
UC Irvine
UC Irvine Previously Published Works

Title
Eciton: Very Low-Power LSTM Neural Network Accelerator for Predictive Maintenance at
the Edge

Permalink
https://escholarship.org/uc/item/8p35m8pz

Authors
Chen, Jeffrey
Hong, Sehwan
He, Warrick
et al.

Publication Date
2021-01-03

DOI
10.1109/fpl53798.2021.00009

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8p35m8pz
https://escholarship.org/uc/item/8p35m8pz#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Eciton: Very Low-Power LSTM Neural Network
Accelerator for Predictive Maintenance at the Edge

Jeffrey Chen∗, Sehwan Hong∗, Warrick He†, Jinyeong Moon‡, Sang-Woo Jun∗
∗Department of Computer Science, University of California, Irvine

†Diamond Bar High School
‡Department of Electrical and Computer Engineering, Florida State University

Email: ∗{jeffrc2, sehwanh, swjun}@uci.edu
†warrickhe@gmail.com ‡j.moon@fsu.edu

Abstract—This paper presents Eciton, a very low-power LSTM
neural network accelerator for low-power edge sensor nodes,
demonstrating real-time processing on predictive maintenance
applications with a power consumption of 17 mW under load.
Eciton reduces memory and chip resource requirements via
8-bit quantization and hard sigmoid activation, allowing the
accelerator as well as the LSTM model parameters to fit in a low-
cost, low-power Lattice iCE40 UP5K FPGA. Eciton demonstrates
real-time processing at a very low power consumption with
minimal loss of accuracy on two predictive maintenance scenarios
with differing characteristics, while achieving competitive power
efficiency against the state-of-the-art of similar scale. We also
show that the addition of this accelerator actually reduces the
power budget of the sensor node by reducing power-hungry
wireless transmission.The resulting power budget of the sensor
node is small enough to be powered by a power harvester,
potentially allowing it to run indefinitely without a battery or
periodic maintenance.

I. INTRODUCTION

Cyber-Physical Systems (CPS), coupled with the Internet-

of-Things (IoT), enable deeper, data-driven analytics and

insight into our physical world by employing swarms of

small, low-power sensor nodes communicating over a wire-

less network. The real-world impact of CPS/IoT is rapidly

growing, and are impacting a wide range of areas including

manufacturing [32], agriculture [18], and healthcare [45], [44].

Predictive maintenance is a prominent emerging application

of CPS, which takes advantage of fine-grained data collection

to predict future failures of mechanical devices. It has been

quickly gaining adoption as accurate predictions can signifi-

cantly reduce downtime and maintenance cost [40]. A popular

method is to use statistical and machine learning to mine

information from streams of sensor data, such as vibration,

acceleration, and temperature, collected from various locations

of a mechanical device [17], [31], [40], [51], [20]. Long Short

Term Memory (LSTM) recurrent neural networks have proven

especially effective [7], [4], [47].

Low power and energy consumption is one of the key goals

in the design of a CPS deployment, as deployment scale or

non-intrusive sensing requirements can limit access to power

infrastructure [18], [31]. As a result, nodes are often expected

to function on a scale of years powered by small batteries [35]

or power harvesting modules [31], [27], [2]. These constraints

limit not only the overall energy consumption, but also the

power consumption at any given time. This limits the amount

of computation available on a node, as well as the communi-

cation bandwidth over power-hungry wireless communication.

In fact, the primary limitation of data collection capacities for

low-power nodes is often the power consumption of wireless

data transmission [33], [5], [9], [25], [13].

Edge Computing attempts to reduce the pressure on the

wireless network by moving some computation to the nodes to

distill data to smaller sizes. On the one hand, many real-world

applications have shown that filtering at the edge can reduce

the network data transmission requirement by over 95% [11].

However, provisioning enough computation performance on

end nodes can be costly in terms of power consumption and

hardware, defeating the purpose of edge computing.

Hardware accelerators can often remedy this problem by

achieving high performance on a low power budget [23], [54],

[37], [21]. But while existing FPGA-based LSTM accelerators

achieve high performance and power efficiency, even they

regularly require hundreds of mW to multiple Watts of power,

straining the limits of the stringent power budgets of edge

nodes [14], [8], [28], [26], [6].

In this paper, we present Eciton, an extremely power-

efficient FPGA-based accelerator for time-series mining using

neural networks at the edge. We show that Eciton can perform

real-time inference of Long Short Term Memory (LSTM)

neural network models of realistic size, at a power budget of

17 mW. Eciton demonstrates competitive performance com-

pared to more power-hungry FPGA implementations, as well

as competitive power efficiency against the state-of-the-art. To

the best of our knowledge, no prior FPGA LSTM accelerator

has demonstrated lower power consumption numbers, espe-

cially while maintaining performance on models of similar

scale.

