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Cognitive Research: Principles
and Implications

Learning the layout of different 
environments: common or dissociated abilities?
Alexis Topete1*  , Chuanxiuyue He1 and Mary Hegarty1 

Abstract 

People navigate in various types of spaces, including indoor and outdoor environments. These differ in availability 
of navigational cues, such as distal landmarks, clear boundaries, and regular grid structures. Does learning the layout 
of different types of environments rely on the same or diverse cognitive abilities? Do separate measures of learning 
reflect different abilities? In a study of individual differences, 88 people learned the layout of two virtual environments 
from first person experience: a grid-like maze, and a campus-like open environment. After learning each environment, 
their knowledge was measured by three tasks; onsite pointing, map-reconstruction, and wayfinding. Performance 
on these measures was significantly correlated. In confirmatory factor analyses, the best fitting model indicated 
separate factors for spatial knowledge acquisition of the grid-like maze and the outdoor open environment. However, 
these two factors also shared considerable variance, indicating that they reflect a common underlying ability. 
There was no evidence that different measures of learning (pointing, map reconstruction, and wayfinding) defined 
separate abilities, adding to their validity as alternative measures of configural knowledge. Performance of map-
based navigation and path integration in the mobile navigation game Sea Hero Quest was generally not correlated 
with performance in the environment learning tasks, nor were self-report measures of sense of direction and spatial 
anxiety. Our research suggests that there is a common ability related to learning spatial layout in different contexts, 
but this may be distinct from other navigation abilities.

Keywords Spatial ability, Navigation, Virtual environments, Confirmatory factor analysis

Significance statement
The ability to navigate in different types of spaces, 
including neighborhoods and buildings, is required in 
everyday life, yet we know little about how the structures 
and scales of different environments affect navigation 
proficiency. Does the ability to learn a large, irregular, 
outdoor environment depend on the same or different 
cognitive processes as the ability to learn a small, grid-
like, indoor one? Additionally, does it matter how 
we measure navigation ability after learning a spatial 
layout? These questions have important implications 
for theories of how people differ in navigation ability, 

and for the measurement of navigation for real-world 
applications such as the detection and diagnosis of 
Alzheimer’s Disease, and training for professions that 
are navigation-intensive, such as emergency responders. 
We studied navigation in different contexts examining 
how people learn the spatial layout of two different 
types of environments (large, outdoor, and irregular vs. 
small, indoor, and grid-like) and assessed their resulting 
knowledge of these environments using three measures; 
ability to point to landmarks, ability to reconstruct a 
map of the environment, and ability to find their way 
efficiently in the environment. Results indicated that 
the three outcome measures seem to reflect a single 
navigation ability, and there is some dissociation between 
learning indoor and outdoor environments, although 
these also depend to a large extent on a common ability.
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Introduction
Navigation is an essential component of daily life. 
Whether it is finding your way from your office to the 
restroom in a large building or finding a meeting in a 
building across a university campus, having knowledge 
of the layout of environments is essential to planning and 
executing efficient routes to goal locations. Our ability to 
learn the layout of novel environments from experience 
navigating in these spaces is remarkable, but also subject 
to large individual differences (Wolbers & Hegarty, 2010). 
These individual differences are now well documented 
(e.g., Allen et  al., 1996; Hegarty et  al., 2006; Ishikawa & 
Montello, 2006; Weisberg & Newcombe, 2018), raising 
important theoretical questions about what causes these 
differences, what cognitive processes differentiate more 
and less able navigators, and whether navigation abilities 
can be trained.

To address these issues, we need standardized 
measures of navigation ability. However, to date, studies 
of this ability have been conducted in different spaces 
(e.g., grid-like buildings vs. open, rural environments) 
and used a variety of tasks and measures, and we know 
little about the relationships between existing tasks 
and measures. Here, we begin to address this problem 
by assessing a navigation task in two different virtual 
environments via the same three outcome measures for 
each, and examining relations between these measures.

Navigation ability includes the ability to learn the 
layout of new environments, to update our position 
in space as we navigate, and to use our knowledge of 
known environments plan and execute efficient paths 
to goal locations (also referred to as wayfinding). As 
such, there are many tasks that can and have been used 
to measure this ability. In this paper we focus on one 
common paradigm used to measure navigation ability in 
the literature to date. This paradigm includes a learning 
phase, in which people are given first-person experience 
navigating a novel environment, followed by a test 
phase to measure their environmental learning, or how 
well people learned the layout of the environment from 
this direct experience. Typically, researchers control 
the learning phase by having people follow a guided 
route (or series of guided routes).1 Participants are then 
tested on their configural (or survey) knowledge of the 
environment via one or more tasks, with the assumption 
that good navigators can go beyond memorizing the 
sequence of viewpoints experienced during the learning 

experience (i.e., a route representation, which relies 
more on knowledge of egocentric relations between 
the self and environmental features experienced during 
learning) to infer a representation of the layout of 
the environment (Hegarty et  al., 2006). This survey/
configural representation includes allocentric relations 
between locations in the environment (i.e., knowledge 
of the distance and directions between landmarks, 
independently of how they were experienced during 
learning) enabling the navigator to point accurately from 
one location to another and to plan and execute efficient 
routes (i.e., shortcuts) not experienced during the 
learning phase (efficient wayfinding).

Table  1 summarizes representative papers that have 
used this general method. These studies have been 
conducted in real environments (e.g., Boone et  al., 
2018; Hegarty et  al., 2006; Ishikawa & Montello, 2006; 
Meneghetti et  al., 2021; Miola et  al., 2021; Montello 
& Pick, 1993; Schinazi et  al., 2013), immersive virtual 
environments (e.g., Chrastil & Warren, 2015; He et  al., 
2023) and increasingly in desktop virtual environments 
(e.g., Münzer et al., 2020; Weisberg et al., 2014).

