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Pseudomonas aeruginosa-Induced Bleb-Niche Formation in Epithelial
Cells Is Independent of Actinomyosin Contraction and Enhanced by
Loss of Cystic Fibrosis Transmembrane-Conductance Regulator
Osmoregulatory Function

Amber L. Jolly,a Desire Takawira,a Olufolarin O. Oke,a Sarah A. Whiteside,a Stephanie W. Chang,a Emily R. Wen,a Kevin Quach,a

David J. Evans,a,b Suzanne M. J. Fleisziga,c

School of Optometry, University of California, Berkeley, Berkeley, California, USAa; College of Pharmacy, Touro University California, Vallejo, California, USAb; Graduate
Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, Berkeley, California, USAc

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa can infect almost any site in the body but most often targets
epithelial cell-lined tissues such as the airways, skin, and the cornea of the eye. A common predisposing factor is cystic fibrosis
(CF), caused by defects in the cystic fibrosis transmembrane-conductance regulator (CFTR). Previously, we showed that when
P. aeruginosa enters epithelial cells it replicates intracellularly and occupies plasma membrane blebs. This phenotype is depen-
dent on the type 3 secretion system (T3SS) effector ExoS, shown by others to induce host cell apoptosis. Here, we examined
mechanisms for P. aeruginosa-induced bleb formation, focusing on its relationship to apoptosis and the CFTR. The data showed
that P. aeruginosa-induced blebbing in epithelial cells is independent of actin contraction and is inhibited by hyperosmotic me-
dia (400 to 600 mOsM), distinguishing bacterially induced blebs from apoptotic blebs. Cells with defective CFTR displayed en-
hanced bleb formation upon infection, as demonstrated using bronchial epithelial cells from a patient with cystic fibrosis and a
CFTR inhibitor, CFTR(Inh)-172. The defect was found to be correctable either by incubation in hyperosmotic media or by com-
plementation with CFTR (pGFP-CFTR), suggesting that the osmoregulatory function of CFTR counters P. aeruginosa-induced
bleb-niche formation. Accordingly, and despite their reduced capacity for bacterial internalization, CFTR-deficient cells showed
greater bacterial occupation of blebs and enhanced intracellular replication. Together, these data suggest that P. aeruginosa bleb
niches are distinct from apoptotic blebs, are driven by osmotic forces countered by CFTR, and could provide a novel mechanism
for bacterial persistence in the host.

IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen problematic in hospitalized patients and those with cystic
fibrosis (CF). Previously, we showed that P. aeruginosa can enter epithelial cells and replicate within them and traffics to the
membrane blebs that it induces. This “bleb-niche” formation requires ExoS, previously shown to cause apoptosis. Here, we show
that the driving force for bleb-niche formation is osmotic pressure, differentiating P. aeruginosa-induced blebs from apoptotic
blebs. Either CFTR inhibition or CFTR mutation (as seen in people with CF) causes P. aeruginosa to make more bleb niches and
provides an osmotic driving force for blebbing. CFTR inhibition also enhances bacterial occupation of blebs and intracellular
replication. Since CFTR is targeted for removal from the plasma membrane when P. aeruginosa invades a healthy cell, these
findings could relate to pathogenesis in both CF and healthy patient populations.
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Pseudomonas aeruginosa is an opportunistic bacterium that can
infect almost any part of the human body but typically targets

surface-exposed epithelial cells such as in the airways, skin, and
eye. P. aeruginosa is particularly devastating in cystic fibrosis (CF),
a common hereditary disease that significantly decreases the life
span of patients as a result of chronic lung infections characterized
by a progressive destructive bronchitis and bronchiolitis (1).
P. aeruginosa tends to dominate the CF airways, being present in

80% of CF patients over the age of 18 (2). The cystic fibrosis
transmembrane-conductance regulator (CFTR), mutated in pa-
tients with CF, has been shown to be involved in P. aeruginosa
virulence (reviewed in reference 3).

P. aeruginosa can enter epithelial cells during lung and eye in-
fections in vivo (4–8). However, epithelial cells isolated from CF
patients are known to phagocytose fewer P. aeruginosa bacterial
cells (9, 10). The mechanism by which bacterial internalization is
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inhibited in CF cells does not involve the reduced conductance
capacity of the chloride (Cl�) channel; instead, P. aeruginosa in-
ternalization is mediated by binding to lipid rafts (11).

Our published data show that, after P. aeruginosa enters cul-
tured epithelial cells, a subset of infected cells display plasma
membrane blebs to which bacteria traffic, while others show bac-
teria colocalizing with acidic vacuoles (6, 12, 13). These mem-
brane blebs physically separate internalized bacteria from the re-
mainder of the cytoplasm, allowing bacteria to swim rapidly
within them. This phenomenon is not limited to cultured cells.
Indeed, published images show that bleb-niche formation also
occurs in corneal epithelial cells within excised whole mouse eyes
(7).

We previously showed that the ExoS type 3 secretion system
(T3SS) effector is required for bleb-niche formation. Mutants in
exoS are unable to form blebs while also demonstrating reduced
intracellular replication, hinting at a relationship between the two
phenomena (6, 12). Mechanisms involved in bleb formation re-
main unknown, except that our previous studies using annexin V
staining of infected cells produced results suggesting activation of
programmed cell death in blebbing cells (6).

Plasma membrane blebbing can be associated with multiple
types of cell death, including apoptosis and necrosis, which can
both cause annexin V staining (14). Apoptotic bleb outgrowth is
driven by the cortical tension produced as a result of actin con-
traction, which occurs when myosin II actively slides actin stress
fibers against each other at the neck of the bleb (15–20) along the
actin cortex that lies under the plasma membrane (21). Following
actin cortex separation from the plasma membrane at the bleb
neck, the actin contraction in apoptotic blebs allows unfolding of
membrane reservoirs and/or flow of membrane through the bleb
neck (18, 20). In contrast, necrotic blebbing differs from the more
fully understood apoptotic blebbing in that the blebs are larger
and more transparent and the bleb formation is independent of
actin contraction (22).