Eciton employs 8-bit fixed-point quantization of weights,

hard sigmoid activation functions, as well as a carefully

optimized microarchitecture to reduce the chip resource and

memory requirements. These quantization approaches results

in a modest accuracy loss of ˜5% when evaluated on real-world

predictive maintenance LSTM models with 3- to 4-layers.

Meanwhile, the low resource requirements means Eciton can

fit in a low-power, low-cost, but resource-constrained Lattice

iCE40 UP5K FPGA. The UP5K was uniquely positioned for

1

2021 31st International Conference on Field-Programmable Logic and Applications (FPL)

978-1-6654-3759-2/21/$31.00 ©2021 IEEE
DOI 10.1109/FPL53798.2021.00009

this application, thanks not only to its low cost (˜$5) and μW -

scale static power consumption, but also relatively large on-

chip SRAM resources (128 KiB), which are unavailable in

similarly positioned low-power FPGAs such as the Microsemi

IGLOO or other Lattice iCE40 chips.

This paper claims the following contributions:

• Demonstrates an LSTM accelerator design which fits in

a low-power FPGA and a 17 mW power budget.

• Demonstrates performance and accuracy on predictive

maintenance models of realistic scale.

The rest of this paper is organized as follows: Background

and related works are explored in Section II. We present the

architecture of Eciton and our neural network compression

methods in Section III. We provide in-depth evaluation of

Eciton in the context of a CPS deployment of predictive

maintenance in Section IV. We conclude with future work

in Section V.

II. BACKGROUND AND RELATED WORKS

A. Predictive Maintenance

Predictive maintenance, or condition-based maintenance,

aims to monitor mechanical systems for signs of imminent fail-

ure in order to preemptively perform maintenance operations.

Compared to conventional, periodic maintenance, accurate

predictive maintenance can significantly reduce downtime and

cost [17]. Modern predictive maintenance approaches integrate

pervasive data collection of CPS and IoT into target mechan-

ical devices to achieve more accurate prediction compared to

manual inspection [17]. Depending on the mechanical prop-

erties of the target, information including vibration, humidity,

temperature, pressure, sound, electrical current, and inductance

can be collected from various locations in the device, which

are analyzed using various statistical and machine learning-

based approaches [17], [31], [40], [51], [20].

B. LSTM Recurrent Neural Network

Long short-term memory (LSTM) is a recurrent neural

network (RNN) architecture that can better handle long-term

dependencies in the input data. Classical RNNs suffer from the

so-called vanishing gradient problem wherein the effects of an

earlier input quickly become too small to be useful. LSTMs

handle this problem by controlling gradient degradation using

three gates. This adds three more trainable weights per cell,

which can learn the best rate of gradient decay. As a result,

LSTMs can learn relationships between events happening

millions of time steps apart [39], making them useful for many

real-world time series data mining applications [48], [49].

Figure 1 shows the internal architecture of a single LSTM

cell. Each weight (f, i, c̃, and o) represents a multiplication

and accumulation operation against both input and recurrent

values. LSTMs also use two classes of activation functions:

kernel and recurrent activation functions. As seen in Figure 1,

typically used activation functions are sigmoid (σ) and tanh,

respectively.

LSTMs are typically designed with multiple layers, as

well as a dense layer at the top layer. The dense layer is

Fig. 1. Long-short term memory cell architecture

a conventional fully-connected neural network layer, usually

with the same number of units as the number of classes to

detect. A softmax of the output of the dense layer can be used

to determine the predicted class of the neural network.

C. Neural Network Compression

Compressing neural networks, either by reducing the num-

ber of weights (pruning) or the bit width of each weight values

(quantizing), is an important tool for reducing the computation

and memory overhead of neural networks, often with negligi-

ble loss of accuracy [15]. Pruning involves removing weights

with less impact on the final result, and then re-training the

model without these weights. Quantization maps the range of

original values to a smaller set of values using either a linear or

non-linear mapping function. A variance-based cutoff may also

be used to limit the range of the source set in order to account

for outliers. A popular instance of quantization is to map 4

byte floating-point to 1 byte fixed-point. This not only reduces

memory requirements, but also substitutes costly floating point

operations with cheaper fixed-point arithmetic [43], [22], [52].

D. Accelerators on CPS End Nodes

Augmenting CPS/IoT end nodes with reconfigurable hard-

ware accelerators such as FPGAs can help reduce the power

consumption of required computation, as well as power-

efficiently implement edge computing on end nodes [10],

[54]. Existing research has explored offloading end node

operating system functions [36], encryption for security [42],

and communication protocols [12], as well as application-

specific accelerators for video processing [23], [54], person

detection [37], and statistical time series mining [21] into

FPGAs. Much research has gone into optimal management

of FPGAs on end nodes as well, including dynamic partial

reconfiguration and power gating [46]. Industry offerings also

exist for low-power convolutional neural networks at the edge,

including the Lattice SensAI platform [41].

