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Abstract of the Thesis

Evolution of a Simple Compositional Language

Using Animat-Based Modeling and Simulation

by

Masaki Moritani

Master of Science in Computer Science

University of California, Los Angeles, 2013

Professor Michael G. Dyer, Chair

Human communication has features, such as syntax, unseen in any other form

of animal communication. How did we come to use such a sophisticated form of

communication? This paper addresses the issue of the origin of compositionality

in languages using animat-based modeling. In the simulation, 100 software agents

controlled by neural networks are given the ability to communicate with each other

using sequences of signals. These agents—called animats—play communication

games with each other, and if they are among the most effective communica-

tors, they mate and produce offspring. Through evolution and learning, animats

developed languages that exhibit some rudimentary compositionality in simple

environment settings, but under more sophisticated environments, they struggled

to establish effective protocols of communication. Results suggested that simple

recurrent neural networks allowed animats to develop languages with rudimentary

compositionality, and that imitation learning helped animats come to consensus

on usage of signals.
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CHAPTER 1

Introduction

Intelligence is often attributed to language and communication skill. We humans

use language with complexity that is unparalleled by that of any other animal

on the planet. How did such complexity come about? What is the origin of

language, and how did it evolve to forms we see today? My project examines

this problem using simulations of communicating software agents with a focus on

compositionality.

One distinguishing feature of human language complexity is compositionality.

When we speak, we sequence phonemes into words, and words into sentences.

Each human language has a limited set of phonemes, and yet we can make an

unlimited number of words and sentences to express ideas. This ability to combine

parts in a sequence to communicate a numerous, if not infinite, number of ideas

is the main topic of this project.

1.1 Goals

In the experiment, I set up a software environment in which individual agents

controlled by neural networks—called animats—can communicate and interact

with each other. These animats converse with each other using signals and trade

resources, and reproduce to evolve over generations to better adapt to the envi-

ronment. The primary goal of this project is to develop such a simulation system

so that animats can evolve to handle messages composed of multiple signals in a
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sequence to express more ideas than the size of their repertoire of signals.

The significance of this experiment lies in that signals are emitted in a sequence

to specify a combination of things. The scope of the experiment does not include

the development of complex humanlike syntax rules, such as subject-predicate

relationships. However, the physiological and intellectual capacity to produce and

interpret sequences of signals is an important step towards having syntax rules.

What do effective multi-part sequence messages require of control structures?

What prevents agents from developing such a language? How do various factors

in the environment alter the evolutionary trajectory?

With these questions in mind, I have designed communication games that

the animats can take part in to develop language. Using simple recurrent neural

networks, genetic algorithms (evolution), imitation learning (using back propa-

gation), and seeding, I compare the various effects of each on the evolutionary

trajectory of the animats and of the signal language to look for some basic re-

quirements of developing syntax.
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CHAPTER 2

Examples of Past Works

There has been much work starting from the 1990s that looked at the problem

of the origin of language from a computational point of view, many of which use

simulations with agents controlled by neural networks. In this section, I will list

some of these works and comment on how they may relate to my project.

Steels (2005) [Ste05] outlines concepts faced by computational approaches to

the origin of language problem. Steels first describes the three aspects of language:

biological capacity, language inventory, and communal language. Biological ca-

pacity means that the organism has the physical ability to produce language (e.g.

vocal cord, brain). Language inventory means that there is a repertoire of sym-

bols in the language. Communal language means that the language (semantics,

syntax, etc.) is shared and agreed upon among the population.

Steels also describes seven stages of language complexity.

• The first stage involves having names for individual objects.

• The second stage involves having a name or a word for categories of objects.

• At stage 3, language allows the use of multiple words (compositionality) to

refer to multiple categories.

• At stage 4, members of the population are able to produce and interpret

syntactic patterns ad hoc. This means that there is no set grammar in the

language, but the agents are able to make use of syntactic patterns.
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• At stage 5, language adopts systematic grammar; speakers of the language

are aware of the syntax present in the language.

• Steels defines stage 6 to be a point where predicates can modify other pred-

icates as well.

• Finally, at stage 7—the natural language level—the language becomes ca-

pable of describing itself.

In terms of work by Steels, my project aims to lay the groundwork for reaching

stage 4 primarily by evolution. I cannot strictly say that the goal is stage 4

itself, however; in my model, categorization is hard-coded. The decision-making

logic, not the neural network, differentiates one category from another during the

interpretation phase.

