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ABSTRACT OF THE THESIS 
 

From Black to White: An Investigation of the Link between Marine Carbonate Geochemistry 

and Color Over the Past 500 Million Years 

 

 

by 

 

Robert Joseph 

 

Master of Science in Earth Sciences 

University of California San Diego, 2023 

Professor Richard Norris, Chair 

 
 

Marine carbonates display a marked color transition from dark gray in the early Paleozoic 

to predominantly white and tan in the Mesozoic. Previous studies have interpreted this transition 

to reflect a fundamental change in the redox state of marine sediments around ~200 Ma, with a 

reduction in bacterial sulfate reduction (BSR) and the emergence of active bioturbators being 

suggested as factors in this change. This study aims to assess the hypothesis that the change in 

color was primarily driven by changes in the rate of BSR, in which the loss of abundant gray  

carbonates was associated with a decline in pyrite deposition in marine sediments. Here, the bulk 
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geochemistry of marine carbonates was analyzed using a handheld XRF Tracer. These rock

samples include ~ 679 Paleozoic and Mesozoic carbonates that had previously been 

characterized for their color, depositional environment, and bio-stratigraphic age.  Exploratory 

statistical methods, including Random Forest, PCA, and RDA, were then used to identify 

correlations between carbonate chemistry, color, age, and depositional facies to identify whether 

pyrite was the dominant colorant in black and dark gray carbonates. Based on the resulting 

models, the most dominant directions of geochemical variation are between carbonate-pure 

limestone and terrigenous material-rich marls. Rock color is not strongly associated with sulfur 

content or other evidence of hypoxia. The statistical analysis does not support the hypothesis that 

pyrite abundance controls carbonate color, thereby implying that other processes outside of 

changes in BSR were the driving mechanisms behind the observed changes.  
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INTRODUCTION 
 

One of the oldest observations in the field of geology and stratigraphy is that Paleozoic 

carbonates older than ~ 200 Ma are nearly universally black to dark gray in color while the 

majority of younger ones are tan to white, with dark colored carbonates largely disappearing 

from the record after ~ 100 Ma. This temporal trend in color is so widespread that it has been 

observed across multiple continents, including Europe and North America (Ager 1973). 

However, despite how significant this observation was in the early years of geology, there have 

been few studies that sought to quantify the change in color of marine carbonates across time or 

identify the driving forces behind this widespread transition.  

 
Figure 1: Sample age vs. reflectance at 700 nm from Rishi K Sugla and Richard Norris (Sugla 2021). Colors in the 

background approximate the sample color. Note the emergence of lighter-colored, high reflectance carbonates after 

~200 Mya, and the disappearance of dark, low reflectance carbonates after ~ 100 Mya.  
 

One study that addressed both topics comes from Rishi Sugla. In his unpublished thesis 

2018 paper Secular trends in Phanerozoic carbonate sediment color and ocean oxygenation, 

Sugla hypothesizes that the changes observed in marine carbonate color over the past 500 million 
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years reflect the progressive oxygenation of the Earth’s deeper oceans, from reducing conditions 

in the Paleozoic to oxidizing conditions in the Mesozoic and Cenozoic. He argues that as the  

Earth's oceans became increasingly well oxygenated, two major changes took place. First, the 

dominant metabolic pathway in marine sediments shifted from bacterial sulfate reduction (BSR) 

to O2 reduction about 200 million years ago. This shift would have reduced the formation of 

framboidal pyrite (FeS2), a biogenic form of pyrite that, when abundant, turns sediments black or 

gray (Berner 1984). Second, the increased availability of O2 enabled the evolution of actively 

burrowing infauna. These burrowing animals directly consumed buried organic matter, which is 

typically dark brown in color, while simultaneously ventilating sediments via their burrows, 

further improving sediment oxygenation and iron oxidation (Thayer 1983). The combination of 

these two O2-driven processes would be sufficient to explain why marine carbonates develop 

oxidized colors in the Mesozoic, thereby making color an indirect proxy for marine oxygenation 

through the Paleozoic and Mesozoic.  

To test this hypothesis, Sugla quantitatively measured the color of marine carbonates 

spanning the last 500 Ma, using a spectrophotometer on polished thin section blanks of marine 

carbonate rocks. He used the percentage reflectance at 700 nm as a representative wavelength to 

describe sediment color. He then plotted their results against time in order to identify the major 

trends in carbonate color over the Phanerozoic. The resulting plot is shown in Figure 1. White 

and tan carbonates only appear in the sample record after ~ 200 Mya, and by ~100 Mya, black 

and dark gray carbonates nearly completely disappear from the record. If carbonate color is a 

valid proxy for marine O2 content, then this suggests that the oceans experienced widespread 

oxygenation that started around 200 Mya and reached modern levels by 100 Mya. 
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This interpretation is supported by several other marine O2 proxies. Studies of iodine-

calcium ratios (I/Ca) and δ98Mo indicate a potential increase in marine O2 around 200 Mya, as 

shown in Figure 2a (Lu et al 2018; Dahl et al 2010). Furthermore, several studies investigating 

bioturbation rates in marine sediments and the mobility of marine animals suggest that more 

active marine animals only began to appear after 200 Mya (Thayer 1983; Figure 2b).  

 

Figure 2a: Graph displaying the I/Ca ratios and δ98Mo values of marine carbonates over the past 500 Mya. Higher 

I/Ca and δ98Mo values are both linked to higher dissolved O2 content in seawater. Note the highlighted section 

around 215-160 Mya, in which both I/Ca and δ98Mo display elevated values, suggesting that the oceans underwent a 

period of oxygenation during the early to mid-Mesozoic. I/Ca data from Lu et al. 2018, δ98Mo data from Dahl et al. 

2010, graph produced by Dr. Richard Norris.  

 

The emergence of active burrowers and larger, more mobile marine fauna around this time 

further supports the proposed oxygen hypothesis, as more active animals need more O2 for 

respiration (Thayer 1983). This combined evidence implies that the oceans experienced a 

widespread oxygenation event around 200 Mya, which appears broadly consistent with Sugla’s 

hypothesis. That said, these proxies don’t provide insight into whether the change in carbonate 

color was mediated primarily through BSR or organic matter (OM) preservation.  
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Figure 2b: Changes in Cumulative Population Bioturbation over the past 500 Mya. Note the highlights section, 

which indicates a period around 200 Mya when rates of bioturbation began to increase significantly from Paleozoic 

rates. Data from Thayer 1983, graph reproduced by Dr. Richard Norris.  
 

This study aims to assess one of the underlying assumptions of Sugla’s hypothesis, 

specifically that the change in carbonate color was primarily mediated through changes in rates 

of BSR over the past 500 Mya. If this is the case, then it would be expected that black and dark 

gray carbonates would contain greater concentrations of framboidal pyrite, which in turn should 

be reflected in the bulk geochemistry of the carbonate samples (i.e., darker samples having 

higher concentrations of Fe, S and other sulfide-forming elements) (Calvert and Pedersen, 1993). 

To address this question, the bulk geochemistry of the majority of carbonates from Sugla’s 

sample set was semi-quantitatively characterized for their major element and limited trace 

element content. These data were used in combination with the reflectance and age data from 

their analysis to construct a series of statistical models designed to test for systematic variations 

in bulk geochemistry through time.  

If the color in gray and black samples comes from framboidal pyrite produced via BSR, 

then the data should display the following: First, black and dark gray samples should display 
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higher concentrations of sulfur (S) and iron (Fe) than lighter samples due to the inclusion of 

framboidal pyrite. Second, older samples should contain more S and Fe than younger samples. 

This follows from the observation that older samples tend to be darker than lighter samples, as 

demonstrated by Figure 1. Finally, darker samples should contain higher concentrations of 

elements that form sulfide minerals in marine sediments, such as copper (Cu) and zinc (Zn) 

(Calvert and Pedersen, 1993). If none of these trends are observed within the data, then it is most 

likely that pyrite is not the primary colorant in darker carbonates, and another component, such 

as organic matter (OM), is more likely to be the primary driver behind color. This study tests for 

these trends using a series of statistical models, including Random Forest, Principal Components 

Analysis, and Redundancy Analysis.  
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METHODS 

The samples selected for this analysis originated from the collection used by Rishi K. 

