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Quantifying aerosol direct radiative effect with Multiangle Imaging

Spectroradiometer observations: Top-of-atmosphere albedo change

by aerosols based on land surface types

Yang Chen,1,2 Qinbin Li,1,3 Ralph A. Kahn,1,4 James T. Randerson,2 and David J. Diner1

Received 9 July 2008; revised 20 October 2008; accepted 10 November 2008; published 24 January 2009.

[1] Using internally consistent albedo, aerosol, cloud, and surface data from the
Multiangle Imaging Spectroradiometer (MISR) instrument onboard the Terra satellite,
top-of-atmosphere (TOA) spectral albedo change (da) in the presence of aerosols over
land is estimated and its dependence on aerosol and surface properties is analyzed.
Linear regressions between spectral TOA albedo and aerosol optical depth (AOD) for
different surface types are examined to derive the aerosol-free TOA albedo. MISR surface
BiHemispherical Reflectance (BHR) values are used to differentiate surface types. We find
relatively high correlations between spectral TOA albedo and AOD for BHR-stratified
data in 2� � 2� grid cells. The global mean values of cloud-free da over land for
June–September 2007 are estimated to be 0.018 ± 0.003 (blue), 0.010 ± 0.003 (green),
0.007 ± 0.003 (red), and 0.008 ± 0.006 (near-infrared). Individual regions show large
variations from these values. Global patterns of da are determined mainly by AOD and
aerosol radiative efficiency. Large positive values of da are observed over regions with
high aerosol loading and large single-scattering albedo, where the aerosol scattering effect
is dominant. The presence of light-absorbing aerosols reduces aerosol radiative efficiency
and da. Surface reflectance influences both aerosol scattering and absorbing effects.
Generally, the aerosol radiative efficiency decreases with increasing BHR. We also
examined da-AOD correlations over different vegetation types. We find the smallest
da values are over needleleaf forests and shrublands, whereas the largest values are over
cropland and barren regions. The aerosol radiative efficiencies are lowest over needleleaf
forests and barren regions and highest over grasslands and croplands.

Citation: Chen, Y., Q. Li, R. A. Kahn, J. T. Randerson, and D. J. Diner (2009), Quantifying aerosol direct radiative effect

with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types,

J. Geophys. Res., 114, D02109, doi:10.1029/2008JD010754.

1. Introduction

[2] Aerosols, both natural and anthropogenic, perturb the
radiative balance of Earth’s atmosphere directly by scattering
and absorbing the solar irradiance [Chylek and Coakley,
1974; Coakley et al., 1983; Charlson et al., 1990]. On a
global average, anthropogenic aerosols exert a negative
radiative forcing, including a total aerosol direct radiative
forcing of �0.5 ± 0.4 W m�2 [Intergovernmental Panel on
Climate Change, 2007]. It partly offsets the positive radiative
forcing caused by the post-industrial rise of carbon dioxide
(1.66 ± 0.17 W m�2 [Intergovernmental Panel on Climate

Change, 2007]), though the spatial distributions of aerosol
forcing is very different. An accurate quantification of the
aerosol direct radiative forcing is critical for the interpretation
of previous climate records and the projection of future
climate change [Mishchenko et al., 2007; Chylek et al.,
2007].
[3] Current estimates of the aerosol direct radiative

forcing have large uncertainties [Intergovernmental Panel
on Climate Change, 2007]. Aerosol particles have a
variety of shapes, sizes, and chemical compositions, that
directly affect the aerosol optical properties and the ability
of aerosols to change the climate [Kaufman et al., 2002a].
Spatial and temporal distributions of aerosols are highly
variable owing to their diverse sources and short lifetimes
[Quinn et al., 2000; Quinn and Bates, 2005]. Additionally,
the land surface is highly heterogeneous in reflecting and
absorbing solar radiation at different wavelengths [Betts et
al., 1996], which also impacts the aerosol effect on Earth’s
radiative balance. Thus, estimating aerosol radiative forcing
is more challenging than estimating the radiative forcing
owing to well-mixed greenhouse gases.
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[4] A large portion of the uncertainty in quantifying
aerosol direct radiative forcing results from poor constraints
on the aerosol shortwave direct radiative effect (SWDRE).
In this paper, we use the term aerosol radiative effect to
represent the change in top-of-atmosphere (TOA) radiative
fluxes due to the presence of all aerosols (natural and
anthropogenic), and distinguish this from aerosol radiative
forcing (the radiative effect of anthropogenic aerosols alone).
The estimation of SWDRE by all aerosol species is the
basis for quantifying the direct radiative forcing by anthro-
pogenic aerosols. Therefore, a first step toward reducing the
uncertainty range of aerosol forcing is to improve the
estimate of aerosol SWDRE.
[5] Previously, a widely used approach for estimating the

aerosol SWDRE is through chemical transport and general
circulation model simulations [e.g., Hansen et al., 1998].
There are large uncertainties in these model-based estimates
as well as discrepancies among them, due to incomplete
knowledge of aerosol processes and assumptions made in
the aerosol simulations [Yu et al., 2006; Kinne et al., 2006].
Recently, much effort has also been made to assess the
aerosol radiative effect using measurements from ground-
based networks, satellite sensors, and intensive aircraft field
experiments [Yu et al., 2006]. In particular, satellite remote
sensing provides frequent, global coverage of aerosol
amount and type, as well as the TOA radiance distribution.
It thus offers a unique opportunity to constrain aerosol
SWDRE [Kaufman et al., 2002a; Anderson et al., 2005;
Diner et al., 2005].
[6] Two approaches have been used to exploit satellite

data in the calculation of aerosol SWDRE. In the first
approach, satellite aerosol observations are used to feed a
radiative transfer model to derive the aerosol radiative effect
[e.g., Yu et al., 2004; Remer and Kaufman, 2006]. The
second approach uses satellite observations directly without
resorting to radiative transfer calculations. In this case, the
aerosol direct radiative effect is derived from satellite-
observed changes in broadband radiative flux due to the
presence of aerosols in the atmosphere [Christopher et al.,
2000; Loeb and Kato, 2002; Christopher and Zhang, 2002;
Loeb and Manalo-Smith, 2005]. However, the satellite-only
approach has so far been limited primarily to over the oceans.
Application of this approach over land remains challenging
mainly because of the large uncertainty in aerosol retrievals
over bright land surfaces, the large heterogeneity in land
surface reflectivity, and the difficulty to estimate the TOA
radiative flux for aerosol-free scenes [Loeb and Kato, 2002].
The Multiangle Imaging SpectroRadiometer (MISR) aboard
NASA’s Terra satellite provides more accurate aerosol
optical depth (AOD) retrievals over land [Abdou et al.,
2005], as well as more information about aerosol properties
[Kahn et al., 2001], than are obtained from single-angle,
multispectral techniques. It thus has the potential to reduce
aerosol SWDRE uncertainties over land. Recently, Patadia
et al. [2008] estimated aerosol SWDRE over global land
using merged Clouds and Earth’s Radiant Energy System
(CERES), Moderate Resolution Imaging Spectroradiometer
(MODIS), and MISR data. They obtained aerosol-free TOA
broadband flux through the regression betweenMISR single-
bandAOD and CERES broadband flux for 0.5�� 0.5� cloud-
free regions.