The types of environments that people learned in 
these studies have also differed. They include outdoor, or 
simulations of outdoor environments, such as a campus, 
city, or natural environment (e.g., Gagnon et  al., 2018; 
Ishikawa & Montello, 2006; Miola et  al., 2021; Muffato 
et  al., 2023; Weisberg et  al., 2014), and smaller built 
environments (or simulations of these environments), 
such as a building or maze (e.g., He, et al, 2023; Hegarty 
et al., 2006; Meneghetti et al., 2021). Although all of these 
qualify as environmental scale environments, according 
to Montello’s (1993) classification of scales of space, 
they differ in size, and therefore the amount of physical 
effort or time required to traverse the area. They also 
differ in regularity and in number and size of possible 
turn angles—indoor grid-like environments typically 
have primarily 90-degree angles and straight paths; 
whereas outdoor environments can be more irregular, 
with curved paths, a range of turning angles, and differ 
in the availability of distal landmarks (such as distinctive 
buildings, mountains, and the sun).

Additionally, the studies summarized in Table 1 differ 
in the tasks used to measure the quality of configural or 
survey knowledge acquired from the learning experience. 
These include ability to point directly from one location 
and orientation in the environment to other locations, 
including measures of onsite pointing (from within 
the environment) and measures of offsite pointing 
(e.g., Judgments of Relative Direction), that is, from an 
imagined location and orientation in the environment. 
They also include sketch mapping (drawing a map of 
the environment) or map reconstruction (recreating a 

1 We note that in similar studies (e.g., Chrastil & Warren, 2015; Gagnon 
et al., 2018; Muryy & Glennerster, 2021; Peer et al., 2024) people learned by 
freely exploring an environment; these studies are beyond the scope of the 
current research because they do not control the learning experience and 
depend on exploration ability.



Page 3 of 15Topete et al. Cognitive Research: Principles and Implications            (2025) 10:6  

map of the environment by moving icons representing 
landmarks to indicate their relative positions), straight-
line distance estimations between locations in the 
environment. Finally, they include efficient wayfinding 
(ability to plan and execute shortcuts, or efficient 
paths between landmarks that were not experienced 
during the learning phase). While some studies also 
include measures of landmark knowledge and route 
knowledge, here, we focus on measures of configural 
knowledge, which involves the ability to infer the layout 
of an environment from route experience. Moreover, 
the present study is concerned with measures of ability, 
and not navigation strategy (e.g., Boone et  al., 2018; 
Marchette et al., 2011).

Despite differences in environmental structure and 
outcome measures, it is implicitly assumed that the 
same environmental learning ability is reflected in all 
outcome measures and for all environments. This is 
characterized as the ability to construct a configural or 
survey representation of the environment, from direct 

experience (Montello, 2005; Tolman, 1948), with better 
navigators developing more globally consistent and 
metrically accurate representations.

However, there are reasons to believe that there 
might be variation in the abilities necessary to learn 
the layout of different environments and to perform 
different outcome measures. With respect to the type 
of environment, people who grew up in more irregular 
environments (e.g., rural environments vs. cities with 
high street entropy) have been found to have superior 
ability to those who grew up in grid-like cities, and 
people generally navigate more efficiently in the types 
of environments they grew up in (Barhorst-Cates 
et al., 2021; Coutrot et al., 2022). These results suggest 
that people may develop different navigation abilities 
depending on their experiences and that learning of 
different types of environments may draw on distinct 
abilities. For example, someone who pays more 
attention to distal landmarks might have an advantage 

Table 1 Examples of previous research examining navigation performance after learning via a guided route or series of routes in the 
environment, with key characteristics defined, listed in chronological order

The research studies listed in Table 1 are representative studies only and do not encompass all research studies using the discussed paradigm

Study Environment learned Measures of learning

Montello and Pick (1993) Indoor Building (Real) Onsite pointing (arrow circle)
Sketch mapping

Hegarty et al. (2006) Indoor Building (Real)
Indoor Building (Video)
Indoor Maze (Virtual)

Onsite pointing (arrow circle)
Distance estimation
Map drawing

Ishikawa and Montello (2006) Outdoor Wooded Neighborhood (Real) Onsite pointing
Distance estimation
Map drawing

Schinazi et al. (2013) Outdoor Campus (Real) Onsite and offsite pointing
Distance estimation
Sketch mapping

Weisberg et al. (2014);
Weisberg and Newcombe (2016)

Outdoor Campus (Virtual) Onsite pointing
Map reconstruction

Hejtmánek et al. (2018) Outdoor City (Virtual) Wayfinding efficiency
Onsite pointing

Ishikawa (2019) Outdoor City (Real) Route tracing
Onsite pointing (paper)

Münzer et al. (2020) Outdoor Village (Virtual) Wayfinding accuracy & efficiency
Onsite pointing
Map reconstruction

Meneghetti et al. (2021) Garden Maze (Virtual) Route tracing
Navigation efficiency
Map completion

Miola et al. (2021) Outdoor City (Virtual) Offsite pointing
Map completion

He et al. (2023) Indoor Maze (Virtual) Wayfinding efficiency
Offsite pointing

Muffato et al. (2023) Outdoor City (Video) Landmark knowledge
Offsite pointing
Route tracing
Sketch mapping
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in learning outdoor environments with these cues, but 
not indoor environments.

With respect to outcome measure, it is argued that 
rather than metrically accurate survey representations, 
spatial representations such as graph knowledge may be 
sufficient to perform well on some outcome measures 
but not others. Graph knowledge comprises topological 
spatial information that represents locations within an 
environment as nodes, connected by paths or edges 
(Kuipers, 1982, 2000), but does not include accurate 
metric knowledge of distances and directions among 
locations. Chrastil and Warren (2013, 2015; Warren, 
2019) have argued that graph knowledge (i.e., which 
landmarks are connected by paths) is sufficient for 
tasks such as efficient wayfinding, as this type of 
representation can enable the inference of novel 
routes. In contrast, other tasks such as pointing may 
require more globally consistent metric knowledge, for 
example of the relative length of the different paths, 
and the direction of the paths with respect to some 
global orientation. In support of this distinction, when 
both wayfinding and pointing are measured in the same 
studies, correlations between these tasks are not always 
high and, in consequence, could reflect different types 
of knowledge (e.g., He et al., 2023; Muryy & Glennerster, 
2021). Moreover, a recent study also suggested that the 
type of knowledge constructed depends on the type 
of environment, with representations of more open 
environments showing properties of metric survey 
knowledge, whereas representations of more maze-like 
environments showed properties of graph knowledge 
(Peer et  al., 2024). These studies raise the possibility 
that different abilities may be associated with different 
environments and outcome measures.

