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Abstract

Hidradenitis Suppurativa (HS) is a chronic, relapsing, and remitting inflammatory disease of the 

skin with significant heritability and racial disposition. The pathogenesis of HS remains enigmatic, 

but occlusion of the terminal hair follicle and dysregulation of the local innate immune response 

may contribute to pathogenesis. Genetic predisposition might also contribute to disease 

susceptibility and phenotypic heterogeneity since mutations in γ-secretase have been found to 

underly a minor but characteristic subset HS patients. In this review, we synthesized the current 

data on γ-secretase in HS, evaluated its importance in the context of disease pathobiology, and 

discuss avenues of future studies.
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Introduction

Hidradenitis Suppurativa (HS), also known as acne inversa, is a chronic, relapsing 

inflammatory disease of the skin characterized by painful acne-like lesions, nodules, 

abscesses, sinus tracts, and scar formation primarily in intertriginous regions (i.e. axillae, 

submammary folds, groin). HS is associated with a high comorbidity burden and the lowest 

quality of life among any dermatologic condition, yet remains under-recognized and poorly 

understood (Reddy et al., 2019). Global incidences of HS vary by country. In the United 

States the incidence of HS is rising. HS is reported in individuals of all age groups, races, 

and genders but shows a predilection toward African Americans and women. Registry 

studies estimate the prevalence of HS at 0.3%, 0.22% and 0.09% in individuals of African, 

biracial and Caucasian descent, respectively. Furthermore, among these groups, the 

prevalence peaks between 20–40 years of age and declines after 50 (Garg et al., 2017a, Garg 

et al., 2017b, Sabat et al., 2020). Despite this demonstrated need, the pathogenesis of HS 

remains poorly studied.

Studies report that 30–42% of HS patients report a positive family history of the disease, 

which points towards a potential genetic etiology. A recent Dutch twin cohort study found a 

narrow-sense heritability of 77% for HS (van Straalen et al., 2020). Furthermore, a minority 

of these patients across multiple ethnicities have been found to exhibit a monogenic form of 

the disease that is associated with heterozygous mutations in the γ-secretase complex 

(Ingram, 2016). There is an increased incidence of HS in the setting of other genetic 

inflammatory syndromes, and multiple syndromic forms of HS have been identified such as 

PASH (pyoderma gangrenosum, acne, and HS) and Dowling-Degos disease (DDD), many of 

which have been tracked to specific mutations in a handful of candidate genes (Scheinfeld, 

2013). The sporadic form of HS, in contrast to the familial form, appears to encompass the 

majority of disease burden (60–70%) and is thought to be driven by a polygenic architecture 

(Jfri et al., 2019). Several unique phenotypes have even been identified in both familial and 

sporadic HS, and in certain endemic populations (such as males of Asian ancestry) with 

clear evidence of heritability (Pink et al., 2012, Wang et al., 2010, Xu et al., 2016). Studies 

have found associations between environmental factors and HS, which suggests a multi-

factorial etiology. Whether specific genetic variations increase susceptibility to developing 

HS in the presence of specific environmental triggers remains an open question and suggests 

the existence of previously undescribed genetic risk factors.

The paucity of HS genome-wide association studies (GWASs) have made systematic 

dissection of HS pathophysiology challenging from a genetic level and due to its 

inflammatory nature some have turned to immune-profiling for insights (Gudjonsson et al., 

2020, Lowe et al., 2020). Furthermore, a more complete understanding of genetic features 

underlying HS may help to develop a more nuanced classification system with better 

prognostic value, improve patient management and identify key candidate therapeutics. To 

date no genotype-phenotype correlation has been established, but combined genetic and 

immunological studies could bridge the gap (Frew et al., 2019). Although a minority of the 

total HS patients exhibit family history, clinical, genetic and molecular studies in familial 

cohorts harboring γ-secretase mutations began to define pathological mechanisms involved 

in the etiology of HS. Subsequent studies in laboratory animals further identify molecular 
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mechanisms involved in HS. Together, GWASs and laboratory studies have shown feasibility 

in dissecting potential mechanisms of HS pathology. In this review, we synthesize the 

current information on γ-secretase genetics underlying a subpopulation of patients with HS 

and evaluate its importance in the context of disease pathobiology and future research.

