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Meta-studies for robust tests of theory

Beth Baribault*', Christopher Donkin®', Daniel R. Little®, Jennifer S. Trueblood®, Zita Oravecz®, Don van Ravenzwaaij°, Corey

N. White', Paul De Boeck", and Joachim Vandekerckhove®'-2

This is a preprint of a manuscript to appear in Proceedings of the National Academy of Sciences.

We describe and demonstrate an empirical strategy useful for discovering and replicating empirical effects in psychological science. The
method involves the design of a meta-study, in which many independent experimental variables—that may be moderators of an empirical
effect—are indiscriminately randomized. Radical randomization yields rich data sets that can be used to test the robustness of an empirical
claim to some of the vagaries and idiosyncrasies of experimental protocols and enhances the generalizability of these claims. The strategy
is made feasible by advances in hierarchical Bayesian modeling which allow for the pooling of information across unlike experiments and
designs, and is proposed here as a gold standard for replication research and exploratory research. The practical feasibility of the strategy is
demonstrated with a replication of a study on subliminal priming. All materials and data are freely available online via https:/osf.io/u2vwa/.
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Those who knew him, describe Fisher as sitting, quietly puffing
on his pipe, while arguments raged about him, waiting for the
moment when he could insert his answer. “Randomize,” he says.

D. Salzburg (14)

Imagine, if you will, an experiment in the psychological laboratory.
In the experiment, a single participant provides data in each of two
conditions. Further suppose an effect is observed in the form of
a mean difference between the two conditions. Unless there are
strong reasons to believe that all humans are largely interchange-
able with respect to this particular effect, readers and reviewers
will reasonably point out that this effect might be idiosyncratic to
the participant and hence not generalize to the broader population.

One potential remedy is for the researcher to replicate the
experiment with the same participant and one newly recruited
participant — thereby enacting a systematic manipulation of the
suspected moderating variable (i.e., participant identity). Such a
design enables at least two related claims: possibly that there are
individual differences in the magnitude of the effect, and possibly
that the effect occurs in some participants but is absent in others.

This strategy is, however, clearly limited: it does not allow for
population-level inference. Rather than merely observing that some
individual differences could occur, we might instead be interested
in whether the effect holds for most humans, or on average across
humans, or perhaps for all humans. Such claims call for a hierar-
chical strategy in which not one or two but many participants are
randomly sampled from the population towards which we wish to
generalize. If the resultant sample is representative of the popula-
tion, then the sample mean effect will be an unbiased estimate of
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the population mean effect and the sample variance in the effect
will permit statements about the generality of its occurrence.

In the same way that psychological scientists typically want to
generalize from one participant to all potential participants (within
certain boundaries), so too will they often want to generalize from a
small set of conditions to all conditions (within certain boundaries).
For example, researchers who want to claim that stress impairs
memory presumably believe that this effect is not specific to the
particular aspects of one specific experiment. However, testing the
myriad experimental facets, or moderators, involved (e.g., setting,
stimuli, etc.) can be burdensome, time-consuming, and expensive.
The strategy of random selection is a sound and viable one for
potential moderators of an experimental effect, including potential
moderators other than participant identity. In particular, we believe
that extensive randomization can lead to scientific conclusions that
are more general in scope, more robust to incidental variations in
experimental setup, and more likely to replicate in future studies.

In what follows, we will we introduce the concept of a meta-study, in
which we combine radical randomization of experimental features
and systematic pooling of information with a Bayesian hierarchical
model. We argue that sampling from a population of possible
experiments in the same way one would sample from a population
of possible participants is a practically feasible approach that can
increase the robustness of empirical findings in psychology.

Causes of nonreplication and variations on replication

Replicability of empirical findings has been a central topic in recent
psychological science. Following a series of dramatic revelations
in which researchers have appeared unable to reliably replicate
empirical effects once thought to be robust, there is now talk of a
“crisis of confidence” (10) in the field. While there are a number of
possible explanations for the lack of replicability (5), one commonly
indicated problem is the issue of publication bias: the preference to
publish statistically significant results (i.e., results that lead to the
rejection of a null hypotheses; 8, 13). This statistical significance
filter (19) biases the published record towards results that capitalize
on measurement noise and fluke outcomes (17).

