
UC Office of the President
Recent Work

Title
Phylogenetically resolving epidemiologic linkage

Permalink
https://escholarship.org/uc/item/8p26d691

Authors
Romero-Severson, Ethan
Bulla, Ingo
Leitner, Thomas

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8p26d691
https://escholarship.org
http://www.cdlib.org/


Submission PDF

Phylogenetically resolving epidemiologic linkage
Ethan O. Romero-Severson, Ingo Bulla, Thomas Leitner
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While the use of phylogenetic trees in epidemiological investi-
gations has become commonplace, their epidemiological inter-
pretation has not been systematically evaluated. Here, we use
a novel HIV-1 within-host coalescent model to probabilistically
evaluate transmission histories of two epidemiologically linked
hosts. Previous critique of phylogenetic reconstruction has claimed
that direction of transmission is difficult to infer, and that the
existence of unsampled intermediary links or common sources can
never be excluded. The phylogenetic relationship between the
HIV populations of epidemiologically linked hosts can be classified
into 6 types of trees, based on monophyletic and paraphyletic
relationships and whether the reconstruction is consistent with
the true transmission history or not. We show that which of the 6
classes of trees to expect depends on the direction of transmission,
and whether unsampled intermediary links or common sources
existed. In addition, the expected tree topology also depends on
the number of transmitted lineages, the sample size, the time of
the sample relative to transmission, and how fast the diversity
increases after infection. With 20 or more sequences per subject,
direction of transmission can often be established when paraphyly
exists, intermediary links can be excluded when multiple lineages
were transmitted, and when the sampled individuals’ HIV popu-
lations both are monophyletic a common source was likely the
origin. Inconsistent results, where we would infer the wrong trans-
mission direction, were generally rare. We confirm our theoretical
evaluations with analyses of real transmission histories and discuss
how our findings should aid in interpreting phylogenetic results.

HIV-1 | transmission | paraphyly | coalescent | phylogeny

INTRODUCTION

Phylogenetic inference of pathogen transmission chains, out-
breaks, and epidemics has become a popular method to gain in-
sight into otherwise hidden information about the epidemiologic
dynamics of transmission. Many viruses, such as HIV-1, evolve
faster than transmissions typically occur making phylogenetic
reconstruction an ideal and objective tool for reconstruction of
transmission events. For example, an early case where phylo-
genetic reconstruction was used involved a Florida dentist and
several of his patients (1). Because this was the first criminal
investigation of HIV-1 transmission it instigated a series of com-
ments and controversy (2-4) and was eventually settled out of
court (5). Another criminal investigation involving a Swedish
rapist was investigated and became the first case settled in court
(6). Many other similar criminal cases also occurred around
the world (7-19). In all of these cases, phylogenetic reconstruc-
tion of transmission events was central to the evidence of guilt.
However, the interpretation of phylogenetic trees has broader
importance beyond criminal investigations. Phylogenetics now
plays an increasingly central role in public health investigations
and practices (20-24).

Three critical questions have been raised in response to
phylogenetic reconstructions of transmission events: 1) In which
direction did the transmission occur? 2)Can intermediary links be
excluded? and 3) Can common sources be excluded? In response,
it has been claimed that direction of transmission could not be
established with most data and the existence of intermediary or
common transmission links could never be excluded (7, 25-27).
Thus, phylogenetic reconstruction appeared to only be able to

reveal if two persons were “epidemiologically linked” in some
way (28). Such a link can be critically tested by asking if the
suspected donor and recipient HIV-1 sequence data co-cluster
with one another rather than with any other local or database
control sequences (1, 7). The insertion of any control sequence,
splitting donor and recipient sequences into separate clades,
would exclude direct transmission between donor and recipient.
This broad linking of cases, however useful, ignores much of
the potential phylogenetic information about the putative trans-
mission history. For example, donor paraphyly was suggested to
indicate the source in a transmission chain (29).

A paraphyletic relationship in a virus phylogeny occurs when
a set of sequences from one host is ancestral to a set of sequences
from another host suggesting that the direction of transmission
is from the ancestor to the descendent. If samples from two
hosts in a putative transmission chain are both monophyletic, i.e.,
sister clades, one cannot infer the direction of transmission as the
ancestry is ambiguous. In more recent analyses that used multiple
clones of HIV-1 to investigate transmission chains, paraphyly in
a set of clones from one individual and monophyly in the set of
clones from another individual was successfully argued to indicate
the direction of transmission (18, 19). However, several studies
have shown that transmission of >1 phylogenetic lineage occurs
in 20-40% of transmissions, depending on transmission route and
other factors (30-33). Thus, paraphyletic relationships may be
more complicated than previously considered.

