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QUANTUM MONTE CARLO STUDY OF THE CLASSICAL BARRIER HEIGHT FOR THE 
H + H2 EXCHANGE REACTION: 

Abstract 

RESTRICTED VERSUS UNRESTRICTED TRIAL FUNCTIONS 

P. J. Reynolds,* R. N. Barnett,+ w. A. Lester, Jr.+ 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

The fixed-node quantum Monte Carlo (QMC) method is used to obtain the 

classical barrier height for the H + H2 exchange reaction. Using a 

spin-restricted, single determinant trial function ~T' we find that the 

reaction barrier Eb is less than 9.69: 0.25 kcal/mole. This mean 

value is below the calculated energy barrier obtained by Liu in the most 

extensive CI calculations on this system. Furthermore, the QMC saddle 

point energy of -1.65903 : 0.00040 hartrees at the CI-determined geometry 

lies 0.00027 a.u. (0.17 kcal/mole) below Liu's best CI value. Finally, 

spin-restricted and spin-unrestricted single determinant trial functions 

are contrasted. Although the variational energy <~TIHI~T> for an SCF 

~T must be lower for the unrestricted case, this is not true generally 
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N00014-83-F-0101. 
+supported in part by the Director, Office of Energy Research, Office 
of Basic Energy Sciences, Chemical Sciences Division of the U.S. 
Department of Energy under Contract No. DE-AC03-76SF00098, and by the 
National Magnetic Fusion Energy Computer Center under Contract No. 
W-7405-ENG-48. Also, Department of Chemistry, University of California, 
Berkeley. 
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for QMC. In fact, we show that if the unrestricted SCF ~ has the 

lower QMC energy, then there exists another spin-restricted, single­

determinant ~j whose QMC energy is lower than the QMC energy of the 

spin-restricted SCF ~T. 

I. Introduction 

The hydrogen exchange reaction H + H2 ~ H2 + H is perhaps the 

simplest of chemical reactions. As such it has been the testing ground 

for theories of chemical kinetics and collision dynamics [1]. An accurate 

potential energy surface is needed at the base of these theories. Thus, 

many studies of the H3 energy surface, both semi-empirical and ab 

initio, have been performed [2-4]. Experimental work on the H + H2 
reaction [5] provides rate constants, c~oss sections, and other infor-

mation describing the collision dynamics, but does not give a direct 

quantitative description of the H3 energy surface. Instead, the config­

uration interaction (CI) method has provided the results that serve as 

the standard of comparison. By this method accuracy of better than 1 

kcal/mole has been obtained [3]. Quite recently, Liu has extended these 

calculations at the H3 saddle point, achieving an accuracy on the order 

of 0.1 kcal/mole [4]. His ~otivation~ at least in part, was to provide a 

calibration for the quantum Monte Carlo (QMC) random walk method [6]. 

Here we use the QMC approach to calculate the total H3 energy at 

the saddle point, and to obtain the classical barrier Eb to the H + H2 
exchange reaction. We perform Monte Carlo calculations for both spin-

restricted and spin-unrestricted, single determinant, double-zeta-quality 

trial functions. Despite the simplicity of these ~T·s, we obtain 

.. 
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in excess of 99% of the correlation energy, and determine Eb to an 

accuracy comparable to Liu's best result. To place this finding in 

perspective, in Sec. II we first give a brief description of the QMC 

approach and its history. In Sec. III we contrast spin-restricted and 

spin-unrestricted trial functions, both from the variational and the QMC 

points of view. Our results on the H3 barrier are then presented and 

discussed in Sec. IV. 

II. Quantum Monte Carlo 

In recent years, Monte Carlo methods have been increasingly applied 

to quantum-mechanical problems. Such quantum Monte Carlo (QMC) methods 

fall into two major categories. Variational QMC [7] enables one to 

evaluate expectation values of physical quantities with a given trial 

wave function ~T' which may be variationally optimized. In effect one 

evaluates a ratio of two integrals, although implementation of the Monte 

Carlo procedure is generally more sophisticated. On the other hand, 

"exact" QMC [6,8] is an approach in which the Schrodinger equation is 

directly solved numerically. Thus it is not necessary in the latter 

approach to already have a highly accurate wave function in order to 
! 

compute reliable expectation values. Instead, a simulation of the 

quantum system is allowed to evolve under what is essentially the 

time-dependent Schrodinger equation (in imaginary time). After a 

stationary state is obtained, the properties of interest are "measured''; 

averages over this equilibrium state give the desired expectation 

values. Only recently have chemical calculations by exact QMC methods 

been carried out [6,9]. 
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Exact QMC approaches differ slightly from one another [8]. The 

method we use here--the fixed-node, diffusion QMC--is outlined below. 