[7] In this study, we estimate the aerosol SWDRE on a
global scale. Our approach is similar but different in several
important ways from that of Patadia et al. [2008]. First, we
use MISR data for aerosol properties, TOA albedo, surface
optical properties, and cloud properties. The use of internally
consistent data should reduce systematic sampling biases that
can occur when data from different instruments are used.
Second, we estimate the aerosol-free TOA albedo separately
for different land cover types within a region, thereby taking
into account land surface heterogeneity. Finally, we examine
the relationship between the spectral TOA albedo and spec-
tral AOD, which may better represent nonlinear wavelength-
dependent effects.
[8] This paper is the first in a two-part series. Here we

examine the TOA albedo change due to the presence of
aerosols over land by analyzing four months of MISR data
for June–September 2007. During this period, intense wild-
fires were observed in central Africa, North America, South
America, and Siberia (MODIS hotspot/active fire detections,
2002 data set, fromMODIS Rapid Response Project, NASA/
GSFC, distributed by University of Maryland, Fire Informa-
tion for Resource Management System, available at http://
maps.geog.umd.edu). Large amounts of light-absorbing
aerosols, including black carbon, were emitted from the
wildfires. We focus on investigating how the aerosol amount,
aerosol optical properties and land surface type affect the
spectral aerosol radiative effect. In the companion paper
(hereinafter part 2) we will present a method for estimating
aerosol broadband SWDRE over the globe. Multiple-year
MISR data will be explored and seasonal and interannual
variability of aerosol SWDRE will be examined.
[9] Detailed descriptions of MISR data and the method-

ology used are presented in section 2. The global distribution
of TOA albedo change due to aerosols, as well as its
dependence on aerosol properties and surface type, is shown
in section 3. We present an uncertainty analysis for these
calculations in section 4. Summary and conclusions are given
in section 5.

2. Data and Methodology

2.1. MISR Data

[10] The MISR sensor uses nine cameras pointed at fixed
viewing angles (0�, ±26.1�, ±45.6�, ±60.0�, ±70.5�) to
observe reflected and scattered sunlight in four spectral
bands: 446 (blue), 558 (green), 672 (red), and 866 nm
(near-infrared, NIR) [Diner et al., 1998]. The swath width is
�400 km, which provides global coverage in about 9 days
at the equator and 2 days near the poles.
[11] MISR global retrievals of aerosols, TOA albedo,

surface properties and cloud information are available since
late February 2000. For the purpose of quantifying TOA
albedo change by aerosols, four MISR level 2 products
are used in this study (Table 1): the aerosol product
(AS_Aerosol), the albedo product (TC_Albedo), the land
surface product (AS_Land), and the classifier product
(TC_Classifier).
[12] We use the ‘‘best estimate optical depth’’ from the

MISR Level 2 Aerosol Product (Version 20), which has a
spatial resolution of 17.6 � 17.6 km2 [Diner et al., 2001]
and is reported at four spectral bands as mentioned above.
The uncertainties of MISR AOD have been assessed with
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independent measurements. For example, Liu et al. [2004]
estimated that the MISR AOD retrieval error over land is
approximately 0.04 + 0.18 AOD. Thus, for AOD values
between 0.1 and 0.5 over land, the expected error in MISR
AOD should bewithin 0.06–0.13. In comparison, the error in
theMODISAOD retrieval over land had been estimated to be
0.05 + 0.2AOD [Chu et al., 2002].Kahn et al. [2005] showed
that about two thirds of the MISR-retrieved AOD values fall
within ±20% of concurrent AERONET values. In particular,
the MISR retrievals over desert and coastal regions, where
surface brightness and subpixel water contamination makes
accurate retrievals challenging, are in good agreement with
AERONET [Abdou et al., 2005; Martonchik et al., 2004].
Recently, Liu and Mishchenko [2008] compared coincident
AOD measurements from MISR and MODIS. They showed
the agreement over the land is often poor and even unaccept-
able. However, they acknowledged that their analysis cannot
be used to determine which retrieval is more accurate.
[13] MISR also constrains aerosol Single Scattering

Albedo (SSA) andAngstrom Exponent (AE). SSA represents
the relative importance of aerosol scattering and absorption,
and AE contains information about aerosol size. MISR
aerosol retrieval method and its sensitivity to SSA have
been previously reported [Chen et al., 2008, and references
therein]. Uncertainties for AE and SSA are difficult to
estimate owing to the lack of validation data.We are currently
evaluating these quantities by comparison to AERONET
values. The challenge is that there are far fewer AERONET
particle property retrievals than AOD retrievals. Additionally,
AERONET-derived SSA is not a direct measurement and is
subjected to many of the same uncertainties as the satellite
retrievals. In this study, we use MISR-derived SSA and AE
to study how these aerosol optical properties influence the
aerosol ability to modify TOA albedo.
[14] On the basis of observed radiances, MISR generates

several TOA albedo products [Diner et al., 1999]. For the
present study, we use the TOA local albedo, because it has
the highest spatial resolution (2.2 � 2.2 km2) among all
albedo products. MISR assigns recorded upward radiances
to the tops and sides of vertical columns, 2.2 � 2.2 km2 in
horizontal extent, at a height given by the Reflecting Level
Reference Altitude (RLRA) obtained from stereo-derived
cloud top heights. The spectral TOA local albedos from the
MISR Level 2 standard product are determined only from

the top-leaving radiances. Because the side-leaving, upward
radiances are not included, using these albedos would
probably cause an underestimation of the aerosol radiative
effect. In this study, we include the side contribution by
adding back the unobscured side-leaving, upward radiances
stored in the MISR TOA Albedo product. The radiances
from different cameras are weighted using preestablished
solid angle weighting factors [Diner et al., 1999]. To be
compatible with the AOD product, we resampled the TOA
local albedo (with side contribution included) to the 17.6 �
17.6 km2 resolution AOD grid. This method is similar to
the standard process of deriving MISR restrictive albedo
[Diner et al., 1999]. The only difference is that we calcu-
late the albedo for 17.6 � 17.6 km2 domains, whereas the
MISR restrictive albedo was derived on 35.2 � 35.2 km2

domains. The TOA albedo and AOD for each cloud-free
17.6 � 17.6 km2 grid box are defined as a ‘‘data pair,’’
which will be subject to linear regression analysis as
discussed in section 2.2.
[15] In this study we use two different MISR products for

cloud screening. In the base case calculation, we use the
SVM Cloud Confidence Level (CCL), which was derived
using Support Vector Machine (SVM), a machine learning
technique [Mazzoni et al., 2007]. The MISR SVM CCL
product has a spatial resolution of 1.1� 1.1 km2. The 17.6�
17.6 km2 grid box is set to ‘‘cloudy’’ if a single value of
SVMCCLwithin the grid box is ‘‘highly likely’’ or ‘‘likely.’’
This aggregation of confidence levels is conservative, to
minimize the cloud contamination. All plots and tables
shown in this paper are derived using SVM CCL cloud
masks. As a sensitivity test, we also use the Cloudy Clear
Designation (CCD), which was used for determining the
azimuthal model in the MISR TOA local albedo standard
retrieval. Similarly, we assume a 17.6 � 17.6 km2 grid
box to be cloudy if a single pixel within it is marked with
a ‘‘cloudy’’ CCD. The cloudy grid boxes are excluded
from further calculations.
[16] The MISR Surface product provides a number of

parameters related to land surface properties, which can be
used for stratifying by surface type. We use in this study the
BiHemispherical Reflectance (BHR), defined as the radiant
exitance divided by irradiance (‘‘albedo’’) under ambient
illumination conditions (including both direct and diffuse
illumination). This parameter is available in MISR’s four

