU PIXELS SAMPLED IN JULY AND AUGUST 2019. THE BIAS IS 

RELATIVE TO THE REFERENCE PRODUCT IN THE 

CORRESPONDING MAJOR ROW HEADER. CORRELATIONS IN 

BOLDFACE ARE SIGNIFICANT AT A LEVEL OF 𝛼=0.05. 

 

Fig. 5B. shows all individual point in situ T5 observations at 

various times in the day within all EASEv2 pixels against the 

model equivalents of Tsurf and the deeper Tsoil1 closest in time 

and space (closest hour, overlying 36-km pixel). There is a high 

correlation (R=0.84) between in situ observed T5 and simulated 

Tsurf, and the model Tsurf is only slightly colder (less than 2 

K) than in situ T5. Compared to the modeled Tsoil1, the 

correlation is still high (R=0.83) and the model Tsoil1 is lower 

than in situ T5 (bias = -5.53 K), due to the spatial (horizontal 

and vertical) representativeness mismatch. The model Tsoil1 is 

associated with a deeper 5-15 cm depth for an entire 36-km 

EASEv2 pixel, whereas the in situ T5 is only representative of 

the top 5 cm at a point location. The diurnal amplitude of Tsoil1 

is thus expected to be smaller than the in situ T5, and T5 will be 

warmer during the daytime. Because Tsoil1 is used as input to 

the RTM in the SMAP L4_SM product, Tsoil1 is used as the 

reference temperature in the following, and a relationship was 

established between model Tsoil1 and in situ measured T5 at all 

in situ measurement times. A stratification by vegetation class 

over the area of the field campaign did not further refine the 

relationship between in situ T5 and model Tsoil1 and therefore, 

all data were used to derive the following linear regression 

between in situ T5 [K] and model Tsoil1 [K] (based on daytime 

samples with 281.22 K < Tsoil1 < 300.17 K): 

T5 = 1.20 Tsoil1 – 52.44          (8) 

This Eq. 8 was thus used to rescale the model Tsoil1 at SMOS 

or SMAP satellite overpass times (at ~ 6 am or 6 pm local time) 

to obtain either extrapolated “in situ-based” T5 estimates for 

each visited EASEv2 pixel, or “bias-corrected” model Tsoil1 

estimates in forward or inverse RTM simulations, as introduced 

in Section II.F. 

Finally, the observed vegetation at the sampled pixels is 

either dominantly agriculture, open shrubland or mixed forest, 

as summarized in Fig. 2D. Fig. 4 illustrates that the sampled 

area is in the transition zone between agricultural, shrubland 

and broadleaf dry forest. It is thus not surprising that only for 6 

out of the 26 sampled pixels, the assignment of the model-based 

vegetation classes agrees with the field-based classification. 

Furthermore (not shown), the MODIS observed LAI is typically 

higher for the agricultural areas than for the dry forest during 

the field campaign. 

 

 
Fig. 5. Comparison of A. CLSM SM against 5 years of SMAP SM retrievals for the 26 sampled EASEv2 pixels (August 2015-

2019), B. CLSM soil surface temperature (Tsurf) against in situ (IS) T5 measurements at all sample sites of the field campaign and 

C. CLSM soil temperature (Tsoil1) (July-August 2019). Also shown is the 1:1 line. The blue dots represent pixels (3 of the 26) 

with a S>= 4 PPT.

 

Model In situ  
R 

[-] 

RMSD   Bias 

[m3/m3] 

R 

 [-] 

RMSD   Bias 

[m3/m3] 

In situ 0.09 0.11 0.06 - - - 

SMOS 0.32 0.08 -0.01 0.71 0.08 0.05 

SMAP 0.14 0.06 -0.03 0.73 0.07 0.03 

Model - - - 0.09 0.11 0.06 
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B. Data Analysis: Dry Chaco Region 

Satellite observations of TB for the entire Chaco area give an 

integrated view of the land surface. Fig. 6A. and B. show 10-

year averages of SMOS Hpol and Vpol TB at 40˚ incidence 

angle, and the corresponding (cross-masked) 10-year averages 

of CLSM simulations of SM (Fig. 6C.) and Tsoil1 (Fig. 6D.). 