Alternatively, a common ability may underlie learning 
of different environments and measure of environments, 
such that people vary in the amount of metric accuracy 
and precision of their representations following a 
learning experience (Peer et  al., 2021). Because studies 
rarely measure learning of more than one environment 
(Peer et  al., 2024), and learning outcomes vary among 
studies, we do not know the relations between tasks 
that use different environment types or different 
measures of learning. In the present study, we begin to 
fill this gap in our knowledge by addressing two primary 
questions: (1) Does learning of different environments 
(i.e. grid-like indoor environments and irregular outdoor 
environments), involve the same or different navigation 
abilities? (2) Given the same environment, do different 
measures of environment layout (i.e., onsite pointing, 
map reconstruction and wayfinding efficiency) measure 
the same or different abilities?

We focus on tasks using desktop virtual environments 
as these have the potential to be standardized measures of 
navigation ability that can be used by researchers across 
the world to study learning of the same environment 
(in contrast to real environments which are different 
everywhere, and ambulatory immersive environments 
which require large laboratories and expensive 
equipment). Using VR allows researchers to control for 
external factors such as weather, cue availability, size, and 
environmental structure and there is increasing evidence 
that navigation abilities measured in virtual environment 
are reflective of real-world navigation (e.g., Claessen 
et  al., 2016; Coutrot et  al., 2018; Lader et  al., 2024; van 
der Ham et al., 2015).

To address these questions, we had people learn the 
layout of two different virtual environments, and in each 
case measured their knowledge of the layout of these 
environments using the same three outcome measures 
(efficient wayfinding, pointing, and map reconstruction). 
The first environment was Virtual SILCton (Weisberg & 
Newcombe, 2016; Weisberg et al., 2014), which simulates 
a college campus (an open irregular environment). In the 
SILCton task, participants are led on two separate routes 
in the environment, before experiencing two connecting 
routes and their knowledge is tested by pointing and 
map-reconstruction measures. In the present study we 
added efficient wayfinding as a third outcome measure. 
The second environment simulates an indoor, grid-like 
maze environment. This virtual environment was first 
used by Marchette et  al (2011) to measure navigation 
strategy so we call it the Marchette Maze. Here we 
modified the task to measure wayfinding ability, by 
instructing participants to find the shortest route to 
goal locations (cf. Boone  et al., 2019) and added onsite 
pointing and map reconstruction outcome measures. 
We chose these types of environments because they are 
quite different from each other, which enabled a strong 
test of whether ability to learn the layout of diverse 
environments depends on the same or different cognitive 
abilities, and also because they are types of environments 
that the average person tends to navigate in on a regular 
basis, and which have been used in previous studies of 
individual differences in large-scale spatial ability.

The main aim of the current study was to evaluate 
three different models of navigation ability using 
confirmatory factor analysis. The first model assumes 
that the six outcome navigation measures reflect a 
single “environmental learning” or navigation ability 
(Montello, 2005; Peer et  al., 2021). The second assumes 
that there are separate abilities associated with learning 
different types of environments (a large, open, outdoor 
environment such as Virtual SILCton, and a small, 
indoor, grid-like environment such as the Marchette 
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Maze) (Barhorst-Cates et  al., 2021; Coutrot et  al., 2022; 
Peer et al., 2024). The third assumes that there are three 
separate abilities associated with the outcome measures 
(i.e., wayfinding, pointing, and map reconstruction) 
(Chrastil & Warren, 2013, 2015; He et al., 2023; Muryy & 
Glennerster, 2021; Peer et al., 2024; Warren, 2019).

While ability to learn the layout of a novel environment 
is a dominant method of assessing navigation ability, 
there are other common standardized measures of 
this ability, including self-report measures (Hegarty 
et al., 2002; Lawton, 1994) and more recently, Sea Hero 
Quest (Coutrot et  al., 2018), a mobile video game that 
measures two abilities; map-based navigation, the ability 
to navigate to a series of landmarks (buoys in a body of 
water) after memorizing a map of the environment) 
and path integration (ability to point back to the start 
location after traveling in an environment) and which 
has been found to be predictive of real-world navigation 
ability (Coutrot et al., 2019; Spiers et al., 2021). There is 
concern that navigation in desktop virtual environments 
is affected by interface facility provided by video-game 
experience (Hegarty et  al., 2022; Yavuz et  al., 2024). To 
advance our understanding of individual differences in 
navigation ability, it is also important to examine whether 
self-reports and different navigation tasks reflect the 
same ability as learning the layout of new spaces and 
how these might be affected by video game experience. 
Consequently, we also included these measures and 
examined their correlations with measures of learning 
spatial layout in exploratory analyses, to begin to study 
broader questions regarding the measurement of 
navigation ability.

Methods
Participants
Participants were undergraduate students recruited 
through the institution’s participant pool, with 111 
recruited to achieve 88 participants in the final dataset. 
Of these participants, 21 were dropped due to motion 
sickness, not returning for the second session, or 
technical errors with one or more tasks. Two additional 
participants were dropped because they were identified 
as multivariate outliers measured by Mahalanobis’ 
Distance (Curran, 2016; Ghorbani, 2019; Ward & Meade, 
2022), based on all objective measures. Participants in 
the final sample of 88 ranged from 18 to 30 years of age 
(M = 19.92, SD = 2.46, 52 female, 36 male), and received 
either cash ($40) or course credit (3  h of subject pool 
credit) in exchange for participating.

An a priori power analysis was conducted using the 
semPower package in R (Moshagen & Bader, 2023) 
to estimate the required sample size for detecting 
differences between one-factor, two-factor, and 

three-factor models. Based on model-implied covariance 
matrices, the analysis indicated that at least 85 
participants are needed to achieve 80% power at an alpha 
level of 0.05 (see details about the assumed parameters 
in the shared supplementary codes). This sample size also 
gave us power to detect correlations of 0.28 or higher, 
assuming power of 0.80 and an alpha level of 0.05.