Arita and Taylor (1996) [AT96] designed a simple model for investigating the

evolution of communication. In their simulation model, animats take part in

one-to-one conversations with neighbors, discussing a common topic: a nearby

object that they both can sense. During the conversation, they both sense a set

of attributes describing that object, and they produce a word (a signal) for it

using their 3-layered feedforward neural network. They are rewarded whenever

their words match. The simulation succeeds in demonstrating how agents agree

on language. At the same time, the simulation showed an interesting phenomenon

where language consensus does not converge. Instead, language consensus seems

to changes over time. For example, all members of the population may agree to use

word A for some object X at one point in time, but there will be an individual that

starts using word B for the same object, and eventually, the whole population may

end up adopting the usage of word B for object X. Even though Arita and Taylor’s

model was simple, it succeeded in demonstrating communicational phenomena

that we see in the macro.

There have been works that specifically look at emergence of simple syntax—
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work by Cangelosi from 2001 [Can01] is one among such. He discusses two sim-

ulations. The first model studies the emergence of signal communication. His

model gives animats the task of identifying encountered mushrooms as either ed-

ible or poisonous and taking actions accordingly. In order to do this, animats

must communicate with each other whether encountered mushrooms are edible or

not. Results were successful, as animats were able to evolve a simple and efficient

language for communicating the quality of food. However, the language is only a

signal-object association system.

Cangelosi also conducts simulations dealing with the development of syntax

including a subject-predicate composition. In this model, there are edible mush-

rooms and poisonous mushrooms like the first simulation, but each of these two

categories have 3 subcategories. Upon approaching a mushroom, the animat must

first decide if it is edible or not, and if it is edible, it must identify which of the

three categories of edible mushrooms it is. Fitness is given for getting the identifi-

cation correct. A verb-noun language emerged in several simulation runs; animats

would have a rule of specifying both eat-or-don’t-eat and which of the six mush-

rooms it is. His language differs from the one my model aims to obtain in that

these multi-part signals are sent simultaneously, not in a sequence.

Kenny Smith’s work from 2002 [Smi02] focuses on cultural transmission of

language using a simulation more dependent on learning than evolution. Smith

used agents with two-layered bidirectional neural networks that have a learning

period when they are born. During this learning period, an agent can observe

the population’s signals and their corresponding meanings in order to learn the

language. In this case, learning means updating weights on the neural network.

Weight update rules are chosen from 81 that he devised; Smith studied their effects

on cultural transmission of language. By comparing the weight-update rules, he

concluded that there exists a hierarchy of learning rules, and that optimal (or near-

optimal) communication is affected by learning biases. The interesting feature of
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this study is that it puts more emphasis on learning than evolution or innate

features.
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CHAPTER 3

Design Details

3.1 Assumptions About Animats and the Environment

This project investigates the evolution of language. To do this, many processes in

the world are either simplified or abstracted so that the simulation can focus on

communication. This section explains the basic assumptions about the simulated

world.

First of all, let us define animats to be software agents living in the simulated

environment. Animats are controlled by neural networks. In the experiment,

each animat possesses two neural networks and a genome for encoding the neural

networks. Each of these networks is a simple recurrent neural network. Later

sections describe in more detail the networks and how the animat genome works.

Animats have the ability to produce resources, but they cannot consume the

resources they’ve produced. Instead, they must trade and consume resources

produced by other individuals.

The animats’ interface to the outside world consists of a signaling mechanism,

sensors for signals, and the ability to offer a resource. This offering action is used

in the communication games, in which animats will trade resources, and gain

fitness whenever a correct offer has been made. The animats are not divided into

male or female; every other animat is a potential mating partner, but they will

not mate unless they can demonstrate effective communication.

Animats live in a world in a population that communicates with each other us-
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ing signals. The concept of physical location or direction is abstracted away; there

is no concept of which animat is where. Also, the concept of time is simplified into

time steps, stages and generations or rounds. Each round is one generation of the

animats. Each generation goes through stages of birth, learning from parent (if

applicable), resource obtaining (by playing communication games), and reproduc-

tion. When a conversation occurs, it is a one-to-one conversation. The animats

send each other a sequence of signals in a fixed number of time steps and trade

resources accordingly. The rules of the conversation game are discussed in the

next section.

3.2 Game Rules

Each animat has a vocabulary of V signals, which will be used to describe items.

There are N categories of items, and each category consists of M subcategories;

therefore, there are N × M different items in the world. Categories can mean

something like “meat” and “vegetable.” Subcategories can mean something like

“beef,” “chicken” and “pork” in the case that their category was “meat.”

V , N and M must be set correctly in order to design a world in which animats

must develop multi-part message communication in order to succeed. In the sim-

ulations, I made it possible for the animat vocabulary to cover all items, so that

one signal could correspond to one item. However, at the same time, I made it

their task to communicate a combination of items to each other. If the vocabulary

is not big enough to cover all possible combinations of items, animats must de-

velop another way to express all the combinations. Therefore, the size of animat

vocabulary is determined by N ×M ≤ V < MN . I simply used V = N ×M .