The model Tsoil1 simulations show a smooth gradient over both 

the Dry Chaco and the area east of it (Humid Chaco) with higher 

temperatures in the northern Chaco and little differences 

between east and west. The 10-year average SM simulation 

pattern is dominated by texture (areas with higher porosities 

have higher SM values) and climatological rainfall patterns. For 

example, the area east of the Dry Chaco is wetter both because 

of higher precipitation amounts and higher soil porosities. The 

long-term mean SMOS TB (both H- and Vpol) observations 

combine real SM and temperature, along with vegetation 

information, resulting in a smoother spatial pattern than the 

modeled SM (which is patchy due to distinct soil hydraulic 

parameters associated with sharp soil class delineations), and a 

much stronger delineation between the Dry Chaco (high TB) and 

the wetter region east of it (low TB) than what could be expected 

based on CLSM SM or Tsoil1 alone. In the northern Chaco, the 

denser forest vegetation in combination with the higher 

temperature contribute to the higher observed TB values.  

 

 
Fig. 6. Ten-year average of observed A. SMOS TB at Hpol, B. 

SMOS TB at Vpol, and simulated C. CLSM soil moisture and 

D. CLSM soil temperature (Tsoil1), after cross-masking to 

qualitative SMOS data (e.g., excluding frozen times in the 

Andes). Zoomed regions in A. and B. are discussed in the text. 

 

Some interesting features in the TB patterns are highlighted 

in Fig. 6A. and B. The zoom in Fig. 6A. is situated in the mid-

west part of the Dry Chaco, and shows local low TB and some 

missing pixels surrounding the Tucuman and Santiago Del 

Estero area of the field campaign. Pixels in the presence of a 

lake are filtered in the satellite data (Fig. 1), and land conversion 

in the area might contribute to the local decreases in TB. The 

zoom in Fig. 6B. shows linear features spanning from east to 

north-west in the northern part of the Dry Chaco, matching the 

floodplains of the Bermejo and Pilcomayo River and areas with 

high excess salinity in the HWSD map. The same features can 

be found in the simulated SM map (Fig. 6C.), but less distinctly 

than in the TB map, nicely illustrating how the TB pattern gives 

an integrated view of the land surface.  

 

 
Fig. 7. First order and total sensitivity for A. soil-related and B. 

vegetation-related RTM input variables and parameters. Indices 

are calculated using a Monte Carlo simulation with 105 

samples. 

C. Forward TB Simulations 

Fig. 7A. and B. give an overview of the first order and total 

Sobol indices for TB at H- and Vpol for soil- and vegetation-

related RTM parameters respectively.  

This global sensitivity analysis confirms that SM, T5, 

vegetation and roughness parameters have a significant 

contribution to the output TB variability, whereas S only has a 

small influence. Therefore, we will use strong constraints of SM 

and T5 (model background assumed to be known) in the 

following retrieval analysis to potentially tease out the marginal 

impact of the S signal.  

The above analysis was supplemented with a local sensitivity 

analysis. Table III gives an overview of the simulated TB 

sensitivity to S for a range of other RTM input variables. It 

should be noted that the tested salinity range of ΔS=35 PPT is a 

stretch for most soil-water mixtures, i.e. values above 30 PPT 

were only found in soils near salt lakes within the Dry Chaco. 

The change in TB (ΔTB) for a ΔS of 35 PPT is limited to -3.6 K 

at Hpol and -2.8 K at Vpol for average field conditions marked 

as ‘initial settings’ (open shrubland, loamy soil, T= 288 K, SM 

= 0.2 m3/m3, LAI = 0.3), and using uncalibrated ‘Lit2’ values 

[56] for RTM parameters such as e.g. ℎmin, ℎmax, 𝜔, 𝑏h and 𝑏v. 

However, the sensitivity |ΔTB| increases to ~ 7 K with 

increasing T, increasing SM (in correspondence with literature, 

[61]), and decreasing LAI. Note that if the canopy temperature 

Tc is varied independently from T, the sensitivity of TB to 

salinity increases with decreasing Tc (not shown). Vegetation 

classes with a denser canopy cover, such as forests, lower the 

TB sensitivity to soil salinity. 

Fig. 8 illustrates the forward simulation via full time series 

of input variables and simulated TB for one random pixel of the 

field campaign (EASEv2 pixel A1) for (A.) ten years with 

SMOS data and (B.) the months of the field campaign. While 

model-based TB simulations correctly follow the pattern of the 

satellite TB observations, the absolute value is underestimated 

by as much as 20 K, because the model Tsoil1 is not bias 

corrected here and the RTM parameters are not locally tuned. 