Here, we explored host cell factors involved in bleb formation
induced by infection with P. aeruginosa, the role of CFTR, and the
consequences of blebbing for survival of intracellular P. aerugi-
nosa in CF cells. Since ExoS has been shown to induce apoptosis in
cells following transfection or after injection through the T3SS
needle (23–25), we hypothesized that the formation of blebs in-
duced by P. aeruginosa involves the host cell apoptotic machinery.

RESULTS
P. aeruginosa-induced blebbing is independent of actin con-
traction. Since actin contraction is required for apoptotic bleb-
bing, we examined its role in P. aeruginosa-induced blebbing us-
ing human corneal epithelial cells. Infection-induced blebs were
compared to apoptotic blebs generated using tumor necrosis fac-
tor alpha (TNF-�) and actinomycin D. Following a 4-h infection
or 4-h induction of apoptosis, corneal epithelial cells were incu-
bated either with 5 �M latrunculin A to depolymerize the actin
cytoskeleton or with dimethyl sulfoxide (DMSO) as a control for
an additional 3 h. This latrunculin treatment was sufficient to
remove actin stress fibers in the absence of either bacteria or apo-
ptotic induction (see Fig. S1 in the supplemental material). Treat-
ment with latrunculin completely blocked apoptotic blebbing,
without having an effect on blebbing induced by P. aeruginosa
(Fig. 1a and b). Further, P. aeruginosa-induced blebs appeared
morphologically distinct from apoptotic blebs, the latter being

much smaller and more irregularly shaped than the large, balloon-
ing P. aeruginosa-induced blebs (Fig. 1a).

To verify results with latrunculin, infected corneal epithelial
cells were treated with blebbistatin, which inhibits several types of
blebbing, including apoptotic and certain migratory blebs (26–
28). Rather than blocking P. aeruginosa-induced blebbing,
s-blebbistatin treatment caused significantly more bacterially in-
duced blebs to form (Fig. 1c; see also Fig. S2 in the supplemental
material). Nevertheless, the enhanced blebbing caused by
s-blebbistatin did not result in a greater number of bacteria occu-
pying blebs (see Fig. S3). Further supporting the idea that
infection-induced blebbing occurs independently of actin con-
traction, myosin light chain peptide 20 (MLC20) was actively de-
phosphorylated as a result of infection with P. aeruginosa (Fig. 1d).
MLC20 in its phosphorylated state is required for myosin-induced
actin contraction. Thus, the basal level of phosphorylated MLC20
is an indicator of the presence of active myosin involved in actin
contraction. The basal phosphorylated MLC20 levels declined
over the course of the infection and became essentially undetect-
able between 2 and 3 h after bacterial inoculation (Fig. 1d). Like-
wise, phalloidin staining revealed a basal level of actin stress fibers
present in uninfected cells that increased at 2 h postinoculation,
decreased by 3 h, and then disappeared in cells harboring blebs at
6 h postinoculation (Fig. 1e).

P. aeruginosa-induced blebbing is osmotically driven. Hav-
ing found that blebs induced in response to P. aeruginosa infection
form independently of actin contraction, we explored alternatives
for potential driving forces. Hydrostatic pressure can play an in-
tegral role in bleb formation (22) and is involved in the formation
of necrotic blebs, which rely on movement of sodium and water
for bleb biogenesis (29). Therefore, we examined the effect of me-
dium osmolarity on P. aeruginosa-induced bleb-niche formation.
Bacteria were allowed to internalize before gentamicin and hyper-
osmotic media were added (Fig. 2a). Blebbing in the corneal cells
diminished as the osmolarity of the media increased to up to 600
mOsM (Fig. 2c and d). Infection-induced blebbing could be al-
most completely eliminated by adding 600 mOsM mannitol to the
media at 4 h after bacteria entered epithelial cells (Fig. 2d). Treat-
ing apoptotic cells with the same hyperosmotic media (Fig. 2b) did
not reduce the number of apoptotic blebs. Indeed, the number of
cells with apoptotic blebs slightly increased with increasing osmo-
larity (Fig. 2c and e).

Next, we performed long-term imaging experiments to inves-
tigate the behavior of the blebs in hypo-osmotic media after using
hyperosmotic media to prevent the induction of infection-
induced blebs. Bleb size was modulated within seconds of diluting
the medium from 600 mOsM down to a 1:1 mixture of medium
and water (i.e., 50% medium) and lower, including 25%, 10%,
and 0% media (the latter is pure water) (see Movie S1 in the
supplemental material). Blebs that had been repressed in the hy-
perosmolar media, and thus arrested, were derepressed and
bulged out almost instantaneously. These imaging experiments
also revealed what appeared to be intracellular vacuoles depositing
bacteria directly into the newly formed blebs (see Movie S2), sug-
gesting that bleb formation may occur prior to bacterial entrance
into the bleb.

CFTR deficiency enhances P. aeruginosa-induced bleb-niche
formation. The CFTR chloride channel regulates fluid-mediated
changes in cell volume in response to osmotic pressure (30–33).
Given the previously established roles of CFTR in P. aeruginosa

Jolly et al.

2 ® mbio.asm.org March/April 2015 Volume 6 Issue 2 e02533-14

mbio.asm.org


interactions with the host, we hypothesized that the chloride-
conductance capacity of CFTR may contribute to the osmotically
driven bleb formation. Corneal epithelial cells treated with
CFTR(Inh)-172 (20 �M) prior to inoculation showed increased
bacterially induced blebbing compared to DMSO-treated controls

(Fig. 3a). Blebs were not found in uninfected cells treated with
inhibitor or DMSO alone.

