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We investigate the properties of a weighted analogue of Ripley’s K-function
which was first introduced by Baddeley, Møller, and Waagepetersen. This sta-
tistic, called the weighted or inhomogeneous K-function, is useful for assessing
the fit of point process models. The advantage of this measure of goodness-
of-fit is that it can be used in situations where the null hypothesis is not a
stationary Poisson model. We note a correspondence between the weighted K-
function and thinned residuals, and derive the asymptotic distribution of the
weighted K-function for a spatial inhomogeneous Poisson process. We then
present an application of the use of the weighted K-function to assess the
goodness-of-fit of a class of point process models for the spatial distribution
of earthquakes in Southern California.

1 Introduction

Ripley’s K-function [Rip76], K(h), is a widely used statistic to detect cluster-
ing or inhibition in point process data. It is commonly used as a test, where
the null hypothesis is that the point process under consideration is a homo-
geneous Poisson process and the alternative is that the point process exhibits
clustering or inhibitory behavior. Previous authors have described the asymp-
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totic distribution of the K-function for simple point process models including
the homogeneous Poisson case (see [Hei88], [Rip88] pp. 28–48, [Sil78]).

The K-function has also been used in conjunction with point process resid-
ual analysis techniques in order to assess more general classes of point process
models. For instance, a point process may be rescaled (see [MD86], [Oga88],
[Sch99]) or thinned [Sch03] to generate residuals which are approximately
homogeneous Poisson, provided the model used to generate the residuals is
correct. The K-function can then be applied to the residual process in order to
investigate the homogeneity of the residuals, and the result can be interpreted
as a test of the goodness-of-fit of the point process model in question. Hence,
residual analysis of a point process model involves two steps, the transforma-
tion of the data into residuals and a subsequent test for whether the residuals
appear to be well approximated by a homogeneous Poisson process.

Of course, other methods for assessing the homogeneity of a point process
exist, including tests for monotonicity [Saw75], uniformity (see [DRS84],
[Law88], [LL85], ), and tests on the second and higher-order properties of the
process (see [Bar64], [Dav77], [Hei91]). Likelihood statistics, such as Akaike’s
Information Criterion (AIC, [Aka74]) and the Bayesian Information Criterion
(BIC, [Sch79]) are often used to assess more general classes of models; see e.g.
[Oga98] for an application to earthquake occurrence models.

We focus here on Ripley’s K-function, in particular on a modified version
of the statistic which we call the weighted K-function, KW , and which was first
introduced as the inhomogeneous K-function in [BMW00]. It may be used to
test a quite general class of null hypothesis models for the point process under
consideration and it provides a direct test for goodness-of-fit, without having
to assume homogeneity or to transform the points using residual analysis, the
latter of which often introduces problems of highly irregular boundaries and
large sampling variability when the conditional intensity in question is highly
variable (see [Sch03]).

This paper is outlined as follows. In Section 2, the definitions of the ordi-
nary and weighted K-functions are reviewed, a connection between KW and
thinned residuals is noted, and the asymptotic distribution of KW is derived
under certain conditions. The weighted K-function is then used in Section 3 to
assess the goodness-of-fit for competing models for the spatial background rate
of California earthquakes. Some concluding remarks are given in Section 4.

2 The Weighted K-function

In this Section, we derive its distributional properties of the weighted K-
function, KW (h), under certain conditions. KW (h) is a weighted analogue of
Ripley’s K-function and it is similar to the mean of K-functions applied to a
repeatedly thinned point pattern, denoted here as KM (h), an application of
which can be found in [Sch03]. We begin with a review of Ripley’s K-function.
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2.1 Ripley’s K-function and Variants

Consider a Poisson process of intensity λ on a connected subset A of the
plane R2 with finite area A, and let the N points of the process be labelled
{p1, p2, . . . , pN}. Ripley’s K-function K(h) is typically defined as the average
number of further points within h of any given point divided by the overall
rate λ, and is most simply estimated via