The simulations use N = 2, 3, 4, and M = 3. For terminology, call the category-n

subcategory-m item “c<n>s<m>” so that, for example, category-1 subcategory-2

item would be called item “c1s2.”
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Figure 3.1: Relationship between two animats in a communication game.

We want a situation that is complex enough so that it encourages animats to

develop a more sophisticated communication system. However, it is unlikely in

Nature that such a complicated task arises out of nowhere. It assumes that the

population experienced simpler tasks before they became complex. This is why

the animats will play simpler “communication games” before they become more

complex. There are two types of games played: a simpler “naming game” played

by the first generations, and a more complex “combination game” played by the

latter generations.

Each animat has the ability to produce resources, but they cannot eat these

self-produced resources themselves. However, they are able to eat resources that

are produced by other individuals. Thus, these animats must trade for each other’s

resources.

The first game—played during the first 400 rounds—requires animats to name

one resource of request, and also correctly respond to their partner’s request for

one resource. Our population of simple animats is equipped with the ability to

trade resources (items). These animats, upon finding another individual, strike

up several trade deals. Each trade will be one resource for one resource. Animats

are given N time steps to communicate with the trading partner and to decide

what to offer to the partner. Animats send 1 signal per time step. If there are X

number of signals, then the signals are {0, 1, 2, ...X − 1}. Each animat feeds the
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request to its production neural network for N time steps to produce a sequence

of signals, or, a message, of length N . Then, each message will look something

like “0000” (“0” signal repeated 4 times) or “1313” (“1” signal followed by “3,”

then repeat), if the message length was 4 signals long. These messages are in

turn interpreted by the partner animat using its interpretation simple recurrent

neural network. If the animat can offer the correct resource to the other animat,

then it can receive what the other animat offers and eat it. Set the fitness points

gained by offering the correct resource to be 50 points. If the animat offers the

wrong kind of resource but gets the category correct (e.g. an animat is requested

chicken but offers beef), the animat gets a portion of the resource. Set the fitness

points gained by this to be 25 points. This is repeated 50 times (50 trade deals)

for each pair. Even if an animat does not get the requested resource, the received

resource still has nutritional value to the animat that receives it; thus, it is more

important to offer the correct item than to receive the requested item. The goal

of animats for this naming game is to learn to name all types of resources; by the

design of the simulation, this most likely means that animats will associate one

type of resource with one signal from their vocabulary.

The second game, played in the latter 800 rounds, is similar to the first game,

except that the animats must now request and offer N items of different categories

for each trade. While animats in the first game can only offer one item per trade,

animats in this game can offer up to N items.

3.3 Simulation Dynamics Design

The simulation starts in the first round with all animats having random geno-

type and phenotype, unless seeding is in effect for the simulation run. If seeding

is in effect, 20 out of 100 animats will begin with a preset genotype in the first

round. Each round consists of 3 stages: birth, communication games, and selec-

10



tion/reproduction, plus an imitation learning stage after birth if enabled. Animats

engage in communication games to gain fitness and to find best partners. The

best pairs in each generation will mate to produce the next generation. Read the

section under “Implementation Details” for more details about learning, selection

and reproduction.

Data must be gathered to visualize the language the animats are using and the

evolutionary trajectory of animats themselves. For this purpose, I have recorded:

• Fitness of each animat for each round. This measures how well-adapted

the population as a whole is to the environment, since each animat must

communicate with every other animat in the population.

• Combined fitness of each animat pair for each round, measured per pair.

This measures the effectiveness of communication between animats; I will

refer to these values as communication effectiveness from this point on.

• Intended meanings, the corresponding signal messages, and how they were

interpreted. This identifies patterns in signal production and interpretation.
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CHAPTER 4

Hypotheses

The main hypothesis of this experiment is that animats that are aware of their own

signals emitted previously are able to evolve to produce and interpret messages

that take advantage of sequencing. Given an environment in which the vocabulary

of signals does not cover all ideas to be expressed, the animats should develop a

method to overcome this limitation using composition. However, the structure

of the neural network may relate to the complexity of language that the animats

become capable of producing. A simple recurrent neural network with one context

layer will only remember a state one time step previous to the current time;

therefore, each signal is only dependent on current input and one previous state.

This may hinder animats from finding effective communication methods for cases

when the number of categories increases.

12



CHAPTER 5

Implementation Details

5.1 Neural Networks

The neural networks that control the animats are simple recurrent neural net-

works. Networks are composed of 3 main layers and 1 context layer. The input

layer neurons directly take input from sensing the environment or internal states.

Input is fed into the hidden layer neurons. Each input going into the next layer

neuron is multiplied by weights assigned to each connection. Values coming out

of the hidden layer neurons are then fed into context neurons and output neurons.

Context neurons store the values of hidden layer neurons for one time step and

feed the value back to the corresponding hidden layer neuron in the next time

step. The output layer neurons take values from the hidden layer, multiplied by

weights, and output values that decide what action the animat will take in that

time step.