Given that blebs are niches for intracellular bacteria and that
CFTR mutation predisposes the host to infection of the airways,
the results described above prompted us to examine the impact of

FIG 1 Role of actin contraction in P. aeruginosa-induced blebbing. (a) Representative images of blebbing (arrows) induced in human corneal epithelial cells
following treatment with TNF-� and actinomycin D to induce apoptosis (upper panels) or infection with P. aeruginosa (MOI � 100) in gentamicin-containing
media to kill extracellular bacteria (lower panels). Following 4 h of exposure to either the apoptotic cocktail or bacteria, 5 �M latrunculin A (or the DMSO
control) was added for an additional 3 h prior to imaging. (b) Quantification of blebbing frequency in the experiment represented in panel a. Latrunculin
inhibited apoptotic blebbing (P � 0.001, Student’s t test) but not infection-induced blebbing (P � 0.5, Student’s t test). NS, not significant. (c) Corneal epithelial
cells were pretreated with either the r-enantiomer or the s-enantiomer of blebbistatin (40 �M) prior to inoculation with P. aeruginosa (MOI � 100), and blebbing
frequency was quantified at 7 h postinoculation. ***, P � 0.001 (ANOVA with Dunnett’s multiple group comparison post hoc analysis comparing all groups to
the untreated group). (d) Western blot analysis of phosphorylated myosin light chain 20 in corneal cells during the course of infection. (e) Rhodamine-phalloidin
staining of corneal epithelial cells at various time points before and after infection with P. aeruginosa. All images were taken using the same exposure settings. A
representative blebbing cell (the bleb had collapsed after fixation) shown in DIC (right) was free of stress fibers at 6 h postinfection.
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CF on blebbing in airway cells. After 6 h, CF-derived bronchial
epithelial cells (CuFi-1; CF) displayed enhanced bleb-niche for-
mation and size compared to non-CF bronchial cells (NuLi-1;
non-CF) (Fig. 3b to d). Similarly to the corneal epithelial cells,
NuLi-1 cells treated with CFTR(Inh)-172 (20 �M) displayed an
increase in P. aeruginosa-induced blebbing compared to controls,
to a level similar in magnitude to that observed in CF versus
non-CF cells (Fig. 3e). Treatment of CF cells with the CFTR in-
hibitor had no effect on blebbing (Fig. 3e), suggesting that the

enhancement of bacterially induced blebs by this compound in
non-CF cells was not due to off-target effects of the inhibitor.

Over-expression of CFTR prevents P. aeruginosa-induced
blebbing. Since both mutation of CFTR and a CFTR inhibitor
enhanced the ability of bacteria to induce blebbing, we investi-
gated the effects of CFTR complementation on the blebbing phe-
notype. CF cells were transfected with pGFP-CFTR, a plasmid
encoding wild-type CFTR under the control of the cytomegalovi-
rus (CMV) promoter. Both green fluorescent protein-positive

FIG 2 Effects of osmolarity on P. aeruginosa-induced blebs in human corneal epithelial cells. (a) Schematic of the experimental outline for infection prior to
treatment with hyperosmotic media. Four hours post-inoculation, after blebs had formed, hyperosmotic media was added to the cells for an additional 3 h (using
mannitol to achieve a final osmolarity of 400, 500, or 600 mOsM). (b) Schematic showing a similar experimental outline for induction of apoptosis without
infection prior to osmotic treatment. (c) Representative images showing the effects of the hyperosmotic media (600 mOsM) on blebbing (see arrows). (d)
Blebbing frequency in human corneal epithelial cells following infection in iso-osmolar media (15% � 4%) compared to that in increasingly hyperosmolar media
(2% � 1% in 600 mOsM). (e) Blebbing frequency following induction of apoptosis in iso-osmolar media (57% � 4%) compared to that in increasingly
hyperosmolar media (91% � 1% in 600 mOsM), *, P � 0.05; **, P � 0.01; ***, P � 0.001 (ANOVA with Dunnett’s multiple-comparison post hoc analysis).
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(GFP�) and GFP� cells were present in each transfected dish, so
each dish served as its own infection control. Following infection,
GFP� CF cells formed large-membrane blebs whereas none of the
GFP� CF cells formed blebs (see Fig. S4 in the supplemental ma-
terial). A pEGFP plasmid was also used as a transfection control
for the effects of overexpression of GFP on blebbing. Unlike the
cells expressing GFP-CFTR, cells expressing GFP alone retained
the ability to bleb, even when the GFP was expressed at much
higher levels (see Fig. S4). Since the GFP-CFTR fusion construct
traffics and folds similarly to native CFTR (34), these data show
that overexpression of CFTR prevents P. aeruginosa-induced
blebbing in CF cells.

Blebbing in CFTR-deficient cells is rescued by small in-
creases in extracellular osmolarity. The enhanced bacterially in-
duced blebbing in the CFTR inhibitor-treated non-CF bronchial
cells suggested involvement of Cl� channel conductance in bleb
formation. Chloride ion conductance is integral to the mainte-
nance of osmotic pressure, and we hypothesized that the osmo-
regulatory function of CFTR is involved in bleb formation. As in
non-CF cells, blebbing in CF cells was almost completely elimi-
nated by increasing the medium osmolarity to 600 mOsM at 3 h
after bacteria entered epithelial cells, using either NaCl or manni-

tol to modulate the medium osmolarity (Fig. 4a). We therefore
tested the ability of hyperosmotic media to correct for the en-
hanced blebbing caused by the CFTR inhibitor in normal cells.
Only 400 mOsM was required to eliminate enhanced bleb forma-
tion in CFTR inhibitor-treated cells (Fig. 4b). Similarly, increasing
osmolarity to 500 mOsM eliminated the enhanced blebbing ob-
served in CF compared to non-CF cells (Fig. 4c).