K̂(h) =
1

λ̂N

∑
r

∑

s 6=s

1(|pr − ps| ≤ h), (1)

where λ̂ = N/A is an estimate of the overall intensity, 1(·) is the indicator
function and h is some inter-point distance of interest. As pointed out in
[SS00], one can also estimate K(h) using an estimator for the squared intensity
λ̃2 = N(N − 1)/A2:

K̃(h) =
1

λ̃2A

∑
r

∑

s 6=s

1(|pr − ps| ≤ h). (2)

In applications, estimates of K are typically calculated for several different
choices of h. For a homogeneous Poisson process, the expectation of K̂(h) is
πh2 (similarly for K̃(h)). Values which are higher than this expectation indi-
cate clustering, while lower values indicate inhibition. However, it should be
noted that a point pattern can be clustered at certain scales and inhibitory
at others. Note also that two very different point processes may have identi-
cal K-functions, as K(h) only takes the first two moments into account. An
example of such a situation can be found in [BS84].

Under the null hypothesis that the point process is homogeneous Poisson
with rate λ, K̂(h) is asymptotically normal:

K̂(h) ∼: N

(
πh2,

2πh2

λ2A

)
, (3)

as the area of observation A tends to infinity (see p. 642 of [Cre93] or pp. 28–
48 of [Rip88]). As is pointed out in [SS00], it is crucial to use an estimate of λ
or λ2 rather than their true values, even if they are known. Situations where
the true intensity is known can arise in simulation studies, where one may feel
tempted to plug in the true value for the intensity in (1) or (2). Somewhat
surprisingly, however, using the true value for λ or λ2 will actually inflate the
variance of K̂(h) by a factor of 1 + 2πh2λ (see [Hei88]).

Several variations on K̂(h) have been proposed. Many deal with correc-
tions for boundary effects, as found in [Rip76], [JD81], and [Ohs83]. Variance-
stabilizing transformations of estimated K-functions which are more easily
interpretable have been proposed (see [Bes77]), such as L̂(h) and L̂(h) − h
where

L̂(h) =

√
K̂(h)

π
. (4)
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2.2 Definition and Distribution of the Weighted K-function

Suppose that a given planar point process in a connected subset A of R2

with finite area A may be specified by its conditional intensity with respect to
some filtration on A, for (x, y) ∈ A (see [DVJ03]). The point process need not
be Poisson; in the simple case where the point process is Poisson, however,
the conditional intensity and ordinary intensity coincide. Suppose that the
conditional intensity of the point process is given by λ(x, y).

The weighted K-function, used to assess the model λ0(x, y), may be de-
fined as

KW (h) =
1

λ2∗A

∑
r

wr

∑

s6=r

ws1(|pr − ps| ≤ h) (5)

where λ∗ := inf{λ0(x, y); (x, y) ∈ A} is the infimum of the conditional inten-
sity over the observed region for the model to be assessed and wr = λ∗/λ0(pr),
where λ0(pr) is the modelled conditional intensity at point pr.

One can think of the weighted K-function as a combination of Ripley’s
K-function and the thinning method used for residual analysis in [Sch03]. In
[Sch03], K(h) is repeatedly applied to thinned data where the probability of
retaining a point is inversely proportional to the conditional intensity at that
point. The computation of the weighted K-function KW (h) uses these same
retaining probabilities as weights for the points in order to offset the inho-
mogeneity of the process. By incorporating all pairs of the observed points,
rather than only the ones that happen to be retained after an iteration of ran-
dom thinning, the statistic KW (h) eliminates the sampling variability in any
finite collection of random thinnings. Indeed, simulations appear to indicate
that KW (h) has approximately the same distribution as KM (h), the mean of
K-functions on a repeatedly thinned point pattern, as the number of random
thinnings approaches infinity.

We conjecture that, provided the conditional intensity λ is sufficiently
smooth, KW (h) will be asymptotically normal as the area of observation A
approaches infinity. Indeed, for the Poisson case where λ is locally constant
on distinct subregions whose areas A

(n)
i are large relative to the interpoint

distance hn, we have the following result.