Materials
The measures were completed either on a desktop 
computer with a keyboard and mouse, or (in the case 
of Sea Hero Quest) via a touch-screen phone that was 
provided by the lab. The following measures were 
included in the study (see Figure S1 in the Supplementary 
Materials for more images of the Virtual SILCton and 
Marchette Maze tasks).

Virtual SILCton
The Virtual SILCton task (Weisberg et  al., 2014) is an 
assessment of navigation ability administered via a 
desktop computer, keyboard, and mouse, and is a virtual 
simulation of Temple University’s Ambler campus which 
is approximately 500 × 500  m squared. Participants are 
tasked with memorizing the names and locations of 8 
buildings within a large, campus-like environment by 
following a series of guided routes in the learning phase 
(see Fig.  1A). They first learn two separate routes, each 
of which contains four unique landmarks (buildings), by 
traversing them in the forward and backward direction, 
and then learn two routes that connect these, but which 
do not contain any additional landmarks.

The measures of learning included an onsite pointing 
task, a wayfinding task and a map-reconstruction task. In 
the onsite pointing task, participants are placed in front 
of each of the 8 learned landmarks, in turn, and are asked 
to point to each of the other 7 landmarks in a random 
order (56 pointing trials). Of these, 24 are within-
route trials that involve pointing to landmarks within 
the two originally learned routes and 32 are between-
route trials that involve pointing between these routes. 
On each trial participants respond with a mouse click 
after using the mouse to rotate their viewing direction 
on a horizontal plane to their judged direction of the 
landmark. The measure of performance on each trial is 
the absolute angular deviation of the target building’s 
actual direction and the participant’s judged direction, 
averaged separately for within-route trials and between-
route trials, such that greater angular error is associated 
with poorer performance.

In map reconstruction, participants are given a blank 
map of the environment and are instructed to use 
the mouse to drag-and-drop pictures of the 8 learned 
buildings into their correct locations within a map. There 
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is no time limit. The measure of performance is based on 
a bidimensional regression analysis (Friedman & Kohler, 
2003) which measures the variance shared between the 
participant’s placement of the 8 landmark buildings 
and the actual locations in X, Y coordinates of these 
buildings.

On each trial of the efficient wayfinding task, 
participants were placed in front of one of the previously 
learned buildings in the SILCton environment, and were 
instructed to take the shortest possible path to one of the 
other 7 buildings. They were allowed to take any route 
(e.g., they could walk across a lawn or parking lot), but 
could not walk through any buildings. They used a mouse 
and keyboard interface to move through the environment 
and complete a total of 8 trials in the wayfinding task; 4 
within-route trials (two from each route) and 4 between-
route trials. Participants were allowed 6  min on each 
trial with the exception of 2 within-route trials in which 
they were allowed 3 min (based on pilot testing). The end 
point of each wayfinding trial was the starting point for 
the next trial and if participants exceeded the time limit 
for a trial, they were scored as unsuccessful on that trial 
and a researcher moved them to the starting point for 
the next trial. The measure of wayfinding efficiency was 
excess distance, or the difference between the actual 
distance a participant traveled (dA) and the shortest 
possible distance (dS), divided by the shortest possible 
distance (dS) so that larger numbers indicate less efficient 
wayfinding:

The Marchette Maze task
The Marchette Maze simulated a smaller (55 × 55  m, 
Boone et  al., 2018), indoor maze-like environment (see 
Fig.  1B), so named because it had the same structure 

efficiency (excess distance) =
dA− dS

dS

as the maze used in studies of the Dual Solution 
Paradigm (Marchette et al., 2011). In the learning phase, 
participants followed a single guided route (indicated 
by arrows) that passed 12 landmark objects: a trash 
can, bookshelf, wheelbarrow, harp, well, chair, mailbox, 
telescope, plant, picnic table, stove, and piano. They 
completed 5 laps of the route. On the first lap, they name 
each object aloud, and the experimenter corrects them if 
they use a name that is different to the name used to refer 
to that object in subsequent test trials.

The onsite pointing task consisted of 20 trials, similar 
to the pointing trials in the Virtual SILCton task, in 
which participants are placed in front of one of the 
objects and have to indicate the direction to another 
landmark by rotating the environment until they believe 
they are facing the target object. In contrast with 
SILCton there was no crosshair and participants pressed 
the “Enter” button when they believed they were facing 
a target object. The map reconstruction task had the 
same format as the corresponding task for SILCton. The 
landmarks were represented as boxes that revealed a 
picture of each object when the participant hovered over 
the box with the computer mouse. The wayfinding task 
followed the same format as the Virtual SILCton task 
except that (1) there were 20 trials, (2) participants were 
given a limit of 40  s to find a target object (consistent 
with previous studies using this maze), 3) they were 
considered successful if they were within one grid square 
(equivalent to 5 m) of the target object and 4) the trials 
were presented in a random order.

Sea Hero Quest
Participants completed a subset of 13 trials of Sea Hero 
Quest (Coutrot et al., 2018): 2 practice trials (Levels 1 and 
2), 6 wayfinding trials (Levels 6, 8, 11, 26, 32, and 48) and 
5 path integration trials (Levels 24, 34, 44, 54, and 59). 
Each wayfinding trial’s weighted distance is calculated as 

Fig. 1 Aerial view images of each environment studied, and a screenshot of one point of view in the environment. Map and first-person view of A 
Virtual SILCton environment. B Marchette Maze environment. C Sea Hero Quest environment
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the distance traveled in a level (Dx) divided by the sum 
of the distance traveled over the practice Levels 1 and 2 
(D1 + D2), to control for interface ability:

As in previous research on this task, wayfinding 
efficiency is calculated as the average z-scored weighted 
distance traveled across the wayfinding levels, after 
controlling for Levels 1 and 2. Path integration ability 
is scored as the sum of the stars collected across all 
corresponding trials, where a higher score indicates 
better ability (for a total possible score range of 5–15).