CF cells show enhanced P. aeruginosa occupation of bleb
niches and enhanced intracellular growth. Microscopy and gen-
tamicin exclusion intracellular-survival assays were used to deter-
mine the degree of bacterial internalization and intracellular
growth in non-CF and CF bronchial epithelial cells. The P. aerugi-
nosa-induced bleb niches in non-CF bronchial cells frequently
contained fewer bacteria than those induced in CF cells (Fig. 5a
and b), suggesting that bacteria may have an enhanced survival
niche in CFTR-deficient cells. We observed a maximum of 6 bac-
teria occupying an individual bleb in a non-CF cell and up to 25
bacteria occupying a CF cell bleb at 6 h postinoculation (Fig. 5c).
The greater numbers of bacteria occupying individual blebs and
the increase in number of blebbing cells resulted in a 2.3-fold
population-wide increase in total bacterial numbers within blebs
in CF cells (63 � 5 per 100 cells) compared to non-CF cells (27 �

FIG 3 Blebbing frequency and size in epithelial cells following infection with Pseudomonas aeruginosa. (a) Corneal epithelial cells pretreated with 20 �M
CFTR(Inh)-172 increased the blebbing frequency from 20% � 3% (DMSO, n � 3 days) to 50% � 4% (Inh-172, n � 3 days) (P � 0.001, Student’s t test).
Treatment with inhibitor without infection did not induce blebbing. (b) Live imaging of NuLi-1 and CuFi-1 bronchial epithelial cells between 6 and 7 h
post-inoculation in the presence of gentamicin (blebs are artificially outlined in black). (c) Box and whiskers plot showing maximum, minimum, and median
bleb areas following infection. The median area was 440 �m2 (n � 164 blebs) in CF cells versus 138 �m2 (n � 139 blebs) in non-CF cells, P � 0.0001
(Mann-Whitney U test). (d) The number of cells having blebs was greater in CF cells (26% � 5%, n � 3 days) than in non-CF cells (15% � 2%, n � 3 days) (P
� 0.05, Student’s t test). (e) Treatment of non-CF bronchial epithelial cells with CFTR(Inh)-172 resulted in an increase in blebbing frequency from 22% � 3%
(DMSO, n � 3 days) to 39% � 8% (Inh-172, n � 3 days) (P � 0.05, Student’s t test); treating CF cells with the inhibitor had no effect on blebbing (P � 0.6,
Student’s t test). NS, not significant. Data are expressed as weighted means � weighted standard deviations.
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2 per 100 cells), as determined by live microscopy. While the num-
ber of bacteria occupying individual blebs was often higher in CF
cells, as shown in Fig. 5c, the percentages of blebs harboring bac-
teria were similar in non-CF cells (34% � 9%, weighted mean �
weighted standard deviation [SD]) and CF cells (23% � 19%) (P
� 0.34, Student’s t test), suggesting that the rate of bacterial traf-
ficking to blebs is independent of the presence of CFTR.

As previously published (7, 8), internalization of P. aeruginosa
by CF cells was reduced compared to that seen with non-CF cells
(Fig. 5d). Since the T3SS encodes effectors that can inhibit phago-
cytosis, we also examined a T3SS mutant (exsA). The exsA mutant
had a reduced capacity to invade CF cells similar to that seen with
wild-type PAO1, showing that CF does not change the impact of
the T3SS on internalization.

We next explored the impact of CF on the fate of wild-type
PAO1 following internalization by bronchial epithelial cells by
comparing the intracellular population at 4 h (baseline internal-
ized population) to the population at 7 h (post-internalization
population). The results showed that the population in CF cells
increased 6.9-fold � 1.9-fold during this 3-h interval compared to
only 2.7-fold � 0.8-fold in non-CF cells (Fig. 5e). In contrast, the
levels of intracellular replication by the PAO1 T3SS mutant in
non-CF and CF cells were similar (Fig. 5e). Thus, the CF cells
favored more efficient intracellular replication for wild-type
PAO1 but not for a T3SS mutant.

Blebbing cells in a P. aeruginosa-infected population lack
acidic vacuoles for both CF and normal cells. Previously, we
demonstrated that internalized P. aeruginosa T3SS mutants that
do not thrive intracellularly colocalize with acidic vacuoles that
stain with LysoTracker dye (13) and reside within vacuoles posi-
tive for the lysosomal marker LAMP3 (12). Thus, we tested the
hypothesis that differences in intracellular survival between
non-CF and CF cells are due to differential acidification of vacu-
oles. Instead, we found that uninfected CF cells displayed Lyso-
Tracker dye retention and vacuolar morphology similar to those
seen with non-CF cells, and all cells in both populations stained
with the dye (Fig. 6a). As shown in Fig. 6a and b, after 6 h of
infection with PAO1, similar numbers of CF cells and non-CF

cells failed to retain the LysoTracker stain, indicating that they
were devoid of acidic vacuoles. Interestingly, approximately 80%
of the blebbing cells in both the CF and non-CF cell populations
did not retain the dye whereas most nonblebbing cells did. Thus,
CFTR deficiency did not affect the bacterially induced changes in
vacuolar acidification that we previously reported (13), nor did it
impact the overall numbers of acidic vacuoles in uninfected cells.

Inhibition of bleb-niche formation reduces intracellular
P. aeruginosa replication. Since differences between non-CF and
CF cells in intracellular killing of bacteria could not be explained
by differences in vacuolar acidification, we next explored if en-
hanced blebbing in CF cells following infection was involved. In-
tracellular survival assays showed that bleb inhibition with 600
mOsM mannitol resulted in a 75% decrease in total intracellular
bacterial numbers at the end of a 6-h assay (3 h of incubation
followed by 3 h of gentamicin treatment) in CF cells (Fig. 7a).
Similar results were observed with other cell types, i.e., human
corneal epithelial cells (85% � 4% reduction; same assay) and
RAW 264.7 macrophages (65% � 25% reduction; modified 5-h
assay) (see Fig. S5 in the supplemental material).

The hyperosmolar treatment of CF cells also decreased the bac-
terial replication rate over 3 h (Fig. 7b) to levels similar to those
seen with the T3SS mutant (which does not form blebs due to lack
of ExoS). Accordingly, 600 mOsM mannitol had no effect on in-
tracellular replication by the T3SS mutant (Fig. 7b). Moreover, we
found that the number of CF cells that lacked acidic vacuoles after
exposure to 600 mOsM media was similar to that seen with cells in
isosmotic media (data not shown). Controls confirmed that man-
nitol treatment had no impact on epithelial cell viability (Fig. 7c)
or replication of extracellular bacteria (Fig. 7d). Taken together,
these results point toward the increased number of bleb niches as
a potential contributor to increased bacterial replication in CF
cells versus non-CF cells.