Theorem 1. Let N (n) be a sequence of inhomogeneous Poisson processes with
intensities λ(n) and weighted K-functions K

(n)
W , defined on connected subsets

A(n) ⊂ R2 of finite areas A(n). Suppose that for each n, the observed region
A(n) can be broken up into disjoint subregions A(n)

1 ,A(n)
2 , . . . ,A(n)

In
each having

area A
(n)
i = A(n)/In, and that the intensity λ

(n)
i is constant within A(n)

i .
Suppose also that for some scalar λmin, 0 < λmin ≤ λ

(n)
i < ∞ for all i, n.

In addition, suppose that, as n → ∞, In → ∞ and h2
n/A

(n)
i → 0. Further,

assume that the boundaries of A(n)
i are sufficiently regular that the number of

pairs of points (pr, ps) with |pr − ps| ≤ hn such that pr and ps are in distinct
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subregions is small, satisfying R(n) := 1
A(n)

∑
pr,ps

1(|pr−ps|≤hn)1(i6=j)

λ
(n)
i

λ
(n)
j

→ 0 in

probability as n → ∞, where the sum is over all pr ∈ A
(n)
i , ps ∈ A

(n)
j . Then

K
(n)
W (hn) is asymptotically normal as n →∞:

K
(n)
W (hn)− πh2

n√
2πh2

n

A(n)H((λ(n))2)

∼: N (0, 1) ,

where H
(
(λ(n))2

)
represents the harmonic mean of the squared intensity

within the observed region A(n).

Proof. We first show that K
(n)
W (hn) can be represented as the arithmetic mean

of K-functions computed individually on each of the squares i = 1, 2, . . . , In,
plus the remainder term R(n) defined above:

K
(n)
W (hn) =

1
λ2∗A(n)

∑
r

wr

∑

s 6=r

ws1(|pr − ps| ≤ hn) (6)

=
1

λ2∗A(n)

In∑

i=1

λ2
∗

(λ̂(n)
i )2

∑
ri

∑

si 6=ri

1(|pri − psi | ≤ hn) + R(n) (7)

=
1
In

In∑

i=1

1

(λ̂(n)
i )2A(n)

i

∑
ri

∑

si 6=ri

1(|pri − psi | ≤ hn) + R(n)

=
1
In

In∑

i=1

K̂
(n)
i (hn) + R(n) (8)

Since the intensity λ
(n)
i is constant on each square A(n)

i , the weights wr, ws

assigned to a pair of points in A(n)
i within distance hn are each λ2

∗/(λ̂(n)
i )2,

which is used in going from (6) to (7). Thus, since R(n) converges to zero
in probability by assumption, the distribution of the weighted K-function is
equivalent to that of the mean of the In ordinary K-functions in (8).

Under the conditions of the theorem, K̂
(n)
i is asymptotically normal from

[Rip88], and since the point process on A(n)
i is homogeneous Poisson with

rate λ
(n)
i ≥ λmin > 0, the variance of K̂

(n)
i is bounded above by the vari-

ance of a homogeneous Poisson process on A(n)
i with rate λmin. This im-

plies that the collection of random variables





K̂
(n)
i

(hn)−πh2
n

In

√
V ar

(
K̂

(n)
i

(hn)
)



 satis-

fies the Lindeberg condition (see e.g. p. 98 of [Dur91]), and therefore the
mean 1

In

∑In

i=1 K̂
(n)
i (hn) is asymptotically normal. The variance of K

(n)
W (h) =

V ar
(

1
In

∑In

i=1 K̂
(n)
i (h)

)
+ o(n), which can be computed as
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V ar

(
1
In

In∑

i=1

K̂
(n)
i (h)

)
=

1
I2
n

In∑

i=1

V ar
(
K̂

(n)
i (h)

)

=
1
I2
n

In∑

i=1

2πh2

(λ(n)
i )2A(n)

i

=
2πh2

A(n)H
(
(λ(n))2

) , (9)

where (9) follows from the fact that A
(n)
i = A(n)/In.

ut
Note that a variance-stabilized version of the weighted K-function can be

defined in analogy with (4), namely:

LW (h) =

√
KW (h)

π
. (10)

3 Application

The test statistic KW (h) in (5) is applicable to a very general class of planar
point process models. We investigate their application to models for the spatial
background rate for the occurrences of Southern California earthquakes.