Power-efficient neural network implementation on FPGAs

for the edge has also been a popular research topic [53],

[16], [19], including LSTMs [28], [26]. However, performance

and model size requirements have prevented realistic LSTM

models from fitting in the low-power class FPGAs such as

Lattice iCE40 or Microsemi IGLOO series, limiting them to

relatively performance-oriented FPGAs with 100s of mW of

static power. This may limit their use in resource-constrained

CPS/IoT scenarios with mW-level power budgets [31], [2].

E. Wireless Communication For CPS/IoT

There is a wide range of available wireless communi-

cation technologies for CPS and IoT systems [13], [29].

They typically represent a trade-off between communication

bandwidth, range, and cost/power consumption, spanning from

LTE or GSM-based technologies like LTE-M and MB-IoT

with hundreds of kbps of performance as well as hundreds

of mW of power consumption [25], to Low-Power WAN

(LPWAN) technologies like LoRa with an order of magnitude

bandwidth and power consumption [9], [1]. Reducing network

transmission requirements with effective edge computing may

allow use of low-power technologies while still maintaining

effective data collection bandwidth.

III. ECITON NODE ARCHITECTURE

Eciton augments a CPS/IoT end node with a flexible LSTM

accelerator implemented on a low-cost, low-power FPGA. Col-

lected sensor data is first evaluated by the LSTM accelerator,

and the sensor data is sent wirelessly to a central server only

when potential failure is detected locally. At the central server,

a more complex software system can then make higher-level

decisions based on data from multiple nodes.

Figure 2 shows the overall architecture of an Eciton end

node. Sensor data is first filtered by the FPGA, reducing the

data traffic and workload of the microcontroller unit (MCU).

Due to the complexities of managing the network, the MCU

software is currently responsible for the network interface.

Fig. 2. Eciton end node architecture

Internally, the LSTM accelerator consists of two separate

cores for LSTM and dense layers, as seen in Figure 3. The

MCU is responsible for loading the LSTM and dense layer

cores with weights, after which sensor data can stream through

both cores for inference.

Fig. 3. The MCU provides weights to LSTM and Dense cores, after which
the accelerator can process input from sensors

A. FPGA Resource Restrictions

Our target platform is the Lattice iCE40 UP5K FPGA,

which is a low-cost (˜$5), low-power (μW -scale static power)

FPGA with stringent resource restrictions. This choice was

driven by the existence of 1024 kbits of on-chip SRAM

provided in the form of four Single-Port RAM (SPRAM)

blocks, in addition to usual embedded Block RAM. Most

other FPGA offerings of similar class, including the Microsemi

IGLOO [30] or other Lattice iCE40 FPGAs [24], do not

include this, limiting their on-chip memory to mere 32 to

128 kbits of block RAM. However, even this additional

memory is not enough for neural network models of realistic

size. Since off-chip memory access will be harmful for both

performance and power efficiency, we need to employ neural

network compression to make the model fit entirely on-chip.

Furthermore, the UP5K provides 8 16-bit Digital Signal

Processing (DSP) blocks for fast arithmetic. While this is a

larger number compared to similar offerings, it is nowhere

enough to implement fast floating point operations, or even

wide integer division. Our selection of quantization and hard

sigmoid activation function parameters was the result of opti-

mizing performance and accuracy within these constraints.

B. Quantizing LSTM Models

Eciton performs post-training linear quantization of weights

from 4-byte floating point to 8-bit dynamic fixed point, reduc-

ing memory footprint by 1/4. We discovered 8-bit quantization

resulted in the best size-accuracy trade-off, which will be

presented in more detail in Section IV-B.

Fig. 4. Comparison between three activation functions

In order to reduce chip resource requirements, Eciton uses

the linear hard sigmoid activation function for both kernel

and recurrent activation functions of LSTM, instead of non-

linear functions such as sigmoid or tanh. Figure 4 shows the

three activation functions. While non-linear functions were

too complex to fit on our target FPGA, we discovered that

hard sigmoid can be implemented efficiently while providing

a more accurate approximation of the non-linear functions,

compared to simpler functions such as the Rectified Linear

Unit (ReLU).

C. LSTM Core Architecture

Figure 5 shows the LSTM core architecture. Input and

output is done in units of 8-bit words. All weights are stored

across the four available on-chip SPRAM blocks combined

into a single address space, exposing a single 16-bit interface.

The computation pipeline consists conceptually of two sub-

pipelines: The Multiply-Accumulator (MAC) pipeline, and the

3

State pipeline for calculating carry and hidden states. Both

pipelines share a single quantized ALU Module.

Fig. 5. Microarchitecture of the LSTM Core

1) Weight Memory Map: Weights are stored in a layer-

major order, so for each input tuple to propagate through all

layers, the whole weight memory is linearly scanned exactly

once by a very simple circular reader module.

Figure 6 shows an example memory layout of weights

for a model with two LSTM layers. The weights are stored

in the order of kernel weights, recurrent weights, and bias

weights, for each LSTM layer. Each weight is a four-byte

tuple, corresponding to the four 1-byte weights of each LSTM

cell. The microarchitecture orders computation in the same

order, so that weights can simply be linearly scanned for

correct operation.