Moreover, evidence from psychological studies—even if pub-
lished without bias towards certain outcomes—is often weak due
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to traditions of insufficient sample sizes and noisy measurement
tools, which leads to generally low ability to detect true effects
and a concomitant increase in false positive results (3, 7). The
combination of publication bias and low standards of evidence
would naturally cause frequent failures to replicate, since effects
claimed in the published literature are likely to be false alarms.
Given the uncertain nature of one-off effects found in the literature,
replication of empirical results is a clear gold standard of convinc-
ing evidence: greater confidence is warranted in theories whose
predictions repeatedly come true (4) or whose predictions survive
repeated falsification attempts (11).

At the same time, even when a published effect is true, it is
possible for effects to fail to replicate strictly due to seemingly in-
nocuous differences in the implementation of the experiment (i.e.,
due to “hidden moderators” that may occur in replication studies).
Small variations in experiments are of course unavoidable: exact
replication is strictly impossible. However, for the purposes of cre-
ating generalizable knowledge what matters most is recreating the
necessary and sufficient conditions that will show the effect as pre-
dicted by some theory. By implication, small experiment variations
that are not theoretically relevant should have only minimal impact
on the size of a true effect. Indeed, theoretical statements made by
researchers almost without fail imply some degree of robustness
to irrelevant variables. It was recently proposed that authors make
these claims explicit as part of every paper (9, 15).

Such robustness is, of course, a testable assertion. We could
take any one of these suspected hidden moderators, systematically
vary it as an independent variable in an experiment, and quantify
any differences so obtained. Much theoretical knowledge grows
exactly in this fashion.

A related distinction that is often made among replication at-
tempts is that between direct and conceptual replications. A direct
replication is one in which the replicating team attempts to follow
the original protocol as closely as possible, allowing for no mod-
erating variables that might distort the findings or obfuscate the
effect seen in the original publication. In a direct replication, the ex-
act same theoretical prediction—that is, the same hypothesis—is
tested. A conceptual replication, on the other hand, is one in which
the replicating team tests the same theory, but uses a different
instantiation of theory to hypothesis, with entirely different values
on some independent variables and possibly different dependent
and independent variables as well. In such a replication, the is-
sue at hand is the robustness of a reported effect to theoretically
irrelevant design variations.

Both of these approaches have associated problems. A com-
mon concern about direct replications is that it is typically impossi-
ble to copy a protocol exactly: replications tend to take place at a
different time and place from the original, with different subjects,
and they are often by a different lab with slightly different ineffable
and undocumented practices, and not all the relevant details are
reported in the original publication. Conceptual replications, on
the other hand, lack falsification power: a lack of effect may be
due to one of the many differences between the original and the
replication. While irrelevant within the adopted theoretical frame-
work, an innocuous difference in design might in fact be a genuine
moderating factor. As such, the masking of an otherwise replicable
effect by a hidden moderator and a genuine failure to replicate are
strictly unable to be teased apart with conventional techniques.
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Radical randomization

Here we present an alternative take on replication that involves the
radical randomization (RR) of many features of an experiment. As
an example, imagine a study in which researchers are interested
in some difference between two manners of stimulus presentation.
A visual stimulus (e.g., the symbol v) is either presented to the
participant normally for a short time (e.g., 30 ms), or it is presented
with temporal masking — meaning that it is preceded and followed
by visual masks (e.g., strings of symbols such as &&&). These
masks are called forward masks and backward masks, respectively,
and their addition sometimes suppresses the conscious perception
of the temporally flanked stimulus. Such an experiment has a few
immutable features that are necessary to address the question at
hand (critically, some stimuli need to be masked while others are
not). However, many of the features of this experiment are chosen
largely arbitrarily: presumably there is nothing special about the
symbol v and the same differences could be illustrated with the
symbol b instead; and presumably ##i# is as effective a forward
or backward mask as &&&. If the effect exists, it should shine
through—if perhaps diminished—for many different symbols and
many different small variations on the experimental setup.