Until now the state of knowledge of exactly what can and
cannot be said about transmission events based on phylogenetic
reconstruction has been based largely on logical deduction from
implicit models. Hence, the lack of more complete statistical
analysis has hampered the interpretation of phylogenetic results
in epidemiological investigations. Here we extend a recent model

Significance

Phylogenetic inference of who infected whom has great value
in epidemiological investigations because it should provide
an objective test of an explicit hypothesis about how trans-
mission(s) occurred. Until now, however, there has not been
a systematic evaluation of which phylogeny to expect from
different transmission histories, and thus the interpretation
of what an observed phylogeny actually means has remained
somewhat elusive. Here, we show that certain types of phylo-
genies associate with different transmission histories, which
may make it possible to exclude possible intermediary links or
identify cases where a common source was likely but not sam-
pled. Our systematic classification and evaluation of expected
topologies should make future interpretation of phylogenetic
results in epidemiological investigations more objective and
informative.
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Fig. 1. Epidemiological links between two hosts. Two sampled hosts, A
and B, may be linked through transmission in 3 prototypical transmission
histories: top row, by having directly infected the other; middle row, by an
unsampled intermediary link (U2); or bottom row, by a common source (U1).
We model these 3 prototypical transmission histories such that samples from
A and B are taken at time 3t, A gets infected by an unsampled/unknown
donor U1 at time t, and B gets infected at time 2t. In the indirect transmission
case, the unsampled intermediary link (U2) is infected at time 1.5t.

of within-host dynamics of HIV-1 (34) to investigate different
types of transmission histories and probabilistically evaluate the
fundamental limitations of paraphyletic inference of direction of
transmission when single or multiple lineages were transmitted.
We further investigate the probability of the existence of inter-
mediary links and the possibility that epidemiologically linked
individuals were infected by an unsampled common source.

RESULTS
Conceptual model and definitions

Epidemiologic linkage between two persons (labeled A and
B) can occur in one of three ways (Fig 1): direct transmission (A
or B transmits to the other), indirect transmission (transmission
from A or B to the other with at least one intervening transmis-
sion), or common source (both A & B infected by an unsampled
person). We define the joint population as the within-host popula-
tion from which transmission occurs generating two derived popu-
lations. Moving along the reverse time axis from the time at which
the A and B were sampled, lineages are lost due to coalescence
in the derived populations. Once the derived populations merge
into the joint population, the remaining lineages sampled from
A and B are free to coalesce with one another as they are in the
same population (Fig 2). We define the phylogenetic signal of the
sample as both the topology of the tree with respect to the tip
labels (A or B) and the consistency of the implied temporal order
of events. The statistical properties of the phylogenetic signal are
determined by 1) the explicit nature of the epidemiologic linkage,
2) the probabilistic loss of lineages through coalescence in the
derived populations, and 3) the statistical combination of lineages
in the joint population.

Root label determines the consistency of the phylogenetic
signal

Figure 3 illustrates the different classes of phylogenetic sig-
nal with respect to samples from two hosts labeled A and B.
When both populations are monophyletic (MM), the root node
is equivocal, i.e., we cannot determine who was infected first.
When one population is paraphyletic relative to the other (PM),
i.e. the root node is unambiguously labeled A or B, the order of
infections is inferred to be from the paraphyletic population to the
monophyletic population. In the direct and indirect transmission
case, this corresponds to the direction of transmission going from
one person to the other. In the common source case, the root label
simply implies the temporal sequence of events. If the root label
agrees with the actual sequence of events, the phylogenetic signal
is considered to be consistent. However, insufficient sampling
or the stochastics of the coalescent process may result in the
inconsistent inference of transmission direction. Similarly, in the
dual paraphyletic case (PP), resulting from transmission of more
than one lineage, the inference of transmission direction may be
consistent, inconsistent, or equivocal depending on the precise
tree topology.

Assuming all tree topologies are equally probable, the root
assignment of trees with two host labels (A and B) is determined
by the combinatorial space of all possible tree topologies (Fig S1).
The probability of root labels, A, B, or equivocal, are determined
by the number of A and B labels in the joint population. Thus,
when one label is dominant, it will most often determine the
root assignment. One example of this situation is when A directly
infects B with one lineage, resulting in 1 B label and typically
several A labels in the joint population, forming a PM topology.
Thus, such a result would be consistent with the true transmission
history of A infecting B. However, when the joint population
for any reason has a small number of labels the root may be
assigned to the less frequent host label. This situation could arise
as a function of time or simply a small sample of sequences.
In addition, the root assignment more often becomes equivocal
when more lineages from both hosts exist in the joint population,
which translates to PP topologies with transmission of more than
one lineage.