2) MAC Pipeline: The MAC pipeline is where the majority

of the arithmetic for LSTM is done. While computation is

conceptually organized as a pipeline, Eciton actually processes

each step in non-overlapping sequence to efficiently reuse a

small number of quantized arithmetic units. Computation is

organized in the order of weight storage, i.e., kernel, recurrent,
and bias weights.

For kernel weights, each 8-bit input can be independently

multiply-accumulated against each of the four kernel weights

of all LSTM cells in this layer. This results in Unit number of

four-byte tuples in a BRAM FIFO, where Unit is the number

of LSTM cells in this layer. By the time kernel MACs are

done, the recurrent weights are already loaded and ready in

the read queue. The same MAC process is performed, reusing

the same ALU hardware, using the hidden state data of the

previous timestep, if any. Once both stages are done, the results

Fig. 6. LSTM weights are stored in layer-major sequence

of both are forwarded to the bias aggregation stage, where

the two streams are added with the bias weights conveniently

ready in the read pipeline. At the end of this stage, we have

a Unit number of four value tuples stored in a BRAM FIFO.

3) Carry and Hidden State Pipeline: Once the MAC op-

erations are done and the Unit number of 4-byte tuples are

generated, we can calculate the carry states for the next time

step, and the hidden states for the next layer according to

the LSTM algorithm. This process also re-uses the same

quantized ALU module to perform hard sigmoid, quantized

multiplication and addition.

Another notable feature of the layer-major weight map and

computation organization is that the memory for carry state

and hidden state results can each be stored in a single large

FIFO implemented in BRAM, instead of a complex memory

map for each layer or unit. Because the computation is done

sequentially in a layer-major order, the hidden state FIFO will

always hold the values for the next layer. By the time all

layer processing is done and computation comes back to the

first layer for the next time step, the carry state for all of the

layers will be waiting in-order in the carry state FIFO.

4) Quantized ALU Architecture: Our quantized ALU pro-

vides three functions: quantized addition, multiplication, and

hard sigmoid. While addition between two quantized values is

straightforward, multiplication is slightly more complicated.

Because linear quantization involves a scale factor mapping

one set of values to another, multiplying two scaled values

results in multiplication of the scale factor as well, and the

multiplication results need to be divided with the scale factor

again to maintain correctness.

While division in hardware is resource-intensive, fortu-

nately the scale factor is a static value determined dur-

ing quantization. We pre-calculate a normalized division

(1�16)/scale during quantization. This value can simply

be multiplied to the multiplication results using the UP5K

DSP block, which supports 16-bit multiplication to a 32-bit

value. The resulting value can be shifted down 16 bits to get

the correct division results. Since the original multiplication

results are 16 bits wide, and because weights and input are all

8 bits, we do not lose any correctness with this approach. As a

result, quantized multiplication requires two DSP blocks, one

for multiplication, and one for division by the scale factor.

The hard sigmoid module also requires a multiplier, but

since our computation organization never requires multiplica-

tion and sigmoid calculation to happen simultaneously, our

ALU is designed to share one internal multiplier.

Since the SPRAM memory interface is 16 bits wide, two

weights are delivered per cycle. Since the four weights in a cell

are processed independently from each other, our quantized

ALU internally implements two separate modules to operate in

parallel, consuming 4 of the 8 available DSP blocks. We note

that although memory bandwidth could be easily increased by

using SPRAM modules in parallel, our experiments showed

that this would not lead to high performance as it was difficult

to fit more ALU modules in the limited chip space.

4

D. Dense Core Architecture

The dense core is a separate entity from the LSTM core.

Its architecture is similar to the architecture of the LSTM cell,

but much simpler. The dense core only has three computation

stages: kernel MAC, bias aggregation, and a final hard sig-

moid. Since the amount of dense layer computation is nearly

negligible compared to the LSTM layer, the quantized ALU

of the dense block ALU is designed to use only one MAC

unit, using only two DSP blocks and less supporting logic.

IV. EVALUATION

The accelerators of Eciton were implemented using open-

source toolchains Icestorm [50] and Bluespec [34], on a low-

cost, low-power Lattice iCE40 UP5K FPGA, coupled with an

Arduino Nano as the MCU [3].

The following sections present evaluation results of Eciton,

including the neural network models we have trained and used

for predictive maintenance datasets, as well as the performance

and efficiency of our FPGA accelerator implementation.

A. Neural Network Models and Datasets

We demonstrate Eciton on two predictive maintenance sce-

narios: Turbofan engine maintenance dataset from NASA [38],

as well as electrical motor maintenance using vibration and

humidity [31]. Two predictive maintenance models were first

trained using Tensorflow, quantized post-training, and finally

loaded on the Eciton system. This section presents the orig-

inal floating-point trained models, and provide more detailed

analysis of quantization efficiency in Section IV-B.