In contrast, the TB simulation using in situ data at the day of 

field sampling, agrees well with the satellite TB. 
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TABLE III 

HPOL TB (40˚) SENSITIVITY TO SALINITY FOR VARIOUS RTM INPUT VARIABLES, WITH AN INDICATION OF THE INITIAL SETTING AND 

THE TESTED RANGE OF EACH VARIABLE. RTM PARAMETERS DEPEND ON THE VEGETATION CLASS AND ARE TAKEN FROM 

LITERATURE-BASED LOOKUP TABLE ‘LIT2’ IN [53]. THE LAST COLUMN QUANTIFIES THE DIFFERENCE IN TB (ΔTB) FOR A DIFFERENCE 

IN S (ΔS) OF 35 PPT. 

** Changing soil temperature T simultaneously changes canopy temperature Tc and the soil water temperature, which are all 

assumed equal.

 
Fig. 8. Time series illustrating the concept of forward 

simulation with the RTM for EASEv2 pixel A1, for A. 10 years 

and B. the months of July and August 2019, when the field 

campaign took place. The top three panels show the CLSM 

LAI, SM and Tsoil1. The lowest two panels depict the observed 

Vpol and Hpol TB by (red dots) SMOS, (black dots) SMAP, the 

(*, indicated by the arrows) in situ-based TB simulation on the 

exact day of measurement in the field, and the (black line) 

model-based TB simulations. 

Both the model- and in situ-based TB simulations at the time 

and location of the sampled EASEv2 pixels were compared 

with the closest SMOS (~ 6 am/pm local time) and SMAP (~6 

pm/am local time) TB on the sample day. Table IV gives a 

summary of the (spatio-temporal) accuracy metrics using a total 

of 31 satellite TB observations (both SMOS and SMAP, am and 

pm overpasses were combined to ensure a sufficiently large 

sample size) for the visited EASEv2 pixels. For some of the 26 

pixels, no satellite TB observation was found at the day of field 

sampling, for other pixels multiple overpasses were available. 

The in-situ-based forward TB simulations correlate better with 

satellite TB observations than model-based TB simulations, 

especially at Vpol. The low correlation between model-based 

TB simulations and TB observations is most likely due to the low 

correlation between model and in situ or satellite SM, and 

because the (soil- and vegetation-related) lookup RTM-

parameters are associated with model-based vegetation classes 

that differ from those observed in situ. Tsoil1 bias correction 

adds bias to the Vpol and reduces the bias in the Hpol, but 

generally brings the model-based TB simulations closer to the in 

situ-based simulations. Across the 31 sample points, Table IV 

indicates a relatively small average TB bias compared to 

literature [57], but the ubRMSD suggests that large 

compensating differences are found across the sampled pixels.  

In line with the low sensitivity of TB to S, there is a slight but 

consistent increase in TB simulation performance when S is 

included. At Hpol, the R value increases from 0.77 to 0.79 and 

at Vpol from 0.80 to 0.83. For saline pixels, defined as EASEv2 

pixels with in situ S > 4 PPT, accounting for S causes an 

increase in R from 0.66 to 0.70 at Hpol and from 0.72 to 0.79 

at Vpol. Given the small sample size, no statistically significant 

model improvement can be proven, but this finding shows that 

S can have a locally important impact on TB.  

  

Variable Initial 

value 

Range Effect on TB Effect on sensitivity of TB to salinity (0 PPT – 35 

PPT) 

T ** [K] 288 [275 300] TB increases with T Sensitivity increases with rising T; ΔTB is minimally 

~-7 K at T5 = 300 K 

SM [m3/m3] 0.2 [0.1 0.4] TB decreases with 

SM 

Sensitivity increases with rising SM;  ΔTB is 

minimally ~-5 K at SM = 0.4 m3/m3 

LAI [m2/m2] 0.3 [0.1 3] TB increases with 

LAI 

Sensitivity decreases with rising LAI; ΔTB is 

minimally ~-4 K at LAI = 0.1 m2/m2 

Vegetation 

class 

7: Open 

shrubland 

[1 16] Mixed effect Lower sensitivity in denser vegetation covers; ΔTB is 

minimally ~-6 K for grass- and wetlands 

Soil class 2: Loamy 

sand 

[1 12] Mixed effect Sandy classes have slightly higher sensitivity; ΔTB is 

minimally  ~-4 K for silt loam texture 
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TABLE IV 

SPATIO-TEMPORAL PERFORMANCE METRICS FOR THE FORWARD 

TB SIMULATIONS, USING EITHER IN SITU (IS) OR MODEL DATA 

(M) INPUT, WITHOUT OR WITH (+ S) IS SALINITY INPUT. THE TB 

SIMULATIONS MARKED WITH * USE BIAS-CORRECTED TSOIL1. 