For a full discussion the reader is referred to Refs. [6b] and [Bd]. 

Note first that the steady~state solution to the following equation, 

( 1) 

is the solution to the time-independent Schrodinger equation. For a 

molecular system within the Born-Oppenheimer approximation, D =~ 212me, 

R is the three-N dimensional coordinate vector of the N electrons, and 
~ 

V(B} is the molecular Coulomb potential. Equation (1), however, is simply 

a diffusion equation combined with a first-order rate process, and thus 

may be readily simulated. This connection between a quantum system and a 

11 random walk 11 was first noted by Metropolis who attributes it to Fermi 

[10]. The function 'l'(_~,t) plays the role of the density of diffusing 

particles, which undergo exponential birth/death according to the rate 

term [ET- V(~)] 'l'(~,t), and diffusion with a diffusion constant D. 

Unless constrained by symmetry, the steady-state solution to Eq. (1) 

is the ground-state eigenfunction 00 (~). Furthermore, the value of 

ET at which the population of diffusers is asymptotically constant 

gives the energy eigenvaiue E
0 

[6]. The lowest eigenstate, however, is 

that of a Bose system. In order to treat a Fermi system, such as a 

molecule, one needs to impose anti-symmetry on 'l'(R). A method which does 
~ 

this, and at the same time provides more.efficient sampling (thereby 

reducing statistical error) is importance sampling with an anti-

symmetrized trial wave function 'l'T [Bb]. The zeroes (nodes) of 'l'T 

• 

v 
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become absorbing boundaries for the diffusion process, maintaining the 

anti-symmetry. 

To implement importance sampling, Eq. (1) is multiplied by 'l'T' and 

is rewritten in terms of a new probability density f(R,t) given by 

The resultant equation for f(R,t) may be written as -

The local ~nergy EL(~), and the "quantum force" FQ(~) are simple 

functions of 'l'T. In particular, 

and 

'.• ' 

F Q ( ~) ::: 2V''¥T (~) /'l'T ( ~) 

( 2) 

( 3) 

(4a) 

(4b) 

Equation (3), like Eq. (1) is a generalized diffusion equation, now with 

the addition of a drift term due to the presence of FQ. 

It is Eq. (3) that we solve stochastically. Using a short-time 

Gre~n•s function approach, the diffusers follow a "random walk" whose 

asymptotic distribution is given by the steady-state solution f00(~) of 

Eq. (3). Properties of interest (e.g., the energy) are measured during 

the latter (equilibrium) part of the ••walk," and are thus averages over 

the distribution f (R). 
00-
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Earlier work with QMC [6,9a] demonstrated that for a numb~~ of 2-10 

electron molecules, exceptionally accurate ground-state tot~l energies 

could be obtained by this method. These energies were in every case more 

accurate than the best estimates obtained by ab initio CI procedures. 

For a method to be truly useful in chemistry, however, one needs also to 

be able to calculate accurat~ energy differences, such as binding energies 

and barriers to chemical reaction. For QMC this is a far more difficult 

task, since a statistical u~certainty of 0.1% in the total energy can 

totally mask the sought after energy difference. Nevertheless, this 

problem is not insurmountable. First, one can proceed by 11 brute force 11 

recognizing that as the sample size N increases the statistical error 

decreases as 1/IN. This approach, however, extracts a great cost in 

computer time. On the other hand, algorithmic developments, such as the 

"differential QMC 11 [11] enable a reduction in statistical error by at 

least an order of magnitude through a correlated sampling technique. 

In order that the solutions to Eq. (3) be antisymmetric, we impose 

the 11 fixed-node approximation ... That is, we solve the Schrodinger 

equation subject to the boundary condition that ~(B,t) vanish at the 

nodes of ~T(~)·. The magnitude of the error thus introduced depends on 

the quality of the nodes of ~T(~), and vanishes as ~T(~) ~ ~0 (~). 
! . . 