Table 1. Summary of MISR Products and Parameters Used in This Study

Product Parameter Version
Spatial Resolution

(km � km) Explanation

TC_Albedo AlbedoLocala F05_0011 2.2 � 2.2 TOA local albedo, derived from top-leaving
bidirectional reflectance factors (BRFs) only

BRFSide_Mean 2.2 � 2.2 Mean value of BRFs registered to the side of a column
NumUnobscureSide 2.2 � 2.2 Number of unobscured pixels with BRFs registered

to the side of a column
CloudyClearDesignation 2.2 � 2.2 Cloudy-clear designation determined from Stereoscopically

Derived Cloud Mask (SDCM) and Angular Signature
Cloud Mask (ASCM)

TC_Classifier SVMCloudConfidenceLevel F05_0010 1.1 � 1.1 Support Vector Machine (SVM) derived
cloud confidence level

AS_Land LandBHR F06_0021 1.1 � 1.1 Bihemispheric reflectance over land
AS_Aerosol RegBestEstimateSpectralOptDepth F11_0021 17.6 � 17.6 Best estimated aerosol optical depth

RegBestEstimateSpectralSSA 17.6 � 17.6 Best estimated aerosol single scattering albedo
RegBestEstimateAngstromExponent 17.6 � 17.6 Best estimated aerosol angstrom exponent

aAlbedoLocal, BRFSide_Mean, NumUnobscureSide, LandBHR, RegBestEstimateSpectralOptDepth, and RegBestEstimateSpectralSSA are available for
four spectral bands.
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spectral bands. Since MISR retrieval is able to separate the
surface from the atmospheric signals, the retrieved BHR will
reflect the change in surface optical properties, independent
of the aerosols in the atmosphere above. The performance of
MISR land surface parameters in classifying vegetation and
other surface types has been widely evaluated [e.g.,Hu et al.,
2007; Armston et al., 2007]. The MISR BHR data has a
spatial resolution of 1.1 � 1.1 km2, and was also resampled
to the 17.6 � 17.6 km2 grid for analysis.

2.2. Method

[17] Aerosol effect on the TOA albedo (da) in each 2�� 2�
latitude-longitude region is defined as the difference between
the mean MISR TOA albedo (a) within the region over
the time interval of interest (1 month) and the TOA albedo
without the presence of aerosols (a0). Within each 2� � 2�
region, there is little variation in the downward solar flux.
Thus we simply estimated a from the arithmetic mean TOA
albedo for all data pairs within each 2�� 2� domain. Satellite
instruments (including MISR) are not able to observe the
aerosol-free TOA albedo directly, since aerosol particles are
always present in the atmosphere. To estimatea0, we perform
linear regressions between the spectral TOA albedo and
spectral AOD for all the data pairs that have similar aerosol
and surface properties. The y intercept of each regression line
represents the estimated aerosol-free TOA albedo for that
region. We also assess the confidence with which this
extrapolation can be performed.
[18] In this study, the regression is performed for data

pairs in each 2� � 2� region for each month. This selection
of spatial and temporal scales preserves enough data samples
and AOD dynamic range for the correlation analysis, and
simultaneously limits the large variability in aerosol and
surface properties, thus maintaining the quality of the linear
regressions for most regions. In addition, considering the
large variability of surface reflectance over land, we further
divide the data pairs in each 2� � 2� region into different
sets according to their BHR values. On the basis of the
probability density function of BHR globally (discussed with
Figure 3, cell C, in section 3.1), we divide the observed range
into 10 evenly distributed sets between 0 and 0.1, and 35 sets
between 0.1 and 0.8. We then examine the TOA albedo–
AOD regression for data sets stratified by BHR within each
region. Since the probability distributions of AOD and BHR
are spectrally dependent (see Figure 3, cells B and C, in
section 3.1), the linear regression analyses are performed for
each spectral band individually.
[19] Figure 1 shows an example of a successful linear

regression. The gray points represent all cloud-filtered data
pairs associated with AOD and TOA albedo. Since no side
contribution is included in the plotted TOA albedo, the
correlation is noisy. The inclusion of both the top and side
radiance contributions (black points in Figure 1) significantly
improves the correlation and reduces the uncertainty in
estimating the aerosol-free TOA albedo. The side contribu-
tion is particularly important when a thick aerosol layer
(e.g., a smoke or dust plume) is clearly present. The regres-
sion line in Figure 1 demonstrates that in the blue band, the
presence of these aerosols raises the TOA albedo in this
region (for a certain BHR stratum) at a rate of 0.074 per unit
of AOD, and the derived aerosol-free TOA albedo is 0.161.

[20] We consider a linear regression successful if the
root-mean-square (RMS) error of the regression is smaller
than 0.025, or if the correlation coefficient is larger than
0.5. We also require the number of data pairs in each set
be greater than 10, and the AOD dynamic range to be over
0.15. Overall, about 70% of the data pairs in the visible
bands produce successful regressions. Several reasons can
cause a failure in linear regression. Data points may be too
few owing to extensive cloud cover or unsuccessful
retrievals. Data points may have similar AOD values so that
the AOD dynamic range is too small to do the regression.
When surface or aerosol properties have large variabilities
within a region during a month, a good linear regression
between a and AOD is also difficult. The success ratio drops
to about 30% for the MISR NIR band. This is likely due to
two factors. AODs are typically lower in the NIR than in the
visible bands [Ricchiazzi et al., 2006] as a result of smaller
aerosol scattering in the former. Additionally, surface reflec-
tivity is higher over some surfaces in the NIR than in the
visible bands [Miura et al., 2008].
[21] If the linear regression fails, da cannot be estimated

from the difference between a and a0, because there is no
successful estimate of a0 for that BHR set within that
2� � 2� region. In such cases, da is obtained by multiplying
the mean AOD for that data set by a scaling factor. The
scaling factors were predetermined from all the available
successful regressions globally. For each successful regres-
sion, we saved the slope of the AOD-a regression and the
mean surface BHR and aerosol SSA of the data used for
regression. The regressions were classified into different
groups on the basis of the mean BHR and SSA values, and
the mean value of regression slopes for each group was
calculated. We fit an empirical expression for the slope (the
scaling factor) in terms of BHR and SSA. This empirical
scaling factor, which represents the mean ability of aerosols

Figure 1. An example of linear regression used for
estimating aerosol-free TOA albedo (�60�N, 94�W; 0.04 <
BHR < 0.05). Each black dot represents a data pair with
spectral (blue band in this case) AOD and TOA albedo (with
side contribution). The y intercept of the regression line
(dashed line) represents the derived spectral TOA albedo
in the absence of aerosols. Grey dots show the data pairs
with AOD and TOA albedo from MISR standard product
when the side contributions of radiance associated with each
RLRA column are not included.
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to affect the TOA albedo, was used for estimating da
when local linear regression failed. We prefer this method
to simply putting missing data where linear regression fails
on the basis of the following considerations. First, we
attempted to provide a global average value of da. Since
the probability of failure is usually larger over regions with
small AODs, the simple average over successful regressions
may result in a positively biased global mean value. Second,
although the linear regression fails, the information on
aerosol and surface properties may still be valid. We tried
to utilize this information instead of discarding it.