THE REFERENCE TB OBSERVATIONS (OBS) INCLUDE ALL 

AVAILABLE SMOS AND SMAP (TOGETHER) TB AT 40˚ 

INCIDENCE ANGLE COLLECTED FOR THE TIMES AND EASEV2 

PIXELS OF THE FIELD SAMPLING. CORRELATIONS IN BOLDFACE 

ARE SIGNIFICANT AT A LEVEL OF 𝛼=0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Retrieval of Land Surface Properties 

The above TB simulations were limited to some in-situ 

sampled EASEv2 pixels, and indicated that the spatial pattern 

of CLSM input and lookup RTM parameter values were not 

ideal to represent the observed TB. In a next step, the long-term 

(2010 - 2019) discrepancy between simulated and observed TB 

was leveraged to estimate some RTM properties at each pixel 

of the entire Dry Chaco. More specifically, vegetation, soil 

roughness and possibly salinity, and their uncertainty, were 

estimated via RTM inversion, using CLSM background 

information of T5 and SM (which have a dominant effect on TB, 

Fig. 7A.). The resulting estimates can be used as parameters in 

future forward RTM applications with consistent CLSM 

background information, or they can be interpreted as retrievals 

which are constrained by model background information (on 

SM and T). 

Fig. 9 shows the spatial distribution of the ‘best’ and 

ensemble mean estimate for four diagnosed parameters 

retrieved (i.e. calibrated) with DREAM(ZS) over the 569 

EASEv2 pixels located within the Dry Chaco, for two 

calibration cases. The reference calibration optimizes 5 

parameters without inclusion of S or Tsoil1 bias correction. The 

second case calibrates 7 parameters, including sa and sb (to 

diagnose S), and applies a Tsoil1 bias correction. For the latter, 

the spatial average best or ensemble mean value ± the spatial 

average ensemble standard deviation is also shown. The 

ensemble standard deviation is an indication of the retrieval 

uncertainty. In any case, the RTM inversion yields spatially 

continuous parameter values, unlike the literature-based values 

associated with the few different vegetation classes in the 

region. Not explicitly shown is that the difference in 

distributions for the two calibration experiments is due to the 

Tsoil1 bias correction, whereas the calibration of S has no 

significant impact on the spatial distribution of the retrieved 

parameters. 

Overall, the inversion (or RTM calibration) yields realistic 

estimates of vegetation (long-term LAI-based vegetation 

optical depth <𝜏> and scattering albedo 𝜔) and roughness 

(long-term SM-based <h>) with a low associated uncertainty. 

Including a bias-correction of Tsoil1 results in lower <h> and 

higher <𝜏> (via higher b parameters) and 𝜔 values.  

 
Fig. 9. Spatial distribution of four parameters calibrated with 

DREAM(ZS) for the Dry Chaco, with (red) an indication of the 

uncertainty. Distribution of (A.) the ‘best’ estimate and (B.) the 

ensemble mean value for each parameter, when (gray) 

calibrating 5 parameters without Tsoil1 bias correction, and 

(blue) calibrating 7 parameters, incl. salinity equivalents, with 

Tsoil1 bias correction. Also shown is (red) the spatial average 

(A.) ‘best’ and (B.) ensemble mean value ± the spatial average 

ensemble standard deviation corresponding to the blue 

parameter distribution. 

The <𝜏> estimates were evaluated against independent 

vegetation products, i.e. 2015-2019 average <𝜏> retrievals from 

SMOS and SMAP, and 2010 AGB estimates. Fig. 10 illustrates 

that both (A.) without and (B.) with Tsoil1 bias correction, a 

high spatial correlation is found between long-term best 

estimates of <𝜏> and long-term SMOS-IC <𝜏> (R~0.95), long-

term SMAP <𝜏> (R=0.85-0.90), and 2010 AGB estimates 

(R~0.80), at locations where SMAP retrievals are assumed to 

be of high quality (i.e., excluding areas with too dense 

vegetation, indicated in Fig. 10C.). To assess the usefulness of 

the AGB dataset for 2010 to evaluate climatological <𝜏> 

retrievals, we also computed the correspondence between the 

retrieved <𝜏> with the SMOS-IC <𝜏> for the year 2010, 

resulting in R=0.92 and RMSD=0.07 [-]. Land use changes in 

the area typically result in local mosaic patterns that probably 

have not significantly changed the coarse-scale 𝜏 patterns over 

the last decade. Again, the differences between Fig. 10A.-B. are 

mainly due to the Tsoil1 bias correction, and the results only 

marginally differ with or without inclusion of S calibration. 