Paraphyletic signal decays with time and decreasing sample
size

In the previous section we described what to expect when a
fixed number of sampled lineages exist in the joint population
(i.e. can coalesce with one another). However, moving along the
reverse-time axis, sampled lineages are probabilistically lost to
coalescence. The number of lineages with A or B labels that
exist in the joint population is a random variable determined
by the sample size, sample time, and within-host dynamics. In
general, this quantity will be smaller than the HIV-1 within-host
population size (35-37), or effective population sizes (38-40), and
consequently sampling plays an important role in the ability of
genetic data to resolve an epidemiologic linkage. Furthermore,
as time passes from the transmission, lineages die out and the
paraphyletic signal will eventually be lost (Fig S2).

Figure 4 shows the expected probability of reconstructing the
correct transmission direction in the case where a donor directly
transmits to a recipient in 4 illustrative examples. Recall that
correct inference of the direction of transmission is theoretically
possible in PM and PP topologies (Fig 3). In the case were
the donor transmits one lineage, the correct reconstruction-of-
direction-probability is high (>95%) with 20 or more sampled
clones even 3-4 years after transmission if the donor had been
infected for 5 years at time of transmission. With only 5 clones,
there is only a 50% chance to see the correct reconstruction
after about 5 years. If the donor had been infected for only
0.5 years at time of transmission, however, the probability of
correct transmission direction reconstruction quickly decreases;
even with 100 clones from the donor the correct reconstruction
drops to 50% chance at about 5 years after transmission. Overall,
the probability of inconsistent reconstruction, i.e., when it would
seem as if the recipient infected the donor, was <1% overall.

Interestingly, the more complicated case when 10 lineages
were transmitted had roughly the same probabilities. This is due
to the fact that in the direct transmission case, the number of lin-
eages in the joint population with the label of the actual donor will
almost always be larger than the number of lineages with the label
of the recipient due to the transmission bottleneck. However, in
extreme cases such as a very large number of transmitted lineages
or a very small sample size in the donor, this may not be true.
Curiously, in this case, the probability of correct reconstruction
increased in the first year after transmission. This is because the
number of lineages that exist at the time of transmission from
the recipient’s sample are rapidly lost to coalescence due to low
diversity in the newly infected recipient. However, the donor has a
diverse within-host population and looses lineages to coalescence
at a much slower rate. If we hold the number of lineages with the
label of the donor in the joint population constant and reduce the
number of lineages with the label of the recipient, the probability
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Fig. 2. Population growth profiles in three prototypical transmission histories. The top 3 panels show the population growth in host A, and the bottom 3
panels in host B, respectively, for direct transmission, indirect transmission, and transmissions from a common source. The gray shaded area indicates the times
when lineages in A and B can coalesce with one another in the joint population. In the common source transmission the joint population occurs before time
t in an unsampled host.

Fig. 3. Classes of phylogenetic signal. When one host (red) is epidemi-
ologically linked to another host (blue), the resulting virus populations
upon sampling may relate to each other such that both populations are
monophyletic (MM), or one is paraphyletic and the other monophyletic (PM),
or both are paraphyletic relative to the other (PP). If the red host was
infected first, the deduced root label of the phylogeny may be equivocal
(the root node could be assigned to either host), consistent (correct root
assignment in direct or indirect transmission cases), or inconsistent (incorrect
root assignment in direct or indirect transmission cases).

of obtaining an equivocal phylogenetic signal decreases. Over
longer periods of time, the number of lineages in the donor slowly
drops leading to a increased probability of obtaining an equivocal
result (Fig S2).

Dual paraphyly indicates direct transmission
Wedefine direct transmission as transmission from donor (A)

to recipient (B) without any intermediary (U2) link (Fig 1). Figure
5 shows the probability of observing a paraphyletic-paraphyletic
(PP) A-B relationship when in fact an A-U2-B chain occurred.
When the recipient is infected with a single phylogenetic lineage,
a PP relationship is impossible per se. However, if more than one
lineage is transmitted, there is some probability of obtaining a PP
tree.We found that if a PP tree is observed it is almost certain that
no intervening transmission occurred. That is, the only time when
a PP relationship is reliably observed is under direct transmission
from A to B. This is due to the fact that in the case of indirect
transmission, more than one lineage sampled in A must survive
not only the transmission bottleneck from U2 to B but also from
A to U2 (Figs 1&2). This only happens (>1%) when number of
transmitted lineages is implausibly high (α >24).