DISCUSSION

Apoptotic blebbing, in addition to blebbing associated with cer-
tain types of cell migration and during cytokinesis, is a multi-step
process requiring delamination, a separation of the plasma mem-

FIG 4 Reversal of blebbing in CFTR-deficient cells by incubation in hyperosmotic media. (a) P. aeruginosa-induced blebbing in CF bronchial epithelial cells
decreased from 36% � 6% in isosmotic media to 4% � 1%, by increasing media osmolarity to 600 mOsM with either NaCl or mannitol after 3 h (***, P � 0.001,
ANOVA with Dunnett’s multiple-comparison post hoc analysis). (b and c) The percentage of blebbing cells was also recorded in PAO1-infected non-CF cells
treated with CFTR(Inh)-172 (�244 cells per data point) versus DMSO-treated (�498 cells per data point) (b) and CF (�552 cells per data point) versus non-CF
(�462 cells per data point) (c) bronchial cells following treatment with 400, 500, and 600 mOsM media at 3 h postinoculation (*, P � 0.05; Student’s t test
comparing CF to non-CF cells under each condition). Data are expressed as means � standard deviations and represent the results from three independent
experiments. WT, wild type.
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brane from the underlying actin cortex, and actin contraction
powered by the activity of myosin II (15, 16, 19, 20, 22, 26–28).
Here we show that P. aeruginosa-induced bleb formation is inde-
pendent of actin contraction and is instead sensitive to osmotic
pressure, which is not a feature of apoptotic blebs. Thus, P. aerugi-

nosa-induced blebs are more similar to blebs found in necrotic or
pyroptotic cells, whose formation is independent of actomyosin
contraction (22) and is instead driven by a net gain of sodium and
water (29, 35). Notably, the annexin V staining that we observed
previously (6) can label cells not undergoing apoptosis if the

FIG 5 Increased P. aeruginosa occupation of bleb niches and survival in CF versus non-CF cells. Bleb occupation was determined using confocal microscopy and
P. aeruginosa expressing GFP. (a and b) Non-CF cell blebs (a) contained fewer bacteria on average than CF cell blebs (b). (c) A maximum of 6 bacteria were found
in non-CF cell blebs (50 blebs analyzed), while up to 25 bacteria occupied a CF cell bleb (84 blebs analyzed) at 6 h post-inoculation. (d) Gentamicin exclusion
assays comparing P. aeruginosa internalization in non-CF and CF bronchial epithelial cells using either the wild type (WT) or the exsA mutant (MOI � 5). CF
cells showed a significant reduction in internalization of both the WT (P � 0.01, Student’s t test) and the exsA mutant (P � 0.05, Student’s t test). (e) Intracellular
replication of P. aeruginosa and its T3SS mutant over the 3-h period between 4 and 7 h post-inoculation using the gentamicin exclusion assay. Intracellular growth
was greater in CF cells than in non-CF cells (P � 0.05, Student’s t test), whereas levels of exsA mutant replication did not differ in CF versus non-CF cells (P �
0.6, Student’s t test). NS, not significant. Data are expressed as means � SEM. Data represent a composite of the results of three independent experiments.
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membrane becomes porous, allowing the phosphatidylserine
present on the inner leaflet of the plasma membrane to be labeled
(36). However, pyroptotic and necrotic cells are rapidly lysed
whereas P. aeruginosa-infected cells remain intact and adherent to
the tissue culture dish for over 8 h post-inoculation. This suggests
that P. aeruginosa may actively modify the host cell death response
in a manner similar to that seen with some other pathogens (re-
viewed in reference 37). Determining the relationship between
blebbing and cell death, if it exists, will be a significant effort re-
quiring a separate dedicated study.

We hypothesized that the chloride channel CFTR may play a

role in generating the osmotic pressure required for P. aeruginosa-
induced bleb formation. Many glands and epithelial mucosa se-
crete fluid following activation of the CFTR chloride channel,
which plays a critical role in regulating cellular osmolarity (re-
viewed in reference 38). Our data suggest that loss of the CFTR
osmoregulatory function is involved in bleb-niche formation as a
specific inhibitor of chloride conductance through the CFTR
channel-enhanced formation of P. aeruginosa-induced mem-
brane bleb niches in non-CF bronchial epithelial cells. Moreover,
hyperosmotic media corrected for the bleb-inducing effect of the
inhibitor, without an impact on actin contraction-mediated (ap-

FIG 6 Non-CF and CF blebbing cells lack acidic vacuoles. (a) Representative images of LysoTracker staining in non-CF and CF bronchial epithelial cells before
and after infection with PAO1-GFP (MOI � 10). (b) Similar numbers of non-CF and CF cells stained with LysoTracker (56% � 7% of non-CF cells and 52% �
7% of CF cells; P � 0.5, Student’s t test). NS, not significant. Few blebbing cells retained the stain compared to nonblebbing cells (22% � 13% of blebbing versus
88% � 7% of nonblebbing non-CF cells [P � 0.01, Student’s t test]; 12% � 11% of blebbing versus 80% � 7% of non-blebbing CF cells [P � 0.01, Student’s
t test]). Data are expressed as means � standard deviations and were compiled from the results of three independent experiments.
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optotic) blebbing. We propose a model for P. aeruginosa-induced
blebbing (Fig. 8) that contrasts it to actin contraction-mediated
blebbing (e.g., apoptotic blebbing), in that loss of actin stress fi-
bers occurs following infection both in normal epithelial cells (see
Fig. 1e) and in CF epithelial cells (see Fig. S6 in the supplemental
material). Airway cells from CF patients are edematous (swollen),
and their volume is greater than that of airway cells from non-CF
patients (39). Indeed, cells with defective CFTR are unable to reg-
ulate their cell volume following osmotic stress (30–33), indicat-
ing that the cell volume is dysregulated as a direct consequence of
CFTR deficiency. The greater existing stress on the plasma mem-
brane in CF cells even before the application of external forces, as

a result of the abnormally enhanced cell volume, may then make it
more susceptible to blebbing upon P. aeruginosa infection (Fig. 8).
Overexpressing GFP-CFTR in CF cells completely blocked bleb-
niche formation, strongly supporting the idea that loss of CFTR
contributes to bleb formation.