Mutations in γ-secretase demonstrate clinical significance in a subset of 

HS patients

The γ-secretase complex is a heterogenous transmembrane protease complex composed of 

the catalytic presenilin-1/2 (PSEN1/PSEN2) and co-factor subunits presenilin-enhancer-2 

(PSENEN), Nicastrin (NCSTN), and anterior pharynx defective 1 (APH1A/APH1B). It 

functions to cleave over 70 type I membrane proteins such as cadherins, notch, and amyloid 

precursor protein (APP) (Merilahti et al., 2017). Dysfunctional γ-secretase-APP axis is well-

known in the development of Alzheimer’s disease; however, epidemiological studies to-date 

have not identified an increased risk of Alzheimer’s among HS patients with γ-secretase 

complex mutations or overlapping pathogenic variants between the two disease populations 

(Garg and Strunk, 2017, Theut Riis et al., 2017). Alzheimer’s and HS associated γ-secretase 

mutations may have distinct functional outcomes with regards to downstream signaling and 

efficacy in cleaving different substrates. More specifically, one could hypothesize that HS-

associated γ-secretase mutations have no affect on the ability of γ-secretase to cleave APP 

or that these mutations are found in isoforms not expressed in the brain.

In 2006, Gao et al. identified a putative risk locus within 1p21.1–1q25.3, a >900 gene 

region, in a four-generation Chinese family using genome-wide linkage scan (GWLS) (Gao 

et al., 2006). This was further narrowed to a >200 gene region within 1q21.3–1q23.2 in a 

follow-up Chinese case report. In a 2010 GWLS, Wang et. al. identified γ-secretase 

mutations in a cohort of 6 Han Chinese families with an autosomal dominant transmission 

pattern that harbored separate heterogenous rare variants in NCSTN, PSEN1, or PSENEN- 

which localized to the 1q23.2 locus (Wang et al., 2010). Gao et. al. and Wang et. al. 

represented two of four genetic studies employing a genome-wide approach in HS kindreds 

to date. The final two identified putative risk loci at 1q23.2 (NCSTN) in an Iranian family, 

and both chromosome 19 and 6q25.1–25.2 in a number of European families, respectively 

(Faraji Zonooz et al., 2016, Irwin McLean et al., 2006). In addition, a handful of other 

studies probing African American, Indian, Japanese, British, and French families identified 

γ-secretase mutations that co-segregated with a disease phenotype (Ratnamala et al., 2016, 

Takeichi et al., 2019). The remainder of mutations were identified via targeted sequencing; 

overall, 50 single-nucleotide polymorphisms (SNPs) associated with HS have been 

identified in Chinese (23), French (3), British (3), Thai (3), African American (1) 

encompassing the NCSTN, PSEN1, and PSENEN genes (Table 1), 23 of which were 

determined to be “likely pathogenic” by American College of Medical Genetics (ACMG) 

criteria (Frew et al., 2017). The locations of these mutations in γ-secretase protein domains 

are shown in Figure 1. Current population data indicate that such heterozygous, 

nonsynonymous γ-secretase mutations are rarely found in healthy controls and demonstrate 

high penetrance in affected pedigrees (Wang et al., 2010). Interestingly, linkage 

disequilibrium was identified in 12 pairs of variants, and two specific mutations, NCSTN-
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R117X and -Q568X, were each found in families from different races (Frew et al., 2019, Li 

A. et al., 2018).

Most of these γ-secretase-mutation-positive patients, are identified in families, often with 

multiple affected family members. Of note, classification terms such as ‘familial’, ‘typical’, 

‘atypical’, ‘syndromic’. ‘sporadic’, are unreconciled and require further validation (Frew et 

al., 2019). The majority of these patients are found in particular demographics (e.g. male, 

Asian) and observed to have severe, widespread, treatment-resistant, anatomically atypical, 

or syndromic disease with superimposed comorbidities such as acne conglobata, pyoderma 

gangrenosum, and hyperpigmentation, among others (Pink et al., 2013). Comparisons 

against existing HS classification systems demonstrate that γ-secretase mutation positive 

patients, compared with sporadic HS patients, fit best with the categories of LC2 or “follicle-

centered”, atypical, nodular, and scarring folliculitis using the Canoui, Naasan, Martorell-

Calatayud, and van der Zee classification systems, respectively (Canoui-Poitrine et al., 2013, 

Ingram and Piguet, 2013, Martorell et al., 2020, Naasan and Affleck, 2015, van der Zee and 

Jemec, 2015, Xu et al., 2016). However, poor interrater reliability and the lack of validation 

limit the utility of these classification systems (van Straalen et al., 2018).