 
R  

[-] 

RMSD 

[K] 

Bias 

 [K] 

ubRMSD 

[K] 

Hpol    

TB IS  0.77 12.70 -0.53 12.69 

TB  IS + s  0.79 12.62 -0.44 12.61 

TB  m  0.18 25.74 -9.35 23.98 

TB  m + s  0.17 25.85 -8.89 24.24 

TB m + s*  0.18 24.76 -4.33 24.38 

Vpol     

TB IS  0.80 9.49 6.23 7.17 

TB  IS + s  0.83 9.24 6.20 6.86 

TB  m  0.13 14.67 0.77 14.56 

TB  m + s  0.12 14.84 1.02 14.80 

TB m + s*  0.13 16.12 6.07 14.93 
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Fig. 10. Comparison of long-term mean retrieved <𝜏> (<𝜏>model) (A.) without and (B.) with inclusion of Tsoil1 bias correction 

against (black) SMOS <𝜏>, (red) SMAP <𝜏>, and (blue) linearly rescaled 2010 AGB (AGBrs). S calibration is included, but does 

not affect the skill metrics. The ‘best’ <𝜏> values are shown; the metrics are the same for the ensemble mean <𝜏> values. The 

lighter and smaller markers correspond to (cyan) AGB and (gray) SMOS estimates where SMAP retrievals are masked out, and 

these are not included in the skill metrics. C. Distribution of 36-km AGB values. Markers with black edges correspond to grid cells 

where quality SMAP retrievals are found.

The smaller and lighter markers in Fig. 10 A.-B. show that in 

dense vegetation areas (high <𝜏> values) the inclusion of a 

Tsoil1 bias correction possibly leads to an overestimation of 

absolute <𝜏> values, esp. compared to the SMAP <𝜏> (RMSD 

metrics not reported; too few high 𝜏 values left after applying 

quality control). This finding, combined with locally increased 

misfits between long-term mean TB observations and TB 

simulations in case of Tsoil1 bias correction (not shown), leads 

to the conclusion that our in situ-based Tsoil1 bias correction is 

not suitable everywhere, and that the use of Tsoil1 as input for 

the SMAP L4_SM RTM is justified for this area. 

Even though the calibration yields realistic estimates of <τ>, 

𝜔, and <ℎ> with a low associated uncertainty, Fig. 9 shows that 

the (10-year average) <S> takes on unrealistically high values 

in the Dry Chaco, especially so when the ‘best’ values for sa and 

sb are used in the calculation of S. The retrieved space-time 

average value for the pixels sampled during the field campaign 

is ~12 PPT when <S> is calculated using the ensemble mean sa 

and sb values and ~ 28 PPT when the best values for sa and sb 

are used, whereas the average surface salinity measured in situ, 

which comprised only a small part of the Dry Chaco, was 4 

PPT. Furthermore, the S estimates computed at the sample days 

do not at all correlate (R=-0.19) with in situ measurements for 

the EASEv2 pixels of the field campaign. Fig. 9 also highlights 

a large ensemble uncertainty on the <S> estimates and a large 

discrepancy between the ‘best’ estimate and the ensemble mean 

estimate, which is indicative of a wide and skewed a posteriori 

distribution of unreliable S estimates, and thus highly uncertain 

estimates. Fig. 11A. gives the ensemble mean retrieved 10-year 

average <S> pattern in and near the Dry Chaco and its near 

surroundings, calculated using the ensemble mean sa and sb 

parameters, calibrated without Tsoil1 bias correction. The 

retrieved <S> values are too high to represent natural or human-

induced salinity, are often of the same magnitude as their 

uncertainty, and likely represent an integrated correction on the 

dielectric constant in terms of salinity equivalents, rather than 

salinity itself. High values of <S> thus compensate for 

shortcomings in the RTM input variables, other than salinity. 

Some of the ensemble mean <S> pattern can for example be 

related to the presence of periodic open water fractions shown 

in Fig. 11 B. 

 

 
Fig. 11. A. 10-year averaged retrievals of the ensemble mean 

correction of the dielectric constant in terms of salinity <S> 

[PPT], calibrated without Tsoil1 bias correction. B. 2015-2017 

standard deviation of AMSR2 open water fraction. 