3. Results

3.1. Global Distributions of Aerosol and Surface
Properties Over Land

[22] The TOA albedo change due to the presence of
aerosols in cloud-free regions is mainly determined by
aerosol loading, aerosol optical properties, and surface
reflectance. Figure 2 gives a global view of the 4-month
(June–September 2007) mean MISR-retrieved AOD,
SSA, AE, and surface BHR over land. The AOD, SSA,
BHR values are for 0.56 mm (MISR green band). These

values are averages for clear sky only. MISR-retrieved global
mean values of AOD, SSA, BHR and AE over land are
summarized in Table 2.
[23] High AOD values are seen in desert regions such as

the Sahara and the Arabian Peninsula, in polluted regions
including south and East Asia, eastern Europe, southeast
United States, and in biomass burning regions such as central
Africa and the Amazon (Figure 2a).
[24] Aerosol SSA, the ratio of scattering to total light

extinction, indicates the relative importance of aerosol scat-
tering versus absorption [Bergstrom et al., 2003]. Figure 2b
shows high SSA values (close to unity) in most industrial-
ized and desert regions, where aerosol scattering dominates.
Aerosols in biomass burning regions are more absorbing
with smaller SSA values. In central Africa and South
America, for example, averaged SSA values are as low as
�0.9, indicating relatively high aerosol absorption. This is
also evident in Alaska, northern Canada and Siberia, where
high AODs are correlated with low SSAs (see Figures 2a
and 2b).
[25] The AE is inversely correlated with the average size

of aerosol particles: the smaller the particles, the larger the
exponent [Angstrom, 1929; Schuster et al., 2006]. Small AE

Figure 2. Global over-land distribution of MISR-observed (a) AOD, (b) SSA, (c) AE, and (d) surface
BHR in cloud-free land region, averaged over June–September 2007, at 2� � 2� spatial resolution. The
AOD, SSA, and BHR values shown are for the MISR green band (0.56 mm).
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values in desert regions (Figure 2c) are consistent with the
presence of large dust particles. Large values of AE are
observed over biomass burning and industrial regions where
fine-mode aerosols dominate.
[26] Previous studies have shown that the fraction of

energy reflected at a particular wavelength varies with
surface type [e.g., Kaufman et al., 2002b]. The MISR-
derived BHR data shown in Figure 2d illustrates that global
land surface is very heterogeneous in reflecting solar radia-
tion. The less the vegetation cover, the larger the BHR values
usually are in areas with high soil albedo. The largest BHR
values are in desert and barren regions. The spectral signa-
tures over different surface types have been observed to be
very different [e.g., Tucker and Sellers, 1986]. For example,
the reflectance over sand and soil increases with wavelength
in the visible-NIR range, and the rate of increase diminishes
at longer wavelengths. Over dense vegetation, the reflectance
in the visible region is relatively uniform over the spectrum,
with slightly higher values in the green band. From visible
bands to NIR, however, there is a large jump in surface
reflectance, known as the red�far red edge. These spectral
signatures of surface types are well captured by MISR
observations (Table 2 and Figure 2d). In vegetated regions,
much higher BHR values are observed in the NIR band than
visible bands, whereas in desert and barren areas, the BHR
increases smoothly from the blue to the NIR band.
[27] The probability distributions of MISR AOD, SSA,

BHR and AE over land are shown in the diagonal cells in
Figure 3. Figure 3, cell B, shows that AOD has a narrower
distribution at longer wavelengths. Most BHR values in
visible bands are below 0.2, whereas in the NIR band, a peak
near 0.3 is present (Figure 3, cell C). Most SSA distributions
are above 0.9, with more small values in blue and green
bands (Figure 3, cell D). AE values are mostly distributed
between 0.5 and 2, with a broad peak at �1.2 (Figure 3, cell

E). The other cells of Figure 3 will be analyzed further in
section 3.3.1.

3.2. TOA Albedo Change by Aerosols Over Land

[28] On the basis of linear regressions between the MISR
TOA albedo and AOD, we estimate the aerosol effect on
TOA albedo in the four MISR spectral bands. Figure 4
shows the 4-month (June–September 2007) mean spatial
distributions of TOA albedo change due to the presence of
aerosols (da) over cloud-free land. Persistent cloud cover
over the Amazon, central Africa, Southeast Asia, and west
Canada prevents MISR from observing enough cloud-free
data to meet our criteria, so da values over some portion of
these regions are missing.
[29] The global means of da over cloud-free land are

0.018 (blue), 0.010 (green), 0.007 (red), and 0.008 (NIR).
We would expect da to be large where AOD is high,
especially if the aerosols are bright (high SSA) and reside
over dark surfaces. We examine first the relationship between
da and AOD and then the relative contributions of surface
and aerosol optical properties to da.
[30] The da patterns show some similarity with the AOD

pattern (Figure 2a); that is, high da values are found in most
high-AOD regions, including East Asia, the Indian and
Arabian peninsulas, western Sahara, east Europe, and North
America. However, high AOD is not always accompanied
by high da. In some biomass burning regions with relatively
small SSA (e.g., central Africa, see Figure 2b), da is small
owing to aerosol absorption. Small da is also observed over
bright surfaces, such as in northeastern Sahara, and in the
desert regions of Australia and southern Africa.
[31] Patadia et al. [2008] neglected a large area spanning

northern Africa to middle Asia in their calculation owing
to inconsistent AOD-flux relations over high-reflectance
surfaces. The use of internally consistent data sets and BHR

Table 2. Mean Values of MISR Spectral AOD, SSA, AE, BHR, and Derived da and Aerosol Radiative Efficiency Over Global Land

and Over Each Vegetation Type for June–September 2007a

Parameters Global Land
Needleleaf
Forest

Broadleaf
Forest Shrub Land Savanna Grass Land Crop Land Barren

AOD B 0.256 ± 0.051 0.124 0.241 0.176 0.248 0.225 0.271 0.404
G 0.202 ± 0.040 0.091 0.184 0.135 0.182 0.174 0.204 0.343
R 0.167 ± 0.033 0.070 0.148 0.120 0.140 0.143 0.161 0.303
N 0.132 ± 0.026 0.051 0.112 0.085 0.101 0.113 0.120 0.261

SSA B 0.964 0.964 0.953 0.963 0.955 0.974 0.972 0.974
G 0.971 0.966 0.963 0.968 0.958 0.981 0.976 0.984
R 0.974 0.967 0.968 0.971 0.958 0.984 0.978 0.989
N 0.973 0.964 0.965 0.971 0.955 0.985 0.977 0.990

AE 1.170 1.413 1.222 1.228 1.373 1.115 1.356 0.845
BHR B 0.067 0.043 0.054 0.067 0.051 0.068 0.054 0.114

G 0.103 0.063 0.057 0.105 0.077 0.117 0.086 0.202
R 0.120 0.044 0.041 0.122 0.082 0.139 0.079 0.285
N 0.246 0.215 0.185 0.245 0.239 0.272 0.286 0.340

da B 0.018 ± 0.003 0.0088 0.0178 0.0121 0.0164 0.0180 0.0236 0.0204
G 0.010 ± 0.003 0.0039 0.0104 0.0067 0.0097 0.0105 0.0128 0.0130
R 0.007 ± 0.003 0.0021 0.0071 0.0045 0.0072 0.0073 0.0080 0.0093
N 0.008 ± 0.006 0.0025 0.0060 0.0046 0.0063 0.0063 0.0063 0.0170