Intriguingly, P. aeruginosa infection has been shown to result
in the removal of CFTR from the host cell membrane (9, 10, 40).
The mechanism for this phenomenon involves targeting of the
CFTR channel by Cif (CFTR inhibitory factor), a protein that
forms part of P. aeruginosa outer membrane vesicles (41). Thus, it
is feasible that removal of CFTR from the membrane of non-CF
cells by Cif could be involved in providing the osmotic force for

FIG 7 Treatment of infected CF cells with hyperosmolar media reduces intracellular replication of P. aeruginosa. (a) Bacteria were allowed to internalize into
CF cells before the media osmolarity was adjusted as described in the Fig. 5 legend. CFU counts taken at 6 h postinoculation showed a 75% loss in the total number
of intracellular bacteria (***, P � 0.001 [ANOVA with Dunnett’s multiple-comparison post hoc analysis]; 3 to 6 independent experiments per condition). (b)
Intracellular replication rates between 4 h and 7 h postinoculation in the same assay (gentamicin and hyperosmotic media were added simultaneously at 3 h
post-inoculation). Wild-type bacteria replicated 4.6-fold � 0.6-fold in iso-osmolar media, while replication diminished to 1.8-fold � 0.3-fold in hyperosmolar
media (P � 0.01, Student’s t test). Levels of T3SS mutant bacterial replication were similar in iso-osmolar media (0.99-fold � 0.16-fold growth) and hyperos-
molar media (1.08-fold � 0.16-fold growth) (P � 0.6, Student’s t test). NS, not significant. Data are presented as means � SEM. (c) Number of viable (propidium
iodide-negative) epithelial cells following treatment with 600 mOsM NaCl or mannitol (P � NS, ANOVA with Dunnett’s multiple-comparison post hoc analysis).
Data are expressed as means � standard deviations of the results from three independent experiments. (d) Effect of hyperosmotic treatments on extracellular
bacterial replication.
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bleb formation (Fig. 8). Indeed, this likely explains why blebbing
occurs in normal CFTR-expressing cells and why blebbing can be
prevented by over-expressing CFTR.

CFTR has previously been shown to mediate P. aeruginosa in-
ternalization by epithelial cells (9, 42), attributed to lipid raft as-
sociation (11). The current study showed that CFTR is also in-
volved in controlling survival/replication of bacteria after
internalization by an epithelial cell, with the mechanism involving
its osmoregulatory function. While CFTR of epithelial cells has
not previously been studied for impact on growth of internalized
bacteria, CFTR-deficient macrophages are known to be defective
in their ability to kill intracellular P. aeruginosa (43–47). Several
studies have suggested that lysosomal acidification may be im-
paired in CF cells (43, 44, 48–51), but others have also refuted the
idea (52–54), leaving the matter unresolved. Our data collected
using epithelial cells rather than macrophages suggest that bacte-
rial survival within CF and non-CF cells does not directly involve
differences in vacuole acidification. Indeed, both non-CF and CF
epithelial cells contained acidified vacuoles, with loss of acidifica-
tion occurring similarly in the two cell types following infection, as
we previously reported for corneal epithelial cells (13). Further,
while more than 60% of the intracellular bacterial replication in
CF cells was prevented by osmotically blocking bleb-niche forma-

tion, there was no impact on the number of cells harboring acidic
vacuoles. Since LysoTracker was used to detect acidic vacuoles, it
remains possible that there are minor undetectable differences
between CF and non-CF epithelial cells in vacuolar pH levels be-
fore and after P. aeruginosa infection. Defects in bacterial traffick-
ing to acidified lysosomes, rather than differences in acidification,
would be another potential mechanism for making cells more
supportive of intracellular bacteria. However, our data do not
support this hypothesis for CF cells. T3SS mutants of P. aeruginosa
are unable to form bleb niches and instead traffic to acidified ly-
sosomes (12, 13). Given those data, if CFTR contributed to bacte-
rial trafficking to lysosomes, we would have found differences in
intracellular bacterial viability for exsA (T3SS) mutants in non-CF
versus CF cells, which we did not. Moreover, while there were
more blebs in CF cells, rates of bacterial trafficking to the blebs
were similar for CF and non-CF cells.

We propose that enhanced bleb formation contributes to the
explanation of why CF epithelial cells are more supportive of in-
tracellular bacteria than normal epithelial cells. While difficult to
prove directly, this idea is supported by data showing that hyper-
osmotic medium shrinks blebs and also reduces intracellular sur-
vival. Further, our other data rule out obvious alternatives. While
it remains possible that hyperosmotic medium somehow more

FIG 8 Model of bleb initiation in apoptotic versus P. aeruginosa-infected non-CF and CF cells. (Top panel) Before bleb induction. (Bottom panel) After bleb
induction. Apoptotic bleb initiation (left) requires delamination followed by actin contraction at the bleb neck. When P. aeruginosa infects non-CF cells (middle),
CFTR is removed from the plasma membrane (9, 10, 40), which our data suggest provides an osmotic driving force for bleb outgrowth. We also report a loss of
actin stress fibers in non-CF cells, which may facilitate osmotically driven bleb formation (middle). Infection of CF cells (right) also results in loss of actin stress
fibers, as well as in a higher frequency of blebbing and larger blebs, which are then occupied by greater numbers of bacteria. Since CF cells lack CFTR even prior
to infection, we hypothesize that edematous CF cells are osmotically primed for bleb formation following infection.
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directly impacts the viability of intracellular bacteria, we found
that the medium itself had no effect on bacterial viability, and
there was no impact on intracellular replication when exsA (T3SS)
mutant bacteria rather than wild-type bacteria were used to infect
cells, making that an unlikely alternative.