In a RR design, this presumption of robustness is put to a
critical test. Rather than consistently using the symbol v, we
instead randomly choose any symbol from a set, and then choose
a new symbol whenever we can (without harming the validity of
the study). Such a design could be considered defensive in the
sense that it hardens our conclusions against minor infidelities in
future replication attempts (i.e., replication attempts that are not
strictly faithful and hence are not direct replications) — infidelities
such as using a different symbol. That is, the RR design makes
conclusions more robust because it mimics some of the potential
variance between an experiment and future replication attempts
that are—as all replications are—inexact.

In order to distinguish those immutable 1Vs that are needed to
define the effect of interest from the innocuous design features
(strictly speaking also 1Vs) that are randomized, it will be useful to
introduce some new terminology. Borrowing from Generalizability
Theory (2), we call these to-be-randomized Vs facets, and we call
a study with many facets a meta-study. While a typical IV has a
limited set of values that we normally call conditions, the values of a
facet are drawn randomly from a potentially infinite population. We
call the values of a facet that happened to be drawn for a particular
meta-study its levels, and we call each cell in the multifaceted
design a micro-experiment. The immutable 1Vs that occur in each
micro-experiments will be called elementary IVs. Finally, it will
sometimes be useful to think of the population of possible micro-
experiments, which is defined by the space spanned by all the
facets of a study. We call this the method space.

Facets can be simple design choices (e.g., the exact stimuli
selected from a larger pool), natural constraints (e.g., the geograph-
ical location of the lab), or explicitly labeled nuisance variables that
are randomized (e.g., individual differences between participants).
The goal of introducing variability in a facet is to investigate the gen-
erality of an effect within a much broader subspace of the method
space than is commonly the case. If an effect remains, despite
variability in some design features, we establish robustness: invari-
ance of the effect to reasonable variation in the facet. Alternatively,
the effect may turn out be sensitive to such variability.

What constitutes “reasonable variation'—as formalized by the
distribution from which levels of a facet are drawn—is up to the
judgment of the researcher. The sampling distribution of a facet
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determines the “universe of intended generalization”: the range
within which we aim to establish the existence of the effect. In
general, levels should be sampled so that they well represent the
range of the facet across which one hopes to draw conclusions.

Facets may be of particular interest when they are predicted—
by one theory or another—to moderate an empirical effect. In such
cases, establishing the moderating influence or the invariance of
the effect are both of theoretical interest. However, the purpose
of a RR procedure is not to build or refine theories as much as
it is to establish that an effect holds. Researchers setting up a
meta-study are therefore recommended to be liberal in which
facets they select for randomization.

We are of course not the first to suggest randomization of exper-
imental features. Indeed, in 1973 psycholinguist H. H. Clark (1)
suggested it as a treatment for what he called the language-as-
fixed-effect fallacy, and R. A. Fisher (4) famously proposed it to
avoid systematic effects of sampling locations in agricultural exper-
iments. Our position might be characterized as an objection to a
broader error of inappropriate use of fixed effects.

Finally, we should point out that randomization itself is not
unique in its suitability toward the goal of obtaining a representative
sample (20). We merely propose it here as a convenient practical
approach to exploring the space of possible micro-experiments.

Individually weak, jointly powerful.  The RR approach that we pro-
pose involves the implicit construction of many micro-experiments
and randomly sampling among them. A micro-experiment might
consist of all the trials that share a level of one selected facet
(hundreds or thousands of trials), but may be as small as all the
trials in a single block by a participant (a few dozen trials). What
constitutes a micro-experiment is less a design decision than a
feature of the statistical analysis: it is a grouping of observations
that is homogeneous in the facet(s) of interest (but has variability
in the elementary 1Vs so that contrasts can be computed).