Aerosol radiative efficiency B 0.070 0.093 0.097 0.091 0.090 0.106 0.119 0.068
G 0.048 0.037 0.052 0.043 0.046 0.057 0.058 0.041
R 0.039 0.020 0.034 0.028 0.031 0.037 0.032 0.030
N 0.052 0.027 0.029 0.031 0.031 0.033 0.028 0.046

aThe values are given for MISR blue (B), green (G), red (R), and near-infrared (N) bands. Uncertainties are provided when available. Uncertainties for
MISR spectral AOD are calculated by 20% � AOD on the basis of work by Kahn et al. [2005]. Uncertainties of da are from this study. Absolute
uncertainties for SSA, AE, and BHR are not yet known, owing to the difficulty in obtaining validation data.
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stratification in our study produces relatively good correla-
tions between AOD and TOA albedo for this area. The
inclusion of these high-reflectance regions, which account
for about 10% of Earth’s landmass, is necessary to accurately
estimate the global aerosol radiative effect. Large aerosol
loading (Figure 2a) and intense solar radiation (due to high
sun at low latitude and low subtropical cloud cover) have the
potential to cause a large aerosol radiative effect in these
regions (Figure 4). We estimate that neglecting of these
regions would produce an underestimate of global mean da
over land by �5% of its value.
[32] In Figure 4, the detailed patterns of TOA albedo

change due to aerosols over the Saharan desert and Arabian
Peninsula demonstrate the value of our approach over bright
surfaces. The aerosol effect on TOA albedo differs between
the western and eastern parts of the highly reflective Saharan
desert. In the western Sahara, aerosol loading is very high
(mean AOD is greater than 0.5 at 0.56 mm wavelength; see
Figure 2a), and small AE values (Figure 2c) are consistent
with the single dominant aerosol component being large
dust particles. The da value in this part is also high (>0.03
at 0.56 mm). In northeastern Sahara, aerosol loading is much
smaller, and the surface reflectance is higher. Relatively
higher AE values suggest smaller aerosol size distributions,
which could be due to the change in size distribution during
dust transport, or different surface properties producing
different mineral dust size distributions. Other sources of
aerosols, such as pollution, may also contribute to the

presence of small particles. The calculated da in this region
is clearly smaller than that in the western Sahara. Because
the surface and dust particles have similar ability to reflect
solar radiation, and also because the dust particles are
weakly absorbing, negative values of da (corresponding to
a warming effect) are sometimes found in this region. For
the southern rim of the Sahara, where a large dust burden
occurs over a less reflective surface, da is largest. There is a
similar spatial distribution of da in the Arabian Peninsula,
with large values over darker surfaces in the western part near
the Red Sea.

3.3. Dependence of da and Aerosol Radiative
Efficiency on Surface Reflectance and Aerosol
Optical Properties

[33] Latitudinal distributions of spectral da and MISR
AOD at 0.56 mm are shown in Figure 5a. The da generally
decreases from the blue band to red band. The decrease is
partly due to the smaller aerosol scattering at longer wave-
length, and partly due to increasing surface reflectance from
blue to red for most surface types (Table 2), which reduces
the contrast between aerosol and the surface. The da patterns
for red band and NIR are similar.
[34] As in Figure 4, the da distribution generally follows

the AOD distribution, with two peaks located in 10�N–
30�N and 0�–10�S (see also Figure 2a). However, there
are some regions where the da and AOD distributions do
not match one another. For example, da in the three visible

Figure 3. Probability distributions of da, AOD, BHR, SSA, and AE over global land are shown in
diagonal cells (A–E). Also shown are fitted lines on the pairwise scatterplots of these variables (cells a–j).
All cells are based on mean values of these variables in 2� � 2� regions during June–September 2007.
Colored lines correspond to the four spectral bands (purple for NIR).
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bands decreases from 10�N to 20�N despite the increase in
AOD.
[35] In order to interpret these results, we introduce the

concept of aerosol radiative efficiency. The aerosol radiative
efficiency is defined here as da normalized with respect to
MISR AOD at 0.56 mm. It represents the aerosol’s ability to
change the TOA albedo. The latitudinal distributions of
spectral aerosol radiative efficiencies, together with the
MISR-retrieved surface and aerosol properties (BHR and
SSA at 0.56 mm, and AE), are shown in Figure 5b. The
aerosol radiative efficiencies have very different latitudinal
distributions from the da distributions but are directly
linked to the distributions of aerosol and surface properties.
The two dips near 20�N and 30�S are likely due to the large
BHR in those regions (also shown in Figure 2d). From 10�N
to 20�N, the aerosol radiative efficiency decreases abruptly
in the visible bands owing to the increase of BHR, which
explains why da decreases despite the increase in AOD
(Figure 5a). In other regions where surface reflectance is
low, the aerosol radiative efficiency is positively correlated
with SSA. From 30�S to 40�S, both the increase of SSA and
the decrease of BHR contribute to a significant rise in the
aerosol radiative efficiency. The largest efficiency is in the

midlatitude Northern Hemisphere, where the vegetation
cover is dense so the surface reflectance is small (see
Figure 2d), and the aerosol particles are generally small (see
Figures 2c and 5b) and highly scattering (see Figures 2b
and 5b).
[36] The patterns shown in Figures 4 and 5 clearly

indicate that the TOA albedo change by aerosols, da, is
influenced not only by the aerosol radiative properties, but
also by surface reflectance. We explore the dependence of
da and aerosol radiative efficiency on surface reflectance
and aerosol optical properties in more detail, including
AOD, SSA, and AE dependencies.
3.3.1. The da
[37] In addition to the probability distribution functions

for each variable, discussed above, Figure 3 gives the
correlations between calculated da and MISR AOD,
BHR, SSA, and AE. Fitted lines for correlations between
each pair of these variables are plotted in cells above the
diagonal, on the basis of statistics on all 2� � 2� grid cells
over land, for June–September 2007.
[38] In general, da increases, albeit nonlinearly, with

increasing AOD (hence larger aerosol scattering) for all
four spectral bands (Figure 3, cell a). The slopes are largest

Figure 4. Global distribution of TOA albedo change by aerosols (da) in the four MISR bands: (a) blue,
(b) green, (c) red, and (d) NIR, over cloud-free land regions, averaged over June–September 2007, at
2� � 2� spatial resolution.

D02109 CHEN ET AL.: QUANTIFYING AEROSOL RADIATIVE EFFECT

8 of 15

D02109



in the blue band where the largest aerosol radiative effi-
ciencies occur (see Figure 5b). The slopes tail off at larger
AOD values (�0.2). This may be partly explained by aerosol
multiscattering at higher aerosol loading [Bissonnette, 1988].
Additionally, brighter surfaces with higher BHR values,
where AOD values are typically large (Figure 3, cell e), tend
to decrease the aerosol radiative efficiency.
[39] The dependence of da on surface reflectance is

complex. Figure 3, cell b, shows that when BHR is small,
the correlation between da and BHR is weak. When BHR is
higher, da starts to increase with increasing BHR. This
pattern can be attributed to the correlation between AOD
and BHR (Figure 3, cell e), which shows AOD increases with
increasing BHR when BHR is large enough. In this regime,
the increase in AOD apparently outweighs the decrease of
aerosol radiative efficiency caused by increasing BHR (as
shown in Figure 5b). When BHR is very large, as shown in
Figure 3, cell e, the correlation between AOD and BHR is
weak again. In this regime, the increased BHR dominates,
leading to decreased aerosol radiative efficiency and smaller
slope of da–BHR.
[40] Many studies emphasize the importance of SSA,

which represents the relative contributions of aerosol scat-
tering and absorption, in affecting the Earth-atmosphere
radiation budget [e.g., Hansen et al., 1998]. Aerosols with
large SSA scatter the incoming solar radiation, cooling the
atmosphere and surface. For fixed AOD, the net effect of
increasing aerosol absorption (lowering SSA) is to decrease
TOA albedo, owing to the absorption. Figure 3, cell c,
demonstrates this da decrease with decreasing SSA, an
effect that is more obvious for blue and green bands. For the
majority of the SSA range, the change in AOD and BHR
with changing SSA is small (Figure 3, cells f and h).