Self‑report measures
We included the Santa Barbara Sense of Direction Scale 
(SBSOD; Hegarty et  al., 2002) the Spatial Anxiety Scale 
(modified from He & Hegarty, 2020; Lawton, 1994), as 
self-report measures of spatial ability, as well as video 
game experience (see Supplementary Materials for the 
questionnaire). Additional measures that were included, 
but not reported here, are the Growth Mindset in 
Navigation, Exploration Tendency, GPS Reliance (He & 
Hegarty, 2020), GPS Usage (Topete et al., 2024), and the 
Mindful Attention and Awareness (Brown & Ryan, 2003) 
scales.2

Procedure
The study was conducted in-person in 2 sessions of 1.5 h 
each, with at least one day but no more than a week 
between sessions. In Session 1, participants provided 
consent via Qualtrics and were then directed to the 
Virtual SILCton task and completed the learning phase, 
onsite pointing, map reconstruction, and wayfinding 
in that order. The learning, onsite pointing, and map 
reconstruction phases were not timed. Then they 
completed the self-report measures via Qualtrics in a 
random order, except that the GPS scales were grouped 
together (the GPS Reliance Scale presented first, followed 
by the GPS Usage Scale). After completing the self-report 
measures, participants were given a one-item open-
ended attention check (to recall how they responded 
to a previous scale item), and a one-item seriousness 
check to confirm whether they took the study seriously; 
none of the participants failed these checks. Finally, 
participants answered demographic questions (age, sex, 
and ethnicity).

weighted distance (trial x) =
Dx

D1+ D2

In Session 2, participants returned to the lab and 
completed the Marchette Maze learning phase, 
onsite pointing, map reconstruction, and wayfinding, 
in that order. The learning, onsite pointing, and 
map reconstruction phases were not timed. Finally, 
participants completed the Sea Hero Quest levels.3

Results
Descriptive statistics for the Virtual SILCton and 
Marchette Maze tasks are presented in Table  2. 
Wayfinding success was close to ceiling performance for 
both environments (as shown by the Skewness scores), as 
is typical for these tasks, and therefore justifies focusing 
our analyses on efficiency rather than success for these 
measures. Skewness and kurtosis for the other measures 
indicated that they did not depart from normality. 
Reliabilities (Omega) were generally high (with perhaps 
the exception of SILCton wayfinding). As in previous 
studies of the Virtual SILCton task, within-route 
pointing was more accurate (M = 17.11, SD = 12.20) than 
between-route pointing (M = 43.27, SD = 19.30) and these 
measures were highly correlated r(86) = 0.69, p < 0.001, 
95% CI [0.57, 0.79]. For the purpose of this individual 
differences study, we averaged all the pointing trials into 
one measure, but the results presented here do not differ 
substantially if we consider within and between pointing 
as separate measures (see Tables S1 and S2 and Figure 
S2 in Supplementary Materials). While the study was 
not designed to measure sex differences, we note four of 
the six environment measures showed a significant male 
advantage with effect sizes similar to other studies of 
sex differences, as reviewed by Nazareth and colleagues 
(2019; See Table S3 for descriptive statistics and Welch’s 
t-tests).

Correlations
As shown in Table  3, all measures of performance for 
Virtual SILCton were substantially correlated: wayfinding 
efficiency and pointing, 95% CI [0.32, 0.64], map 
reconstruction and wayfinding efficiency, 95% CI [− 0.64, 
−  0.32], and map reconstruction and pointing ability, 
95% CI [− 0.74, − 0.48]. Performance between measures 
for the Marchette Maze were also highly correlated; 
wayfinding efficiency and pointing, 95% CI [0.71, 0.86], 
as well as map reconstruction and wayfinding efficiency, 

2 With the exception of the SBSOD, spatial anxiety, and the video game 
questionnaires, the self-report questionnaires were included for the purpose 
of a separate study and will be reported elsewhere. However, in general the 
remaining questionnaires were not significantly related to the variables of 
interest in this manuscript.

3 For a subset of the participants, the order was reversed for the navigation 
paradigms (i.e., Sea Hero Quest followed by the Marchette Maze) due to 
scheduling conflicts, where the lab cell phone was not available for use in 
the expected timeframe for those participants. However, subjects that had 
the order reversed did not demonstrate significantly different performance 
than those with the original task order, so we included them in analyses.
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95% CI [−  0.84, −  0.67] and map reconstruction and 
pointing ability, 95% CI [− 0.82, − 0.63].

Finally, the same outcome measures were correlated 
across environments. Marchette Maze pointing was 
significantly correlated with Virtual SILCton pointing, 
95% CI [0.46, 0.73], as was map reconstruction 
performance in the two environments, 95% CI [0.10, 
0.48] and wayfinding efficiency in these environments, 
95% CI [0.19, 0.55].

Confirmatory factor analyses
We tested 3 different models in this study. The first 
model assumed that the six navigation measures (across 
both Virtual SILCton and Marchette Maze) reflect a 
single “cognitive mapping” (survey knowledge) factor. 
The second model assumed that there are two separate 
factors based on the environment learned, that is, 
learning large, open, outdoor environments (e.g., Virtual 
SILCton) and small indoor, grid-like environments (e.g., 
the Marchette Maze). The third model assumed that 
there are three separate factors based on the navigation 
task: wayfinding, pointing, and map reconstruction. 
Confirmatory Factor Analyses (CFAs) were conducted 
using the “lavaan” package in R (Rosseel, 2012). Each 
estimated model, with factor loadings, is shown in Fig. 2. 
Numbers along the straight arrows are standardized 
factor loadings; numbers on the curved lines (with no 

arrows) are the estimated correlations between the latent 
variables/factors.

Values of fit indices for each factor model are listed 
in Table 4. For the χ2 a significant value means that the 
model is a poor fit to the data. Since this value becomes 
less diagnostic with larger sample sizes, we also included 
the χ2/df  statistic, for which a value of less than 2.0 
indicates good model fit. The comparative fit index (CFI) 
assesses how much the examined model fits better than a 
baseline model and a value greater than 0.95 indicates a 
good fit (a value of 0.9 to 0.95 indicates a fair fit). Finally, 
a lower value of the Standardized Root Mean Squared 
Error of Approximation (RMSEA) indicates better model 
fit, with a value of 0.05 or lower indicating a good fit and 
a value between 0.05 and 0.08 indicating a fair fit (Hu & 
Bentler, 1998).