All neurons output a floating point value between 0 and 1 using a sigmoid

activation function, except for context neurons. Context neurons simply store the

previous value of the corresponding hidden layer neuron and directly output it

back into the hidden layer. The output O of each neuron that uses a sigmoid

activation function is calculated as follows: O = 1
1+e−x , for x =

∑n
i=1 aiwi, where

a is an input value, n is the number of inputs to the neuron, and w is its cor-

responding weight. x, the weighted sum of all inputs coming into the neuron, is

called the activation of the neuron.

13



Figure 5.1: A simple recurrent neural network with 3 inputs, 3 hidden layer

neurons, 3 context layer neurons, and 3 output layer neurons. Lines and arrows

show connections between neurons.

Each animat is equipped with two such neural networks. The production

neural network takes the item (or items) of request as input and outputs one

communicational signal addressed to its partner. Which signal to send is decided

by a winner-takes-all policy: the signal corresponding to the output neuron with

the highest activation is chosen. The number of hidden neurons is the same as

the number of output neurons, which is equal to the number of signals. The

interpretation neural network takes input of which signal has been received and

outputs a corresponding action (add an item or change an item in the list of items

to offer). This decision is also made by a winner-takes-all policy.

14



5.2 Genetic Algorithm

Each animat is equipped with its genome binary string that encodes for weights

on connections in its neural networks. Each encoding for one weight consists of

7 bits: 1 sign bit and 6 mantissa bits. Of the mantissa bits, 2 bits are to the

left of the floating point, and 4 are to the right. The weight encoding thus has

a granularity of 2−4. In figure 5.2, “0011010” encodes for a weight of 0.8125

because the bits worth 2−1, 2−2 and 2−4 (third, fourth and sixth bits respectively)

are 1, and 2−1+2−2+2−4 = 0.8125. Similarly, in figure 5.3, “1001101” encodes for

−2.375 because bits worth 21, 2−2 and 2−3 (first, fourth and fifth bits respectively)

are 1, and the sign bit (last bit) is 1, so therefore −1(21 + 2−2 + 2−3) = −2.375.

How animats are selected to reproduce has effects on evolutionary trajectory.

The genetic algorithm depends on (1) how animats are selected for reproduction,

(2) how they are paired, and (3) how much mutation occurs during crossover.

The selectional pressure applied to the population is communication effectiveness:

animats are evaluated by pairs on how effective the communication has been.

The top performing pairs each produce 4 offspring animats. Since there are 100

animats in each round, 25 pairs of animats are selected for reproduction. Having

4 children per pair makes it easier for the population to agree on a common

language quicker. The mutation rate is 1.5 % ; this is helpful in producing new

genes that may give the animat an advantage over others and ultimately benefit

the whole population. Also, inheritance is Mendelian and not Lamarckian; learned

attributes are not passed on through genetics.

5.3 Imitation Learning

Imitation learning occurs by using a parent’s outputs as correct examples to per-

form backpropagation on the child. More specifically, the type of backpropaga-

15



Figure 5.2: The process of translating the gene binary string into a connection

weight.

Figure 5.3: Another example of translating the gene binary string into a connec-

tion weight.
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Figure 5.4: Mechanism of learning by backpropagation. Children learn by com-

paring their outputs with its teacher’s (parent’s) output and trying to correct the

neural network that produced them.

tion algorithm used is called backpropagation through time [Wer90]; it is a form

of backpropagation that can be applied to recurrent networks. To do imitation

learning on the production neural network, a child and its parent are given the

same input, and the child’s output signal is compared to the parent’s output

signal. The discrepancies are then propagated backwards to modify weights on

neural network connections. To conduct imitation learning on the interpretation

neural network, the parent makes a request using its production neural network

and the child responds using its interpretation neural network, and the child’s

output is compared to what request the parent had meant to make. When this

learning process occurs, the parent and child animats go through 200 example

inputs. To account for the possibility that the child perceives the parent output

wrongly, the observed parent output will be wrong 10 % of the time.

5.4 Seeding

One way that the neural networks are connected is that each item corresponds to

a signal (call this state “mapped”). Animats that are mapped associate each item

with a specific signal at birth; in other words, if two seeded animats communicate

with each other, they both are pre-equipped with the same item-signal associa-

tions, so they will get a perfect score in naming games. The question, however,
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is whether this neural network can adapt to the combination games to produce

and interpret more complex messages that require more than perfect item-signal

associations. These seeding experiments assume that there are animats with opti-

mal ability in the naming games; for this reason, they will skip the naming game

rounds and go straight into combination games.

The way “mapped” seeded animats work is the following. In the production

neural network, the number of neurons each layer has is the same: there are as

many input neurons as there are hidden neurons or output neurons. By mapping

1-to-1-to-1 each neuron in the input, hidden and output layers and giving a weight

of 1 to each of these connections and a weight of 0 to any other connection, each

input neuron will only excite its corresponding hidden and output layer neurons.