1) Turbofan Engine Maintenance: The NASA Turbofan

Engine Maintenance Model is a predictive maintenance model

that simulates the failure of a turbofan engine, with the dataset

being an engine degradation simulation using C-MAPSS. The

dataset includes input from 25 different sensors. Our model

uses two LSTM layers with 100 and 50 nodes, as well as a

single-cell dense layer. The total number of weights adds up to

80,651. The model before quantization reached a competitive

accuracy of 97%.

2) Electrical Motor Maintenance: The Electrical Motor

Maintenance model is trained on four input data streams, 3

accelerometer axes and a humidity sensor, collected from an

electrical motor in the process of spinning down. The ac-

celerometers are sampled at 2 KHz, while the humidity sensor

is sampled at 50 Hz. This scenario has interesting real-time

and energy budget requirements because the system is powered

by a power harvester generating energy from the magnetic

field as the motor spins. Because power harvesting becomes

unavailable after the motor has shut down, the collected data

must be either processed or transmitted after detecting motor

shutdown, within a budget of 0.6 Joules of harvested energy.

The model uses three LSTM layers each with 128, 32, and

16 nodes, and a single-cell dense layer adding up to a total

of 91,873 weight values. The model before quantization has a

competitive trained accuracy of 90%.

B. Quantized Model Accuracy

Figure 7 shows the effect of various quantization approaches

on accuracy on the turbofan model. While use of hard sigmoid,

16-bit and 8-bit fixed-point quantizations have gradual loss

of accuracy, 4-bit quantization results in a sharp, 24% drop.

While the 16-bit quantized model is sufficiently small to fit

in the on-chip SPRAM, we decided on 8-bit quantization to

make better use of the limited DSP blocks, performing more

8-bit operations per cycle. The electric motor model behaved

similarly, and the 8-bit quantized model achieved an accuracy

of 84%, a modest 6% accuracy drop.

Fig. 7. Accuracy of the turbofan model drops sharply at 4-bit quantization

C. FPGA Resource Utilization

The resource utilization for Eciton is presented in Table I.

All 4 available SPRAM blocks, as well as 6 of the 8 available

DSP blocks are used. Overall, the accelerator uses 94.5% of

the board’s logic cells, while achieving a clock frequency of

17.0 MHz.

TABLE I
ECITON ON-CHIP RESOURCE UTILIZATION

Resource Resource Utilization Percent Utilization (%)

LC 4987 / 5280 94.5
SPRAM 4 / 4 100
BRAM 22 / 30 73.3
DSP 6 / 8 75

The total on-chip capacity of the four SPRAM blocks is

256 KB, which can comfortably fit either of our trained

models, and potentially much larger ones as well. The memory

footprint of the turbofan model is 80,651 bytes, and the

electrical motor model is 91,873 bytes.

D. Performance Evaluation

We evaluate the performance and power efficiency of Eciton

against multiple system configurations, including Keras and

our best-effort software implementation on an Intel core i7-

8700K CPU, as well as a Raspberry Pi Zero, an Arduino

Uno (ATmega) and an Arduino Due (ARM Cortex-M0). We

have implemented both quantized and non-quantized models

in software, and evaluated both on possible platforms.

The Raspberry Pi Zero was chosen as it regularly demon-

strated good power-efficiency among similar Linux-enabled

embedded systems offerings. We emphasize that the both

5

Arduino systems do not have enough on-chip SRAM to hold

even the quantized model. To obtain an upper-limit estimate

of performance on the Arduino boards, we measured the

performance of the software modified to re-use a much smaller

set of weights, resulting in extremely poor accuracy.

Figure 8 and Figure 9 presents the performance and power

efficiency evaluations of the turbofan and motor models,

respectively. We see that both keras and our hand-optimized

software on the i7 vastly outperforms all embedded systems.

But its high power consumption and low power efficiency

make it a poor fit for the edge, and is presented here just as a

point of reference. Compared with embedded systems such as

the Raspberry Pi and the Arduinos, Eciton delivered over 2×
the performance of even the fastest system. We also note that

on the i7 and RPi, the floating point implementations outper-

form quantized ones due to the added overhead of quantized

arithmetic operations, specificially the added normalization

requirement after each operation. An exception is the motor

model on the RPi, where the overhead of more computation

was offset by the reduced size of the model fitting better on

the small on-chip cache.

E. Power Efficiency Evaluation

For power efficiency, we measured the total power con-

sumption during execution of the turbofan neural network on

all systems except the i7 system. For the i7 system, instead of

measuring total system power consumption, we only measured

the difference in power consumption between idle and load

states, added with the idle power consumption divided by

the number of cores. This was an attempt to make a fair

comparison in the favor of the i7 system, regarding economy

of scale in the datacenter.