Sugla for his thesis project (Sugla, 2021). The samples reflect a variety of environments, from 

shallow reefs to the deep ocean, and range in age from ~ 40 Mya to ~ 513 Mya. Geologic sample 

environment was determined by Sugla based upon microfacies analysis of each specimen 

together with literature review. Color reflectance was measured using a desktop 

spectrophotometer in Dr Kathy Barbeau’s laboratory at Scripps Institution of Oceanography. The 

percentage of reflectance at 700 nm was chosen as a proxy for color based on the maximum 

divergence of samples at this wavelength. Most samples were previously cut and polished as thin  

Figure 3: Photograph of three carbonate samples, prepared as 1-inch polished rock chips. Samples pictured display 

the range of colors present within the sample set. The oldest samples, i.e. Paleozoic, tend to be dark black to gray in 

color, similar to the leftmost sample below. Samples showing intermediate (brown, medium gray) and light (tan to 

white) colors only begin to appear in the Mesozoic.  

section  blanks by Rishi Sugla for spectrographic color analysis and did not need to be re-

prepared for XRF analysis. Samples were sliced into ~3 x 5 cm chips about 1 cm thick with a tile 

saw and subsequently hand polished with 500 grit (~15-20 m) sandpaper to remove saw marks 
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and create a uniform, smooth surface on one side (Figure 3). All samples that required re-

polishing were allowed to dry for at least 2 hours before being scanned using a handheld XRF. 

Estimates of the geochemical composition of each sample were collected using a 

handheld Bruker Tracer 5i XRF. Weight percent element (%Wt) values were collected using the 

Earth Cal program (50kV, 10µA), using an exposure time of 30 seconds, a beam diameter of 

8mm, and an air-filled chamber. The Earth Cal program is a custom calibration program initially 

designed for analyzing the geochemistry of mudstones and was selected due to the limited 

availability of other calibration programs at the time of data collection. The resulting 

geochemical data were matched with previously collected data for 700 nm reflectance, sample 

age (based largely on biostratigraphy), location of collection, and depositional environment data, 

leading to a total number of 679 matched samples. In cases where the concentration of an 

element in the sample was below the detection limit (<LOD), a value of 0 was substituted in 

order to allow for compatibility with the random forest, PCA and RDA algorithm, which require 

numerical values in order to properly run.  

The accuracy and reproducibility of the Bruker XRF was assessed using two tests. The 

first test involved assessing the accuracy of the handheld Tracer by comparing the data it 

collected to a series of pressed pellets (suitable for XRF) of geological reference materials 

produced by the MyStandards company. The product information sheets containing the assigned 

element values for each sample are provided in the supplemental files for this text. The following 

standards were chosen for this test: GH-NP (Granite), ECRM-752-1-HF, (Limestone), SdAR-L2-

P (river sediment, low heavy metal pollution), and SdAR-H1-P (river sediment, high heavy metal 

pollution). The accepted values for major and trace elements for these standards are given in 



 

8 

 

Tables 6-9 in the Appendix, alongside digital links to the product information sheets for each 

standard.  

The second test was designed to assess whether the handheld Tracer returns variable 

counts depending on how long the X-ray tube has been active, i.e. whether it displays a warm-up 

curve. Five samples were selected for this test. The samples selected included a light-colored 

sample, a dark-colored sample, a high-Ca sample, a high-Si sample, and a high-Fe sample. These 

samples were not reference standards but rather representative samples that serve only as a 

means to evaluate the reproducibility of the XRF data. Each sample was scanned a total of 19 

times in a rotating sequence to produce a time series. The scanning started within the first minute 

of turning on the Tracer XRF and continued every 5 minutes for 2 hours. The results of these 

scans were also used to identify which elements had sufficient resolution and reproducibility to 

be used in exploratory statistical analyses. Several element %WT values were excluded as they 

were poorly measured by the Tracer; excluded elements include sodium, magnesium, 

phosphorus, copper, cobalt, vanadium, niobium, molybdenum, lead, thorium, and uranium. 

         The elemental data were first analyzed via Random Forest analysis using the 

randomForest R package. Random Forest is a machine learning method that partitions data into 

several smaller bags and tests a predictive model against each bag, producing a collection of 

decision trees. The results of these trees are then averaged together in a group-voting process, 

which is done to reduce the impact of overfitting on the data (i.e. the tendency of the algorithm to 

identify nonexistent patterns when it runs for too long) (Brieman 2001). For the Random Forest 

analysis, elements displaying percentage increases in mean standard error (%IncMSE) greater 

than 10% after a max tree number (mtry) optimization were used to construct a second, limited 

model. The results of the Random Forest analysis were assessed based on two metrics: 
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percentage increase in mean standard error (%IncMSE) and increase in node purity 

(IncNodePurity). %IncMSE is the increase in the mean standard error of the model when a 

variable–such as an element, geologic age or sediment color– is removed from the set of 

explanatory variables. IncNodePurity represents the change in the simplicity of each decision 

tree when variables are removed as measured by the number of branches at each decision step, or 

“node”, with fewer branches equating to greater purity.  

Next, the data were analyzed using two additional methods, PCA (Principal Component 

Analysis) and RDA (Redundancy Analysis), using the vegan R package for both. PCA is an 

ordination method that resolves data into the major axes of variation. This grants PCA an 

advantage over other similar methods, as it can identify multiple directions of variation rather 

than just the dominant direction within a data set. For the PCA analyses, the first model 

incorporated the entire elemental data set. Elements displaying strong positive or negative 

species scores (> +1.0 or < -1.0) in principal components 1 through 6 of this whole-element 

model were selected for further review and use in two subsequent models: an element-only 

model (EO) and an element-color-time model (ECT). The element-only model contains the Wt% 

data for elements that showed consistency and reproducibility in the time tests. The element-

color-time model contains all the data from the element-only model, with the addition of the age 

(time) and reflectance (color) data from the color spectrophotometer analysis. The resulting 

principal components (PC) of the EO and ECT models were then evaluated for importance using 

the Keiser-Guttman criterion, which states that components with an Eigenfunction Score equal to 

or greater than 1 should be considered significant (Gortezko and Bühner, 2022). Principal 

components (PC) that were deemed significant were then used to construct a series of site-score 

scatterplots and eigenvalue biplots that were then used to interpret the results of each PCA. 
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For RDA analyses, a forward selection method was used to identify which elements were 

statistically significant, both when modeling carbonate color as a function of elemental 

composition alone and as a function of both elemental composition plus each sample’s geologic 

age. The resulting optimized models were then built and their adjusted R2 values derived. 

Significance tests for both the timeless and time-included RDA model were performed, the 

results of which are reported below. Due to the structure of the data, no biplots could be 

constructed using the RDA results.  
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RESULTS 

 Comparison to Geologic Standards: For the initial comparison test, the Granite 

standard, GH-NP, was selected as its chemistry is the most similar to terrigenous sediments 

produced by continental weathering, which is an expected component in marls along with the 

terrestrial-sourced components of relatively pure calcium carbonate. Major elements for the 

standards were initially reported as oxide weight percents and were therefore recalculated as 

elemental percentages so that major and trace element data were internally consistent (as 

elemental percentages). The adjusted values were then plotted alongside the XRF results on a 

logarithmic scale as a series of scatter plots, shown in Figures 4a - 4d and the Appendix Tables 

6-9. 

 

Figure 4a: Comparison of known and estimated element concentrations for GH-NP, a powdered granite standard. 

Known values are shown in black, average of three XRF scans shown in red.  