Similarly in the interpretation neural network, since all layers have the same size,

each neuron in each of the input, hidden and output neurons can be associated

using a weight of 1 in their connections, and making all other connections to be

0. This way, these seeded animats have a built-in association between items and

signals in both production and interpretation. When this is the case, all of these

seeded animats produce the same signal in response to the same item, and they

also interpret the same signal as the same item. As a result, when the task only

involves communicating one item (i.e. naming games), the seeded animats can

perfectly communicate with each other, understanding each other’s intentions. For

example, if seeding makes a “mapped” animat produce signal X for a category-A

subcategory-B item, then all of the other seeded animats will also do the same,

and they will interpret signal X as category-A subcategory-B item. Thus, these

seeded animats will be able to obtain perfect scores in the naming games.
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Figure 5.5: A “mapped” simple recurrent neural network of a seeded animat.

All black and thick connections in the figure have a weight of 1. Any other

connections—drawn with thinner purple lines—have a weight of 0.
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CHAPTER 6

Results

6.1 World Complexity and Language

I ran simulations with number of categories N = 2, 3, 4, and number of subcate-

gories M = 3. By altering the number of categories and subcategories of items,

I can increase or decrease the complexity of the world and therefore control the

level of language complexity needed to optimally fulfill the task. Increasing the

number of subcategories will increase the number of items and vocabulary only;

increasing the number of categories will increase not only the number of items

and vocabulary but also the message length.

Figure 6.1 shows the communication effectiveness—measured in fitness points

per pair—for the (N,M) = (2, 3) case. The first 400 rounds are naming game

rounds, and the following 800 rounds are combination game rounds. The maxi-

mum possible fitness points for each pair in the naming game rounds are 5000.

This is because each pair plays 50 trade deals, and each trade gives each animat

a maximum of 50 points, and the total fitness gained by each animat of the pair

during the 50 trades is combined, so (50 points × 50 trades) × 2 animats = 5000

points. Similarly, the maximum possible communication effectiveness points in

the combination game rounds are 10000. This is twice as much as the maximum

obtainable communication effectiveness for naming games because each trade can

reward each animat a maximum of 100 points (50 points per category, and there

are 2 categories). In the graph, the red line shows the combined fitness of the top
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Figure 6.1: Communication effectiveness of animats when there are 2 categories

and 3 subcategories of items, with random initial generation. The first 400 gen-

erations play the naming game. The latter 800 generations play the combination

games.

performing pair. The green line shows the performance of the median pair, whose

performance was at the median when compared with all other pairs. The purple

line shows the performance of the worst performing pair.

Animats are seen to quickly make associations between items and signals.

During the naming games, the top performing pairs, after about 200 generations,

reached perfect communication effectiveness value of 5000. The speed at which

animats evolve to associate these signals should not be surprising, as their task

is only to associate 6 items with 6 signals. Even during the combination games

rounds, the animats continue to do relatively well in the communication games,

as the top performing pairs score communication effectiveness values of 8000-9000

when the maximum achievable value is 10000. Yet, they were not able to perfectly

communicate every unique expressible idea.

Table 6.1 shows the language used by the top pair at the end of the 400
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Table 6.1: Messages sent to each other by the top performing pair after 400

naming game rounds. Communication was perfect; the pair received the maximum

amount of fitness points achievable.

naming game rounds. The intention shows the animats’ input to the production

neural network. In this example, there are 6 kinds of intentions to express; 6

messages are produced by using the production neural network. The hyphen in

the table means null; for example, the meaning (0,−) means “item of category

0 subcategory 0 (for brevity, call the item ’c0s0’) and nothing from category 1.”

(−, 2) would mean “nothing from category 0 and item c1s2 from category 1.” The

6 signals are denoted by {0, 1, 2, 3, 4, 5}. Similarly, since there are 2 categories

and 3 subcategories, the categories are denoted by {0, 1} and the subcategories

{0, 1, 2}. According to the table, if an animat wants to request item c0s1 and

nothing from category 1, the entry with intention (1,−) shows that it would

produce a message “22.” This is done by feeding (1,−) into the production simple

recurrent neural network for two time steps; in this particular case, the network

outputted the signal 2 twice, thus producing the message “22.” This message is

then interpreted by the partner animat using its interpretation neural network.

Interpretation works in a similar fashion. Since the message length for “22” is

two, interpretation takes two steps. The animat feeds signal 2 followed by another

signal 2 to the interpretation neural network. At each time step, the animat picks

an item to offer. During the naming game rounds, the item the animat actually

offers is the item chosen in the last time step. During the combination game

rounds, the set of items the animat offers is the combined set of items the animat
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Table 6.2: Messages sent to each other by the top performing pair after 400

naming game rounds and 800 combination game rounds. There are 2 categories

and 3 subcategories of items. Communication effectiveness, calculated by the

pair’s combined fitness points gained during their game, was 9450.

chose in each time step—this allows the animat to offer a combination of at least

1 and up to N items, assuming there are N time steps and N categories of items.