Fig. 4. Paraphyletic reconstruction of direction of transmission. The prob-
ability of consistent (dashed lines) and equivocal (solid lines) inference of
direction of transmission depends on sample size (green = 100 sequences,
red = 20 sequences, blue = 5 sequences) and time from transmission (x-axis).
Panels show examples of direct transmission of a single lineage from a donor
who was infected for 5 years (A) or 0.5 years (B) at time of transmission,
and multiple transmission (10 phylogenetic lineages) from a donor who was
infected for 5 years (C) or 0.5 years (D) at time of transmission.

The probability of the phylogenetic signal as a function of
transmission and within-host dynamics

Figure 6 shows the distribution of phylogenetic topologies
and their consistency with the actual transmission events under 3
possible scenarios: direct transmission (A transmits to B), indirect
transmission (A transmits to an intermediary who transmits to
B), and common source (A and B infected by same source). The
distribution of the phylogenetic signal depends on the number of
transmitted lineages (α), the growth rate of the effective popula-
tion (β), times between transmissions and sampling, and number
of sampled lineages.

Typically, common source transmissions result in MM phy-
logenies. From a topological inference perspective, MM is ac-
tually consistent with a common source as neither subject in-
fected the other. PM topologies are only possible in common
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Fig. 5. The topological effect of intermediary links. The probability of
observing a PP given indirect transmission depends on the number of
transmitted lineages α. Each point in the graph shows the mean of 10,000
Monte Carlo simulations at β = 5 day-1 where the time interval between
transmission events was 1 year and samples were collected 1 year after the
last transmission (t=1 in Fig 1). The grey envelope shows the 95% interval of
the means, and the line is a loess fit to the means.

source transmissions when both a large number of lineages are
transmitted and within-host diversification is rapid. In general,
the PM topology most probably results from direct or indirect
transmission. MM topologies can also be observed when β is low
(<2 day-1) in direct and indirect transmissions. At β’s that give
normal diversification levels [3—5 day-1 (34)], direct and indirect
transmissions typically result in PM/consistent trees and common
source transmissions typically result in MM trees. When PP trees
are observed, they most probably result from direct transmission,
making it possible to exclude intermediary links and common
sources. Encouragingly, qualitative aspects of the distribution of
the phylogenetic signal is robust to times between transmissions
and sample size (Fig S3).

Analysis of real cases
We investigated the plausibility of our results with 3 real

transmission cases where the transmission history was known (33,
41, 42), and resulted in MM, PM, and PP phylogenies (Fig 7).
The MM case came from a common source where two gay men
had been infected by the same donor, the PM case came from
a gay couple where the recipient was recently infected by the
chronically infected partner, and the PP case came from a known
HIV-1 positive donor who injured a victim in a robbery. Thus, the
phylogenetic signal in each case was consistent with the known
transmission histories.

To evaluate if the inferred trees were consistent with our
theoretical analysis, we modeled each case where the phylogeny
informed α and published epidemiologic data informed infection
and sampling times. Since we could not directly estimate β, we
tested low, medium, and high (1, 5, 10 day-1) population growth
values (bars below each tree in Figure 7). Regardless of β, the
MM topology was to be entirely expected in the common source
transmission, and likewise the PM/consistent topology was clearly
to be expected in the gay couple case. In the robber-victim case
we observed a PP/consistent topology, which is to be expected
at 29% when β=5—10. The most likely outcome would have
been PM/consistent at 54% with β=5—10, and PP/equivocal at
16%. Low β seems unlikely in this case, as β=1 did not show any
expectation of a PP topology at all, and low β is unlikely anyway
(34). In all 3 cases, inconsistent results, where we would get the
transmission direction wrong, were expected to occur <1%.