Therefore, the positive correlation of da and SSA is mainly
caused by the change SSA makes to the aerosol radiative
efficiency. Figure 3, cell c, also shows that the spectral
difference of da is largest at high SSA. The spectral differ-
ence becomes much smaller when aerosol absorption is
important (i.e., SSA is low). This dependence pattern is also
seen in Figure 4, which shows the largest da change from
the blue to NIR bands in industrial and desert regions,
where SSA is high (Figure 2b). We also notice that when
SSA is close to unity, positive correlations between AOD
and SSA are present (Figure 3, cell f), which additionally
increases the slope of da–SSA (Figure 3, cell c).
[41] In general, AE is inversely related to the aerosol size.

The relationship between da and AE (Figure 3, cell d) can be
explained by the correlations between AE and other aerosol
and surface properties (AOD, BHR, and SSA). Over the
majority of the AE range (0.5–2.0, as shown in Figure 3,
cell E), da decreases with increasing AE, mainly because
of the negative correlation between AOD and AE (Figure 3,
cell g). Because BHR also decreases with increasing AE
(Figure 3, cell i), the slopes of da–AE are smaller than those
of AOD–AE. Figure 3, cell j, shows SSA is also inversely
correlated to AE when aerosol size is in the moderate range.
Strong light absorption (low SSA) is mainly associated
with small particles (AE-2 as shown in Figure 3, cell E).
However, small SSA values when AE-0 indicate that very
large particles may also absorb light in the blue and green
bands. Figure 3, cell j, shows that typically, SSA decreases
with wavelength for small particles (AE > �1.5), but
increases with wavelength for large particles. This is
consistent with previous aircraft measurements [Bergstrom
et al., 2002]. The different spectral dependence of SSA in
the MISR products is a consequence of the particle models

Figure 5. Latitudinal distributions of (a) da and (b) aerosol radiative efficiency in four spectral bands:
blue (blue line), green (green line), red (red line), and NIR (purple line). The distribution of MISR AOD
(0.56 mm) (black dashed line in Figure 5a) and BHR (0.56 mm), SSA (0.56 mm), and AE (black lines in
Figure 5b) are also shown. These data are averaged over June–September 2007.
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underlying the MISR aerosol retrievals and is based on a
combination of satellite-measured radiances and prior knowl-
edge from field observations [e.g., Kahn et al., 2001].
[42] Figure 6 demonstrates how the da dependence on

AOD is affected by BHR, SSA and AE (in the green band).
The rate of increase of da with AOD is smaller when BHR
is larger. The decreased rate is significant only when AOD is
larger than �0.2. For higher AOD, this difference becomes
larger. As might be expected, the da–AOD correlation
slope is larger also for brighter (higher SSA) particles.
However, the increase in slope is smaller for higher SSA,
and is less dramatic than the AOD dependence. Probably
owing to weak inverse correlation between BHR and AE
(Figure 3, cell i), the da–AOD slope is higher when AE is
larger.
3.3.2. Aerosol Radiative Efficiency
[43] To further illustrate the dependence of da on aerosol

properties and surface reflectance, we plot the aerosol

radiative efficiency as a function of BHR, SSA, and AE
in Figure 7. Because there are not enough data points, lines
in Figure 7a stop at certain BHR values. Figure 7a shows
that aerosol radiative efficiencies do not change substantially
with BHR when the surface is dark (low BHR). When the
surface is brighter (i.e., BHR surpasses a critical value), the
aerosol radiative efficiencies decrease as BHR increases.
This relationship causes a strong correlation between aerosol
radiative efficiency and BHR when BHR is large, as
shown in Figure 5b. Figure 6a also shows the critical BHR
value increases with wavelength, and the slope becomes
smaller for longer wavelength.
[44] The positive correlation between aerosol radiative

efficiency and SSA (Figure 7b) is similar to that between da
and SSA (Figure 3, cell c). For blue and green bands, the
radiative efficiency increases with increasing SSA. This
correlation contributes to the agreement between the aerosol

Figure 6. (a) Dependence of da–AOD correlations on BHR in the green band. Grey line is the fitted
line on correlation between da and AOD for data sets with small BHR (smaller than the median of all
BHR values in 2� � 2� regions globally). Black line represents the correlation for data sets with large
BHR (larger than median). Green line is fitted line for the whole data set. (b) Similar to Figure 6a, except
for small and large SSA. (c) Similar to Figure 6a, except for small and large AE.

Figure 7. Aerosol radiative efficiency versus BHR, SSA, and AE in four spectral bands.
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radiative efficiency pattern and the SSA pattern (Figure 5b)
outside the high-BHR region.
[45] The dependence of aerosol radiative efficiency on

AE (Figure 7c) can be attributed to the combined effect of
the BHR-AE correlation (Figure 3, cell i) and the SSA-AE
correlation (Figure 3, cell j). For the blue band, BHR
decreases and SSA increases with increasing AE. Both
effects contribute to the increase of aerosol radiative effi-
ciency. For the NIR band, the correlation between BHR and
AE is weak. The negative correlation between aerosol
radiative efficiency and AE is mainly determined by the
SSA-AE relationship. For the green and red bands, the two
effects nearly cancel out and the aerosol radiative efficiencies
are not sensitive to AE.
[46] We should bear in mind that since BHR is predom-

inantly a surface property, the above-mentioned empirical
correlation of BHR with aerosol properties may not repre-
sent a simple causal relationship. However, some connec-
tions are likely, such as bright desert surfaces being the source
for bright, and relatively high AOD, airborne mineral dust.
3.3.3. Effect of Surface Reflectance on Aerosol
Scattering and Absorption
[47] As discussed above, the increasing of TOA albedo

by aerosol scattering and the decreasing by aerosol absorp-
tion together determine the aerosol radiative efficiency.
Figure 8 illustrates how the change of surface reflectance
mediates the influence of aerosol scattering and absorption.
The derived aerosol radiative efficiencies for all 2� � 2�
grid cells globally are stratified on the basis of their BHR
and SSA values, and the mean aerosol radiative efficiency is
shown for each stratum.
[48] Figure 8 helps to additionally separate the contribu-

tions from BHR and SSA. When SSA is close to 1 (box 1
within each spectral panel in Figure 8), the dominant effect
is aerosol scattering. When the surface is brighter, the net
downwelling shortwave radiance passing through the atmo-

sphere is smaller, because the surface reflects more radiance
back to the space. In other words, the contrast between the
reflectance from aerosols and surface is smaller. This effect
decreases the magnitude of TOA albedo change by aerosols.
As a consequence, as shown in box 1 of Figure 8, the
aerosol radiative efficiencies decrease with increasing BHR
for blue, green, and red bands. It is less obvious for NIR.
[49] When SSA is small, the contribution from absorptive

aerosols changes the aerosol radiative efficiency, as well as
its dependence on surface reflectance. By using a radiative
transfer model, Satheesh [2002] showed that for a given
aerosol system, the effect of soot absorption is significantly
larger over brighter surface (either land or clouds) because
the radiation reflected from the surface below would interact
with the aerosols again. Our results in Figure 8 (box 2)
show such an enhancement as well. As BHR increases, the
aerosol radiative efficiency (for constant SSA) decreases,
and turns negative when BHR exceeds a certain threshold.
The presence of cases with negative values indicates that
aerosols may warm the atmosphere when the surface is
highly reflective. The amplification effect is especially true
for the green and red bands.