For most major elements, the Bruker Tracer XRF appears to be relatively accurate with 

the exceptions of Na and Mg, where the XRF results are several orders of magnitude different 
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from the expected standard values. This is likely because these elements were too light to be 

reliably detected in an air-filled chamber of the Bruker Tracer XRF. The XRF results for the 

trace elements are also less accurate, especially for the transition metals and S. For the transition 

metals, this may be due to the low detection limit of the Bruker Tracer XRF, which appears to be 

between 0.003 and 0.001 Wt%.   

For the second round of comparison tests, which was conducted after purchasing a new 

set of standard samples from Mystandards, three standards were used, ECRM, SdAR-L2, and 

SdAR-H1. ECRM is a limestone sample, while SdAR-L2 and SdAR-H1 are both riverine 

sediment samples with differing levels of heavy metal and pollutant contamination (low 

contamination and high contamination respectively). These standards were selected for being 

sedimentary rocks, and therefore closer in composition to the samples used in this project than 

the initial GH-NP granite standard. The same procedure used in the initial comparison test was 

repeated for each of these three samples, and the results are given in Figures 4b – 4d.  

The results of these additional tests appear to show that the Tracer is relatively accurate 

when it comes to assessing the concentrations of the major elements, particularly Ca, Si, Fe, Al, 

and Mn, as well as a select number of trace elements, including Mn, Sr, and Zr. As for the 

discrepancy in S seen in Figure 4a, further investigation will be required to determine whether 

this is due to matrix interference or if it is the result of a miscalibration in the EarthCal program 

used by the Bruker Tracer. However, the results of the warm-up tests, discussed later in the text, 

seem to imply that the Tracer is relatively consistent at detecting S in marine carbonates (Figure 

5f) 
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Figure 4b: Comparison of known and estimated element concentrations for ECRM, a powdered limestone standard. 

Known values are shown in black average of three XRF scans shown in red.  

 

 

Figure 4c: Comparison of known and estimated element concentrations for SdAR-L2, a powdered riverine standard 

with low pollutant contamination. Known values are shown in black, average of three XRF scans shown in red. 
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Figure 4d: Comparison of known and estimated element concentrations for SdAR-H1, a powdered riverine standard 

with high pollutant contamination. Known values are shown in black, average of three XRF scans shown in red.  

Warm-up Test: The results of the time tests were plotted against time for several major 

elements, as well as some trace elements of inquiry, to assess whether the quality of the data was 

sufficient for later analyses. Elements displaying relatively consistent measurements and 

detection at each time step were deemed high-quality for the purposes of this analysis. Elements 

that displayed inconsistent detection were deemed unusable.  

The analysis did not reveal a clear signal of lower counts during the initial 15-20 minutes 

after turning on the XRF tube. Certain samples, namely VB-26 (Figure 5b) and RS-0026 (Figure 

5a, 5c), showed some variation in detection for certain elements, though this is most likely due to 

the Bruker handheld Tracer capturing small heterogeneities in the material, such as individual 

grains, during replacement of the samples on the detection window. However, there is poor 

reproducibility of counts for elements with low abundance. Several element %WT values were 

therefore excluded from the later analysis due to poor resolution and reproducibility. Excluded 
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elements include sodium, magnesium, phosphorus, copper, cobalt, vanadium, niobium, 

molybdenum, lead, thorium, and uranium. The results for a selection of these element tests are 

shown below in Figures 5a – 5f.  

 

 

 

Figure 5a: Time test results for calcium. Reported WT% on the y axis, time series steps on y-axis. Time series steps 

were recorded in minutes. Red lines mark the activation and deactivation of the tracer.  Note that the detection is 

relatively consistent across time, especially in comparison to other elements such as U (Figure 5d).  
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Figure 5b: Time test results for iron. Reported WT% on the y axis, time series steps on y axis. 

 

 

Figure 5c: Time test results for silicon. Reported WT% on the y axis, time series steps on y-axis.  
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Figure 5d: Time test results for uranium. Reported WT% on the y axis, time series steps on y-axis.  

 

 

Figure 5e: Time test results for copper. Reported WT% on the y axis, time series steps on y-axis. Similar to 

uranium, the handheld tracer was often unable to detect the abundance of copper in the samples.  
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Figure 5f: Time test results for sulfur. Reported WT% on the y axis, time series steps on y-axis.  

Random Forest: For the Random Forest analysis, the model was designed using a series 

of selected elements as well as sample age (Time) as predictors for sample color, as represented 

by reflectance at 700nm. Based on the results of this model, which are shown in Figure 6a, the 

age of the samples ends up being the strongest predictor of color, with all elements placing 

significantly lower in terms of their respective importance. For elemental species as explanatory 

variables only, the most significant elements in terms of percent variance explained are Sr, K, 

Ca, Ti, Sr, Y, Fe, Mn, and Si. These elements have been isolated from the other data and plotted 

in Figure 6b for clarity.  

Overall, Sr, Mn, and Fe are the most significant values for the percentage of variance explained, 

as demonstrated by their percentage increase in mean standard error (%IncMSE) values of 45.97, 

43.18, and 32.91 respectively. While Fe and Mn were significant in terms of their respective 

%IncMSE and change in IncNodePurity, Strontium (Sr) is the most significant predictor of all 
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elements across both metrics. Sulfur (S), meanwhile, is less significant across both metrics. The 

five most significant elements in terms of both %IncMSE and IncNodePurity are Sr, Mn, Fe, Si, 

and Ti. This suggests that these five elements are more closely correlated with each other in 

terms of their relationship to carbonate color, which is supported by the trends observed in the 

PCA analyses.  

 

 

Figure 6a: Plots of the %IncMSE and IncNodePurity values for time and selected elements and sample age, from 

the initial Random Forest model. Note that time is the most significant variable across both metrics used.  
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Figure 6b: Plot of the 10 most significant element species extracted from the initial Random Forest model. Sr, Mn, 

Fe, Ti, and Ca are the five strongest predictors when time is removed.  

Element-only PCA: For the element-only (EO) PCA, the Kaiser rule analysis (Gortezko 

and Bühner, 2022) suggests that the first three PCs are significant (Eigenvalue > average PC 

value), with the fourth PC being slightly less than significant (Eigenvalue < average PC value). 

The results of these tests are given in Figure 7. After the EO PCA was constructed, the site and 

species scores and first four PCs, PC1, PC2, PC3, and PC4 were extracted. Site scores refer to 

the placement of individual rock samples along the PC axis. Species scores refer to the assigned 



 

21 

 

weight of each of the elements on each PCA axis. PCA site scatterplots and corresponding 

biplots were constructed using the extracted values. The resulting biplots (Figures 8 – 10) and a 

table of extracted species scores (Table 1) are given below. The circle of equilibrium 

contribution is also plotted on each biplot; eigenvectors that terminate outside of this circle are 

considered significant according to the PCA analysis.  

 

Figure 7: Barplot of results from the Kaiser-rule analysis performed on the EO PCA. Eigenvalues greater than the 

average eigenvalue are considered significant, in this case PCs 1-3.  

 According to the results of the EO analysis, the primary signal along the most significant 

axis, PC1, displays a strong anticorrelation between Ca (Eigenfunction Score > 2) and a suite of 

lithogenic-associated elements, namely Al, Si, K, Rb, and Ti (Eigenfunction Score < -2) (Table 

1). These elements display strong anticorrelation on PC1 and moderate anticorrelation on PC2, 

with the strongest clustering of site scores being the clustering of Shallow marine/Oolite Shoal 
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rock samples towards the direction of the Ca eigenvector (Figure 8). The next largest signal is a 

strong Sr eigenvalue (Eigenfunction Score > 2) on PC3. When PC3 is plotted against PC2 and 

PC4, we can see that the Sr signal is associated of cluster of Outer Shelf specimens and shows 

covariance with Rb (Figures 9 and 10). Other notable features of the model include a strong Y 

signal on PC4 (Eigenfunction Score ~ -1.6), though this is likely due to a handful of outliers 

within the dataset that have otherwise been excluded from the plot, given the lack of any 

clustering in site scores along the direction of the eigenvector for Y in Figure 10b.  