Interestingly, current treatments for CF include 7% hypertonic
saline solution and dry powder mannitol (55). These therapies are
thought to work by enhancing fluid secretion by CF airway epi-
thelial cells to improve mucus hydration. The 600 mOsM NaCl
concentrations used in cultured cells in this study would roughly
correspond to a 1% saline solution. Since 600 mOsM media sig-
nificantly reduced the intracellular replication rate in CF cells, the
mechanism(s) by which these treatments work to reduce disease
could include limiting intracellular P. aeruginosa replication.

In conclusion, the data presented in this report show that
CFTR-defective epithelial cells are more supportive of intracellu-
lar bacterial replication and are also more susceptible to bacteri-
ally induced blebbing. The data also support the idea that these
two findings are related, i.e., that enhanced P. aeruginosa-induced
bleb-niche formation in CFTR-deficient cells contributes to pro-
viding a supportive environment for intracellular survival. Fur-
ther research will be needed to determine the contribution of bleb
formation to lung infections involving P. aeruginosa in vivo. Since
blebs collapse with fixation, visualization requires live tissue.
While methods have not been developed to allow subcellular vi-
sualization of vital lung tissue without fixation, they are available
for eye tissue research, and we have used them to show that blebs
containing bacteria exist within P. aeruginosa-infected epithelium
of mouse eyes (7). The T3SS is required for bleb formation (6, 12),
it influences the progression of acute infection in the lung (56–58)
and in the eye (59, 60), and it is expressed by environmental strains
of P. aeruginosa that initially colonize the CF lung (61, 62). If the
T3SS of P. aeruginosa initially colonizing the lung of a CF patient
conspires with defective CFTR to favor P. aeruginosa persistence
in airway epithelial cell blebs, where they are protected from non-
cell-permeative antibiotics and antimicrobial peptides, while
avoiding lysosomes in which they could be processed for immu-
nological recognition, this could contribute to niche establish-
ment in the lung. While this sequence of events could also occur in
macrophages (contributing to the significance of our findings),
the consequences of intracellular survival in epithelial cells that
less readily turn over within the lung tissue could be of equal or
even greater significance.

MATERIALS AND METHODS
Cell culture. Telomerase-immortalized human corneal epithelial cells
were maintained in KGM (Lonza) media, plated on traditional tissue
culture-treated plastics, and used at passages 30 to 39. Telomerase-
immortalized human bronchial epithelial cells derived from a healthy
patient (NuLi-1 cells; ATCC CRL-4011) or from a CF patient expressing
the �F508/�F508 CFTR (CuFi-1 cells; ATCC CRL-4013) were grown and
assayed on collagen IV (BD BioCoat)-coated cell culture dishes and pas-
saged in bronchial epithelial growth media (BEGM) (Lonza). Assays were
performed using cells at passages 1 to 15. RAW 264.7 macrophages were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10%
fetal bovine serum (FBS), and survival assays were performed on collagen-
coated 96-well plates as described above.

Bacterial strains. Pseudomonas aeruginosa strain PAO1 and its iso-
genic exsA (T3SS) mutant (PAO1 exsA::	) were used. Both strains were
complemented with GFP on the pSMC2 plasmid. For some assays, PAO1
expressing mCherry on the pUCP18 plasmid was used. Bacteria were

grown overnight on carbenicillin-containing Trypticase soy agar (TSA)
plates (400 �g/ml) to form a lawn prior to dilution in cell culture media
for infection assays.

Antibodies and chemicals. The antibody against pMLC20 was pur-
chased from AbCam (ab2480). CFTR (Inh)-172 was purchased from
Sigma and stored as frozen aliquots of 20 mM in DMSO prior to being
used at a final concentration of 20 �M. Blebbistatin enantiomers were
purchased from Santa Cruz Biotechnology, Inc., reconstituted in DMSO
to a stock of 40 mM, and used at a final concentration of 40 �M. Latrun-
culin A was purchased from Sigma; stocks were made up in DMSO to
2 mM and used at a final concentration of 5 �M. All inhibitor assays
included DMSO in media used at a final concentration of 0.1%. Mannitol
and NaCl were also purchased from Sigma. TNF-� was purchased from
Shenandoah Biotechnology Inc., stored as a stock of 100 �g/ml in double-
distilled water (ddH2O) with 0.1% bovine serum albumin (BSA), and
used at a final concentration of 30 ng/ml. Actinomycin D was purchased
from Sigma; stocks were made at 5 mg/ml in DMSO and used at a final
concentration of 5 �g/ml. All drugs were divided into aliquots and stored
in �20°C or �80°C according to the manufacturer’s instructions.

Infection. As previously described, inoculation of corneal epithelial
cells with P. aeruginosa results in heterogeneous phagocytosis events in
which some cells take up bacteria before others. However, following a 3-h
incubation period with a multiplicity of infection (MOI) of 100, all of the
cells have internalized the bacteria. This 3-h internalization period is fol-
lowed by incubation for at least 1 h in the presence of the non-membrane-
permeative antibiotic gentamicin, which is bactericidal only to the extra-
cellular bacteria. Following this procedure, the infected cells begin to form
blebs. Given our experience and the reproducibility of this experimental
procedure, we therefore designed our assays with both corneal and CF
bronchial epithelial cells to work within this time frame.

Induction of apoptosis. Telomerase-immortalized human corneal
epithelial cells were incubated in KGM media with 30 ng/ml TNF-� and
5 �g/ml actinomycin D for 7 h before imaging was performed in order to
induce bleb formation. This treatment has been previously shown to in-
duce apoptosis in human corneal fibroblasts (63) and HeLa cells (64).