V. DISCUSSION 

An evaluation of satellite-based SM retrievals using in situ 

measurements at the large 36-km pixel scale has so far only 

been done for a few dedicated calibration and validation 

(Cal/Val) sites [62]. For this study, in situ measurements were 

collected within 26 different satellite pixels during the dry 

season in the Dry Chaco and -despite the small sample size- 

they confirmed that SMOS and SMAP SM retrievals agree well 

(R~0.7), and better than CLSM simulations, with ground 

measurements. However, when including all SMAP retrievals 

across the years 2015-2019, the CLSM simulations only 

showed a small bias of 0.02 m3/m3 across the sampled pixels, 
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and a noteworthy wet bias in the retrievals for saline pixels (Fig. 

5). The latter indicates that missing salinity may affect the SM 

retrievals, because the salinity decreases TB by a few K, 

especially for high T and low LAI, as in the Dry Chaco. As a 

rule of thumb, a 2-3 K decrease in TB (40˚) corresponds to an 

increase of 0.01 m3/m3 in SM retrievals [63]. The sensitivity 

analysis (Table III) showed that the influence of salinity on TB 

is only a few K, and thus is close to the uncertainty on individual 

(single angle) SMOS TB observations (~4 K), and only 

marginally above the TB differences (< 3 K) between SMOS 

and SMAP sensors. This necessitates the combined use of 

multiple TB observations and strong modeled background 

information to tease out the influence of salinity on the TB.  

The long time series of multi-angular and multi-polarization 

SMOS TB data was used to obtain reliable retrievals of 

vegetation (𝜏, 𝜔) and microwave roughness (h), but the retrieval 

of salinity (S) did not return realistic values and did not 

significantly affect the retrieval of other land surface properties. 

The unrealistic high S values contrast with our own fieldwork 

and the level of dryland salinization indicated in literature, that 

is, the observed surface salinity is still low at this time, whereas 

the salinity is higher mainly in deeper layers (see Appendix 1). 

Because of the low sensitivity of the TB simulations to S, the 

low observed surface S, and the low spatial resolution of L-band 

radiometers, sub-pixel heterogeneity makes it hard to 

disentangle S from other inaccurate sources of input to the TB 

signal, which explains the uncertainty in the S retrievals. The S 

estimates compensate for errors introduced in the computation 

of the dielectric constant ɛ by inaccurate data other than salinity. 

For example, southeast of the Dry Chaco, the calibrated salinity 

equivalents are almost certainly compensating for missed open 

water, organic material and underestimated CLSM SM. Fig. 

11B. confirms that the area southeast of the Dry Chaco 

experiences temporal ponding, which is not included in the 

CLSM background simulations, and which was not persistent 

enough to flag SMOS TB prior to the inversion. The high S 

equivalents are effectively increasing ɛ’’, resulting in a higher 

magnitude of ɛ, similar to how higher water amounts would 

affect ɛ’.  

The retrieval approach could be further elaborated by 

improving the strong model background constraints, or by 

adding more observational constraints e.g. by including 

information on water ponding. In our study, long-term TB 

signature statistics were optimized, using (i) simulated T and 

SM, and (ii) imposed time series relationships between S and 

SM. While the first constraint ensures temporally and spatially 

consistent fields of RTM parameters that are readily applicable 

for forward modeling in a land surface data assimilation system 

[5], it may also introduce bias in the S (and other) retrievals. 

The bias in the large-scale CLSM SM and T could originate 

from the MERRA-2 forcings or CLSM parameters. Such biases 

are unavoidable, unless extensive in situ observations are 

available for model optimization. Including a calibration of the 

long-term SM and T background bias as part of the inversion 

may reduce this problem. We verified (results not shown) that 

by keeping the modeled SM dynamics, but including a rescaling 

factor (bias correction) for SM (and consistent porosity) in the 

calibration, the S values significantly decreased (by on average 

5 PPT), and the inclusion of an S retrieval has a local impact on 

the magnitude of the SM rescaling factor. The latter reinforces 

that SM retrieval might locally be affected when high S is 

present. If available, it can be recommended to include 

knowledge about S as ancillary information (constraint) to 

improve SM retrieval accuracy over salt-affected areas. The 

constraint on the relationship between S and SM could also be 

improved by a more elaborate physically-based model, which 

would then allow to better estimate the temporal variation of S. 