To the extent that ~T(~) is a good approximation to ~0 (~), the exact 

eigenfunction ~0 (~) is almost certainly quite small near the nodes of 

~T. Thus one expects the fixed-node error also to be small for a 

reasonable choice ~T(~). (In the present study this error is estimated 

to be no more than a few tenths of a kcal/mOle.) Furthermore, this error 

is variationally bounded [6,8d]. 

v 
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But what is a "reasonable" choice of 'i'r(~)? In practice one wants 

a trial function which is as simple as possible, and yet provides accurate 

results. Anderson's early work with the "random-walk method 11 [6a] had no 

importance sampling--corresponding to choosing 'i'T(~) = 1. Since even 

that exceptionally simple choice led to reasonable results, we feel 

confident using simple quantum chemical trial functions in this study. 

III. Spin-restricted versus Unrestricted Trial Functions 

In a self-consistent field (SCF) approach, it is well known that an 

unrestricted wave function 'i'~g~ will have a lower energy expectation 

valu~ than a restricted function '¥~~~· If allowing different coeffi­

cients for the up and down molecular spin-orbitals does not provide a 

reduction in energy, at worst the unrestricted SCF energy minimum will 

coincide with the restricted SCF energy. Thus,* 

where 

E(u) < E(r) 
var - var 

(i) _ (i)l I (i) . 
Evar = < 'i'SCF H 'i'SCF > ' 1 = u,r • 

(5a) 

(5b) 

A similar statement about the ordering of the corresponding fixed-node 

QMC · bt · d · m ( u) d m ( r) h · 1 f · d energ1es--o a1ne us1ng TSCF an TSCF as t e tr1a unct1ons-- oes 

*Here 'i'~~t and'¥~~~ refers to a pair of variationally optimized 
functions, differing only by spin restriction. Our 'i'iu) and 'i'ir) in 
Sec. IV are SCF functions multiplied by Jastrow factors, without full 
re-optimization. Thus, Eq. (5a) need not hold for those '¥r's. 
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not follow. The QMC energies are determined by the position of the nodes 

of ~T' which are not necessarily optimized by optimizing E • A 
· · VM 

trial function with better nodes will give a lower QMC energy. In fact, 

a trial function with the exact nodes_ of ~0 (~) will .give the exact 

energy, even if ~T(~) differs from ~0 (~) ev~rywhere else. So the 

question becomes, does ~~E~ or ~~~~ provide the better nodal 

description of ~ 0 ? 
.. 

To answer this question, we need first to understand what we mean 

here by the nodes of a trial function. To this end we consider the SCF 

wave function ~SCF and focus on the H3 system. We begin with 

1)!1 ( rl )a1 

~SCF(~) = 1)J2(r1)a1 

1)!3 ( r1) a1 

1)Jl(r2)a2 

1)J2(r2) a2 

1)!3 ( r 2) a2 

1)!2 ( r 1) 1)!2 ( r 3) 

-1)J1(r2) 
1)J3(r1) 1)!3 ( r 3) 

1)!2 (r·1) 1)!2 ( r 2) 

+ 1)!1 ( r 3) 
1)J3(r1) 1)J3(r2) 

1)!1 (r3)a3 

1)!2 ( r3) a3 

1)!3 ( r 3) a3 

a2a1a3 

a3a1a2 • 

( 6a) 

(6b) 

\.1 
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The three terms in (6b) are equivalent. Each corresponds to having the 

electron in molecular orbital (MO) ¢1 with spin up, and the electrons 

in MO•s ¢2 and ¢3 with spin down. They differ only in the labels 

given the three electrons. For example, only the first term corresponds 

to assigning the up spin the label "1". Thus, in QMC where the spins are 

labelled, we need only consider one term in (6b). The other terms are 

sampled when the electrons are at these other coordinates. Thus we write 

(7) 

This function, unlike the general form Eq. (6), vanishes when a pair of 

particles (2 and 3) are in the same position. It is the nodes of a trial 

function in the form of Eq. (7) which determines the ultimate accuracy of 

the fixed-node QMC results. 