In the Alzheimer’s IDENTITY trial, semagacestat, a γ-secretase inhibitor, was administered 

but resulted in unspecified skin toxicity in a large portion of patients (Henley et al., 2014). 

More striking is that in a subsequent study of patients with desmoid tumor niragacestat, 

another γ-secretase inhibitor, 12/17 exhibited adverse skin toxicities. 6/7 evaluated by 

dermatology exhibited new-onset, recurring follicular and cystic lesions with surrounding 

inflammation in intertriginous areas, strongly resembling the HS phenotype (O’Sullivan 

Coyne et al., 2018). Biopsies of two patients showed inflamed follicular cysts, confirming 

pathology localized to the hair follicle. These lesions then resolved upon halting of 

treatment. These patients had no personal or family history of HS or its commonly cited 

comorbidities, suggesting that targeted γ-secretase inhibition can induce HS-like lesions, 

which supports the findings from genetic studies identifying loss-of-function mutations in 

components of the γ-secretase complex.

γ-secretase dysfunction leads to defective terminal hair follicle 

homeostasis

Occlusion of the follicular infundibulum, due to mechanisms including hyperkeratosis and 

disrupted epithelial differentiation, is considered the initiating event in HS pathogenesis 

(Prens and Deckers, 2015), though some believe subclinical inflammation may precede or 

even contribute to the occlusion (Frew et al., 2018). Several studies suggest that γ-secretase 

may play a key role in occlusion.

Developmentally, the absence of γ secretase in mice is known to convert hair follicles into 

epidermal cysts by altering the differential fate of outer root sheath cells (Pan et al., 2004). 

Several studies have linked impaired functionality of γ secretase to the formation of HS-like 

lesions in mice. Conditional knock-out of γ secretase components results in many 

histopathologic features of HS (He et al., 2018, Kamp et al., 2011, Pan et al., 2004).
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In vitro, haploinsufficiency of NCSTN in keratinocyte cell lines upregulated the expression 

of type I interferon genes (Cao et al., 2019). In molecular studies of familial HS, NCSTN 

deficiency has been found to impact keratinocyte differentiation and proliferation through 

several candidate pathways (He et al., 2019, He et al., 2018, Xiao et al., 2016). Six patients 

with HS and DDD, a hair follicle-centered pigmentary disorder, were found to possess 

PSENEN mutations co-segregating with the unique phenotype and were histopathologically 

distinguished from PSENEN-mutation positive DDD-only patients by the presence of 

follicular hyperkeratosis (Ralser et al., 2017), suggesting a potential link between gene 

dysfunction and keratinocyte proliferation. Interestingly, a study of hair follicle 

keratinocytes from 18 HS patients (7 with family history, 11 without) found that they 

released greater pro-inflammatory cytokines IL-1β, IP-10, and CCL5 when stimulated in 
vitro, leading the authors to implicate an intrinsic pro-inflammatory keratinocyte phenotype 

in HS (Hotz et al., 2016). In addition, a systematic review encompassing 

immunohistochemical data from ~500 HS patients demonstrated the localization of IL-1β, 

IL-22, IL-36, IL-37 with keratinocytes and highlighted the intimate relationship between the 

pro-inflammatory milieu and dysregulated hyperkeratosis (Frew et al., 2018). The 

abovementioned data on NCSTN and PSENEN suggest γ-secretase dysfunction may be 

linked to HS-associated follicular disruption by mechanisms localized to the keratinocyte. 

Importantly, the γ-secretase inhibitor-induced, pathologically-confirmed folliculo-cystic 

lesions in healthy individuals regressed after cessation, which supports a role for γ-secretase 

as a potential target for treatment in at least a subset of patients.