 

 

 

 

Figure 8a: Biplot of element-only PCA site scores for PC1 and PC2. The percentage of total variation explained by 

each PC is shown in the axis labels. The depositional environment of each sample is shown in the key on the right 

side of the graph. Site scores are plotted against PC1 and PC2 to identify clustering in the samples, though this 

biplot shows no significant clustering. 
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Figure 8b: Biplot of EO PCA for PC1 and PC2 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. Note the eigenvectors of Ca and Si; the opposing directions of these vectors indicates a strong 

anticorrelation between Ca content and Si content, likely reflecting a measure of carbonate purity. 

 

 

Figure 9a: Biplot of EO PCA site scores for PC2 and PC3. The percentage of total variation explained by each PC 

is shown in the axis labels. Note the elongated cluster of outer shelf samples in the upper right portion of the graph. 
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Figure 9b: Biplot of EO PCA for PC2 and PC3 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. The cluster of outer shelf samples noted in Figure 9a roughly aligns with the eigenvector for Sr.  

 

 

 

10a: Biplot of EO PCA site scores for PC3 and PC4. The percentage of total variation explained by each PC is 

shown in the axis labels, with these two PCs being relatively minor in terms of their significance. Like Figure 9a, 

there is loose clustering of outer shelf sediments, as well as tighter cluster of inner shelf sediments to the upper left.  
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Figure 10b: Biplot of EO PCA for PC3 and PC4 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. The outer shelf cluster again aligns with Sr, while the inner shelf cluster lines up with the 

eigenvector for Fe.  

 

Table 1: EO PCA eigenfunction scores for each element species, PCs 1 through 4. Values indicate the importance 

and relative orientation of each element along the axis, with higher magnitude scores indicating that the element is 

significant to the dimension described by the axis.  



 

26 

 

Element-color-time PCA: The methodology used for the EO PCA was repeated for the 

ECT (Element-color-time) PCA. The Kaiser method suggests that the first four PCs are 

significant, with the results of the test given in Figure 11 (Gortezko and Bühner, 2022). The site 

and species scores for PCs 1 through 5 were then extracted from the ECT PCA As with the EO 

PCA, these values were then used to construct a series of site score scatterplots and 

corresponding biplots. The resulting plots and table of extracted species scores are given in 

Figures 12 – 14 and Table 2.  

 

Figure 11: Barplot of results from the Kaiser-rule analysis performed on the ECT PCA. Eigenvalues greater than 

the average eigenvalue are considered significant. In this case, PCs 1-4 are significant.  

The results of the ECT test show similar trends to the results of the EO test. Across the 

first 5 PCs, time and color show consistent anticorrelation, as demonstrated by the negative 

covariance in their associated eigenvectors (Figures 12b, 13b, 14b) across all biplots. Gray, low 

reflectance samples are geologically older than light colored, high reflectance samples. The 

primary signal on PC1, which is again the most significant axis by a wide margin, was a strong 
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anti-correlation between Ca (Eigenfunction Score > 1.9) and terrigenous-related elements, 

including Si, Ti, Al, and K (Eigenfunction score < -1.9).  In other words, marls containing 

terrestrially sourced elements in abundance are anticorrelated with pure carbonates (Van der 

Weijden 1993). In addition, rock color and geologic age are uncorrelated with Ca content. The 

primary signal on PC2 is a strong anticorrelation between color (Eigenfunction score ~ -1.5) and 

time (Eigenfunction score ~ 1.2), as well as a strong correlation between time and Sr 

(Eigenfunction score ~ 1.4) (Table 2). In the PC2-PC3 biplot (Figure 13), time shows strong 

positive covariance with Sr, with the eigenvectors of both components aligning closely with a 

cluster of Outer Shelf sediments. This arrangement resembles the cluster observed in the EO 

PC2-PC3 biplot (Figure 9).  

 

 

Figure 12a: Biplot of ECT PCA site scores for PC1 and PC2. The percentage of total variation explained by each 

PC is shown in the axis labels. The depositional environment of each sample is shown in the key on the right. 
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Figure 12b: Biplot of ECT PCA for PC1 and PC2 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. Note that the vectors for Time and Color are opposite, while the vectors for Ca and several 

terrigenous-linked elements are orthogonal to both Time and Color.  

 

Figure 13a: Biplot of ECT PCA site scores for PC2 and PC3. The percentage of total variation explained by each 

PC is shown in the axis labels. The depositional environment of each sample is shown in the key on the right. 
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Figure 13b: Biplot of ECT PCA for PC1 and PC2 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. The most significant feature of this plot is the close correlation between Time and Sr.  

 

Figure 14a: Biplot of ECT PCA site scores for PC3 and PC4. The percentage of total variation explained by each 

PC is shown in the axis labels. The depositional environment of each sample is shown in the key on the right. 
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Figure 14b: Biplot of ECT PCA for PC1 and PC2 with eigenvectors plotted in red. Circle of equilibrium is also 

displayed in red. The eigenvector for Sr appears to correlate closely with a cluster of outer shelf carbonates. The 

repeated anticorrelation between Time and Color across all significant axes aligns with Sugla’s observations of older 

carbonates being darker than younger carbonates.  

It is important to note that Fe is generally poorly correlated with time across each of the 

PCs (Table 2). The implication of this is that time is not the primary driver of changes in iron 

content within our sample set. Sugla’s original hypothesis was that Paleozoic limestones differ 

from Mesozoic and younger carbonates are richer in pyrite and other reduced forms of Fe, while 

younger sediments have more oxidized Fe. Hence, it is likely that the lack of correlation of Fe to 

time is due to there being multiple oxidation states for Fe; while the overall iron content of the 

marine carbonates remains relatively consistent across time, the proportion of reduced Fe to 

oxidized Fe changes (Raiswell and Canfield 1998). However, this hypothesis cannot be tested 

without information on Fe oxidation states–data that are not obtainable with the Bruker Tracer 

XRF.  
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Table 2: ECT PCA eigenfunction scores for each element species, PCs 1 through 5. Values indicate the importance 

and relative orientation of each element along the axis, with higher magnitude scores indicating that the element is 

significant to the dimension described by the axis.  

 

 The remaining PCs can be characterized as well, though their low significance in the 

model begs some degree of skepticism. On PC3, Fe, Mn, and Ni are moderately-well correlated 

with each other (Eigenfunction scores > 1) and anticorrelated with Sr (Eigenfunction score < -1). 

On PC4, Time (Eigenfunction score ~ 1.5) is strongly anticorrelated with Yttrium (Y) 

(Eigenfunction score < -1.4). And on PC5, Y (Eigenfunction score > 1) appears to be 

anticorrelated with Sr (Eigenfunction score < -1).   

 

 RDA Analysis: The results of two RDA analyses performed using this dataset are given 

below. Due to the structure of the models, which returned only one axis of variation, the results 

of these analyses are reported as a series of tables rather than biplots.  
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Table 3: Table of biplot scores for constraining variables from the timeless RDA model after optimization. Note 

that all biplot scores are negative, indicating anticorrelation with color. Table 3a displays the results of the element-

only RDA, while Table 3b displays the results of the time-inclusive RDA.  

  
 Color-only RDA: After performing an optimization routine on an all-element RDA that 

uses only elements as predictors for carbonate color (Figure 17a), the resulting optimized 

formula included the following elements: Rb, Sr, Ti, Mn, Si, Zn, Y, and As. Notably, Ca is 

absent from this formula, likely because all limestones are composed dominantly of calcium 

carbonate. The associated RDA values are given in Table 3a. Rb, Sr, and Ti have the strongest 

element scores, with all elements in this formula being anti correlated with color. This aligns 

with the previous observations of terrigenous-sourced elements and Sr being associated with 

darker marine carbonates. A significance test (Table 4) performed on this RDA shows Rb, Sr, Ti, 

and Mn as the most likely to be significant, with Rb explaining ~17% of the total variation in 

sample color. These elements together explain ~31% of the total variation within the sample set 

(Table 4).  
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Table 4: Table of results from a significance test performed on the timeless RDA model after optimization. The 

Table indicates that the Rb, Sr, Ti, and Mn axes are significant (P < 0.001). The significance key is given as follows: 

0 = ‘***’,  0.001 = ‘**’,  0.01 =  ‘*’,  0.05 =  ‘.’, 0.1 =  ‘ ’.  