DISCUSSION
There are two main determinants of phylogenetic signal: first, the
population size dynamics are vastly different in the 3 possible
transmission histories (Fig 2), which have a strong effect on
how many lineages that can survive through the bottleneck(s)

of transmission back to the joint population. Second, the time
that defines the beginning of the joint population is different
in each transmisson history even when the transmission times
and sampling times are the same. Together these effects deter-
mine the distribution of phylogenetic signal. Consequently, the
resulting inference of the transmission history also depends on
the system parameters, i.e., the number of transmitted lineages,
the sample size, the time of the sample relative to transmission,
and how fast the diversity increases after infection/transmission.
There are 6 possible classes of cladistic relationships between
two epidemiologically linked hosts: 1) MM/equivocal, the HIV
populations in the hosts’ are bothmonophyletic, i.e., no paraphyly
exists, and no indication of the direction of transmission. As
we have shown, direct transmission very rarely results in MM
trees, which instead typically suggests infection from a common
source. 2) PM/consistent, donor’s population is paraphyletic and
recipient’s is monophyletic. This topology is expected in both
direct and indirect cases. 3) PM/inconsistent, donor’s popula-
tion is monophyletic and recipient’s is paraphyletic, which would
mislead transmission direction reconstruction. This topology is
highly improbable under realistic scenarios. 4) PP/equivocal, both
donor and recipient HIV populations are paraphyletic relative
to each other. Interestingly, in this case, it is highly probably
that one person infected the other (i.e. direct transmission), but
we cannot say who was the donor. 5) PP/consistent, where both
HIV populations are paraphyletic and the topology supports
direct transmission. This topology virtually excludes intermediary
links and common sources. 6) PP/inconsistent, where both are
paraphyletic, but transmission appears as recipient to donor. This
topology is rare (<1% in common source cases with high β).

Given a direct transmission, we expect PM/consistent,
PP/equivocal, or PP/consistent phylogenetic signal to de the dom-
inant outcomes (Fig 6). Indeed, a large number of published
transmission pairs show PM/consistent and some PP phylogenies,
e.g., (18, 19, 33, 43, 44). Across all our simulations in Figure
6, we expect a PP phylogeny in 22% of direct transmissions,
0.9% of indirect transmissions, and 0.7% of common source
transmissions, meaning that we can be reasonably sure that no
intermediary link or common source existed when we observe
a PP tree. Furthermore, among PP trees PP/inconsistent is rare
(1.5%, 2.9%, and 29%, respectively). Thus, contrary to claims
in the literature that assert that monophyletic reconstruction
give the assurance of proper inference, PP phylogenies provide
the most information about who infected whom, because it can
virtually exclude intermediary links or common sources. Inter-
estingly, pairs previously judged to be indeterminate show clear
transmission direction as PP/consistent trees [see Figure 5 in ref.
(45) for example]. Note also that with proper rooting many MM
phylogenies render PM/consistent, which has information about
direction of transmission that MM does not. In fact, the MM
phylogeny has the least information about who infected whom
because it cannot indicate direction nor exclude intermediary
links or common sources (7, 25, 26).With proper rooting, theMM
phylogeny is typically suggestive of a common source, but may
also be the result of an intermediary unsampled link, especially
when HIV diversification is slow in a host (Fig 6).

Additional data such as sexual partner preference and time
of transmission(s) can further constrain the probability of inter-
mediary links in PP trees. For instance, if a putative recipient
claims to be infected by suggested donor, and both are strictly
heterosexual, that implies at least 2 additional intermediary per-
sons in the chain. Hence, if we observe a PP topology between a
putative donor and recipient in that situation, then the probability
of several intermediary links, rather than just one, is virtually zero.
Also, PP/equivocal situations may be informed about direction if
other data indicates who was infected first.
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Fig. 6. The distribution of phylogenetic signal. Color indicates the expected phylogenetic signal as a function of number of transmitted lineages (A), population
linear growth rate (B), and time between transmissions and samplings (C). In each panel the top subpanel shows the distribution of phylogenetic signal in
direct transmission, the middle subpanel in indirect transmission, and the bottom subpanel in common source transmission. When not indicated the default
parameters are α=5, β=5 day-1, t=1 year.

Fig. 7. Examples of real HIV-1 transmission reconstructions. The MM tree
came from a common source case, the PM tree came from a recipient that
was recently infected by a chronically infected partner, and the PP tree from
a case where a robber injured a victim. Each tree was rooted by an outgroup
(not shown). Below each tree we show the expected topological distribution
(colors as in Fig 6) at the observed (apparent) α, and β = (1, 5, 10).

The inference of donor-recipient relationships we describe
here is not restricted to HIV transmissions; it applies to all situa-
tions when an original population seeds a new population with a
restricted random draw (a bottleneck) of individuals.We useHIV
transmission to illustrate the effects because it may aid in contact
tracing and untangle outbreak investigations, and the need of
statistical guidelines for the interpretation of phylogenetic results
in court has been called for (27). Thus, the coalescent model we

used is based on HIV diversification (34, 46), but with model
and parameter adjustments this framework could be used for any
diversifying population of organisms.