The predominance of loss-of-function mutations implicate haploinsufficiency as a likely 

mechanism of γ-secretase-induced disease in familial HS (Wang et al., 2010, Yang et al., 

2015). However, the presence of missense mutations in both sporadic (4) and familial (6) 

cases, as well as conflicting results from translational biology may implicate altered 

functional enzymatic activity. Loss of a single PSEN1 allele in mice does not produce skin 

disorders, and only occurs with more severe reduction in presenilin expression. WT mice 

treated with a γ-secretase inhibitor, which maintained levels of γ-secretase but specifically 

inhibited its enzymatic activity, produced similar epidermal abnormalities to Ncstn +/− mice, 

including follicular hyperkeratosis and inclusion cyst formation (Li et al., 2007). Another 

study of Ncstn −/− mice and Ncstn −/−; Psen1 −/− mice found that both developed follicular 

inclusion cysts compared with wild-type, but the double-knockout mice developed these 

lesions earlier, and this was dependent on the level of γ-secretase (O’Brien and Wong, 

2011). In vitro study of human tissue from HS patients harboring γ-secretase mutations 

found that membrane expression of γ-secretase was unchanged despite reduction in cellular 

protein expression (Table 1) (Pink et al., 2016), which may be due to physiologic post-

transcriptional selection of <5% of fully assembled complexes that are then localized to the 

membrane (Yang et al., 2018). It seems likely that patients with only a partial loss of 

function may still produce enough amounts of functional protein to support normal 

physiology above a certain threshold. Any reduction in the level of functional protein, γ-

secretase activity or increasing the threshold may subsequently elicit a clinical phenotype 

(Melnik and Plewig, 2013). A recent study identified a new NCSTN mutation causing HS in 

a Dutch family. The associated immunobiological functions of NCSTN and its co-expressed 

genes Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) and Peroxisome 
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Proliferator Activated Receptor Delta (PPARD) link genetics to the most common 

environmental and metabolic HS risk factors, smoking and obesity (Vossen et al., 2020). 

This begs the question, how do environmental factors increase the risk of developing HS in 

those that harbor γ-secretase mutations?

Emerging studies have provided import data supporting this stance. A systematic review and 

in silico analysis of 34 HS γ-secretase-mutations predicted structural alterations in substrate 

recruitment sites, catalytic domains, and post-translational modifications, consistent with 

altered enzymatic activity and substrate processing (Li A. et al., 2018). A second, more 

extensive in silico analysis bolstered these results by showing that 39 pathogenic familial HS 

associated γ-secretase mutations underwent significant structural changes in known sites of 

substrate binding and cleavage, either through nonsense mediated decay (23) or altered 

binding affinity (16) (Frew and Navrazhina, 2019). Such changes were found to be distinct 

from those found in Alzheimer’s associated γ-secretase mutations HS-associated γ-

secretase (Frew and Navrazhina, 2019, Li A. et al., 2018). One studied HS PSEN1 mutation 

was found to affect the opposite side of the transmembrane-5 domain from the affected sites 

of reported Alzheimer’s mutations (Frew and Navrazhina, 2019). Such mechanistic 

differences, as well as the myriad of γ-secretase substrates, may shed light on the lack of co-

occurrence between the familial forms Alzheimer’s and HS despite overlapping loci.

γ-secretase may act through multiple secondary pathways such as Notch, 

PI3K, and EGFR

Isolation of γ-secretase-dependent pathways specific to HS genesis is complicated by the 

large number of known γ-secretase substrates, the pleiotropy of its components, and the lack 

of a reliable animal model for in vivo study. Thus, while the following pathways are the 

most well-described, many likely remain undiscovered.

The Notch pathway has gained attention in HS due to its role in maintaining the hair follicle 

stem cell pool, functional regulatory T cells (Treg) in the hair follicle and promoting 

antimicrobial defenses at the epidermis (Sabat et al., 2020). In the skin, notch normally 

maintains stemness in the hair follicle stem cells and disruption of signaling leads to 

aberrant differentiation and proliferation of keratinocytes and their precursors. Treg cells are 

required for development and maintenance of the hair follicle (Ali et al., 2017), as well as 

immunological balance in the skin, both of which notch signaling supports. Lastly, studies 

have shown an essential role for notch in supporting T cell derived IL-22, which maintains 

the skin microbiome (Sabat et al., 2020). These roles might explain why, γ-secretase 

mutations that influence notch signaling can elicit the diverse aberrations seen in HS skin 

lesions (e.g. follicular cystic formation, inflammatory immune cell infiltration, and altered 

skin microbiota).