 Time and color RDA: Performing a second optimization routine that includes time as a 

predictor for carbonate color (Table 3b) yields a formula containing the following components: 

time, Sr, Ti, Ni, Cr, Ba, Zn, Al. As before, Ca is absent from this optimized formula. In this case, 

time has the greatest variable score, followed by Sr and Ti. Notably, Rb is absent from this 

version of the formula.  Time is the strongest predictor for color and is negatively correlated with 

rock color. The three components with the strongest eigenvalues after time are Sr, Ti, and Al. A 

significance test with this RDA (Table 5) suggests that Time, Sr, Ti, and Ni are the components 

with the highest likelihood of being significant, while Al is the weakest in terms of significance. 

Time alone in this RDA explains ~25% of the total variation in color, with Sr explaining ~11% 

of color variation. The total variance explained by these components being ~47% (Table 5).   
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Table 5: Table of results from a significance test performed on the time-included RDA model after optimization. 

The Table indicates that the Time, Sr, Ti, and Ni axes are significant (P < 0.001). The significance key is given as 

follows: 0 = ‘***’, 0.001 = ‘**’,  0.01 =  ‘*’,  0.05 =  ‘.’, 0.1 =  ‘ ’.  
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DISCUSSION 

Geochemistry and Color: To review, if Sugla’s hypothesis that changes in the rate of 

BSR due to marine oxygenation drove the observed changes in carbonate color across the 

Paleozoic and Mesozoic, the following trends would be expected to appear across each 

model:  positive correlation between Fe and S; higher Fe and S in black and dark gray rocks ; 

higher Fe and S in older rocks, particularly those from the Paleozoic; and positive correlation 

between S and sulfide-forming trace elements (Cu, Zn) (Berner 1984; Calvert 1993). One 

corollary to this hypothesis is the potential for Mn to correlate with Fe and S, as manganese 

reduction is an intermediate metabolic pathway that, like BSR, also occurs in reducing 

environment, albeit with weaker efficiency (Burdige 1993).  

PCA Analysis: The PCA analyses reveal more about the relative relationships of the 

various geochemical components to each other, color, and time. The strongest signal in both the 

EO and ECT PCAs occurs along PC1, which explains 40% of the variation in color for the EO 

PCA and 36% of the variation in color for the ECT PCA. In both models, PC1 appears to 

represent the amount of Ca in the sample and ranges from nearly pure pelagic carbonates on the 

positive end to marls with significant terrigenous components on the negative end. The strongest 

signals along this principal component are the strong positive Ca eigenvalue (approximately 

Eigenfunction score = +2) and a series of strong negative eigenvalues for Al, Si, S, K, Fe, Ni, 

Rb, and Cr (Eigenfunction score = -2 or less). These elements are typically more abundant in 

marls, which contain a significant quantity of terrigenous-sourced sediments like sand, silt, and 

clay (Einsele 1982). Therefore, it is likely that PC1 in both PCA analyses represents carbonate 

purity, with samples with more positive site scores representing pure carbonates and those with 

more negative scores representing marls.  
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PC2, meanwhile, appears to represent the axis of color (Eigenfunction score < -1.4) 

versus time (Eigenfunction score > 1.2), based on the observation that the two components score 

most significantly on this PC out of any. Furthermore, looking at how the site scores for each of 

these PCs plot against time (Figures 15a and 15b) reveals more evidence in support of this 

interpretation. Figure 15a suggests that PC1 has no major temporal component, while Figure 15b 

shows that PC2 has a strong temporal component. Anticorrelation between time and color is to 

be expected, as it has been demonstrated that older marine carbonates tend to be darker than 

younger carbonates (Sugla 2021). Moreover, this relationship remains true across all PC axes 

and in the RDA analyses, which is a positive signal that older carbonates are indeed consistently 

darker than younger ones.  

These conclusions are further supported by the relationship between color and the 

element vectors in the biplots for the ECT PCA (Figure 12b). The direction defined by the 

vectors of Ca and several terrigenous elements (Si, S, K, Cr, and Ti) is orthogonal to the 

direction defined by the vectors for color and time. When species vectors in a PCA biplot are 

orthogonal, it indicates a lack of correlation or anticorrelation between these species in the data 

set. The fact that these two directions are nearly perfectly orthogonal to one another implies that 

there is no strong relationship between color and carbonate purity or time and carbonate purity, 

at least in PCs 1 and 2 (Figure 12b). This can be interpreted as indicating that marls are present 

throughout the entirety of the geologic record, and therefore there is no significant temporal 

component to the variation in terrigenous-sourced material in marine carbonates over the past 

500 Mya. And look again at Figure 15a, there does not appear to be a significant temporal 

component to the ECT PC1, reinforcing this interpretation.  
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Figure 15a: Plot of sample site scores for the ECT model PC1 versus sample age. Note the lack of a strong temporal 

trend in the site scores, which indicates this PC represents a non-temporal variation in the dataset. 

 

 

 
 

Figure 15b: Plot of sample site scores for the ECT model PC2 versus sample age. The presence of a temporal trend 

in the site scores supports the conclusion that PC2 represents the color-time variation within the dataset.   

 



 

38 

 

Based on the results of the ECT PCA, it appears that there is little to support the 

hypothesis that BSR is the driving force behind carbonate color. The strongest evidence in favor 

of Sugla’s hypothesis is that S and Ca are anticorrelated on PC1 in the ECT PCA model (Table 

2). This suggests that the marls in this data set are more S-rich than the purer carbonates, which 

aligns with Sugla’s expectations that the darker, less-pure carbonates would have more pyrite. 

However, this is disputed by the observation that the eigenvector of S is orthogonal to the 

eigenvectors of both color and time in the biplot of PC1 and PC2 (Figure 12b), which are the two 

most significant axes of variation. The orthogonality of S to the color-time axis goes against two 

of the primary expectations of Sugla’s hypothesis, that sulfur content should correlate with age 

and anticorrelate with lighter carbonate colors if pyrite is the dominant colorant.  

In addition to the lack of any correlation (positive or negative) between S and color or 

age, there is also no significant correlation between S and Fe in the biplots. While the 

eigenvectors of the two elements are not orthogonal to one another (Figure 12b), they are also 

not closely aligned, lying at an angle of approximately 45°. The weak correlation between S and 

Fe can be explained by the fact that the two elements do not exclusively form pyrite in marine 

carbonates and can coexist in different mineral phases. Fe has multiple redox states and can form 

several minerals of varying coloration; while pyrite (FeS2) is typically very dark in sediment, 

iron oxides (hematite, goethite, etc.) can range from dark black to reddish brown in color, with 

reddish-brown sediments returning moderate reflectance at 700 nm (Sugla 2021; Raiswell and 

Canfield 1998; Myrow 2003). Meanwhile, the geochemistry of S within marine carbonates is 

highly complex and can be influenced by multiple factors including the rate of organic carbon 

sedimentation, inorganic carbonate substitution, and the formation of euxinic conditions (Takano 

1985). As for the lack of correlation between S and sulfide-forming elements, the majority of 
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such elements were excluded from the models on the basis that the handheld Bruker Tracer was 

unable to detect them with the necessary level of consistency (Figures 5d - 5e). Overall, the 

results of the ECT PCA model do not support the hypothesis that changes in pyrite deposition via 

BSR drove the overall lightening of marine carbonates from the Paleozoic to the Mesozoic.  