MATERIALS AND METHODS
Real cases and phylogenetic reconstruction

We investigated three real HIV-1 transmission cases that display a MM
phylogeny (41), a PM phylogeny (33), and a PP phylogeny (42). The MM case
consisted of two male recipients (P1 and P2) that had been infected by a
common male donor on the same evening. The samples were taken 63 days
after transmission. The donor could not be found. Based on relaxed-clock
estimates, the donor had been infected at least 2.82 (95% HPD 1.28, 4.54)
years prior to the dual transmission event (41). The PM case consisted of a
chronically infected donor who recently had infected a recipient (LACU9000
and HOBR0961). It was unknown how long the donor had been infected, and
based on sequence and clinical data analyses it was estimated the recipient
was sampled 17 days after transmission (33). The PP case consisted of a robber
who injured a victim with a knife and transmitted at least 2 phylogenetic
lineages. Based on previous positive HIV-1 status, the donor (robber) had
been infected for at least 1010 days at time of transmission. The donor and
recipient were sampled 225 and 244 days after transmission, respectively (42).

HIV-1 sequences were aligned using MAFFT with the L-INS-i algorithm
(47). The MM case had 67 HIV-1 subtype B gag sequences (alignment length
788 nt), the PM case 72 subtype B env sequences (2620 nt), and the PP
case 42 CRF 07 BC env sequences (481 nt). Phylogenetic trees were inferred
using PhyML (48) under a GTR+I+G substitution model, 4 categories Gamma
optimization, with a Bio-NJ starting tree and best of NNI and SPR search.

Within-host linear growth model
We assume linear growth in the theoretical population size from the

time of infection such that where is the number of trans-
mitted lineages and is the rate of growth. Before the time of infection of
the index case, the population size is defined and depends on how long the
donor has been infected. For example, if the donor is infected at time 0 and
transmits at time , then the population size is given by

where d and r subscripts represent parameters of the model in the donor and
recipient respectively.

Simulation of coalescent times
Derivation of the density of coalescent times for the linear growth

model is given in (34). Defining Z as the density of times to the next
coalescent event from a given index, we can generate random variates from
Z with the inverse cumulative distribution function of Z

where is the number of extant lineages and is the index time. If is a unit

uniform random variate, then is a random draw from the distribution
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of the time to the next coalescent event. To simulate the number of lineages
that remain from a sample at some time in the past, we draw a sequence of
random variates from updating the values of and along the sequence.

Distribution of phylogenetic topologies under neutrality
Given two possible labels (A and B), the distribution of topologies

with respect to those labels (MM, PM, PP) can be simulated under neu-
trality with a simple Markov chain. The initial state of the chain is
[ where and are the number of lineages with label A
and B respectively and is 0; an aggregator variable, I, is also initial-
ized to 0. There are 6 possible coalescences with respect to lineage la-
bels. If the labels are the same, then the probability of coalescence is

, and, if the labels are different, then the probability of co-

alescence is , where
and . If a coalescence occurs between two lineages with
the same label, then the number of lineages of that label is decremented by
one. If a coalescence occurs with an A and B lineage, the aggregator variable
is incremented by one, both and are decremented by one, and is
incremented by one. Finally, if a coalescence occurs between a * and either
an A or B lineage, is decremented by one. The sole exception to the rules
is that I is not incremented if the final coalescence is between an A and B
lineage. The value of I at the final coalescence gives the topology: if
the topology is MM, if the topology is PM, if the topology is PP. In

the PM and PP topology case, is also the apparent number of transmitted
lineages.

Consistency of phylogenetic signal
We define the consistency or inconsistency of the phylogenetic topology

as when the root label implies a sequence of events in the order in which
they actually occurred or not. A phylogenetic signal is said to be equivocal
when the sequence of events cannot be discerned from the tree. Hence,
MM topologies are always equivocal, as the label at the root cannot be
determined; PM topologies can be either consistent or inconsistent; and PP
topologies can be any of the three (Fig 3). To determine the consistency of
the phylogenetic signal regardless of the topology we use the same basic
Markov chain as before, however, disregarding the aggregator variable. The
probability of a consistent phylogenetic signal is defined by the distribution
of lineage labels when only one lineage remains. Assuming that person A
is infected before person B, the phylogeny is consistent with actual events
when the root label is A, inconsistent when the root label is B, and equivocal
when the root label is *.
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