Individually, these micro-experiments do not deliver much ev-
idence for or against the existence of an effect. However, a key
component of the approach is the use of modern statistical tech-
niques (e.g., Bayesian hierarchical modeling and meta-analysis;
6, 18) to pool information across data sets efficiently.

Theory-testing. A meta-study serves to make a stronger state-
ment about the existence of an empirical effect — namely, its per-
sistence across variations on an experiment. To test an effect in
such an hierarchical scenario, it is more beneficial to increase the
number of independent variations than it is to increase the number
of data points. Hence, by randomly sampling many locations in
the method space and conducting a small independent experi-
ment in each location, the multifaceted design allows robust and
statistically powerful statements about the effect.

A theory, with an intended universe of generalizability, can be
formalized as an effect size function over a region within a method
space — rather than over a point, which would represent a more
local hypothesis. The region of the method space within which an
effect presents itself allows us to make empirically-backed state-
ments about the constraints on generality—that is, the boundary
conditions of the theory—that are usually only implicit in psycho-
logical theories.

While this strategy seems straightforward—perhaps even
obvious—it is to the best of the authors’ knowledge essentially
unused in psychological or cognitive science. Over time, research
groups with a concerted study program eventually develop a port-
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folio of experiments that vary in small ways, and in that sense
these groups work to establish robustness (or observe the lack
of it). However, the systematic execution of such a population of
experiments—in what we here call a meta-study—does not occur,
leading to the potential for bias and correlated error. We believe
that the multifaceted design has great potential as a defensive
design strategy that allows for more general statements and tests
of theory, and is likely to yield conclusions that are more robust to
small variations in design implementation.

Statistical analysis of multifaceted designs

The multifaceted design affords a number of different statistical
approaches. In this section, we discuss three possibilities. In the
case example, we will demonstrate all three.

In what follows, we will assume an experimental meta-study
with some set of elementary independent variables that are theo-
retically interesting (i.e., whose effect on a dependent variable we
are hoping to quantify) and some set of facets. Most facets are
not relevant according to the theory we are testing, but might be
relevant according to some unspecified rival theory or be relevant
in ways that are simply not yet discovered.

Global tests. Many experimental studies are specifically de-
signed to answer a particular question, often of the unary form “is
A different from 0” or the binary form “is B greater than C”? Even
though we often have multiple, randomly selected participants and
we expect there to be person-level variability, the random effect of
participant identity is often ignored on the (reasonable) assumption
that with a sufficiently large sample, any interindividual differences
will “wash out” so the sample is balanced and the sample mean
effect is a good estimate of the population mean effect. With the
same argument, we can—in a first pass—ignore the differences be-
tween the randomly sampled levels of the facets in an experiment.
This way, we are able to test for the existence of an inequality on
average over the range of possible values of the facet.

The formulation of the model is somewhat standard. Letting
Ym(i) Stand for the dependent variable observed at trial « (which
is nested in micro-experiment m) and letting x ;) stand for for
the corresponding value of the kth elementary IV X}, (where con-
ventionally zo,,(;y = 1 to represent the intercept), the global test
model has a set of regression weights 3x and a variance <2. Errors
€m(i) are i.i.d. standard normal:

K

Ym(i) = Zﬂkka(i) + C€m(i)-
k=0

This fairly common formulation subsumes as special cases the
models associated with the t test (if K = 1 and X; is binary),
linear regression (if X are continuous), or ANOVA (if K > 1 and
all X, are binary).

We emphasize, however, that such a global test is only
valid if the results are relatively homogeneous between micro-
experiments. In the same way that ignoring large individual dif-
ferences may invalidate the results of a conventional experiment,
if a facet causes true heterogeneity in the effect size, the global
test can be a poor approximation, and it is important to evaluate
whether the test is appropriate before drawing conclusions from it.

Level-2 heterogeneity and moderation.  Experimental effect sizes
are inherently unstable. Even in the absence of explicit modera-
tors, any set of experiments will show variance even in the true
effect size — that is, above and beyond measurement error. This
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instability—which occurs due to ephemeral differences even be-
tween superficially identical designs—is sometimes referred to as
level-2 heterogeneity.