3.4. The da Patterns Over Different Vegetation Types

[50] Vegetation cover determines the ratio of reflection
and absorption of solar radiation by the land surface.
Knowing the TOA albedo change by aerosols over different
vegetation types will help establish how land cover change,
such as desertification and deforestation, will alter the aerosol
radiative effect. Land cover change may be accompanied by
the change of aerosol optical properties, owing to the alter-
ation of biogenic emissions, biomass burning, or industrial
activities. But on short timescales, we can assume the
aerosol optical properties remain unchanged after a change
in vegetation type. MODIS provides a 1-km land cover
product (MOD12Q1), which includes an IGBP (International

Figure 8. Aerosol radiative efficiencies versus BHR and SSA in four spectral bands. Red means that the
aerosols increase the TOA albedo, while blue indicates the aerosol effect on TOA albedo is negative. Box
1 and box 2 represent cases with high SSA and low SSA, respectively.
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Geosphere-Biosphere Programme) land cover classification
map of the globe [Belward et al., 1999; Scepan et al., 1999].
We aggregated the MODIS land cover into seven land
vegetation types, covering regions where enough land area
and sample size are available: needleleaf forest, broadleaf
forest, shrubland, savanna, grassland, cropland, and barren
areas. The dominant surface type in each 2� � 2� grid cell
was determined and is shown in Figure 9a.
[51] Correlations between blue band da and AOD over

different vegetation types are shown in Figure 9b. Compared
to other surface types, barren regions have the lowest slope,
indicating aerosols over these regions have the smallest
radiative efficiency. Most barren regions are located at
15�N–30�N (see Figure 9a), where high surface reflectance
(Figures 2d and 5b) reduces the aerosol effect on TOA
albedo. However, because the aerosol loading over these
regions is generally high (Figure 2a and 5a), the mean da is
still large (see Table 2). Figure 9a shows the southern edge
of the Sahara desert to be adjacent to grassland and savanna
ecosystems, which have much smaller da–AOD slope
(Figure 9b). Owing to this large contrast, the da in this
region has a large gradient (Figure 4b).
[52] Figure 9b also shows the largest dependence of da

on AOD is over croplands, which are mainly located near
the industrial regions of the Northern Hemisphere, such as
East and south Asia, Europe, and eastern Unites States
(Figure 9a). For a majority of these regions, the SSA value
is large (Figure 2b) and BHR is small (Figure 2d), which
both contribute to large aerosol radiative efficiency (30�N–
60�N in Figure 5b). In addition, these regions have moderate
to large AOD (Figure 2a), likely due to anthropogenic
emissions. All these factors make croplands the vegetation
type with largest da (Table 2).
[53] Over most forests and grasslands, the correlations

between da and AOD are similar (Figure 9b), which means
the aerosol radiative efficiency would be similar given
similar AOD distributions. However, because aerosol load-
ing over needleleaf and shrublands is small (Table 2), the
aerosol radiative efficiency and da in these regions are small.

[54] The mean values of da over different land vegetation
types in all four MISR spectral bands are summarized in
Table 2. A decrease of da from short wavelength (blue
band) to long wavelength (NIR) is seen for most vegetation
types. Overall, the smallest da values are over needleaf
forests and shrublands, whereas the largest values are over
cropland and barren regions. The aerosol radiative efficien-
cies are lowest over needleleaf forest and barren regions,
and highest over grasslands and croplands.

4. Uncertainty

[55] In this study, we use the MISR TOA albedo product
and aerosol properties to derive the aerosol effect on TOA
albedo. The availability of good quality AOD makes it
possible to derive aerosol radiative effect over bright land
surfaces. We also use MISR BHR to stratify the surface,
which decouples the effects contributed by aerosols and
surface. Despite these improvements, both unbiased and
biased uncertainties still exist in the current estimation of
TOA albedo change by aerosols. In this study, we consider
three types of uncertainties: the uncertainty from the linear
regressions, the uncertainty from the intrinsic scatter of
MISR retrieved data, and the uncertainty due to cloud
contamination.
[56] In the present study, the y intercept of the TOA

albedo–AOD linear regression is assumed to be the aerosol-
free TOA albedo. Isobe et al. [1990, equation (9)] provide
an approach for calculating the variance of the intercept
from a linear regression. On the basis of this approach, we
estimate the variance of da for each linear regression. When
the regression is not successful, da is estimated from the
mean AOD and a predetermined scaling factor that depends
on the mean SSA and BHR values for the region, as
described in section 2.2. Since the derivation of this scaling
factor is based on the slopes (b) of all available successful
regressions, we simply assume the variance of the scaling
factor is twice the mean variances of slopes. The variance of
the slope (b) for each successful regression is also derived

Figure 9. (a) Global map of aggregated vegetation types derived from annual mean MODIS land cover
product. (b) Calculated da versus AOD in the green band (0.56 mm) over different vegetation types. The
black line shows the globally averaged values over all vegetation types.
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using the method of Isobe et al. [1990]. For each 2� � 2�
grid cell, the mean variance of da is the sample-number-
weighted mean variance of da for every BHR set, including
successful and unsuccessful regressions. By assuming the
variance of da is uncorrelated over different regions, we
estimate the overall error due to the linear regression
derived from this study is 0.0013 (blue), 0.0012 (green),
0.0015 (red), and 0.0019 (NIR).
[57] The uncertainty of da also results from the intrinsic

uncertainty of MISR retrieved AOD and TOA albedo. By
comparing a 2-year measurement record of globally distrib-
uted AERONET Sun photometers, Kahn et al. [2005]
showed that about 1s of the MISR-retrieved AOD values
fall within ±0.05 (or 20%) of AERONET. Here we use 20%
as the uncertainty range of global mean AOD in all four
bands. By multiplying this uncertainty by the mean slope of
the TOA albedo�AOD relationship (�0.04 per unit of
AOD), we obtain an additional uncertainty of 0.002 in
the global mean da. The radiometric uncertainty of MISR
radiances due the calibration is about 3–4% [Bruegge et al.,
2007]. In the MISR retrieval, top-leaving radiances were
integrated either using an azimuthal model (AZM) or a Solid
Angle Weighting method for cloud-free scenes. There are
uncertainties in determining the integration coefficients for
either method [Diner et al., 1999]. The standard deviation
of the albedo values with the AZM approach has been
evaluated for different surface types in cloud-free scenes.
Most albedo errors lie between 1% and 2% [Diner et al.,
1999; Sun et al., 2006]. So we estimate the uncertainty of
da caused by the intrinsic uncertainty in MISR retrieved
TOA albedo to be 4% � da, where da is the global mean
of the TOA albedo change by aerosols. We estimate global
mean of this uncertainty to be 0.00072 (blue), 0.0004
(green), 0.00028 (red), 0.00032 (NIR).
[58] Another source of uncertainty results from the use of