RDA Analysis: Moving to the RDA analysis, the results of these seem to align with our 

previous assessment of the ECT PCA, especially PC1. This is true of both the color-only (Table 

3a) and time-inclusive (Table 3b) RDAs, with Ti, Cr, Ni, and Al appearing in the optimized 

formulas for both and having strongly negative values, indicating anticorrelation with color. The 

higher reflectance, more oxidized colors are associated with lower abundances of lithogenic 

elements like Al and Ti. These results imply that marls make up a greater proportion of the black 

and dark gray carbonates within this data set–an observation consistent with most of the 

Paleozoic carbonate rocks coming from epicontinental systems proximal to sources of 

terrigenous sediment (Walker et al. 2002).  

One element that stands out in both RDA models is strontium (Sr), which is one of the 

few trace elements that the XRF Tracer was able to detect consistently across samples (Figure 4a 

- 4d). Sr places high in significance in the Random Forest model (Figure 6b) as well as in both 

RDA models (Tables 4 and 5). The PCA models, meanwhile, don’t feature Sr as prominently, 

though it scores highly on several significant PCs; PCs 2, 3 and 4 in the element-only model 

(Figures 9-10, Table 1), and PCs 2 and 3 in the element-color-time model (Figure 13, Table 2). 

The fact that Sr doesn’t score highly on the first PC in either PCA model immediately brings its 

importance into question.  

Looking more closely at the PCA models, we can see in the biplots shown in Figures 9b, 

10b, 13b, and 14b that the eigenvector of Sr repeatedly correlates closely with clusters of outer 
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shelf carbonates. Extracting these samples from the dataset reveals that the majority originate 

from the Union Wash formation, located near the Inyo Mountains in California. The samples 

from this formation are all black to dark gray, indicating that they were deposited under anoxic 

to euxinic conditions (Woods et al 1999). Several samples from this formation show evidence of 

diagenetic alteration in the form of recemented fractures (Figure 16 ). When plotted against time, 

these samples comprise a significant spike in Sr, as shown in Figure 17. This suggests that the 

significance placed on Sr by each of the models in this study might be the result of a diagenetic 

signal from a highly altered set of samples, rather than a depositional signal of any importance to 

the central question of this study. This conclusion is further supported by the fact that Sr 

abundances are rarely used in studies of marine carbonates outside of quantifying changes in the 

ratio of Mg to Ca in seawater (Steuber and Veiser 2002). A full petrographic analysis is needed 

to identify the nature of the diagenesis that these samples have been subjected to, but the visible 

features of the samples themselves are enough to argue in favor of this conclusion (Figure 16 ). 

 

Figure 16 : Picture of two Union Wash samples, UW-12 (left) and UW-29 (right). Both samples show varying 

degrees of diagenetic alteration, with UW-29 displaying significant fracturing and re-cementation. 
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One more key observation found in the results of my RDA models is that the residuals for 

both the timeless and time-inclusive RDAs are very high; the residual for the timeless RDA is ~ 

0.69, and the residual for the time-inclusive RDA is ~ 0.53. The implication is that the majority 

of the variation in color is not explained by the elemental content of the samples, even when 

considered with the age of the sample. This suggests that the color of the samples is coming from 

non-mineralogical components, or at least sources that are not reflected in the major element 

geochemistry of the samples. One such variable could be organic matter (OM) content, which 

was not included in this study. Organic matter is a possible colorant for gray and brown rocks, 

since OM tends to be dark brown or black, and is also a necessary reactant for driving pyrite 

formation in bacterial sulfate reduction (Berner 1984; Westrich 1984).  

 

 
 

Figure 17: Plot of Wt% Sr versus sample age. Note the spike in Sr concentration in outer shelf samples around 220 

Mya. Most of these samples originate from the Union Wash, a deposit located near the Inyo mountains in 

California.     
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Assessing the BSR Hypothesis: Considering the results of each analysis, there is little 

evidence to support the BSR hypothesis based on the element data collected for this study. While 

S is anticorrelated with Ca, it displays no correlation with the age of the samples nor their color 

on the most significant PCs (Figure 12) and features only in a modest way in the Random Forest 

model (Figure 6). Moreover, the correlation between S and Fe is weak at best, and the lack of 

consistent data for sulfide-forming trace elements precludes any further conclusions.  

Overall, the results of each of the models constructed for this study indicate that pyrite is 

not a major colorant in the samples included within this dataset. If this is indeed the case, organic 

matter is most likely the dominant colorant in the black and gray carbonates (Myrow 2003). This 

is a reasonable interpretation based on the facts that Paleozoic samples are typically rich in both 

preserved OM and pyrite, and the deposition of framboidal pyrite also directly impacts OM 

preservation (Canfield 1994). Furthermore, multiple interrelated processes exert control on both 

BSR and OM preservation, including the availability of reactive iron, increasing porewater O2, 

and ventilation of marine sediments by active bioturbators, the last of which depletes inventories 

of both pyrite and OM (Meyers 2007; Canfield 1994; Berner and Westrich 1985). So an increase 

in marine O2 during the Mesozoic would have the same impact on carbonate color regardless of 

whether the primary colorant is pyrite or OM. Seeing as there is already ample evidence for the 

onset of a marine oxygenation event around 200 Mya in the I/Ca record and bioturbation record, 

the results of this study point towards OM as the most likely candidate for a major colorant in 

Paleozoic and dark Mesozoic carbonates (Myrow 2003; Lu et al. 2018; Thayer 1983). This gives 

direction for future studies following up on the results of Sugla’s project.  

Limestones, Marls, and Epicontinental Seas: One other feature of the models that 

warrants further investigation is the relationship between sample age and terrigenous content. 
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More specifically, why are marls typical of Paleozoic carbonates, while purer carbonates like 

limestones more typical of the Mesozoic? The Random Forest (Figure 6a) and time-inclusive 

RDA (Tables 3a and 5) models indicate that there is a strong correlation between sample age and 

terrigenous elements, with older samples containing a greater proportion of terrigenous-sourced 

material. Paleozoic samples are primarily represented by marls, which would explain why these 

terrigenous-linked elements are acting as strong predictors of color in the Random Forest and 

RDA models. As for the element-color-time PCA model, it is detecting the marl-limestone split 

independently of age; marls are present throughout the entire study period, and because PCA is 

able to resolve multiple axes of variation separately, it separates the relationship between 

terrigenous content and age. But while the results of the models indicate that marls dominate in 

the Paleozoic, they alone cannot explain the geological processes behind this trend.  

 

 

Figure 18: Paleo-reconstruction of Earth tectonic plates during the Devonian-Carboniferous boundary, 

approximately 360 Mya, produced by CS Scotese as part of the PALEOMAPS project (CS Scotese 2014). Note the 

extent of shallow, epicontinental seas, which cover significantly more area than in the modern oceans.  

 

Two factors that could explain this shift in carbonate makeup were previously proposed 

by Sugla in his study of carbonate color: changes in epicontinental sea cover and the evolution of 
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pelagic calcifiers. The majority of Paleozoic carbonates within this sample set come from 

epicontinental settings, particularly inner shelf environments, as illustrated by Figure 1. 

Continental inundation during the Paleozoic was significantly higher than in the Mesozoic or 

Cenozoic, as demonstrated by the paleogeographic reconstructions produced by CS Scotese in 

his PALEOMAPS project (Figure 18) (CS Scotese 2021). Epicontinental seas are often areas of 

high biological productivity, as illustrated by modern epicontinental seas including parts of the 

Baltic Sea, the Sunda shelf, and the Yellow Sea (Weckström et al. 2017; Sigman and Haim 

2012). Their high biological productivity promotes the burial and preservation of organic matter, 

resulting in sediments that are typically dark brown to black in color (Myrow 2003). 