In this particular simulation run with 2 categories and 3 subcategories, there

were 6 ideas (6 items) to be expressed during the naming game rounds; animats

came up with 6 different patterns of messages to express them. Animats did not

have to devise complex ways to express these ideas due to the ease of task. It

seems that animats assigned each signal to each item, and emitted a signal to each

corresponding item.

This simple result may be indicating that languages strive to be as simple as

possible. A similar phenomenon in human language is the variety of the number

of phonemes that different human languages have: humans have the physiological

capability to produce a countless number of sounds, but human languages use

only a limited subset of them.

Table 6.2 shows the language used by the top pair at the end of 1200 rounds.

Some entries have two values because of the discrepancies between how each of the

pair produced and interpreted messages. Once again, the 6 signals are denoted
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by {0, 1, 2, 3, 4, 5}. The 2 categories are denoted by {0, 1} and the 3 subcategories

{0, 1, 2}. There are 32 = 9 combinations (ideas) to express.

These animats ended up combining 4 out of 6 available signals (“2,” “3,” “4”

and “5”) to express 9 ideas, even though they were only able to distinguish among

8 ideas. The number of ideas expressed is greater than the number of signals the

animats are capable of using because animats have evolved to take advantage of

sequencing.

By looking at patterns of what signals are used in which messages, I can try to

understand if particular signals have a specific meaning. For example, the signal

“4” is included at the initial position in all messages communicating the presence

of item c0s0 in the request ( (0,0), (0,1), (0,2) ); therefore, if an animat hears the

signal “4” at the head of the message, it might decide that it should offer that

item. Similarly, the signal “2” in the initial position seems to specify item c0s1,

and “5” item c0s2. However, there are messages that use the signal “5” in the

second position that do not have item c0s2, such as (0, 1), whose corresponding

message was “45” and (1, 1), described by message “25.” It seems that the second

signal in each of the messages seems to specify the category-1 item. Take a look

at the messages “22,” “25” and “23.” Even though the signal “5” in the initial

position selects item c0s2, “5” in the second position seems to select item c1s1.

The signal “3” in the second position, similarly, specifies item c1s2.

It seems that item c1s0 is expressed differently in the two cases that require

it: the message for (0, 0) was “44,” and the message for (1, 0) was “22.” It seems

that repeating the first position signal specifies c1s0, but the message “55” was

interpreted as (2, 1) instead of (2, 0). This result is interesting; the meaning of a

signal depends on its position in the message. In other words, this language that

came out of the simulation is more than a signal-meaning association system.

Each signal does not simply specify an item, but what it specifies depends on

whether it is the first signal of the message or it follows another signal.
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Table 6.3: Weights on connections into the hidden neurons in the production

neural network.

Table 6.4: Weights on connections into the output neurons in the production

neural network.

Table 6.5: weights on connections into the hidden neurons in the interpretation

neural network.
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Table 6.6: Weights on connections into the output neurons in the interpretation

neural network.

Weights of the neural network connections of one of these animats are shown

in Tables 6.3 to 6.6. Table 6.3 shows the weights on connections from the input

and context layers to the hidden layer in the production network. Table 6.4

describes the weights on connections from the hidden layer to the output layer

of the network. Tables 6.5 and 6.6 similarly show weights for the interpretation

network.

I have also run cases for (N,M) = (3, 3) case and (N,M) = (4, 3). Figures

6.2 and 6.3, respectively, show their results. There are 400 naming game rounds

and 800 combination game rounds. The maximum possible fitness points for each

pair in the naming game rounds are 5000 for both. The maximum possible fitness

points in the combination game rounds are 15000 in the 3 category case: each

trade gives a maximum of (50 × 3 categories) points, and there are 50 trades,

and the fitness points of the two animats are combined, making (50 points × 3

categories × 50 trades) × 2 animats = 15000 animats. Similarly, the maximum

possible fitness points in the combination game rounds for the 4 category case is

20000.

The results were not as impressive as the M = 2, N = 3 case. As the num-

ber of categories increase, the animats’ ability to associate each item to a signal

significantly decreases. The animats are taking longer to associate each item to a
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Figure 6.2: Communication effectiveness of animats when there are 3 categories

and 3 subcategories of items, with random initial generation. The first 400 gen-

erations play the naming game. The latter 800 generations play the combination

games.
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Figure 6.3: Communication effectiveness of animats when there are 4 categories

and 3 subcategories of items, with random initial generation. The first 400 gen-

erations play the naming game. The latter 800 generations play the combination

games.
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signal, and they are far from done at the end of 400 rounds. Due to poor perfor-

mance in these cases, I have decided to conduct further analysis on the 3-category

3-subcategory case in the next section of the experiment, in which the population

is assumed to possess animats that play the naming games with perfection. This

way, animats can at least associate each item to a signal.