For the one-factor model, the χ2 value was significant, 
and the χ2/df value was greater than 2.0, indicating a 
poor fit. Additionally, the CFI value was below the 0.9 
threshold (for a fair fit), and the RMSEA was above the 
indicated threshold of 0.08. Therefore, the one- factor 
model (i.e., unitary “cognitive mapping” ability) was not 
considered a good fit to the data.

For the two-factor model, each criterion measure 
suggested a fair or good model fit. The χ2 value was not 
significant, and χ2/df was lower than 2.0 (see Table  4). 
The CFI value was above the 0.95 threshold, indicating 
good model fit, while the RMSEA fell between the 0.05 

Table 2 Descriptive Statistics of Performance in the Navigation Tasks for the Virtual SILCton and Marchette Maze Paradigms (N = 88)

Task M SD Min Max Omega Skewness Kurtosis

SILCton Onsite Pointing 32.06 15.13 8.18 74.60 0.94 0.45 − 0.61

SILCton Map Reconstruction 0.68 0.25 0.06 0.98 0.96 − 0.94 − 0.09

SILCton Wayfinding Success 0.97 0.05 0.88 1.00 0.79 − 1.36 − 0.16

SILCton Wayfinding Efficiency 0.16 0.10 0.02 0.43 0.60 0.71 − 0.55

Maze Onsite Pointing 42.51 18.65 8.80 95.20 0.84 0.25 − 0.41

Maze Map Reconstruction 0.56 0.32 0.03 0.98 0.88 − 0.12 − 1.59

Maze Wayfinding Success 0.93 0.09 0.60 1.00 0.70 − 1.22 0.76

Maze Wayfinding Efficiency 0.66 0.38 0.02 1.39 0.84 − 0.15 − 1.14

Table 3 Correlations between the navigation measures in the Virtual SILCton and Marchette Maze tasks

*p < 0.05, **p < 0.01, ***p < 0.001

Variable 1 2 3 4 5

1. SILCton Onsite Pointing –

2. SILCton Map Reconstruction − 0.63*** –

3. SILCton Wayfinding Efficiency 0.50*** − 0.50*** –

4. Maze Onsite Pointing 0.61*** − 0.43*** 0.35*** –

5. Maze Map Reconstruction –0.46*** 0.30*** − 0.24* − 0.74*** –

6. Maze Wayfinding Efficiency 0.56*** − 0.45*** 0.38*** 0.80*** − 0.77***
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to 0.08, indicating a fair model fit. While this model 
suggests separate factors for the two environments it 
is also notable that these latent variables were highly 
correlated (r = 0.69) indicating that they also shared 
considerable variance.

Finally, the three-factor model, proposing separate 
abilities underlying the three outcome measures was a 
poor fit to the data. The χ2 value was significant, χ2/df 
was greater than 2.0, the CFI value was below 0.9, and 
the RMSEA value was greater than 0.08. Additionally, the 
correlations between the factors (Wayfinding, Pointing, 
and Map Reconstruction) exceeded −  1/ + 1, leading 
to the conclusion that the three-factor model (i.e., that 

wayfinding, pointing, and map reconstruction abilities 
reflect different abilities) was not supported by the data.

Correlations with Sea Hero Quest
Table 5 provides descriptive statistics for Sea Hero Quest 
wayfinding weighted distance and path integration. 
Note that due to technical issues, not all participants 
completed the Sea Hero Quest trials. Sea Hero Quest 
wayfinding (weighted distance after controlling for 
Levels 1 and 2) showed good reliability (internal 
consistency as measured by Omega), but path integration 
had lower reliability. The Sea Hero Quest measures 
(wayfinding weighted distance and path integration) were 
significantly correlated, r(67) = −  0.30, p = 0.012, 95% CI 
[− 0.50, − 0.07].

Table  6 provides the correlations of these measures 
with the measures of learning Virtual SILCton and the 
Marchette Maze. Sea Hero Quest wayfinding (weighted 
distance after controlling for levels 1 and 2) was not 
significantly correlated with any of the Virtual SILCton 
or Marchette Maze measures. Path integration ability 
was significantly correlated only with onsite pointing in 
the Marchette Maze, 95% CI [−  0.46, −  0.02], but not 

Fig. 2 The results of the CFAs for the 1, 2, and 3-factor models

Table 4 Fit indices for the single, two, and three factor models

***p < 0.001

Model χ2 df χ2/df CFI RMSEA

Single factor 46.59*** 9 5.18 0.87 0.22

Two-factor 10.52 8 1.32 0.99 0.06

Three-factor 54.98*** 8 6.87 0.84 0.26
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with the SILCton or the other Maze measures. Even 
these significant correlations were small in magnitude, 
suggesting that the Sea Hero Quest measures reflect 
different abilities to measures of spatial learning.

Self‑report measures and their relation to objective 
measures
SBSOD and spatial anxiety were significantly negatively 
correlated, r(86) = −  0.43, p < 0.001, 95% CI [−  0.58, 
− 0.24] as is typical. Table 5 provides descriptive statistics 
for SBSOD, spatial anxiety, and video game experience, 
and Table 6 provides the correlations of these measures 
with the measures of learning for Virtual SILCton and the 
Marchette Maze. SBSOD was significantly correlated with 
onsite pointing, 95% CI [− 0.49, − 0.11], and wayfinding 
efficiency, 95% CI [−  0.44, −  0.04] for SILCton, but not 
with map reconstruction for this environment. SBSOD 
was not significantly correlated with any of the Marchette 
Maze measures. A similar pattern emerged for spatial 
anxiety, which was significantly correlated with onsite 
pointing, 95% CI [0.11, 0.49] and wayfinding efficiency, 
95% CI [0.01, 0.41], but not with map reconstruction 
for SILCton. For the Marchette Maze tasks, spatial 
anxiety was significantly correlated only with wayfinding 
efficiency, 95% CI [0.03, 0.42]. In sum, self-reported 
sense of direction and spatial anxiety had relatively weak 
correlations with the objective measures, with only some 
of these reaching statistical significance.