Notch 1–4 are well-characterized targets of γ-secretase, and controlled disruption of Notch 

pathway components in mice results in epidermal and follicular aberrations that resemble 

histopathological findings in HS (Pink et al., 2012). While some Notch molecules are 

abnormally expressed in HS tissue and HaCaT cells with γ-secretase mutations (Li A. et al., 

2018, Xiao et al., 2016), minimal evidence exists that indicates Notch aberrations are 
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specific to HS or of sufficient statistical significance to be considered risk-associated loci for 

disease development (Frew et al., 2019). Functional assessment of four NCSTN missense 

mutations found that three maintained downstream Notch signaling while the fourth did not, 

casting doubt on the assumption that Notch-dependent pathways drive monogenic HS 

(Zhang and Sisodia, 2015). In silico and gene expression analyses of identified pathogenic 

mutations have failed to identify Notch as a specific marker of HS (Blok et al., 2016, Frew 

and Navrazhina, 2019), and genotype-phenotype correlation revealed no significance 

between impact on notch signaling and the HS phenotype (Frew et al., 2019). A recent study 

demonstrated that mRNA levels of NCSTN, Notch, and PI3K/AKT are overexpressed in 

lesional HS skin versus controls and there is no association between positive family history 

and mRNA levels (Hessam et al., 2020). The lack of direct evidence from animal models or 

human studies makes the role of Notch in HS controversial, suggesting that other pathways 

play a role in the molecular pathogenesis of HS.

Abnormalities in the phosphoinositide-3-kinases (PI3K) and endothelial growth-factor 

receptor (EGFR) pathways have previously been linked to epidermal and follicular 

dysfunction (Zhang et al., 2007), and emerging studies suggest that these pathways interact 

with microRNAs to play a role in familial HS pathogenesis. NCSTN knockdown in HaCaT 

cells led to decreased keratinocyte miRNA-100–5p, a microRNA that was previously found 

to be downregulated in familial HS patients, which then resulted in increased PI3K and 

keratinocyte hyperproliferation (He et al., 2019, Xiao et al., 2016). He et al. found that 

NCSTN mutations lead to reduced miR-30a-3p levels, which increases RAB31 expression 

due to diminished negative regulation, and this increase in RAB31 accelerates the 

degradation of activated EGFR on keratinocytes, leading to abnormal differentiation (He et 

al., 2018). In silico assessment of pathogenic γ-secretase mutations found that HS-

associated ERBB4, SCN1B, and TIE1 were differentially expressed and that this was 

specific to HS when compared with other inflammatory dermatoses to account for 

background cutaneous inflammation (Frew and Navrazhina, 2019).

Questioning the role of γ-secretase: Future Work

Many HS experts cite the poor understanding of disease pathobiology as a significant 

bottleneck for HS management and a critical area for future work (Hoffman et al., 2017). 

Despite the myriad of discovered variants, only a minority (<5%) of HS patients have been 

found to harbor the monogenic γ-secretase-mutation-associated familial HS phenotype, far 

fewer than even the 30–40% reporting family history. A recent key study of predominantly 

Caucasian cohort of 188 HS patients found that just 6.4% had mutations in γ-secretase 

(Duchatelet et al., 2020). Overall, the majority of HS patients studied to date are found 

negative for γ-secretase-mutations when assessed by targeted sequencing (Frew et al., 2017, 

Ingram et al., 2013, Pink et al., 2012). While many pathogenic variants co-segregate with the 

HS phenotype in familial kindreds, others do not and indicate a benign nature (Al-Ali et al., 

2010, Jarvik and Browning, 2016, Nomura et al., 2014). The sole whole-genome expression 

profiling study done on HS patients found no difference in whole-blood mRNA expression 

in NCSTN, PSEN1, or PSENEN between HS and healthy controls, though a small sample 

size was studied and no validation was performed (Blok et al., 2016). Most of the disease 

burden is in sporadic HS (60–70%), yet few studies have been performed in this population 
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robust enough to probe its polygenic architecture and identify low to moderate impact 

variants and their attributable risks.