The global hypothesis test above makes no statement about the
robustness of the finding to variations in the experimental setup.
In order to evaluate robustness, we can apply an hierarchical
model in which a facet is allowed to interact with any or all of the
elementary Vs (including the intercept). We then inspect if and
how the effect varies over the range of each of the individual facets.
In the hierarchical model, the regression weights are decomposed
to yield the following random-effects model equation:

K

Ym(s) = Z (Br + OrViem) Trm(s) + S€Em(s)-
k=0

Here, the new parameter ., indicates the unique contribution of
the facet to the effect of the kth elementary IV. The parameter is
i.i.d. standard normal. Of primary interest in this scenario is o,
the level-2 variance of the contribution of the facet to the effect size
Bk, and potentially the pattern of change in v, across its levels
m. The former quantifies the heterogeneity of the effect size: oy,
can be compared to the fixed effect size 3;, for reference; the ratio
pr = ok /B is sometimes called the coefficient of variation. The
parameter p,, may be interpreted as a measure of robustness, with
small values (say, less than 1/3 or 1/4) indicating robustness and
large values indicating sensitivity to the facet k. The changes in
~Yrm Over the facet allow us to visualize and study its influence.

While it is sometimes sufficient to visualize an effect or a pattern
of effects across values of a moderator, we occasionally need to
test whether an effect is nominally present or absent in a given
condition. For this purpose, we can use a Bayes factor (or likelihood
ratio), which expresses by how much the relative probability of a
pair of hypotheses changes when the data are taken into account.
That is, if H, and H,;, are the hypotheses under consideration and
x is the data, the Bayes factor is given by

B,, = L(Hal®)/P(Holz)
‘ P(Ha)/P(Hs)

We will interpret B, > 10 as strong support for H,.

Planned meta-analysis. A meta-study will typically lead to some-
what larger data sets than are common in psychological science. In
order to apply a high-dimensional statistical model to a large data
set, we use one particularly useful approximation that changes
our analysis from a standard hierarchical model into a planned
meta-analysis. The approximation is based on the central limit
theorem, which allows us to substitute n,, normally distributed
data points y,,(;) with variance ¢? by their means %,, with standard
deviation equal to the standard error of measurement s,,,:

K

(51@ - O'k’ykm) Tkm + Sm€m.
k=0

Q)
3
I

A conventional meta-analysis involves a set of studies, each of
which can be represented as a point in the method space, with the
exact location chosen by the experimenters. The meta-analyst
then computes a weighted average of effect sizes across these
studies. While conventional meta-analysis is often plagued by
severe issues such as publication bias, this is not a concern for the
meta-study. Similarly, the issue of hidden moderators is reduced
here since at least some differences between micro-experiments
are recorded: facets are explicitly identified and their levels are
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not arbitrarily chosen but—to the extent possible—fairly and
independently sampled from a well-defined population distribution.

In the following section, we will apply these methods and analyses
to an experimental study in cognitive science. For the purposes of
exposition, we will omit some detail regarding the experiment (full
detail is available via https://osf.io/u2vwa/).

The effect of masked cues on cognitive control

As a toy demonstration, we replicate a recently published experi-
ment in cognitive psychology.” Reuss et al. (12, see esp. Fig. 1)
describe an experiment in which a cue that is presented for a sub-
liminal amount of time (i.e., too briefly to be consciously detected)
influences how participants balance speed and accuracy in a re-
sponse time task. This design has obvious facets (e.g., the color of
the cue) whose exact values are not expected to affect the finding
of subliminal perception: If the effect is robust, it should appear
at all values of the facet; If it is fickle, it should appear in some
(contiguous) value ranges but not in others; If it is false, it should
not consistently appear in any range of values.