Eciton’s FPGA accelerator measured a power consumption

around 17 mW under full load. Coupled with the Arduino

Nano emulating sensor data input via USB serial, the average

power consumption of the Eciton system under load measured

around 290 mW. The power efficiency of Eciton is an order of

magnitude better than other high performance and low power

options. The systems with the next-best power efficiencies

were the i7 and the Raspberry Pi running floating point, but

even they were orders of magnitude lower.

Fig. 8. Performance and power efficiency for turbofan

Fig. 9. Performance and power efficiency for motor

Eciton was also able to achieve the energy limit require-

ments of the electric motor scenario. It took Eciton 31.3

seconds to fully process the 25 seconds of 1/4 sampled

data stream as per the model parameters, at a steady power

consumption of 17 mW by the FPGA. Assuming the rest of the

system can be put to sleep during this time, our Eciton’s FPGA

accelerator finishes the job within the 0.6 Joule energy limit

imposed by the power harvester. No other system configuration

was able to achieve this milestone.

F. Comparisons Against State-of-The Art

Table II shows performance and power efficiency com-

parisons against state-of-the-art FPGA implementations of

LSTMs, aross various hardware platforms with different scale

and capabilities. Despite the resource constraints of the UP5K

platform, Eciton achieves competent performance and power

efficiency compared to other low-power implementations such

as those on Xilinx Artix 7 FPGAs. While Eciton achieves

lower performance and power efficiency compared to much

larger, power-hungry FPGAs that benefit from better power

economies at scale, Eciton still occupies an important niche in

the FPGA accelerator catalog due to its very lower power con-

sumption as well as real-time processing capabilities. While

some bigger chips can deliver better performance per watt,

resource-constrained edge deployments may not be able to use

them at all due to the power budget.

TABLE II
COMPARISONS AGAINST STATE-OF-THE-ART

Low-power High-power
Eciton [26] [6] [8]

Platform iCE40 Artix-7 Zynq-7000 Arria 10
mW 17 109 280 19,100

GOP/s 0.067 0.055 7.51 304.1
GOP/s/W 3.9 0.5 26.84 15.9

G. Total System Power With Networking

Figure 10 shows the sustained, under-load total system

power consumption breakdown including network transmis-

sion, for the top two most power efficient embedded systems

evaluated: The Raspberry Pi Zero and Eciton, as well as

an Arduino Nano system transmitting all data collected with

no edge computing. The Raspberry Pi and Eciton systems

6

are configured with a low-power LoRa module, while the

Arduino Nano is configured with a faster NB-IoT module due

to the higher data rate required without edge filtering. The

power consumption numbers and performance of NB-IoT and

LoRaWAN was taken from existing work [25], [9], [1].

We can see that the power consumption of Eciton is signif-

icantly lower than other systems despite the FPGA addition.

Furthermore, the power consumption is low enough that it can

be sustainably powered by many proposed non-intrusive power

harvesting units [31], [27], [2], meaning it can continuously

operate indefinitely by harvesting power from the ambient

environment.

0

500

1000

1500

RPi Zero Eciton Nano

Po
w

er

Co
ns

um
pt

io
n

(m
W

)

RPi Zero Arduino Nano NB-IoT iCE40 LoRa

iCE40

Fig. 10. Total system power consumption of nodes under load

V. CONCLUSION

We have presented the design and evaluation of Eciton,

a neural network accelerator for real-time predictive main-

tenance at the edge. The reduced power and networking

requirements enabled by Eciton will allow wider CPS/IoT

deployments coupled with low-power wide-area networking

and power harvesting technologies. We also plan to explore

many other CPS/IoT domains where such a platform can be

beneficial.

REFERENCES

[1] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez,
Joan Melia-Segui, and Thomas Watteyne. Understanding the limits of
lorawan. IEEE Communications magazine, 55(9):34–40, 2017.

[2] Afghan Syeda Adila, Almusawi Husam, and Géza Husi. Towards the
self-powered internet of things (iot) by energy harvesting: Trends and
technologies for green iot. In 2018 2nd International Symposium on
Small-scale Intelligent Manufacturing Systems (SIMS), pages 1–5. IEEE,
2018.

[3] Arduino. Arduino nano. https://store.arduino.cc/usa/arduino-nano.
[4] Olgun Aydin and Seren Guldamlasioglu. Using lstm networks to predict

engine condition on large scale data processing framework. In 2017
4th International Conference on Electrical and Electronic Engineering
(ICEEE), pages 281–285. IEEE, 2017.

[5] Michael Baddeley, Reza Nejabati, George Oikonomou, Mahesh Sooriya-
bandara, and Dimitra Simeonidou. Evolving sdn for low-power iot
networks. In 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), pages 71–79. IEEE, 2018.

[6] Erfan Bank-Tavakoli, Seyed Abolfazl Ghasemzadeh, Mehdi Kamal, Ali
Afzali-Kusha, and Massoud Pedram. Polar: A pipelined/overlapped
fpga-based lstm accelerator. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(3):838–842, 2019.