The view that HS has a polygenic foundation has subsequently gained traction, supported by 

strong, well-documented associations with other chronic inflammatory disorders including 

inflammatory bowel disease, spondyloarthropathy, lupus, and pyoderma (Deckers et al., 

2017, van der Zee et al., 2016, Vekic et al., 2016). Numerous genes besides γ-secretase 

components have also been identified to associate with HS including connexin-26, fibroblast 

growth factor receptor, and inositol polyphosphate-5-phosphate (Tricarico et al., 2019), 

albeit with variable phenotypes. The racial predisposition toward African Americans is also 

important; given that disparate risks in immune-mediated disease development and variable 

responses to treatment of such conditions can, at least in part, be traced to ancestral 

heterogeneity (Nedelec et al., 2016), similar assessments in HS, particularly large-scale, 

hypothesis-free approaches such as GWAS, may be worthwhile.

A handful of studies have employed this approach with promising results. A 

pharmacogenomics GWAS study of the Pioneer I and II trials found a single variant in 

BCL2 that associated with response to adalimumab in HS patients in a TNF-dependent 

matter localized to the follicular unit (Liu et al., 2019). Sequence investigation of the 

IL12RB1 receptor subunit gene identified two haplotype groups associated with significant 

differences in age at disease presentation, stage of disease, and number of skin areas 

(Giatrakos et al., 2013). Similar analysis of the TNF gene found significant association 

between SNPs of the promoter region and susceptibility to HS, disease course, and response 

to TNF antagonists (Savva et al., 2013). Study of two independent cohorts (total n = 261) 

showcased that high copy number (>6) of the defensin (DEFB) cluster was associated with a 

markedly increased odds ratio (6.72 after meta-analysis, P <0.0001) for HS development and 

fewer than 6 copies was linked with earlier onset, fewer skin localizations, and less frequent 

purulence (Giamarellos-Bourboulis et al., 2016).

Nonetheless, the several identified HS mutations in NCSTN, PSENEN, and PSEN1, many 

of which were determined to be causative in familial HS, and their demonstrated relevance at 

the clinical and pathobiological levels advocate for continued investigation into γ-secretase. 

The establishment of guidelines for conducting the necessary multi-institutional studies, 

particularly genotype-phenotype analysis and exome sequencing of affected kindreds, 

representative of the broader HS population has already been undertaken and are steps in the 

right direction (Byrd et al., 2019). Conducting larger, prospective studies of familial HS 

patients that include clinical data collection for rigorous phenotyping will provide more data 

to establish a reliable, unbiased classification system. HS remains a clinical diagnosis with 

only anecdotal evidence for the use of biomarkers, histopathologic findings, and objective 

diagnostics. Yet when approached clinically, the lack of awareness, embarrassment in 

discussion, low socioeconomic status among patients, lack of follow-up due to increased use 

of emergency and inpatient care, and dearth of HS specialists in the US all serve as barriers 

to obtaining accurate clinical information from HS patients (Hoffman et al., 2017). At the 

experimental level, establishing relevant animal disease models, designing translational 

studies aimed at distinguishing among the many contributing mechanisms to HS, and 

performing functional validation of identified variants are key tasks in this process.
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In conclusion, here we review the available literature on γ-secretase in HS and evaluate its 

evidence in the context of clinical, epidemiologic, pathobiological, and molecular studies. 

The release of ENCODE 3 and its associated tools poise future studies in HS to uncover 

important genetic and epigenetic features that may further clarify the etiologies of HS 

(Moore et al., 2020). Studying the γ-secretase complex as well as the greater genetic 

architecture of HS will allow for markedly improved and individualized treatment for 

individuals with this debilitating disease.
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Figure 1, 
The locations of confirmed mutations in γ-secretase protein domains
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Table 1:

Identified mutations in HS patients in NCSTN, PSENEN, and PSEN1.