The basic task. In the experiment, participants were shown a
“bullseye” stimulus consisting of a dot surrounded by nine concen-
tric circles. The stimulus appeared either in the right or the left half
of the screen and participants were instructed to move the mouse
pointer from the center of the screen to the center of the bullseye
and then click the left mouse button. Shortly before the presenta-
tion of the stimulus, a single-letter cue was presented, instructing
participants to either favor accuracy (measured in distance from
the center) or favor speed. Additionally, the cue was either masked
(by the rapid presentation of two three-symbol strings like ### and
&&4&) or not, giving rise to four experimental conditions. Of primary
interest is the effect of the masked cue instruction on the speed
and accuracy of the responses that Reuss et al. (12) first reported.

Sampling the method space.  During the development of the study,
the experimenters collaboratively constructed a list of facets to
include. In Table 1, we list facets related to timing, including the
duration of the first and second forward mask, of the first and
second backward mask, of the masked and unmasked cue; facets
related to color, including the hue and luminance of masks and
cues; and other miscellaneous facets, such as the symbols used
in the mask and the testing location.

Each of these facets was assigned a distribution from which
its values were to be randomly sampled at the beginning of each
micro-experiment. In almost all cases, this involved a uniform distri-
bution over a range of integer values (e.g., the variables relating to
presentation time were naturally expressed as an integer number
of frames). For one facet, variance was introduced not through
random sampling but by a convenience sample: the experiment
was conducted in 6 different geographical locations.

The experiment. Each participant’s session of the experiment
began with 16 practice trials whose facets were set to match the
original study by Reuss et al. as closely as possible. After that,
each block of trials consisted of (1) 40 “bullseye” trials whose
facets were set to a random value sampled from the corresponding
distribution; and (2) 40 “cue identification” trials whose facets were

“The experiment was approved by the institutional review boards of UC Irvine (#2015-1802), Syra-

cuse University (#13-269), Vanderbilt University (#151563), the University of Groningen (#15122-
NE), the University of New South Wales (#153-2387), and the Melbourne School of Psychology
(#1544198.3). All participants provided informed consent at the beginning of the experiment and
were informed that participation was voluntary.
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Table 1. Heterogeneity over facets.

Facet Levels  Original pe
First forward mask duration 0-50ms 40ms 0.42
Second forward mask duration 0-50ms 30ms 0.52
Total forward mask duration 0-100 ms 70ms  0.59
First backward mask duration 0-50ms 40ms  0.49
Second backward mask duration 0-50ms 30ms 0.52
Total backward mask duration 0-100 ms 70ms  0.69
Masked cue duration 0-50ms 30ms 0.90
Blank interval duration 250 — 750 ms 500 ms  0.93
Intertrial interval duration 500-1500ms 1000 ms  0.55
Mask and cue color (13 colors)® white  0.13
Mask and cue contrast 05<x<1.0 1.0 0.21
Target center color (13 colors)® red 0.10
Target center contrast 05<x<1.0 1.0 0.21
Target surround contrast 05<x<1.0 1.0 0.22
First mask symbol @,# 9%, %, &, ? # 0.06
Second mask symbol @, #, %, %, & ? %  0.06
Location (6 locations)® 0.36

@: pindicates the observed heterogeneity that the facet introduces in the effect of
masked cues on accuracy (lower values indicate greater robustness); *: 12 hues
were sampled between integer multiples of 30° angles in HSV color space; the 13th
color was white; “: The locations were the research labs of authors CD (Sydney,
Australia), CNW (Syracuse, NY), DRL (Melbourne, Australia), DvR (Groningen, the
Netherlands), JST (Nashville, TN), and JV (Irvine, CA).

set to the same values used in the immediately preceding bullseye
block. The first 8 trials of each type were considered practice trials
as well. The goal of the cue identification trials was to confirm
the true subliminal nature of the masked cue. Crucially, all facets’
values were resampled at the start of each block of bullseye trials,
making each block of trials a unique micro-experiment.

Practice trials were discarded. At each bullseye trial, we
recorded two dependent variables: (1) the participant’s response
time and (2) the distance (in mm) between the center of the stimu-
lus and the point where they clicked. In the cue identification trials,
we recorded (1) the response time and (2) the (binary) accuracy.
We discarded trials where the reaction time was too high (over
2500 ms) or too low (under 150 ms) and where the participant
clicked without moving the pointer.