Video game experience was significantly correlated 
with all environment measures including SILCton onsite 
pointing, 95% CI [−  0.45, −  0.03], map reconstruction, 
95% CI [0.01, 0.43], and wayfinding efficiency, 95% CI 
[−  0.52, −  0.12], and Marchette Maze onsite pointing, 
95% CI [−  0.61, −  0.25], map reconstruction, 95% CI 
[0.10, 0.50], and wayfinding efficiency, 95% CI [−  0.60, 
−  0.24]. However, all correlations between environment 
measures were still significant even after controlling for 
video game experience (see Table  S4 in Supplementary 
Materials).

Discussion
We examined the ability to learn two different desktop 
virtual environments, which simulated an outdoor 
irregular environment and an indoor maze-like 
environment, respectively. In each environment, people 
learned the locations of landmarks via one or more 
guided routes, and were then tasked with pointing 
between landmarks, reconstructing a map of the 
environments, and finding the shortest route between 
landmarks. We found that performance on all outcome 
measures were significantly correlated, regardless of the 
task or environment. We addressed two main questions 
using confirmatory factor analysis.

1. Does learning of different environment types reflect 
the same or different abilities?

Table 5 Descriptive statistics of the self-report measures and Sea Hero Quest (SHQ)

In Sea Hero Quest, 23 participants were missing 1 trial in the wayfinding task due to an error with trial data being truncated. To compute descriptives for these 
subjects, any missing value was replaced with the average weighted distance across all subjects for that trial before being averaged

Variable N M SD Min Max Omega Skewness Kurtosis

SHQ Weighted Distance 69 6.44 0.86 4.53 9.42 0.84 0.62 0.84

SHQ Path Integration 69 12.29 1.82 8.00 15.00 0.50 − 0.30 − 0.88

SBSOD 88 4.17 1.08 2.00 6.33 0.92 0.07 − 0.71

Spatial Anxiety 88 2.61 0.74 1.23 4.08 0.92 0.22 − 1.07

Video Game Experience 79 3.28 1.16 1.00 5.00 0.91 − 0.30 − 1.24

Table 6 Correlations between the desktop environments, self-report, and Sea Hero Quest measures

*p < 0.05, **p < 0.01, ***p < 0.001

Variable SILCton onsite 
pointing

SILCton map 
reconstruction

SILCton 
Wayfinding 
efficiency

Maze onsite 
pointing

Maze map 
reconstruction

Maze 
Wayfinding 
efficiency

Sea Hero Quest Weighted Distance 0.13 − 0.08 0.22 0.06 − 0.06 0.15

Sea Hero Quest Path Integration − 0.22 0.11 − 0.23 − 0.26* 0.11 − 0.15

SBSOD − 0.31** 0.21 − 0.25* − 0.18 0.11 − 0.15

Spatial Anxiety 0.32** − 0.02 0.22* 0.19 − 0.07 0.24*

Video Game Experience − 0.25* 0.23* − 0.33** − 0.45*** 0.32** − 0.44***
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2. Given the same environment, do different measures 
of environment layout (e.g., pointing ability vs. map 
reconstruction vs. wayfinding efficiency) measure the 
same or different abilities to learn the layout of an 
environment?

First, we found somewhat separable factors for the 
ability to learn large, outdoor, open environments 
compared to smaller, indoor, grid-like ones for the 
same outcome measures. However, the latent variables 
underlying learning of small indoor grid environments 
and larger outdoor environments were highly correlated 
(0.69), suggesting that learning the layout of these diverse 
environments depends on a common navigation ability. 
Researchers have examined spatial learning in a variety 
of environment types, some of which are intermediate 
between the two different environments in our study (see 
Table 1). Our results suggest that although environmental 
structure plays a role, after removing variance due to this 
factor, studies conducted in different contexts measure a 
common navigation ability so we can generalize across 
contexts to a large extent. However, they also argue for 
developing standardized measures, such as SILCton and 
Sea Hero Quest, which can be used across laboratories, 
so that researchers in different locations and contexts can 
be confident that they are measuring the same abilities.

Second, we found no evidence for different abilities 
associated with different outcome measures, namely, 
pointing, efficient wayfinding, and map reconstruction. 
One explanation of these results is that performance on 
these outcome measures reflects a common type of spatial 
representation, i.e., survey knowledge with different 
levels of ability reflecting different accuracy and precision 
of that knowledge (Peer et al., 2021, 2024). An alternative 
view is that they reflect different representations (i.e., 
survey vs. graph knowledge) (Chrastil & Warren, 
2015; Muryy & Glennerster, 2021; Warren, 2019) but 
that acquisition of both types of knowledge reflects 
the same ability. While the present research does not 
argue strongly for one of these accounts, it provides no 
evidence of different abilities underlying the acquisition 
of survey and graph knowledge (Peer et al., 2021). While 
some previous studies did not show strong correlations 
between wayfinding and pointing, in one case the 
dissociation was found in a non-Euclidean space (Muryy 
& Glennerster, 2021), and in the other case one of the 
measures had a floor effect so that it did not discriminate 
medium from low ability (He et al., 2023).

Regarding the partial dissociation between navigation 
ability measured in simulated indoor and outdoor 
environments, we cannot definitively conclude exactly 
which characteristics of the environments are driving 
this dissociation. The environments differed in many 

characteristics, such as size, openness, availability of 
distal landmarks, environment regularity (only right 
angles vs. irregular paths). Any one, or a combination of, 
these characteristics could contribute to differences in 
performance. Previous research has found that factors 
such as openness and availability of distal cues affect both 
how easily an environment is learned, and the type of 
spatial knowledge that is constructed and indicates that 
for environments with the same topographical structure, 
learning of more closed, maze-like environments is 
subject to greater individual differences (Peer et  al., 
2024). Our environments also varied in whether people 
took one route or had to integrate two routes, so they 
also differed in the need to integrate separate spaces, 
which Weisberg and Newcombe (2016) have argued 
is a somewhat separable ability from ability to learn 
a single space. These considerations argue for further 
research to identify which aspects of environments and 
learning experiences account for partial dissociations. 
For example, one way that future research could address 
this limitation is by keeping the learning method (a route 
integration paradigm or single route learning) consistent 
across the two types of environments.