NCSTN - 1q23.2

DNA change Amino Acid 
Change

Mutation 
Type

Ethnic Origin (# of 
families)

Familial 
(F) or 
Case (C),

Isolated HS 
or 
Syndrome/ 
Associated 
Conditions

Method of 
Sequencing 
(*indicates the 
use of 
controls)

1 c.97G>A p.Gly33Arg Missense Japanese (1)(Takeichi et 
al., 2020)

F Isolated HS Whole Exome 
Sequencing

2 c.223G>A p.Val75Ile Missense Chinese (1) (Zhang et al., 
2013)

F Isolated HS Targeted 
Sequencing*

3 c.210_21 
1delAG

p.Thr70fsX 18 Truncating Chinese (1) (Liu et al., 
2011)

F Isolated HS Whole Exome 
Sequencing*

4 c.218delC Exon 
4

p.P73LFs*15 Frameshift Chinese (1) (Wu et al., 
2018)

F Isolated HS Targeted 
Sequencing*

5 c.278del C p.P93LFSX15 Frameshift Chinese (1) (Li C. et al., 
2018)

C SAPHO Whole Exome 
Sequencing*

6 c.344_35 1del p.Thr115As n*20 Truncating N/A (3) (Duchatelet et al., 
2015)

C PASH Targeted 
Sequencing

7 c.349C>T p.Arg117X Truncating Chinese (1) (Wang et al., 
2010), Caucasian (1),(Liu 
M. et al., 2016) African 
American (1)(Chen et al., 
2015), Japanese(1)

F (all) Isolated HS 
(all)

GWLS* 
Targeted 
Sequencing 
Targeted 
Sequencing 
Targeted 
Sequencing

8 c.477 C>A p.C159X Truncating Chinese(Savva et al., 
2013) (1)

F Isolated HS Targeted 
Sequencing*

9 c.487delC p.Gln163Se rfsX39 Truncating French (3)(Miskinyte et 
al., 2012)

F Isolated HS Targeted 
Sequencing*

10 c.497C>A p.Ser166X Truncating Chinese(Ma et al., 2014) F Isolated HS Targeted 
Sequencing

11 c.553G>A p.Asp185Asn Missense British (1) (Pink et al., 
2013)

C Isolated HS N/A

12 c.582+1d elG Splice site Splice site Japanese (1) (Nomura et 
al., 2013)

F Isolated HS Targeted 
Sequencing*

13 c.617C>A p.Ser206X Truncating Chinese(Shi et al., 2018) F Isolated HS Targeted 
Sequencing*

14 c.632C>G p.Pro211Arg Missense Chinese (1) (Li et al., 
2011)

F Isolated HS Targeted 
Sequencing*

15 c.647A>C p.Gln216Pro Missense Chinese (1)(Zhang et al., 
2013)

F Isolated HS Targeted 
Sequencing*

16 c.687insC C p.Cys230ProfsX31 Frameshift Indian (1)(Li et al., 2011) F HS + Acne 
Conglobata 
(AC)

Targeted 
Sequencing*

17 c.887A>G p.Pro296Arg Missense Chinese (1)(Xu et al., 
2016)

F Isolated HS Targeted 
Sequencing

18 c.944C>T p.Ala315Val Missense Chinese (1)(Zhang et al., 
2016)

F Isolated HS Targeted 
Sequencing

19 c.978delG p.M326IfsX30 Truncating Singaporean (Haines et 
al., 2012)

F Isolated HS Targeted 
Sequencing*

20 c.996+7G >A Splice site Splice site Mixed - European (1)
(Pink et al., 2012)

F Isolated HS Targeted 
Sequencing*
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NCSTN - 1q23.2

DNA change Amino Acid 
Change

Mutation 
Type

Ethnic Origin (# of 
families)

Familial 
(F) or 
Case (C),

Isolated HS 
or 
Syndrome/ 
Associated 
Conditions

Method of 
Sequencing 
(*indicates the 
use of 
controls)

21 c.1101+1 G>A Splice site Splice site Mixed- European (2) 
(Pink et al., 2011)

F Isolated HS Targeted 
Sequencing*

22 c.1101+1 
0A>G

Splice site Splice site British (1)(Pink et al., 
2012)

F Isolated HS Targeted 
Sequencing*

23 c.1125+1 G>A Splice site Splice site British (1)(Pink et al., 
2011)

F Isolated HS Targeted 
Sequencing*

24 c.1180- 5C>G Splice site Splice site British (1)(Ingram et al., 
2013)

F (1) S 
(2)

Isolated HS Targeted 
Sequencing

25 c.1229C> T p.A410V Missense Caucasian(Liu M. et al., 
2016)

F Isolated HS Targeted 
Sequencing

26 c.1258C> T p.Gln420X Truncating Singaporean (Haines et 
al., 2012) Chinese(Jiao et 
al., 2013, Yang et al., 
2015)