Each of the 6 participating labs decided how many blocks each
participant would complete (all labs chose 14 blocks, which made
for approximately one-hour sessions) and how many participants
would be recruited; with no fixed stopping rule set. Labs recruited
between 47 and 78 participants from their institutional human
subjects pools, for a total of 346 participants and up to 4,844
micro-experiments, all with randomly drawn levels on each facet.

The dependent variable.  Throughout the following analyses, the
quantity of interest is the magnitude of the conditional effect of
the cue when it is masked — that is, the difference between the
masked-cue, accuracy-instruction condition and the masked-cue,
speed-instruction condition. For the purposes of exposition, we will
focus only on the dependent variable “accuracy” (negatively coded
as the distance from the center of the bullseye), but similar results
were found for the “reaction time” dependent variable.

Level-2 variability.  In order to quantify the heterogeneity between
the 4,844 micro-experiments, we applied an hierarchical Bayesian
model (16) that included a unique effect size parameter for each
micro-experiment (i.e., a random effect of micro-experiment). This
results in a distribution of effect sizes with as many values as there
were micro-experiments. Focusing on the effect of masked cues
only, the mean of that effect size distribution was estimated at
ﬁ ~ 3.36 mm. However, its population standard deviation was
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Fig. 1. Level-2 variability. Histograms of estimated effect sizes across micro-
experiments are split between masked (left) and unmasked (right) conditions and
between micro-experiments that support an effect (regular bars) versus no effect
(inverted bars). Darker bars indicate stronger support with a Bayes factor of at least
10. A majority of micro-experiments show support for the unmasked effect, but a
similarly large number support no effect of the masked cue.

6 =~ 6.46 mm and the coefficient of variability was p ~ 2, which
indicates that the effect is sufficiently sensitive to the differences
between micro-experiments that it will occasionally vanish.

A histogram of the distribution of effect sizes over micro-
experiments (Fig. 1) shows the large variability. To construct these
histograms, we computed Bayes factors! to express the statisti-
cal support for a non-zero effect in each micro-experiment. The
sample effect sizes more consistent with a zero effect make up the
inverted histogram. The figure shows that three-quarters of the
individual micro-experiments in the masked condition appear more
consistent with no effect than with a positive effect and a small
number show an effect in the opposite direction. By contrast, in
the unmasked condition, the large majority of micro-experiments
are more consistent with a positive effect.

The large variability appears to suggest the existence of one or
more moderating variables hidden in our design. We can quantify
the heterogeneity of this effect by applying a sequence of hier-
archical models. In each model, we will estimate the variability
of the effect size across levels of one facet (i.e., a random effect
of the facet). Each such analysis will yield an estimated coeffi-
cient of variability associated with that facet. These estimates are
given in Table 1. The largest heterogeneity is seen in the various
timing facets, and the effect is particularly unstable across levels
of ‘masked cue duration’ amd ‘blank interval duration’, while it
appears to be relatively robust to changes in colors and symbols.

Moderator analysis. The observed heterogeneity can be ex-
plored by the explicit introduction of potential moderators of the
effect. One candidate moderator that is not included in Table 1 is
the subliminality of the cue as presented. Recall that after each
block of bullseye trials, participants completed a block of trials
in which they were asked only to identify the cue. In these cue-
identification blocks, the cue was presented with the same settings
(i.e., the same values on the relevant facets) as in the bullseye
trials. We can quantify the subliminality of the cue under these
conditions by the accuracy in the cue-identification trials.

Figure 2 (left panel) shows how the effect of the masked cue
varies as a function of the subliminality of the cue presentation.