a cloud mask to distinguish the cloudy from the cloud-free
regions. Although we use stringent cloud screening in this
study to minimize the cloud effect (see section 2.1),
occasional misclassification of cloudy region as cloud-free
region will systematically introduce a high bias. Addition-
ally, the neglect of partly cloud-covered regions may bias
the results toward situations dominated by large high-
pressure systems [Remer and Kaufman, 2006]. However,
this source of uncertainty is difficult to quantify, owing to
the scarcity of relevant studies. To estimate this uncertainty,
we used two independent cloud mask products derived from
MISR observations (SVM Cloud Confidence Level and the
Cloudy Clear Designator). We also tried looser and more
stringent ways of aggregating the cloud masks to 17.6 �
17.6 km2 resolution. We find that the global mean da varies
by 0.0015 (blue), 0.0012 (green), 0.0020 (red), 0.0051 (NIR)
owing to the use of different cloud masks.
[59] If we assume the uncertainties from different sources

are uncorrelated, the total variance is the sum of variances
from all the above mentioned sources. On the basis of this
calculation, the total uncertainty of global mean da in this
study is estimated to be 0.0029 (blue), 0.0027 (green), 0.0032
(red), 0.0058 (NIR). By neglecting the diurnal and seasonal
cycle, this corresponds to an uncertainty in clear-sky aerosol
SWDRE of �1.2 W/m2.
[60] However, regional uncertainties could be higher, and

additional bias errors may exist. For example, in regions

with large spatial variability of aerosol and surface proper-
ties, the correlations between TOA albedo and AOD are
generally small and the da uncertainty is high. Over desert
regions where surface reflectance is high, the aerosol
retrievals may contain some information from the surface,
causing an overestimation of the aerosol radiative effect.
The lack of small AOD values (particularly in the NIR band)
may bring on additional uncertainty to the linear regression
(small perturbation at high AODmay cause large variation in
retrieved intercept). The regressions could also deteriorate
when persistent cloud cover is present so that the total
number of data samples is small. It should also be noted that
uncertainties contributed by the regional correlations are not
included in the present analysis.

5. Summary and Conclusions

[61] Despite recent major advances in atmospheric mod-
eling and measurements, there is still large uncertainty in the
estimation of the global aerosol radiative effect. Particularly,
owing to the difficulty of retrieving AOD over bright land
surfaces, satellite-based estimation of aerosol radiative
effect over such surfaces is still missing [Yu et al., 2006].
Another major challenge is owing to the highly heteroge-
neous nature of land surface types. The study presented in
this paper demonstrates how internally consistent MISR
aerosol, albedo, and surface observations can be used to
assess the aerosol effect on TOA albedo over global land.
More importantly, by using more reliable MISR AOD and
aerosol properties over bright land surfaces, and BHR
stratification to decouple aerosol and surface effects, this
approach not only expands the spatial coverage, but also
reduces the uncertainty in aerosol radiative effect estimates
on global land.
[62] We have estimated the 4-month (June–September

2007) mean value of clear-sky TOA albedo change due to
the presence of aerosols (da) over global land to be 0.018 ±
0.003 (blue), 0.010 ± 0.003 (green), 0.007 ± 0.003 (red),
and 0.008 ± 0.006 (NIR). Major uncertainties originate from
the linear regressions, the intrinsic scatter of MISR retrieved
data, and cloud contamination. Individual regions show
large spatial variability. Largest values of da occur in the
latitude bands 10�N–30�N and 0�–10�S. The mean da at
0.56 mm over bright Saharan Desert and Arabian Peninsula
is 0.015. Neglecting these areas would cause an underesti-
mation of the mean value over global land by �5%.
[63] The global patterns of da are determined mainly by

aerosol loading and surface reflectivity (BHR); aerosol
radiative efficiency (defined as da normalized by AOD at
0.56 mm) helps isolate the AOD contributions from other
factors. In general, da increases with increasing AOD, with
increasing SSA, and with decreasing surface brightness, as
expected. But the dependence of da on AOD decreases at
high AOD, possibly owing to a positive correlation between
AOD and BHR. The slopes of da also decrease with
increasing particle size (i.e., with decreasing AE); the AE
dependence is apparently due to its negative correlation
with AOD.
[64] Aerosol radiative efficiency is influenced by the

surface reflectance and SSA. When SSA is high, the
dominant aerosol scattering effect increases the TOA albedo.
Over bright (high BHR) surfaces, the added contribution of
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aerosol scattering is less significant, which diminishes the
aerosol radiative efficiency. When SSA is small and aerosol
absorption is important, the TOA albedo change due to the
presence of aerosols is also small, because absorbing aerosols
reduce the radiance scattered back to space. This effect is
enhanced over bright surfaces. In regions with high BHR
and low SSA, the aerosol radiative efficiency can be nega-
tive; that is, aerosols may exert a warming effect on the
atmosphere. The 4-month mean aerosol radiative efficiencies
over global land derived from this study are 0.089 (blue),
0.050 (green), 0.035 (red), 0.040 (NIR).
[65] We also divided the global land surface into seven

vegetation cover types and calculated the mean da for each
type. Despite the large surface reflectance, da over barren
regions is high owing to the large aerosol loading. The da
over global croplands is also high, attributed to the small
BHR and large SSA. Smallest da is over needleleaf forests
and shrublands, where the aerosol loading is small.
[66] Aerosols affect the radiative balance in the atmo-

sphere by modifying the TOA albedo. The da calculated in
this study is a first step toward to estimating aerosol broad-
band shortwave direct radiative effect (SWDRE). First, the
change of spectral TOA albedo due to the presence of
aerosols can be converted to the change of TOA broadband
radiative flux. Second, since the Terra satellite which carries
the MISR instrument is in a Sun-synchronous orbit, the
current estimated da is only an ‘‘instantaneous’’ value and a
daily cycle albedo model must be applied to convert this
value to daily mean value. A multispectral radiation transfer
model will facilitate these conversions [e.g., Kaufman et al.,
2002b].
[67] The method presented in this paper can be extended

to over ocean with some modifications. MISR BHR product
is not available over ocean. Solar zenith angle, wind speed
and ocean chlorophyll concentration are major factors
affecting the ocean surface albedo [Jin et al., 2004]. We
can use these parameters to stratify the ocean surface and do
similar regressions in each stratum. The detailed estimation
of aerosol SWDRE over global land and ocean using MISR
observations will be addressed in part 2 of this series.
Additionally, direct aerosol forcing has to be extended into
partly cloudy and cloudy regions. These regions are likely
to have high TOA reflectances, and consequently small or
negative values of da. Including these areas will decrease
the aerosol SWDRE.
[68] The aerosol radiative effect estimated in this study

includes contributions from both natural and anthropogenic
aerosols. In addition to the composite aerosol amount and
optical properties, MISR is also able to provide the aerosol
optical depth stratified by aerosol types [Kahn et al., 2001;
Kalashnikova and Kahn, 2006; Chen et al., 2008]. This
aerosol climatology information, which will be recorded in
a future MISR Level 3 Joint Aerosol Research Product, can
be exploited to distinguish natural aerosol effect from
anthropogenic influences. Following a similar approach as
we used here, these data will make possible improved
estimation of aerosol radiative forcing over land.
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