F Isolated HS Targeted 
Sequencing*

27 c.1258C> T p.Arg429X Truncating Japanese(Nishimori et al., 
2017)

S Isolated HS Targeted 
Sequencing

28 c.1300C> T p.Arg434X Truncating French (1)(Miskinyte et 
al., 2012)

F Isolated HS Targeted 
Sequencing

29 c.1352+1 G>A Splice site Splice site Chinese (1)(Liu et al., 
2011)

F Isolated HS Targeted 
Sequencing*

30 c.1551+1 G>A Splice site Splice site Chinese (1)(Wang et al., 
2010)

F Isolated HS GWLS*

31 c.1635C>G p.Ala486 Thr517del Truncating Iranian (1)(Faraji Zonooz 
et al., 2016)

F PASH GWLS*

32 c.1695T>G p.Tyr565X Truncating Chinese (1)(Li et al., 
2011)

F Isolated HS Targeted 
Sequencing*

33 c.1702C>T p.Gln568X Truncating Caucasian (1), Japanese 
(1)(Nomura et al., 2014)

F Isolated HS Targeted 
Sequencing*

34 c.1752delG p.Glu584As pfxX44 Truncating Chinese (1)(Wang et al., 
2010)

F Isolated HS GWLS*

35 c.1768A>G p.Ser590Al afsX3 Truncating French(Miskinyte et al., 
2012)

F Isolated HS Targeted 
Sequencing*

36 c.1799delTG p.Leu600X Truncating Indian (1)(Li et al., 2011) F HS + Acne 
Conglobata

Targeted 
Sequencing

37 c.1912_1 
915delCA GT

p.S500fs p.S638fs Frameshift Dutch (Vossen et al., 
2020)

F Isolated HS Whole 
Genome & 
Targeted 
Sequencing

PSENEN - 19q13.12

1 c.168T>G p.Tyr56X Truncating Ashkenazi Jewish (4)
(Pavlovsky et al., 2018)

F DDD Targeted 
Sequencing*

2 c.167- 2A>G Splice Site Splice Site Chinese(Zhou et al., 2016) F DDD Targeted 
Sequencing*

3 c.194T>G p.Leu65Arg Missense Chinese(Zhou et al., 2016) F DDD Targeted 
Sequencing*

4 c.66delG p.Phe23LeufsX46 Truncating Chinese(Liu Y. et al., 
2016, Wang et al., 2010)

F Isolated HS Targeted 
Sequencing
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NCSTN - 1q23.2

DNA change Amino Acid 
Change

Mutation 
Type

Ethnic Origin (# of 
families)

Familial 
(F) or 
Case (C),

Isolated HS 
or 
Syndrome/ 
Associated 
Conditions

Method of 
Sequencing 
(*indicates the 
use of 
controls)

5 c.66_67insG p.Phe23Val fsX98 Truncating British (1) (Pink et al., 
2011)

F Isolated HS Targeted 
Sequencing

6 c.279delC p.Phe94Ser fsX51 Truncating Chinese(Pink et al., 2012) F Isolated HS Targeted 
Sequencing

7 c.84_85insT p.L28FfsX93 Insertion Thai (2)(Wenrui et al., 
2018)

F DDD Targeted 
Sequencing*

8 c.62– 
1G>C(Ralser et 
al., 2017)

Exon 2 Splice Site Indian (2)(Ralser et al., 
2017)

F DDD Targeted 
Sequencing*

9 g.1412T>C Splice Site Splice Site French(Ralser et al., 2017) F DDD Targeted 
Sequencing*

10 c.35T>A p.Leu12X Truncating German (2)(Ralser et al., 
2017)

F DDD Targeted 
Sequencing*

11 c.115C>T p.Arg39X Truncating German (1)(Ralser et al., 
2017)

F DDD Targeted 
Sequencing*

PSEN1 – 14q 24.2

1 c.725delC p.Phe242L eufsX11 Truncating Chinese (3)(Wang et al., 
2010)

F Isolated HS GWLS*

2 c.837+16 G>T Splice site Splice site Chinese(Lazic et al., 
2012)

Case Isolated HS Targeted 
Sequencing

3 c.953A>G p.Glu318Gly Missense British (3)(Ingram et al., 
2013)

F Isolated HS Targeted 
Sequencing*
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