Additionally, epicontinental sediments tend to have elevated levels of terrigenous-sourced 

content owing to their proximity to land (Duff et al. 1967; Jarvis et al. 2001; Hesse and Schacht 

2011). Multiple factors account for the increased presence of terrigenous material found in 

epicontinental marine sediments, including direct inputs from rivers and surface runoff and 

fluctuations in sea level that regularly exposed the shelf to erosion and progradation of nearshore 

facies over deeper marine sediments (Duff et al. 1967; Alexander et al. 1991; Jarvis et al 2001; 

Varejao et al 2021). The combination of increased OM burial and terrigenous material in 

Paleozoic epicontinental carbonates could partially explain why the Random Forest and RDA 

models include terrigenous-linked elements as significant predictors of color.  

However, the change in the extent of epicontinental seas isn't the only factor relevant to 

this discussion. Another notable feature of Sugla’s results is the near complete absence of pelagic 

carbonates prior to approximately 250 My (Figure 1). The majority of pelagic carbonates 

collected by Sugla consist of white and tan carbonate-rich limestones, which only begin to 

appear in the record during the early to mid-Mesozoic (Sugla 2021). There have been multiple 
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explanations proposed for the apparent lack of pelagic carbonates in the Paleozoic geologic 

record, such as the poor preservation of deep-water marine rocks due to tectonic recycling of the 

seafloor (Mackenzie and Garrels 1971). However, one newer hypothesis is that the abrupt 

appearance of pelagic carbonates may be related to the evolution of planktonic calcifiers over the 

Paleozoic and Mesozoic. The authors of Lu et al. (2018) note that large pelagic calcifiers only 

appear in the fossil record during the mid to late Triassic, around 220 Mya. The lack of pelagic 

calcifiers prior to the Triassic may help to explain the low abundance of pelagic carbonates 

during the Paleozoic, as well as why there are fewer limestones and more marls from the 

Paleozoic. It has even been proposed that the evolution of planktonic calcifiers directly 

contributed to the onset of widespread marine oxygenation during the early Mesozoic by altering 

the way oxygen is consumed through the water column, allowing for greater vertical diffusion of 

O2 (Lu et al. 2018; Meyer et al. 2016).  

 Data Uncertainties: The most significant blind spots present within this study are the 

lack of data on the concentration of organic carbon in our carbonate samples, the lack of redox 

state data for iron (Fe), the question of how diagenesis may have altered the samples post-

formation, and the variable resolution and accuracy of the XRF data between elements. 

Obtaining measurements of organic carbon content would be a valuable addition, to test the 

hypothesis that the black and brown marls in the dataset originated from epicontinental seas with 

high levels of biological productivity and OM burial. Having OM data would also present an 

opportunity to further test the general hypothesis that carbonate color acts as a proxy for marine 

oxygenation as presented by Sugla.  

Having data on the redox states of iron in each sample would provide another avenue for 

testing the oxygen hypothesis. One expectation is that Paleozoic carbonates should contain more 
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reduced forms of iron (e.g. Fe2+), while oxidized Fe (e.g. Fe3+) would become more common 

after ~220 Mya due to O2 exposure, either in the water column or after initial deposition via the 

bioturbation of sediments (Van de Velde and Meysman 2016).  Moreover, having a more 

thorough record of iron redox states would help in addressing the role of framboidal pyrite in 

determining carbonate color, since iron in pyrite only occurs as Fe2+. As it stands, S shows no 

clear correlation to Fe or carbonate color in my data set. Characterizing iron according to its 

redox state could provide more insight into the potential mineralogy of the carbonates included 

in this study.  

The effects of diagenesis on the carbonates included in this set is one that is both 

important to address and difficult to make broad generalizations about. Studies have shown that 

diagenetic processes can affect the concentrations of trace elements in carbonates that have been 

altered, sometimes overprinting the original depositional signal (Hood et al. 2018). However, 

variability in the timing, intensity, and fluid chemistry between different settings makes it 

difficult to generalize the impacts of diagenesis on marine carbonate chemistry (Hood et al. 

2018). Assessing the specific impacts of diagenesis would likely require at least one petrographic 

assessment for each of the geologic formations represented in this sample set. Some samples that 

could benefit from such analysis include the Union Wash samples with their high Sr content, as 

well as a subset of samples from the Heidelberg collection which display elevated concentrations 

of Zn. As for the effects of exposure and weathering on the samples, this can be controlled by 

using only freshly exposed material when analyzing samples using the Bruker XRF tracer 

(Quye-Sawyer et al. 2015).  

Finally, the largest area of improvement for this study is in the resolution of the 

geochemical data gathered by the XRF Bruker Tracer, as well as the lack of data for multiple 
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elements. The Burker Tracer was able to accurately estimate the elemental Wt% for most major 

elements, including Ca, Si, Fe, and Al, but was unable to accurately detect Na or Mg due to the 

lack of a vacuum (Figures 4a - 4d). This issue can be rectified by placing the chamber under a 

vacuum using an external pump. Furthermore, the ability to the Bruker Tracer to detect trace 

elements was somewhat variable, with many elements not being detected at all, and some of 

those that were detected varying in accuracy across different standards (Figure 4b). This is likely 

due to the higher detection threshold and lower overall resolution of the handheld Bruker Tracer 

compared to a traditional XRF.  

If the methods of data collection from this study were to be repeated either for the same 

sample set or another set, one recommendation would be to run the Bruker Tracer in a vacuum. 

This change should improve both the detection of Na and Mg, while also potentially improving 

the overall accuracy of the tracer. Another change that could be made to the methodology would 

be to double the duration of each scan from 30 seconds to 60 seconds, in order to provide more 

detections and thereby improve the Bruker Tracer’s estimations of Wt% content. Increasing the 

duration of each scan beyond 60 seconds would likely have diminishing returns based on studies 

using similar handheld XRF hand-held units (Quye-Sawyer et al. 2015). However, it is unlikely 

that better XRF data alone would significantly shift my conclusions. The handheld Bruker Tracer 

was able to capture the major element content of the carbonates in a semi-quantitative manner, 

and the results indicate that differences in major element content is not the driving factor behind 

the variation in carbonate color over the past 500 My.  
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CONCLUSION 
 

In conclusion, the geochemical data collected from 679 marine carbonates contradicts 

Sugla’s hypothesis that the observed changes in marine carbonate color over the past 500 Ma due 

to increasing marine oxygenation were mediated by changes in the rate of BSR. The bulk 

geochemical data alone does not support the hypothesis that pyrite is the dominant colorant in 

black and dark gray carbonates, based on the lack of any expected correlation between S, Fe, 

color, and sample age. This leads to the conclusion that other factors are responsible for driving 

the transition of marine carbonates from universally black and gray in the Paleozoic to tan and 

white over the course of the Mesozoic, with organic matter being a likely candidate. Overall, the 

results of this study provide a guide for further investigation into this topic, pointing out a 

direction for future studies to follow up on.  

This study will also hopefully serve as a foundation for future studies using more precise 

methods of geochemical analysis and characterization. With the combination of Sugla’s data and 

the geochemical data collected for this study, there now exists a sample set of marine carbonates 

from throughout the Paleozoic and Mesozoic that have been characterized for their formation, 

age, depositional environment, color, and estimated element Wt% content for multiple major 

earth elements and trace elements. These combined data should provide fertile ground for future 

studies using more precise methods, such as TOC measurements, full XRF spectrometry and ICP 

analysis. One aspect of the data that warrants further exploration is the elevated strontium 

content of the Union Wash samples and what it might signify about the geological nature of the 

locality. The strontium record exemplifies the potential of the data to serve as a foundation for 

further research into the geochemistry and geology of both the marine carbonates included in this 

study and marine carbonates in general.  
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APPENDIX 

Table 6: Elemental percentages of the Bruker XRF Tracer comparison test using standard sample ECRM from 

Mystandards. Standard values taken from: https://www.my-standards.com/media/eb/21/45/1682509010/ECRM752-