TThe Bayes factors express how much less likely the effect size of 0 mm is under its posterior
distribution than under its prior distribution. The prior distribution of the effect size /3 is derived
from the prior distributions of the condition means, which was in turn derived from the source
paper (12). Assuming a repeated measures correlation of no more than 0.5, the effect size prior
worked out to a normal distribution with mean 0 mm and standard deviation 10 mm. This test is
maximally sensitive to effect sizes that are slightly smaller than the global mean effect size in the
original paper. None of our conclusions regarding Figure 1 are sensitive to reasonable variation in
these assumptions.
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Fig. 2. Left: Micro-experiments support an effect when participants are able to
consciously identify the cue (square markers), but not otherwise (round markers).
Right: The data are split by subliminality. The facet “target center color” was varied
over 13 possible levels, but the facet does not appear to moderate the effect of interest.
That is, the effect appears robust against this facet. Both: Error bars show 99%
credibility intervals. Solid square markers indicate strong evidence (BF > 10) for a
nonzero value. Solid round markers indicate strong evidence for a zero value. Empty
markers indicate ambiguous evidence.

Only in those micro-experiments where the cue identification
accuracy is at least 68% does an effect of the masked cue appear.
In the figure, square markers are filled if the data strongly support
an effect (with a Bayes factor of at least 10), round markers
are filled if an effect size of zero is strongly supported, and
empty markers indicate ambiguity. Each facet can be explored in
a similar way to evaluate whether it moderates the effect of interest.

The level-2 variability analysis hinted at the presence of a potential
moderator, and Figure 2 identifies subliminality as one. We can
construct similar figures to indicate the /ack of a systematic effect
of a facet. For example, a facet that is an unlikely moderator is the
color of the target center. In Figure 2 (right panel), we graph the
effect size as a function of this facet, splitting micro-experiments
according to whether the cues were consciously visible. The effect
appears to be robust to changes in this facet since it occurs across
all levels of the facet for supraliminal trials (squares) and nowhere
for subliminal trials (circles).

Conclusion  The effect of masked cues is strongly qualified by
the moderator analysis. Masked cues seem to have an effect
on participant behavior only in those settings where the cue is
consciously visible. We find no evidence of an effect of subliminally
presented cues. To the contrary: our data are more consistent with
no effect when the cue presentation is truly subliminal.

Discussion

Robustness and generalizability of empirical results are critical
considerations regarding the reproducibility crisis that has beset
psychological science. The radical randomization approach to ex-
perimental design, in which features of an experimental design are
strategically randomized, allows researchers to make statements
that are less sensitive to unavoidable between-study variability.
When a single experiment demonstrates the existence of some ef-
fect, there is the risk that the effect is isolated to a particular “sweet
spot” in the method space. By contrast, the meta-study allows us
to make statements about effects in regions in a method space: a
well-defined and formalized universe of intended generalization.
In our view, meta-studies complement the standard approach
to empirical research. The radical randomization approach speaks
to the robustness of empirical effects, but such information is only
useful to the extent that it informs the development of substantive

6 of 6

theory. Experiments with tight control and fixed effects are an
established means of generating theoretical explanations for data;
we view meta-studies as an efficient way of testing such theories
by complementing the fixed effect approach with random effects.

The strategy has some weaknesses to keep in mind. First, it is
impractical in certain settings, such as when data is expensive
to collect. However, it is particularly well suited for “many labs”
style projects in which an ad-hoc consortium of research labs
collaborates in data collection. Still, a meta-study could very
reasonably be run within a single lab — from a logistical standpoint,
the cost to each lab that contributed to the applied example was
comparable to that of a typical experiment in cognitive science
(arguably it was slightly lower since the study materials were
produced entirely by the UC Irvine and UNSW labs). Second, in all
but some cases it will be impossible for a research team to identify
all facets that might moderate an effect. It serves to remember
that claims of generality remain confined to the actually realized
method space. However, the randomization of experimental
features does provide for a built-in test of some robustness to
small variations in experimental features, it can be used to spot
weaknesses in an experimental design as well as in empirical
claims, and it can be used to generate novel hypotheses when a
facet unexpectedly turns out to be influential.

The major strength of radical randomization, and the reason why
we recommend it, is that it allows for defensive design: a design
strategy under which studies are optimized for generalizability,
replicability, and robustness.
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