3.1 Data Set

Data on Southern California earthquakes are compiled by the Southern Cal-
ifornia Earthquake Center (SCEC). The data include the occurrence times,
magnitudes, locations, and often waveforms and moment tensor solutions,
based on recordings at an array of hundreds of seismographic stations located
throughout Southern California, including over 50 stations in Los Angeles
County alone. The catalog is maintained by the Southern California Seismic
Network (SCSN), a cooperative project of the California Institute of Technol-
ogy and the United States Geological Survey. The data are available to the
public; information is provided at http://www.data.scec.org.

We focus here on the spatial locations of a subset of the SCEC data occur-
ring between 01/01/1984 and 06/17/2004 in a rectangular area around Los
Angeles, California, between longitudes −122◦ and −114◦ and latitudes 32◦

and 37◦ (approximately 733 km × 556 km). The data set consists of earth-
quakes with magnitude not smaller than 3.0, of which 6,796 occurred within
the given 21.5-year period. The epicentral locations of these earthquakes are
shown in Fig. 1.
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Fig. 1. Earthquakes in Southern California 1984-2004: The data set consists
of 6796 earthquakes with magnitude 3.0 or larger

3.2 Analysis

Spatial background rates are commonly estimated by seismologists by smooth-
ing the larger events only. For instance [Oga98] suggests anisotropic kernel
smoothing of larger events in order to estimate the spatial background in-
tensity for all earthquakes. In this application, we investigate various spatial
background seismicity rate estimates involving kernel smoothings of only the
2030 earthquakes of magnitude 3.5 and higher, by using KW (h) to assess their
fit to the earthquake data set. The local seismicity at location (x, y) may be
estimated using a bivariate kernel smoothing µ(x, y) of the events of magni-
tude at least 3.5. Figure 2 shows such a kernel smoothing, using an anisotropic
bivariate normal kernel with a bandwidth of 8 km and a correlation of −0.611.
That is,

µ(x, y) =
N∑

r=1

f(x− xr, y − yr), (11)
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Fig. 2. Kernel smoothing of seismicity in Southern California 1984-2004:
An anisotropic bivariate normal kernel with a bandwidth of 8 km (ρ = −0.611,
σx = σy = 8km) is applied to 2030 earthquakes with magnitude not smaller than
3.5

where the sum is over all points (xr, yr) with magnitude mr ≥ 3.5, and f is
the bivariate normal density centered at the origin with standard deviation
σx = σy = 8 km and correlation ρ = −0.611. This correlation is estimated
using the empirical correlation of the values of xr and yr, and the bandwidth
is selected by inspection. The agreement of Figs. 1 and 2 does not seem grossly
unreasonable.

Since such a kernel smoothing uses only the observed seismicity over the
last 20 years (a relatively small time period by geological standards), one may
wish to allow for the possibility of seismicity in regions where no earthquakes
of magnitude 3.5 or higher have recently been observed. One way to do this
is by estimating the spatial background intensity via a weighted average of
the kernel-smoothed seismicity of magnitude at least 3.5 and a positive con-
stant representing an estimate of the spatial background intensity under the
assumption that the process is homogeneous Poisson. Hence we consider the
estimate of the form
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λ̂a(x, y) = aµ(x, y) + (1− a)ν, (12)

where ν = N/A is the estimated conditional intensity for a homogeneous
Poisson model and a is some constant with 0 ≤ a ≤ 1.