1-NP_ProductInformationSheet_2023-04-04_V4.0.pdf 

Analyte ECRM XRF.Scan.1 XRF.Scan.2 XRF.Scan.3 

Ca 39.59426 36.9914 36.9981 36.884 

Ti 0.00524 0.0047 0.0043 0.006 

V 0.000276 0 0 0 

Cr 0.00068 0 0 0 

Mn 0.00855 0.0111 0.0106 0.0109 

Cu 0.000132 0 0 0 

Zn 0.000439 0 0 0 

Ga 1.96E-05 0 0 0 

Rb 4.40E-05 0 0 0 

Sr 0.0154 0.0194 0.0191 0.0195 

Y 0.000197 0.0016 0.0017 0.0016 

Mo 8.00E-06 0.0024 0.0018 0.0024 

Ba 0.00547 0 0 0 

Pb 0.000151 0.0009 0.0009 0.0009 

Th 3.60E-06 0 0 0 

U 4.87E-05 0.0024 0.0025 0 

 

Table 7: Elemental percentages of the Bruker XRF Tracer comparison test using standard sample GH-NP from 

Mystandards. Standard values taken from: https://www.my-standards.com/media/01/fd/70/1682509793/GH-

NP_ProductInformationSheet_2023-04-04_V4.0.pdf 

Analyte GH-NP XRF.Scan.1 XRF.Scan.2 XRF.Scan.3 

Na 2.856151 1.4935 1.6644 1.5238 

Mg 0.018091 0 0 0 

Al 6.615634 4.2833 4.491 5.3529 

Si 35.43157 31.1561 31.0306 33.4819 

https://www.my-standards.com/media/eb/21/45/1682509010/ECRM752-1-NP_ProductInformationSheet_2023-04-04_V4.0.pdf
https://www.my-standards.com/media/eb/21/45/1682509010/ECRM752-1-NP_ProductInformationSheet_2023-04-04_V4.0.pdf
https://www.my-standards.com/media/01/fd/70/1682509793/GH-NP_ProductInformationSheet_2023-04-04_V4.0.pdf
https://www.my-standards.com/media/01/fd/70/1682509793/GH-NP_ProductInformationSheet_2023-04-04_V4.0.pdf
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P 0.004364 0 0 0 

K 3.951503 2.9005 2.9204 2.9782 

Ca 0.493144 0.4021 0.3968 0.4063 

Ti 0.047961 0.0381 0.0379 0.0348 

Mn 0.038723 0.0325 0.0318 0.0309 

Fe 0.93724 0.8345 0.834 0.8326 

Cl 0.01 0 0 0 

V 5.00E-04 0 0 0 

Cr 3.00E-04 0 0 0 

Co 3.00E-05 0.0001 0 0 

Ni 3.00E-04 0.009 0.0091 0.0092 

Cu 3.00E-04 0 0 0 

Zn 0.0055 0.0075 0.0074 0.0074 

Ga 0.0023 0.0018 0.0018 0.0017 

As 4.00E-05 0 0 0 

Rb 0.039 0.0318 0.0318 0.032 

Sr 0.00087 0.0016 0.0019 0.0019 

Y 0.0075 0.0067 0.0069 0.0068 

Zr 0.015 0.0127 0.0126 0.0122 

Nb 0.0085 0.007 0.007 0.0069 

Mo 2.00E-04 0 0 0 

Ba 0.002 0 0 0 

Pb 0.0045 0.0021 0.0022 0.0022 

Th 0.0087 0.0039 0.0039 0.0039 

U 0.0018 0.0015 0.0013 0.0014 

S 0.007 0.6757 0.6778 0.6737 
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Table 8: Elemental percentages of the Bruker XRF Tracer comparison test using standard sample SdAR-H1 from 

Mystandards. Standard values taken from: https://www.my-standards.com/media/06/38/bc/1689592891/SdAR-H1-

P_AssignedValues_2023-07-14_V1.0.pdf 

Analyte SdAR-H1 XRF.Scan.1 XRF.Scan.2 XRF.Scan.3 

Mg 0.922645 0 0 0 

Al 6.261 6.6121 6.5398 6.6843 

Si 30.59362 32.3882 32.2857 32.3562 

P 0.0807 0.0952 0.0869 0.0882 

K 3.4617 4.1203 4.0804 4.102 

Ca 1.043459 1.0679 1.0562 1.0585 

Ti 0.335631 0.3271 0.324 0.3237 

Mn 0.398846 0.4038 0.3987 0.4025 

Fe 4.5113 4.6971 4.62 4.6567 

V 0.00732 0.0151 0.0133 0.0152 

Co 0.00556 0.0029 0.0029 0.003 

Ni 0.0234 0.0113 0.0102 0.0108 

Cu 0.117 0.1233 0.1206 0.1227 

Zn 0.3725 0.3856 0.3781 0.3817 

Ga 0.00156 0 0 0 

Rb 0.0154 0.0098 0.0096 0.0095 

Sr 0.0182 0.0213 0.0206 0.0207 

Zr 0.0262 0.0242 0.0234 0.0232 

Ba 0.0866 0.0876 0.0981 0.0857 

Pb 0.3895 0.1094 0.1095 0.1104 

Na 0.8160 0 0 0 

Cr 0.0225 0.0223 0.0223 0.0221 

Y 0.00254 0.0153 0.0149 0.0155 

Nb 0.0022 0 0 0 

https://www.my-standards.com/media/06/38/bc/1689592891/SdAR-H1-P_AssignedValues_2023-07-14_V1.0.pdf
https://www.my-standards.com/media/06/38/bc/1689592891/SdAR-H1-P_AssignedValues_2023-07-14_V1.0.pdf
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Mo 0.0066 0.0077 0.0067 0.0076 

Th 0.00177 0 0 0 

U 0.00042 0 0 0 

 

Table 9: Elemental percentages of the Bruker XRF Tracer comparison test using standard sample SdAR-L2 from 

Mystandards. Standard values taken from: https://www.my-standards.com/media/45/29/b7/1689592891/SdAR-L2-

P_AssignedValues_2023-07-14_V1.0.pdf 

Analyte SdAR-L2 XRF.Scan.1 XRF.Scan.2 XRF.Scan.3 

Na 1.9733 0 0.1643 0.1365 

Al 6.1287 5.27 5.3412 5.374 

Si 34.81455 33.3559 33.3375 33.3972 

P 0.0349 0.0426 0.043 0.0465 

K 3.4036 3.2967 3.3041 3.3234 

Ca 0.75758 0.6646 0.6686 0.671 

Ti 0.371592 0.2835 0.2871 0.2886 

Mn 0.076671 0.0667 0.0666 0.0672 

Fe 2.5459 2.1413 2.1504 2.1588 

V 0.0035 0.0034 0.005 0.0042 

Cr 0.0026 0.0052 0.006 0.0068 

Co 0.00054 0.0012 0.0011 0.0012 

Ni 0.00143 0.0052 0.0054 0.0054 

Cu 0.00508 0.0066 0.0075 0.0069 

Zn 0.0201 0.0218 0.0219 0.0213 

Rb 0.012 0.0118 0.0118 0.0119 

Sr 0.015 0.0181 0.0181 0.0182 

Y 0.00555 0.0054 0.0059 0.006 

Zr 0.0626 0.0591 0.0583 0.0599 

Mo 0.00037 0 0 0 

https://www.my-standards.com/media/45/29/b7/1689592891/SdAR-L2-P_AssignedValues_2023-07-14_V1.0.pdf
https://www.my-standards.com/media/45/29/b7/1689592891/SdAR-L2-P_AssignedValues_2023-07-14_V1.0.pdf


 

53 

 

Pb 0.0183 0.0033 0.0032 0.0032 

Th 0.0022 0 0 0 

U 0.000334 0 0 0 

Mg 0.259305 0 0 0 

Ga 0.00175 0.0022 0.0022 0.0022 

As 0.0017 0.0064 0.0061 0.0062 

Nb 0.0063 0.0064 0.0068 0.0065 

Ba 0.0812 0.0733 0.0715 0.0723 
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