6.2 Seeding

The previous section assumed that the initial generation of animats has random

genotypes, and they would have to build word-meaning associations. This part of

the experiment assumes that some animats have perfect word-meaning associa-

tions established already (“mapped”), and that the population goes directly into

combination games. By introducing such individuals to the population, the pop-

ulation as a whole should become capable of associating each item with a word.

The question of interest, then, is how the population that is already capable of

naming items would adapt to the necessity of expressing multiple ideas in one

message.

Figure 6.4 shows the results for simulations runs with 20 “mapped” seeded

animats out of 100. There are N = 2 categories and M = 3 subcategories.

The simulation ran 800 rounds of combination games. The maximum possible

communication effectiveness (per-pair combined fitness) is 10,000.

The graph shows that there is no significant difference in performance in the 2-

category 3-subcategory cases from the unseeded simulation run. Both simulation

runs were similar in performance. The differences, then, are most likely due to

random variation.

Table 6.7 shows the messages sent to each other at the end of all rounds. The

resulting language is similar to the one in the unseeded simulation run.

Another run with seeding was conducted with N = 3 categories and M =
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Figure 6.4: Communication effectiveness of animats when there are 2 categories

and 3 subcategories of items, with 20 seeded animats. The population plays 800

rounds of the combination games.

Table 6.7: Messages sent to each other by the top performing pair at the end of

800 rounds. There are 2 categories and 3 subcategories of items. Communication

effectiveness for this top performing pair was 8400 out of 10,000 possible.
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Figure 6.5: Communication effectiveness of animats when there are 3 categories

and 3 subcategories of items, with seeding. The population plays 800 rounds of

the combination games.
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3 subcategories. Recall that, without seeding, the population was not able to

efficiently associate each item with a signal, and it was not able to perform well

in the combination games. Once again, only 800 combination game rounds and

no naming game rounds are conducted. The maximum achievable communication

effectiveness value is 15,000 for this case. Figure 6.5 is the graph of communication

effectiveness over 800 rounds.

The animats struggled to express 33 = 27 ideas, even with seeding. The pos-

sible reason for this may be that this task may require a more complex neural

network structure. For example, if the animats were equipped with simple recur-

rent neural networks with more than one layer of context, then they would be

able to “remember” more information, and this may aid them form more message

structures. Also, there may be a problem with having way too many ideas to be

expressed. With 3 categories and 3 subcategories, there are 33 = 27 combinations

to be expressed in 3-signal sequences with 9 types of signals in the vocabulary.

This may be a task too complex to complete in only 800 rounds.

Table 6.8 shows how messages were created and interpreted in the final round.

There were 9 signals, so the signals are denoted by {0, 1, 2, 3, 4, 5, 6, 7, 8}. Some

entries are labeled “nodata.” This is due to the fact that trade requests are gen-

erated by random.

The table shows a great discrepancy between the partners in both production

and interpretation of messages. During the 50 trades, if the animat did not make

a certain request, it is labeled “nodata” in the tables. Many of the items were

assigned a different message from each animat: to express (2, 2, 1), or, “a combi-

nation of items c0s2, c1s2 and c2s1,” one animat produced message “000” while

the other produced “222.” Animats were unable to develop a good way to express

these 27 meanings with 9 signals and message length of 3. Instead, animats are

seen to limit themselves to a small number of messages in the languages that

tries to achieve some amount of performance with small effort. There were two
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Table 6.8: Messages sent to each other by the top performing pair after 800

combination game rounds. There are 3 categories and 3 subcategories of items.
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messages, “777” and “222,” that were frequently used by both of the animats, but

their usage was not agreed upon, since both the situation at which they were used

and how they were interpreted differ between the animats. It seems that animats

were still in the process of agreeing upon a language that works well when the 800

rounds finished.

This disappointing outcome of the seeded experiment suggests that, even if

signal-to-meaning associations are perfect in the beginning, they are not helpful

in obtaining maximal performance under the circumstances. The biggest problem

of this simulation run is that there are so many combinations to distinguish from.

The graph did not show much improvement during the 800 rounds; the simulation

may never have reached an optimal performance point even if it was run for a much

longer time. Simple recurrent neural networks with one context layer were not

able to take on this task effectively; neural networks of more complexity may be

able to handle the problems.