Finally, the low spatial resolution of passive microwave 

remote sensing is great for large-scale ecosystem monitoring, 

but not ideal for agricultural applications. Even the largest 

farms in Argentina are on average only half the size of the 

SMOS and SMAP pixel scale [64]. Finer resolution active 

microwave data could solve that problem of spatial resolution, 

but decomposing the backscatter signal is not trivial.  

VI. CONCLUSION 

The Dry Chaco is a biogeographical region with a distinct 

land surface characterized by dry forest and expanding 

agriculture, possibly threatened by a changing water 

distribution and salinization. This paper highlights limitations 

and possibilities of various data sources in capturing coarse-

scale surface soil moisture (SM), soil temperature, soil salinity 

(S) and vegetation in the Dry Chaco. More specifically, we 

examine L-band microwave brightness temperature (TB) 

observations and retrievals from the Soil Moisture Ocean 

Salinity (SMOS) and Soil Moisture Active Passive (SMAP) 

satellite missions, Catchment Land Surface Model (CLSM) 

simulations, and in situ measurements within 26 satellite pixels 

covering a part of the Dry Chaco.  

First, data from an intensive field campaign in July-August 

2019, CLSM simulations, and SMOS and SMAP SM retrievals 

are compared. Across the 26 pixels sampled in the field 

campaign (each observed once, on different days), the CLSM-

based SM does not correlate well with the in situ measurements, 

whereas SMOS and SMAP SM retrievals correlate much better 

with in situ data. The CLSM daytime surface soil temperature 

(Tsurf) is slightly colder (2 K) than in situ temperature (T5) 

measurements (both 0-5 cm), and CLSM’s first layer soil 

temperature at 5-15 cm (Tsoil1) is colder by ~5 K compared to 

the 0-5 cm in situ T5 data, due to differences in spatial 

(horizontal and vertical) representativeness. When comparing 

satellite-based SM retrievals to CLSM SM across the years 

2015-2019 for the sampled pixels, a wet bias in the SM 

retrievals for saline pixels was detected.  

Next, the effect of S and other land surface variables on 

forward L-band TB simulations is quantified. To this end, we 

implemented the equations of [18] for saline water into the 

dielectric mixing model of [21] to estimate the dielectric 

constant of the soil-water-salinity mixture. When propagating 

these dielectric constant estimates through the L-band radiative 

transfer model (RTM), TB shows an overall low sensitivity to S 

(decrease by ~4 K when S increases from 0 to 35 PPT under 
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average field campaign conditions, and using literature-based 

RTM parameters), with increases in sensitivity when SM 

increases, vegetation decreases or soil temperature increases. 

Because the 26 in-situ sampled satellite pixels have on average 

only a S of 4 PPT, the forward TB simulations only change 

marginally on average when accounting for S in the RTM, but 

for some pixels strong local impacts are found. TB simulations 

using in situ-based soil temperature and SM greatly outperform 

those using CLSM-based input data, when evaluated against 

SMOS and SMAP TB observations. In line with the SMAP 

L4_SM product, CLSM Tsoil1 is an input to the RTM. An 

optional Tsoil1 bias correction using the T5 data of our field 

campaign only marginally improves the forward L-band RTM.  

Finally, we use the RTM in inverse mode to estimate time-

average vegetation (𝜏, 𝜔), microwave roughness (h) and 

salinity and their uncertainty at each pixel within the Dry Chaco 

region, using Markov chain Monte Carlo simulations, 10 years 

of multi-angular and dual-polarization SMOS TB observations 

and constraints of CLSM SM, temperature and leaf area index. 

The RTM inversion retrieves consistent spatial patterns for hmin, 

∆h (related to microwave roughness h), bh, ∆b (related to 

vegetation opacity 𝜏), and 𝜔 (related to vegetation). The 

calibrated pattern of 10-year average <𝜏> agrees very well with 

independent SMOS and SMAP <𝜏> retrievals (R>=0.9), and 

with aboveground biomass (AGB) estimates. The inclusion of 

an in situ-based Tsoil1 bias correction in the retrieval is not 

recommended for the entire Dry Chaco. The inclusion of S in 

the retrieval does not significantly alter the values of the 

retrieved vegetation and roughness parameters. However, the 

retrieved S values themselves are unrealistically high with a 

large associated uncertainty over the Dry Chaco, but they help 

to slightly reduce the differences between simulated TB and 

SMOS TB observations. The S retrievals should thus not be seen 

as S estimates as such, but rather as a bulk correction of the 

dielectric constant that also compensates for inadequate CLSM 

SM values, neglected open water contributions, or other model 

deficiencies.  