We are now in a position to return to our discussion of the SCF 
. (r) (u) 

funct1ons ~SCF and ~SCF· Let x be the 1 owest rvto of symmetry 

cr , and 1 et g u be the lowest MO of symmetry cr • u For H3 we can write 

~~~~(~) = x(r1) 

x(r2) x(r3) 

a1a2a3 ' (8a) 
u(r2) u(r3) 

and 

~(u)(R) 
i( r2) i"(r3) 

= i"(r1) ala2a3 (8b) SCF -;(r2) ;(r3) 
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= 
where A, A, A, and ~ and ~ differ in their parameter values. Although it 

is not clear which of Eqs. (Sa) and (8b) has better nodes--i.e., nodes 

that more closely approximate the true H3 solution--we can define a 

third function 'l'•fr) which is spin-restricted and has the same nodes 

\If ( u) • 
as TscF· 

• ( r) 
1£1 T (8c) 

The nodes of 'l'
1

f r) and 1£1~~~ are the same because the MO =;:= is crg, 

and thus has no nodes of its own. Therefore, we have a restricted trial 

function 'l'•fr) with the same QMC energy as 1£1~~~, but with a higher 

· t · 1 t h · t h 111 ( u ) \If ( r) ( · t h 1 t t var1a 1ona energy an e1 er rSCF or rSCF s1nce ese a er wave 

functions are variationally optimized). Hence, 

E(u) < E(r) < E•(r) (9a) 
var - var - var 

while 

(u) •(r) 
EQMC = E QMC ' (9b} 

•(r) •(r)l 1 
1 (r) (u) (r) 1 (r) where E var = < 1£1 T H 1£1 T >, and EQMC' EQMC' and E QMC are the QMC 

energies corresponding to the trial functions 1£1~~~, '¥~~~ and 'l'•fr). 

Equation (9b} does not order E~~~· There are thus two 

possibilities: 
(r) (u) 

Case I: EQMC < EQMC" This case, at first glance seems counter-

intuitive. Releasing the symmetry restriction on the spin orbitals 

should not raise the energy. 

f 
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(r) (u) 
Case II: EQMC > EQMc· If this were the case, an equally seeming 

(r) •(r) 
counter-intuitive result ensues. From (9b) we then obtain EQMC > E QMc· 

That is, comparing two spin-restricted functions, the optimized (SCF) 

function ~~~~ has a higher energy than the function we defined in 

(Be). 

In reality there is no problem with either case, since the SCF 

optimization does not imply a QMC optimization. In fact, an optimization 

for the lowest QMC energy would result (in the case of H3) in an 

unrestricted function having the same QMC energy as an optimized 

restricted function. This follows from Eq. (8), since only the 2 x 2 

determinant determines the nodes for both the restricted and unrestricted 

forms of ~T. 

Using variational (SCF) optimization for ~T' QMC computations* (see 

next section) are found to yield a lower energy for the restricted 

function~~~~(~), i.e., Case I. In other words, ~~E~(~) provides, 

in this case, the better nodal description of 00 (~). Our numerical 

results are presented and discussed below. 

IV. H3 Saddle Point 

Recently, L iu [4] has performed extensive ab initio configuration 

interaction (CI) calculations, with extended Slater-type basis sets, on 

H3 at the saddle point geometry. That work provides a benchmark against 

*Our actual ~T(B) containsadditional factors (cf., Sec. IV), but as 
these are purely positive the nodes of ~T and hence the QMC energy are 
unaffected. 
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which the QMC approach might be judged. Here we report on a QMC 

calculation of H3 using essentially a double-zeta STO basis set (see 

Table I), at the collinear saddle point geometry [3] Rab = Rbc = 

1.757 bohr, where Raa is the internuclear separation. We discuss 

results obtained with single-determinant spin-restricted and unrestricted 

SCF functions ~~E~ and~~~~· These functions are multiplied by electron­

electron and electron-nuclear Jastrow factors [12,6b,9b,c]. Since these 

factors are positive definite, they do not affect the position of the 

nodes, and therefore leave the QMC energy invariant. These terms do, 