[7] Dario Bruneo and Fabrizio De Vita. On the use of lstm networks
for predictive maintenance in smart industries. In 2019 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP), pages 241–
248. IEEE, 2019.

[8] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie,
Dechen Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. Efficient
and effective sparse lstm on fpga with bank-balanced sparsity. In
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 63–72, 2019.

[9] Lluı́s Casals, Bernat Mir, Rafael Vidal, and Carles Gomez. Modeling
the energy performance of lorawan. Sensors, 17(10):2364, 2017.

[10] Antonio De La Piedra, An Braeken, and Abdellah Touhafi. Sensor
systems based on fpgas and their applications: A survey. Sensors,
12(9):12235–12264, 2012.

[11] Elena I Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan
Goldsmith, and Ramona Rednic. Edge mining the internet of things.
IEEE Sensors Journal, 13(10):3816–3825, 2013.

[12] Tiago Gomes, Sandro Pinto, Adriano Tavares, and Jorge Cabral. Towards
an fpga-based edge device for the internet of things. In 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation (ETFA),
pages 1–4. IEEE, 2015.

[13] Sotirios K Goudos, Panagiotis I Dallas, Stella Chatziefthymiou, and
Sofoklis Kyriazakos. A survey of iot key enabling and future technolo-
gies: 5g, mobile iot, sematic web and applications. Wireless Personal
Communications, 97(2):1645–1675, 2017.

[14] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient
speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 75–84, 2017.

[15] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[16] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong,
Kyle Rupnow, Wen-mei Hwu, and Deming Chen. Fpga/dnn co-design:
An efficient design methodology for iot intelligence on the edge. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–
6. IEEE, 2019.

[17] Hashem M Hashemian. State-of-the-art predictive maintenance tech-
niques. IEEE Transactions on Instrumentation and measurement,
60(1):226–236, 2010.

[18] Soumil Heble, Ajay Kumar, KV V Durga Prasad, Soumya Samirana,
Pachamuthu Rajalakshmi, and Uday B Desai. A low power iot network
for smart agriculture. In 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), pages 609–614. IEEE, 2018.

[19] Shuang Jiang, Dong He, Chenxi Yang, Chenren Xu, Guojie Luo, Yang
Chen, Yunlu Liu, and Jiangwei Jiang. Accelerating mobile applications
at the network edge with software-programmable fpgas. In IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communications, pages
55–62. IEEE, 2018.

[20] Deokwoo Jung, Zhenjie Zhang, and Marianne Winslett. Vibration
analysis for iot enabled predictive maintenance. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 1271–
1282. IEEE, 2017.

[21] Seongyoung Kang, Jinyeong Moon, and Sang-Woo Jun. Fpga-
accelerated time series mining on low-power iot devices. In 2020
IEEE 31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 33–36. IEEE, 2020.

[22] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342,
2018.

[23] P Latha and MA Bhagyaveni. Reconfigurable fpga based architecture
for surveillance systems in wsn. In 2010 International Conference on
Wireless Communication and Sensor Computing (ICWCSC), pages 1–6.
IEEE, 2010.

[24] Lattice. ice40 lp/hx/lm. http://www.latticesemi.com/iCE40.
[25] Mads Lauridsen, Rasmus Krigslund, Marek Rohr, and Germán

Madueno. An empirical nb-iot power consumption model for battery
lifetime estimation. In 2018 IEEE 87th Vehicular Technology Conference
(VTC Spring), pages 1–5. IEEE, 2018.

[26] Nitheesh Kumar Manjunath, Hirenkumar Paneliya, Morteza Hosseini,
W David Hairston, Tinoosh Mohsenin, et al. A low-power lstm processor
for multi-channel brain eeg artifact detection. In 2020 21st International
Symposium on Quality Electronic Design (ISQED), pages 105–110.
IEEE, 2020.

[27] Philipp Mayer, Michele Magno, and Luca Benini. Smart power unit-mw-
to-nw power management and control for self-sustainable iot devices.
IEEE Transactions on Power Electronics, 2020.

[28] Arnab Neelim Mazumder, Hasib-Al Rashid, and Tinoosh Mohsenin. An
energy-efficient low power lstm processor for human activity monitoring.
In 33rd International System-on-Chip Conference (SOCC). IEEE, 2020.

[29] Kais Mekki, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. Overview
of cellular lpwan technologies for iot deployment: Sigfox, lorawan, and

7

nb-iot. In 2018 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pages 197–202.
IEEE, 2018.

[30] Microsemi. Igloo. https://www.microsemi.com/product-
directory/fpgas/1689-igloo.

[31] Jinyeong Moon, Peter Lindahl, John Donnal, Steven Leeb, Lt Ryan
Zachar, Lt William Cotta, and Christopher Schantz. A nonintrusive
magnetically self-powered vibration sensor for automated condition
monitoring of electromechanical machines. In 2016 IEEE AUTOTEST-
CON, pages 1–7. IEEE, 2016.