To retrieve soil surface S from the microwave L-band signal, 

the S levels should be high enough and the uncertainty on the 

‘known’ RTM input variables should be minimized to 

maximize the sensitivity to S. For future research, we suggest 

improving the model background information, e.g. by including 

both local and seasonal soil temperature and SM bias 

corrections (incl. the impact of open water fraction) and more 

accurate soil texture information. Future research would also 

benefit from a study area where soil surface salinization is in a 

further stage than in the Dry Chaco, to overcome TB sensitivity 

issues at low S. 

APPENDIX A 

At ten locations (Fig. 1B.), deeper soil measurements of EC 

and pH were collected. Like the surface soil EC measurements, 

the deeper EC measurements were performed in a home 

laboratory setting, and based on a 1:1 soil-water mixture 

sample. Eight of the sample locations were chosen based on 

deforestation history and were situated at the interface between 

forest and agriculture. At those locations, measurements were 

taken along three transects: one in the agricultural area, one in 

the forest and one moving from agriculture to forest. Each of 

the transects consisted of two to five sample sites. A pit of 

approximately 40 cm deep was dug at every sample site and soil 

moisture, temperature and dielectric properties were measured 

with the HydraGO and ThetaProbe at 5 – 10 cm and 20 – 40 cm 

depth. With a soil auger, deeper soil samples at 80 – 100 cm 

and 200 cm depth were collected for salinity analysis with the 

Hanna and YSI proDSS probes. Preparation and analysis of 

those samples followed the same steps as discussed for the 

surface soil samples. Following the same data collection 

strategy, a transect of six sample sites along a river and another 

one along an elevation gradient was sampled. Fig. A1 shows 

that, currently, the surface soil salinity in the Dry Chaco is still 

low, whereas deeper soil layers have significantly higher 

salinity values, and the correlation between surface and deeper 

salinity decreases with depth, i.e., R=0.70 (184 samples) at 80 

– 100 cm depth and R=0.42 (34 samples) at 200 cm depth.   

 

 
Fig. A1. Salinity measurements at 80 - 100 cm and at 

approximately 200 cm depth versus soil surface (0 - 20 cm 

depth) salinity measurements. R is the Pearson correlation 

coefficient. The line represents the 1:1 line. Data were taken at 

the deeper soil sample sites, indicated in Fig. 1B. 

APPENDIX B 

The dielectric mixing model of [22] calculates the dielectric 

constant of the soil based on the different constituents of the 

soil:  

• air: 𝜀𝑎 = 1 

• rock: 𝜀𝑟 = 5.5 + 0.2𝑖 

• tightly bound water approximated by the dielectric 

constant of ice: 𝜀𝑖 = 3.2 + 0.1𝑖 

• free water 𝜀𝑤 , based on our modified model of [19].  

Further, the model differentiates between the dielectric 

constant of the soil when the soil moisture content (SM) is 

below or above a certain transition level, because the 

permeability to electricity differs for tightly bound water from 

free water. The transition water content 𝑊𝑡 is calculated as:  

𝑊𝑡 = 0.49𝑊𝑃 + 0.165    (B1) 
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where WP [m3/m3] is the wilting point of the soil. When the soil 

moisture content SM [m3/m3] is lower than 𝑊𝑡, the dielectric 

constant of the soil can be calculated as: 

𝜀𝑠𝑜𝑖𝑙 = 𝑆𝑀𝜀𝑥 + (𝑃 − 𝑆𝑀)𝜀𝑎 + (1 − 𝑃)𝜀𝑟   (B2) 

where P is the soil porosity and 𝜀𝑥 is the dielectric constant of 

the initially absorbed water, calculated as:  

𝜀𝑥 = 𝜀𝑖 + (𝜀𝑤 − 𝜀𝑖)
𝑆𝑀

𝑊𝑡
𝑦   (B3) 

where 𝑦 is a fit parameter: 𝑦 = −0.57𝑊𝑃 + 0.481. When SM 

is higher than 𝑊𝑡, the dielectric constant of the soil can be 

calculated as:  

𝜀𝑠𝑜𝑖𝑙 = 𝑊𝑡𝜀𝑥 + (𝑆𝑀 − 𝑊𝑡)𝜀𝑤 + (𝑃 − 𝑆𝑀)𝜀𝑎 + (1 − 𝑃)𝜀𝑟 

      (B4) 

with 𝜀𝑥 = 𝜀𝑖 + (𝜀𝑤 − 𝜀𝑖)𝑦. 
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