6.3 Learning

Simulations with imitation learning include a parent-to-child imitation learning

stage during the life of each animat. As explained in one of the previous sections,

this imitation learning scheme works by feeding the parent and child with the

same input and comparing their outputs. The discrepancies are used to update

the child’s neural network weights using backpropagation. The parent and child go

through this process for 200 examples. Learning production feeds trade requests

and compares the produced signals. Learning interpretation feeds parent signals

and compares the items offered.

Figure 6.6 shows the communication effectiveness graph for such a run with

2 item categories and 3 subcategories. There are 400 naming rounds and 800

combination game rounds.
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Figure 6.6: Communication effectiveness of animats when there are 2 categories

and 3 subcategories of items, with all animats learning by imitating parents at

birth. The first 400 generations play the naming game. The latter 800 generations

play the combination games.
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The results are significantly better than the case without learning. The popu-

lation developed an effective language much more quickly. This is most probably

because learning from parents makes it easier for the population to agree upon

the use of signals and messages. The result shows the role of learning in the de-

velopment of language: learning helps a population come into consensus of what

the language should look like.

Simulation runs with 3 item categories or more were also conducted but were

equally unsuccessful as the simulation runs without learning. For this reason, the

data for these runs are not included in this paper.
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CHAPTER 7

Discussions

7.1 Analysis

It is apparent from the results that complex language requires complex neural

structure. The neural network structure I used—simple recurrent neural networks

with one context layer—did allow messages that combined different signals to

convey different meanings. However, the complexity of how these messages were

constructed was limited. In particular, they performed poorly on 3-category cases.

The biggest problem I faced in the project was that small changes in the

complexity of the environment greatly increase the difficulty of the animats’ tasks.

With 3 subcategories of items, increasing the number of categories from 2 to 3

meant that the total number of combinations of items increased from 9 to 27.

Then, even if the animats have the capability to handle this complexity, they

would take a long time evolving their neural networks to handle them with an

effective language. If it takes a long time, simulation runs will start to require

days to complete. This scaling issue will continue to threaten the project even if

optimizations are made.

To address these issues, I could make the neural network more complex. For

example, I could increase the number of hidden neurons and context neurons to

see if they help the animats solve the problem better. Having more than one

layer of context will allow animats to have longer short term memory; they will

not only remember the previous signal but also several previous signals. This
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will allow animats to form more complex messages. However, this adds a new

problem of search space scalability: because there will be so many connections

and their weights, there will be a much bigger number of possible configurations

of the network, and this will most likely make it hard for the simulation to find

an optimal configuration.

In all, my experiment demonstrates some success in modeling signal sequence

language communication. Human language is a sequence of words, or sequence of

phonemes. The parallels between the sequential nature of human language and

the signal sequences in the project are apparent. The simulation has succeeded

in having animats develop communication to take advantage of sequencing and

combination with a simple neural structure. Also, by comparing the simulation

runs with and without imitation learning, I was able to demonstrate the role of

learning in the development of language. On the other hand, the results pointed

to difficulties faced by the models design, and there are many simplifications in

the model that should ideally be made more realistic. The project leaves several

issues yet to be addressed.

7.2 Possible Future Extensions

Though the methodology is popular, simulating language development primarily

using evolution may be a bit unrealistic, because language as we use it seem to

be more cultural, though it is the genetics and physiology that makes it possible.

In order to focus on the topics I was most interested in, I have made my model to

be relatively simple, at the cost of realism. The next step for this project, then,

is to steer towards realism.

There are many ways that the project can become more realistic and natural.

One way is to expand the range of actions that animats can take. This would make

the environment more complex, perhaps adding the concepts of space, distance
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and direction to the simulation. In this case, animats would move around and

only communicate locally, and communication would affect the actions they would

take. By allowing more variety of action, I could expect to see more complexity

in language. This would also require more complex neural network structures to

allow animats to make more complex messages.

Another simplification that should ideally be redone in the future is the pop-

ulation dynamics. In the natural world, generations of animats are not clear-cut,

and selectional pressure should be fitness instead of communication effectiveness.

By making communication effectiveness to be a direct selectional pressure, I was

able to make the population of animats develop language, but communication

effectiveness should ideally be only an indirect selectional pressure. Instead, com-

munication effectiveness should help animats gain fitness, and fitness will in turn

increase the animat’s reproductive chances.

One feature I would like to enhance in the project is learning. After all, lan-

guage is learned and culturally transmitted. Communication itself has an effect

on the understanding of the language. In the future, I would like to make this lan-

guage development process more dynamic by allowing animats to learn not only

by imitating parents but also from each other. In this case, each conversation

that an animat takes part in becomes a learning experience that affects its un-

derstanding of the language. This is much more realistic, as humans also deepen

their understanding of language by conversing with others. Humans also learn

by other methods, such as reading about the language’s grammar or acquiring

vocabulary by reading a dictionary. In the end, we will end up with a simulation

model that aims to mimic humans’ ability to learn and use a language as closely

as possible.
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