Moreover, because we examined learning of only 
one example of each environment, we do not know 
to what extent these differences are due to different 
types of environments as opposed to different specific 
environments. This should be addressed in future 
research by examining learning of more than one 
example of each type of environment. As a step in this 
direction, Boone et  al. (2019) found high correlations 
(0.70 or higher) between measures of learning two 
different maze-like environments, which were controlled 
for complexity (their configurations were mirror images 
of each other and differed only in surface features such as 
wall color).

Ability to learn the configuration of an environment 
from guided routes (the focus of this study) is just one 
scenario of navigation, raising questions about how this 
is related to other measures of navigation ability (learning 
via free exploration, map-based navigation, etc.). As 
a first step to addressing this question, we examined 
how our environmental learning tasks relate to map-
based navigation and path integration tasks using Sea 
Hero Quest (Coutrot et al., 2018; Spiers et al., 2021). In 
general, correlations with the Sea Hero Quest tasks were 
small and non-significant. There are notable differences 
between these tasks and the environmental learning 
paradigm that we focused on here. Environmental 
learning relies on direct, repeated exposure to each 
environment to establish long-term memories, whereas 
Sea Hero Quest relies on working memory of locations 
on a map before being placed in the environment to 
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navigate to those locations. Additionally, environmental 
learning involves learning one environment, whereas in 
Sea Hero Quest the environment changes with each level 
(trial). As our best-fitting CFA indicated a dissociation 
between navigating in different environment structures 
(cf. Barhorst-Cates et  al., 2021; Coutrot et  al., 2022), 
it is likely that the Sea Hero Quest environment (a 
rural environment simulating travel on a boat through 
irregular waterways) also plays a role in explaining why 
Sea Hero Quest did not correlate with our measures. 
Other differences include the display (a desktop computer 
versus a phone) and gamification (in the case of Sea Hero 
Quest). Finally, the two Sea Hero Quest tasks themselves 
were not highly correlated (as also found by Garg et al., 
2024), and the reliability of the path integration variable 
was relatively low.

In general, these results argue for the need to broaden 
the study of navigation abilities beyond learning of spatial 
layout, and suggest there may not be one “navigation 
ability” underlying the various tasks that researchers 
are currently using to study individual differences in 
navigation. In addition to environment learning and Sea 
Hero Quest, these include the ability to find a hidden 
goal, for example in virtual simulations such as the 
Morris water maze (e.g., Padilla, et  al., 2017) and Star 
maze (Rondi-Reig et  al., 2006), and faceted navigation 
tasks (e.g., Iaria et al., 2003, 2007; Malanchini et al., 2020; 
van der Ham et al., 2020), which examine more outcome 
measures, including landmark and route knowledge in 
addition to the outcome measures studied here.

Our study partially replicated previous studies 
regarding the relation between objective and self-report 
measures of navigation ability and anxiety (Hegarty et al., 
2022; Lawton, 1994). Sense of direction was significantly 
associated with performance in Virtual SILCton 
pointing, as in previous studies (Weisberg & Newcombe, 
2016; Weisberg et  al., 2014) but not with wayfinding. 
Correlations of self-report measures with efficiency in the 
Marchette maze were somewhat lower than previously 
reported (Boone et  al., 2018; 2019). In general, these 
results are consistent with previous research indicating 
weak to moderate relations between self-reports and 
measures of environmental learning, although weaker 
than found in many studies, even though self-reports 
were obtained at the same time as our objective measures 
and might be expected to be more correlated with these 
measures. While self-report measures are useful, they 
cannot substitute for objective measures, supporting the 
need to develop robust standardized objective tests of 
navigation.

We found a positive association between performance 
in each desktop environment and video game experience, 
raising questions about the extent to which navigation 

in desktop VR reflects interface facility rather than 
navigation (see also Hegarty et  al., 2022; Yavuz 
et  al., 2024). However, the associations between the 
environment measures remained significant even after 
controlling for video game experience, indicating that 
our tasks are measuring navigation ability, and not just 
interface facility. Moreover, other studies have shown that 
navigation in VR environments is correlated with real-
world navigation ability (Claessen et  al., 2016; Coutrot 
et al., 2018, 2019; Lader et al., 2024; van der Ham et al., 
2015), indicating that using VR environments to study 
navigation has predictive validity. A main advantage of 
using desktop VR to measure navigation ability is that we 
can create standardized tasks, so that labs and researchers 
all over the world can be confident that they are studying 
the same abilities. While the types of environments 
studied here may not be relevant in all cultures, it is easy 
to create other types of environments in desktop VR 
that may be more suitable. However, previous research 
has shown a distinction between learning spatial layout 
via direct experience (locomotion) and via visual media 
(Hegarty et  al., 2006), so it is important to continue 
to examine relations between desktop VR tasks and 
measures of navigation in real environments.

Conclusion
The study of navigation ability is relatively recent and 
has been conducted in different environments and with 
different tasks and measures. To develop a consensus on 
what constitutes navigation ability, and how to measure 
it, we need to understand the relations between these 
disparate measures. This study provides a first step in 
this undertaking. Specifically, it shows that whereas there 
is some dissociation between ability to learn the layout 
of irregular outdoor environments and more regular 
indoor environments, the high correlations between 
the two learning factors suggests that they depend on a 
common ability to learn spatial layout. Moreover, while 
different types of environments might bias the formation 
of graph-like representations versus cognitive maps, 
and measures of learning may vary in how much they 
draw on these representations, there is no evidence that 
different measures of configural knowledge draw on 
different abilities. However, our research suggests that 
other navigation tasks, such as map-based navigation and 
path integration (as measured by Sea Hero Quest), may 
rely on aspects of individual differences in navigation that 
are not captured by studies of environmental learning. 
Our research demonstrates the importance and necessity 
of relating paradigms and research approaches across 
laboratories and contexts to build a consensus on the 
nature of navigation ability and how it can be measured.
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