0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

h

L W
(h

)−
h

a = 0.5
a = 0.6
a = 0.65
a = 0.7
a = 0.75
a = 0.8
a = 0.9

Fig. 3. Weighted L-function for competing models: The difference between
the weighted L-function and its expectation h is shown for different values of a in
the background intensity model λ̂a as described in (12). The dashed and dotted lines
are 95% bounds for LW (h) − h using model λ̂a=0.7 based on the theoretical result
of Theorem 1 (dashed) and simulations (dotted).

Instead of plotting the weighted K-function for visual inspection, we will
show the difference between LW (h) as given by (10) and its expectation h,
because the latter highlights the departures of the estimate from its hypothet-
ical expectation. Figure 3 shows LW (h)−h applied to several spatial intensity
estimates, each of the form (12), using different values for the parameter a.
For the competing estimates λ̂a, a takes on the values 0.5, 0.6, 0.65, 0.7, 0.75,
0.8, and 0.9, where a darker line color indicates a higher value of a. The lower
values of a give more weight to the homogeneous background rate than higher
values of a.
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High values of a, such as a = 0.9 or greater, fit very poorly to the data,
especially for small values of h, as shown in Figure 3. For such values of a,
the intensity estimate gives most of the weight to the kernel smoothing, so
that pairs of small earthquakes in areas where there were no earthquakes of
magnitude greater than or equal to 3.5 have a very small probability and
are hence given enormous weight in the computation of KW . Similarly, for
values of a = 0.6 or less, the intensity estimate gives too much weight to the
homogeneous Poisson component and too little to the kernel smoothing of the
large events, so that the resulting model underpredicts the intense clustering
in the data occurring around the larger events.

For larger values of h, LW (h) tends to be smaller than its expectation.
This is due to the fact that all the models λ̂a inspected in this work include
a background intensity component which is too high in those areas of Fig. 1
where no earthquakes occur. Under any of the proposed models, one would
expect more earthquakes very far from the regions of high seismicity than
actually occurred, and the absence of pairs of such earthquakes leads to values
of LW (h) which are significantly smaller than expected.

In order to pick the best model λ̂a, attention should be focused on the
smaller values of h, especially since the assumption in Theorem 1 that λ
be locally constant is clearly invalidated if many pairs of points which are
within distance h have very different estimated intensities. For small values
of h, Theorem 1 may not be grossly inappropriate since the models for λ
are continuous in this example. As shown in Fig. 3, LW (h) − h seems to
decrease towards its expectation for most small values of h, indicating a rather
satisfactory fit for values of a approaching a = 0.7 from either direction. This
value of a appears to offer better fit than other values of a (and certainly is
far better than the conventional a = 1.0). However, even for a = 0.7, for h in
the range of 0.3km to 1.3km, the values of LW (h)−h exceed the 95% bounds
for LW (h)− h, which are shown as dashed and dotted lines in Fig. 3.

The dashed lines in Fig. 3 are derived using the result in Theorem 1 for
model λ̂a=0.7. The dotted lines are based on empirical 95% bounds for LW (h)−
h based on 150 simulations of model λ̂a=0.7. The simulated bounds line up
quite well with the theoretical bounds, which indicates that the conditions
of the theorem are sufficiently satisfied in our application. In particular, the
observed area seems to be sufficiently large, the intensity sufficiently smooth
(at least for the values of h used in this work), and boundary effects do not
seem to affect the estimation of KW (h) in any substantial way.

In summary, the data set contains many more small earthquakes in areas
far removed from any of the larger events than predicted by a kernel smooth-
ing of the larger events only, and clearly contains much more clustering than
would be predicted by a homogeneous Poisson model. However, there is sig-
nificant short-range clustering of the smaller earthquakes that occur in these
locations not covered by the larger events, which explains the positive de-
parture of LW (h) for small ranges of h. At the same time, the total number
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of earthquakes occurring in these remote areas is small; that is, the prepon-
derance of these smaller earthquakes are occurring much closer to the large
events than one would expect from a homogeneous Poisson process, which
explains why LW (h) is smaller than expected for larger values of h. Although
a mixture of a kernel smoothing of the larger events and a homogeneous Pois-
son background appears to fit much better than either of these individually,
no such mixture can thoroughly account for the observed patterns mentioned
above.