[32] D Mourtzis, E Vlachou, and NJPC Milas. Industrial big data as a result
of iot adoption in manufacturing. Procedia cirp, 55:290–295, 2016.

[33] Karan Nair, Janhavi Kulkarni, Mansi Warde, Zalak Dave, Vedashree
Rawalgaonkar, Ganesh Gore, and Jonathan Joshi. Optimizing power
consumption in iot based wireless sensor networks using bluetooth low
energy. In 2015 International Conference on Green Computing and
Internet of Things (ICGCIoT), pages 589–593. IEEE, 2015.

[34] Rishiyur Nikhil. Bluespec system verilog: efficient, correct rtl from
high level specifications. In Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for Co-
Design, 2004. MEMOCODE’04., pages 69–70. IEEE, 2004.

[35] Keith E Nolan, Wael Guibene, and Mark Y Kelly. An evaluation of
low power wide area network technologies for the internet of things.
In 2016 international wireless communications and mobile computing
conference (IWCMC), pages 439–444. IEEE, 2016.

[36] Vilabha S Patil, Yashwant B Mane, and Shraddha Deshpande. Fpga
based power saving technique for sensor node in wireless sensor network
(wsn). In Computational Intelligence in Sensor Networks, pages 385–
404. Springer, 2019.

[37] Marwen Roukhami, Mihai Teodor Lazarescu, Francesco Gregoretti,
Younes Lahbib, and Abdelkader Mami. Very low power neural net-
work fpga accelerators for tag-less remote person identification using
capacitive sensors. IEEE Access, 7:102217–102231, 2019.

[38] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage
propagation modeling for aircraft engine run-to-failure simulation. In
2008 international conference on prognostics and health management,
pages 1–9. IEEE, 2008.

[39] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[40] Sule Selcuk. Predictive maintenance, its implementation and latest
trends. Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, 231(9):1670–1679, 2017.

[41] Lattice Semiconductor. Lattice sensai stack.
https://www.latticesemi.com/sensAI.

[42] Björn Stelte. Toward development of high secure sensor network nodes
[49] Daqian Wei, Bo Wang, Gang Lin, Dichen Liu, Zhaoyang Dong, Hesen

Liu, and Yilu Liu. Research on unstructured text data mining and

using an fpga-based architecture. In Proceedings of the 6th International
Wireless Communications and Mobile Computing Conference, pages
539–543, 2010.

[43] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath
Venkataramani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei
Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (hfp8)
training and inference for deep neural networks. Advances in neural
information processing systems, 32:4900–4909, 2019.

[44] Sapna Tyagi, Amit Agarwal, and Piyush Maheshwari. A conceptual
framework for iot-based healthcare system using cloud computing.
In 2016 6th International Conference-Cloud System and Big Data
Engineering (Confluence), pages 503–507. IEEE, 2016.

[45] Arijit Ukil, Soma Bandyoapdhyay, Chetanya Puri, and Arpan Pal. Iot
healthcare analytics: The importance of anomaly detection. In 2016
IEEE 30th international conference on advanced information networking
and applications (AINA), pages 994–997. IEEE, 2016.

[46] Juan Valverde, Andres Otero, Miguel Lopez, Jorge Portilla, Eduardo
De la Torre, and Teresa Riesgo. Using sram based fpgas for power-aware
high performance wireless sensor networks. Sensors, 12(3):2667–2692,
2012.

[47] Qi Wang, Siqi Bu, and Zhengyou He. Achieving predictive and proactive
maintenance for high-speed railway power equipment with lstm-rnn.
IEEE Transactions on Industrial Informatics, 16(10):6509–6517, 2020.

[48] Qianlong Wang, Yifan Guo, Lixing Yu, and Pan Li. Earthquake
prediction based on spatio-temporal data mining: an lstm network
approach. IEEE Transactions on Emerging Topics in Computing, 2017.
fault classification based on rnn-lstm with malfunction inspection report.
Energies, 10(3):406, 2017.

[50] Clifford Wolf and Mathias Lasser. Project icestorm.
http://www.clifford.at/icestorm/.

[51] Yoji Yamato, Yoshifumi Fukumoto, and Hiroki Kumazaki. Predictive
maintenance platform with sound stream analysis in edges. Journal of
Information processing, 25:317–320, 2017.

[52] Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi
Li. Training high-performance and large-scale deep neural networks
with full 8-bit integers. Neural Networks, 125:70–82, 2020.

[53] Xiaofan Zhang, Anand Ramachandran, Chuanhao Zhuge, Di He, Wei
Zuo, Zuofu Cheng, Kyle Rupnow, and Deming Chen. Machine learning
on fpgas to face the iot revolution. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 894–901. IEEE,
2017.

[54] Chao Hu Zhiyong, Liu Yingzi Pan, Zhenxing Zeng, and Max Q-H
Meng. A novel fpga-based wireless vision sensor node. In 2009 IEEE
International Conference on Automation and Logistics, pages 841–846.
IEEE, 2009.

8