Epithelial cell transfection. CuFi-1 cells were transfected with a
pGFP-CFTR plasmid created from pS65T-GFP-C1 (34) using a 10-�l-tip
Neon transfection system (Invitrogen), according to the manufacturer’s
protocol and the following optimized electroporation settings: pulse volt-
age, 1,350 V; pulse width, 20 ms; and pulse number, 1. Cells were incu-
bated in BEGM culture media in 37°C and 5% CO2 for 48 h before assays
were performed.

Assays of bacterially induced bleb-niche formation. Telomerase-
immortalized epithelial cells grown in 35-mm-diameter dishes were in-
fected with 3 
 107 CFU (MOI � 100) of P. aeruginosa PAO1 or its exsA
mutant (expressing GFP or mCherry). At 3 h postinoculation, cells were
extensively washed in phosphate-buffered saline (PBS), and 200 �g/ml
gentamicin was added to kill extracellular bacteria. Cells were imaged at 6
to 8 h postinoculation and analyzed for bleb-niche formation by bright-
field or confocal differential inference contrast (DIC) microscopy. The
effect of medium osmolarity on bleb-niche formation was examined with
and without 20 �M CFTR(Inh)-172. At the 20 �M concentration used in
our assays, CFTR(Inh)-172 does not affect cell viability for up to 24 h (65).
Cells were pretreated with the inhibitor 30 min prior to inoculation with
bacteria, and the inhibitor was maintained at each wash step of the assay.

Microscopy. Confocal microscopy was performed on a FluoView
FV1000 laser scanning confocal microscope (Olympus, PA) equipped
with a 60x magnification water-immersion objective, 100-W halogen il-
lumination, and a multiline 488-nm-wavelength argon laser. Fluorescent
light and transmitted light were collected simultaneously in z stacks with
1-�m increments along the z axis. For imaging of phalloidin-stained ac-
tin, the pinhole was opened almost completely and single z sections were
captured. For imaging of transfected cells, z stacks were captured, a single
slice of the red and DIC channels was presented, and the entire z stack
from the green channel was compiled into a maximum-intensity projec-
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tion before making the composite image. Wide-field microscopy was per-
formed on an Olympus IX-70 inverted microscope for bright-field and
phase-contrast imaging of live blebbing cells in real time (30 frames per
second [fps]) with a QImaging QI Click charge-coupled-device (CCD)
camera and Volocity software.

Internalization and intracellular replication assays. Gentamicin ex-
clusion assays were used to measure bacterial invasion and intracellular
survival. Cells were plated at a density of 5 
 104 cells per well in collagen
IV-coated 96-well plates and inoculated with 1.5 
 106 CFU GFP-
expressing PAO1 cells (MOI � 5). Cells were thoroughly washed with PBS
at 3 h postinoculation before addition of gentamicin (200 �g/ml) and
washed again prior to cell lysis and were lysed with Triton X-100 (0.1%
[vol/vol]) for 15 min at room temperature and then plated on MacConkey
agar at 4 h and 7 h postinoculation. A modified version of this assay was
used on RAW 264.7 macrophage cells because gentamicin is rapidly en-
gulfed by these cells, killing both intracellular and extracellular bacteria.
The modified assay consisted of a 1-h infection followed by a PBS wash,
including gentamicin in the PBS, and an additional 10-min incubation in
DMEM containing gentamicin, followed by another PBS wash before in-
cubation in gentamicin-free media for the remainder of the survival assay.
CFU counts were taken at 2 h and 5 h after macrophage inoculation as
described above.

Staining of acidic vacuoles. At 30 min prior to imaging, cells were
incubated in a 50 nM solution of LysoTracker Red DND99 (Invitrogen) at
37°C (15 min) and then washed with PBS before addition of culture media
for live-cell imaging. LysoTracker is selectively retained within acidic
compartments. A low concentration of LysoTracker was used to avoid
saturating the cells and to adequately distinguish between the cells that
were able to retain the stain and those that were not.

Phalloidin staining. Following treatments, cells were fixed in 4%
paraformaldehyde, quenched in ammonium chloride, permeabilized in
1% Triton X-100, and incubated in PBS containing rhodamine-
phalloidin (Invitrogen) in the presence of 1% BSA according to the man-
ufacturer’s instructions prior to mounting.

Hyperosmotic assays. PAO1 was allowed to internalize into cells (un-
der the conditions described above) for 3 h before treatment with genta-
micin (200 �g/ml) in either isosmotic or hyperosmotic media. A 300
mOsM medium was considered isosmotic; NaCl or mannitol was added
to increase osmolarity to 600 mOsM. To achieve 600 mOsM NaCl, 0.009 g
NaCl was added per ml of BEGM media. For 600 mOsM mannitol,
0.0546 g per ml of media was used.

Extracellular bacterial replication assays. Two milliliters of cell cul-
ture media (BEGM) (equivalent to an MOI of 100) was inoculated as
described for the blebbing assays, the reaction mixture was shaken at
37°C, and CFU counts were taken every hour.

Statistics. Data are expressed as means � SD or standard errors of the
means (SEM) as indicated. Weighted means and weighted SD were used
to present data from blebbing frequency assays in order to combine data
from independent assays collected from three or more days, each day
having a different number of cells analyzed. For survival assays, error
propagation was used to calculate the SD resulting from taking the average
of averages (including the results of technical and biological replicates in
the mean and error calculations). SEM was reported for survival assays in
order to take into account sample size (defined as the number of days an
assay was repeated; a minimum of n � 3 days was used). Student’s t test
was used for most assays to calculate the significance of the differences
between the results determined for the two groups. A Mann-Whitney
U test was used to analyze bleb area because those data did not have a
normal distribution. For comparisons of multiple groups, a one-way anal-
ysis of variance (ANOVA) was performed with a Dunnett’s multiple-
comparison test for post hoc analysis to compare each group with the
corresponding control group. P values of �0.05 were considered signifi-
cant.
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