4 Concluding Remarks

The application of the weighted K-function to spatial background rate esti-
mates for Southern California seismicity shows the power of KW in testing
for goodness-of-fit. The weighted K-function is easily able to detect the ma-
jor departures from the data for simple kernel or Poisson estimates of the
spatial distribution of earthquakes. In addition, even for the optimally-chosen
mixture model for the background events, the weighted K-function is able to
detect deficiencies and to indicate potential areas for improvement.

KW has some advantages to alternative goodness-of-fit procedures like
thinning or re-scaling, especially in situations where the intensity on the ob-
served region has high variability. For the mixture estimate with a=0.7, for
instance, estimates of λ̂a ranged from 0.0049978 to 0.96792. With intensity
estimates varying over such a wide range, the application of thinning proce-
dures can by quite problematic. Since the estimated lowest intensity is very
low, only very few points will be kept after a random iteration of thinning,
which introduces a high degree of sampling variability. Re-scaling procedures,
on the other hand, would lead to highly irregular boundaries, which would
make it rather difficult to compute any test statistics on the re-scaled process.

In contrast to standard kernel smoothing of the larger events in the catalog,
the method of spatial background rate estimation which mixes the kernel es-
timate with a homogeneous constant rate appears to offer somewhat superior
fit to the SCEC dataset. This suggests that spatial background rate estimates
in commonly used models for seismic hazard, such as the epidemic-type after-
shock sequence (ETAS) model of [Oga98], might possibly be improved in this
way as well. Seismologically, the results are consistent with the notion that
Southern California earthquakes, though certainly far more likely to occur
on known faults, can potentially occur on unknown faults as well, and these
faults may be quite uniformly dispersed. The results suggest that a spatial
background rate estimate incorporating both of these possibilities could pro-
vide improved fit to existing models for seismic hazard. Such a modification
may be especially relevant given the occurrences in California of blind (i.e.
previously unknown) faults such as the one which ruptured during the North-
ridge earthquake in 1994, causing at least 33 deaths and 138 injuries as well
as extensive public and private property damage [PAKB+98].
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Further study is needed in order to confirm the seismological results sug-
gested herein, for several reasons. First, it remains to be seen whether the fea-
tures observed here may be reproduced elsewhere or are particular to Southern
California. Second, in the estimation of the intensities of the form (12), the
bandwidth and choice of kernel were not optimally selected, but chosen rather
arbitrarily. Another issue worth mentioning is that the earthquakes of magni-
tude greater than 3.5 were used both in the fitting and in the testing. This is in
keeping with common practice in seismology, though in statistical terms this
is certainly non-standard. Also note that the clustering of small earthquakes
in areas where the model assigns low intensity, as suggested by the high values
of LW (h)−h for small h in Figure 3, may or not be causal clustering. That is,
these high values of LW (h)−h may be attributable to clustering of these small
earthquakes not accounted for by any mixture model of type (12), or may in-
stead be attributable to inhomogeneity of the process not accounted for by the
model. However, the weighted K-function cannot discriminate between these
alternatives. It is similarly unclear how robust the estimator KW (h) is to vari-
ous departures from our assumptions, and in particular whether the weighted
K-function is more or less robust than alternative measures of goodness-of-fit,
such as thinned and re-scaled residuals. This is an important subject for fu-
ture research. In addition, the problem of boundary effects in the estimation
of the weighted K-function has not been addressed in this paper. Instead, we
have attempted to give a simplified presentation in introducing KW (h) and
its application. It should be noted, however, that exactly the same standard
boundary-correction techniques which are used for the ordinary K-function
(see Sect. 2.1) can be used for the weighted K-function as well. Fortunately, in
our application the fraction of points within distance h of the boundary was
so small for all values of h considered as to make such considerations rather
negligible.
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