however, speed the convergence of the Monte Carlo energy estimate, by 

making EL(~) a smoother function. Of course, by introducing correla­

tion, the Jastrow factors lower the variati~nal energies obtained from 

the product functions ~+r) and ~+u) vis ~vis ,the SCF energy. 

Our QMC results for the saddle-point energy Esp' and the barrier 

Eb are presented in Table II. They are compared with the Hartree-Fock 

energy, Liu•s CI calculation and the variational energies obtained from 

~(r) ~(u) and ~(r) and ~(u) These variational energies, 
SCF' SCF' T T • 

given in lines 2-5, give an indication of the quality of the trial 

functions as compared to the CI wave function. Note that although the 

bounded barrier height obtained variationally with ~~r) is roughly 

three times too large, this same function in the fixed-node QMC approach 

gives a bound of Eb = 9.69: 0.25 kcal/mole, whose mean is lower than 

Liu•s CI result, and is within 0.1 kcal/mole of the presumed exact 

result. The fixed-node QMC approach gives a bounded energy since the 

, 
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ground-state energies of both H and H2 are given exactly by QMC [6]. 

We also note that, as discussed in Sec. III, the SCF function ~~~~ 
gives a poorer description of the nodes of ~0 than the spin-restricted 

SCF function ~~E~· This is evidenced by a higher QMC energy. 

Recently, Anderson's group [13] and Ceperley [14] have independently 

also performed QMC calculations on the H3 system. Using planar nodes 

in their trial functions, both groups obtain Eb = 10.2 = 0.2 kcal/mole. 

Ceperley also "releases the nodes", enabling the system to relax to its 

exact Fermi ground state. His answer of 9.68 = 0.08 kcal/mole is in good 

agreement with the present results • 
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Table Captions 

T b 1 I Th 1 f · t t f · 1 d t · 1 f t · ( r) d ( u) a e • e se -cons1s en 1e r1a unc 1ons ~SCF an ~SCF 

used in this paper [cf., Eq. (7)]. The molecular geometry is 

collinear, with Rab = Rbc = 1.757 bohr. The outer H atoms 

have a double-zeta basis set. To limit the number of basis 

functions, the central atom has a single 1s function with an 

optimized zeta. 

Table II. Comparison of saddle-point energies and barrier heights for 

H + H2. A restricted and unrestricted SCF trial function are 

contrasted. The functions ~~E~ and ~~~~ are described in 

Table I; ~ir) and ~iu) have additional Jastrow factors. The 

last two lines of the table give the fixed-node QMC energies. 

The best QMC energies are lower than the best CI results. 
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Table I 

Molecular Orbitals 

'X., 

Trial Function STO 1jJ1 1jJ2 1jJ3 

'l'(r) 
1sa 1 1.275 0. 30377 0. 30377 0.02016 SCF ' 
1sa,2 0.925 0.01525 0.01525 0.82413 

1sb 1.120 0.58878 0.58878 0 

1sc,1 1.275 0.30377 0.30377 -0.02016 

1sc,2 0.925 0.01525 0.01525 -0.82413 

'l'( u) 
1sa 1 1. 250 0.26704 0.39079 0.06092 SCF 

' 
1sa,2 0.925 -0.03444 0.01129 0.78015 

1sb 1.120 o. 71417 0.45952 0 

1sc,1 1.250 0.26704 0.39079 -0.06092 

lsc,2 0.925 -0.03444 0.01129 -0.78015 

, 



' 

Method 

Hartree-Fock 

<'¥(r) IH l'¥(r)> 
SCF SCF 

< '¥( u ) I H I '¥( u ) > 
SCF SCF 

< '¥f r) I H I '¥f r ) > 

< '¥f u ) I H I '¥f u ) > 

Best CI 

QMC ( '¥f u)) 

QMC ( '¥.( r)) 
T 
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Tab 1 e II 

Estimated 
Total Saddle-Point Energy Bounded Barrier Barrier Height 

Esp Hei{ht Eb 
E -[E(H)+E H )] (hartrees) sp 2 exact (kcal/mole) 

(kcal/mole) 

-1. 59465a 50.1 24.5a 

-1.5893 53.4 

-1.5995 47.0 

-1.6323(20) 26.5(1.3) 

-1.6309 ( 4) 27.4(0.2) 

-1.65876b 9.86b 9.59(0.06)b 

-1.65822(41) 10.20(0.26) 

-1.65903(40) 9.69(0.25) 

a Derived from Ref. 3 by third order fit to H3 SCF surface. 

b Ref. 4 
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