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Fracture-Induced Anisotropy of the Stress–Strain 
Response of Shale at Multiple Scales

Hao     Xu; Seth     Busetti; and  Chloé     Arson, M.ASCE

Abstract
This paper investigates deformation and stiffness anisotropy induced by 
damage propagation in a rock brittle deformation regime. Specifically, a finite-
element–based Continuum damage mechanics model is used to capture 
sample size effects and the influence of intrinsic anisotropy on the stress–
strain response of shale. The differential stress-induced damage (DSID) 
model previously proposed by the authors is calibrated against triaxial 
compression tests performed on North Dakota Bakken shale samples. 
Laboratory tests simulated with the FEM reproduce deformation and damage 
localization phenomena and capture the increase of boundary effects 
expected in larger samples. Simulations performed for various initial states of 
damage are used to investigate the role of the dominant fabric anisotropy of 
the rock: bedding planes in shale are modeled by a smeared damage zone 
with the DSID model and by a discrete crack plane. The continuum approach 
successfully captures the development of microcrack propagation and energy 
dissipation at the early stage of the strain hardening process observed in 
triaxial compression tests. Additionally, using initial anisotropic damage can 
effectively account for various types of mechanical anisotropy in shale.

Introduction
Shale is a sedimentary rock that naturally exhibits discontinuities at multiple 
scales, for example, grain-scale contacts, brittle microcracks, fine laminations,
through-going natural fractures and faults, and bedding contacts and layering. 
Modeling the interaction between these discontinuities presents theoretical 
and numerical challenges. The main strategies available are based on fracture
mechanics, damage mechanics, and fluid mechanics (e.g., lubrication theory).
Fractures involved in the fracturing process can occur at any scale, ranging 
from microcracks initiated under the influence of a differential stress, e.g., the 
Griffith cracks following linear elastic fracture mechanics (LEFM) (referred to 
as microscalein Bahat et al. 2005), to macroscopic natural fractures of 
geologic origin that propagate within reservoirs (referred to 
as macroscale in Nelson 2001). Several numerical methods may be used in 
LEFM (Mohammadi 2007), mainly the FEM, the extended FEM, cohesive 
zone models (Carrier and Granet 2012), and boundary element methods 
(Elleithy et al. 2001; Raveendra and Cruse 2005). In all of these methods, 
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however, fracture nucleation and intersection are impossible to predict, and 
the position and starting geometry of the fracture must be predetermined. 
Stress intensity factors were used to predict the movement of fracture tips 
(Savitski and Detournay 2002), but the weakening of the solid part of the rock 
was not taken into account. In continuum damage mechanics (CDM), subsets 
of cracks are defined as damage, which is a quantity that relates to the 
amount of stiffness and/or strength degradation observed during deformation 
(Lemaître and Desmorat 2005; Krajcinovic 1996). Phenomenological CDM 
models are based on a minimum of two postulates: the expression of the free 
energy of the solid skeleton of the porous rock and the expression of a 
dissipation potential (Arson and Gatmiri 2008). Damaged poroelastic 
properties (Homand-Etienne et al. 1998; Shao 1998; Shao and Lydzba 
1999; Swoboda et al. 1995; Swoboda et al. 1997; Swoboda and Yang 
1999a; Dufour et al. 2012; Xu and Arson 2014; Zhu and Arson 2014) and 
damaged permeability (Shao et al. 2005; Zhou et al. 2006; Arson and Pereira 
2013; Pereira and Arson 2013) are computed from purely energetic 
considerations by evaluating the dissipation associated with crack softening 
and irreversible crack opening. The choice of dissipation variables [e.g., 
damage variable(s) and inelastic strain(s)] is a key point in the modeling 
approach (Arson et al. 2012; Arson 2014). In micromechanical CDM models 
(Dormieux et al. 2006), the main challenge consists of describing the set of 
cracks present in the medium by gathering them according to their size and 
orientation (Swoboda and Yang 1999b). Within each set, crack growth is 
generally controlled by a Griffith criterion. The damaged stiffness tensor is 
calculated with the updated crack geometry in an appropriate homogenization 
scheme (e.g., the self-consistent method or Mori-Tanaka scheme). 
Micromechanical damage models have successfully been extended to 
saturated porous media to predict damaged poroelastic properties (e.g., 
stiffness and Biot tensors) (Deudé et al. 2002b; Deudé et al. 2002a; Lydzba 
and Shao 2000; Xie et al. 2012; Lu and Elsworth 2012) and damaged 
permeability (Kondo and Dormieux 2004; Maleki and Pouya 2010).
Because specific complex mechanisms occur at each scale (macroscale = 
10−2 – 103m, mesoscale = 10−3 − 1 m, and microscale 10−6 − 10−2 m), the use of 
idealized propagation models often limits the analysis to a single scale of 
investigation and oversimplifies the prediction of stress and deformation. In 
most numerical schemes, the presence of microcracks in the bulk of the rock 
mass is accounted for indirectly by modeling a plastic zone (Liu 1984; Hamiel 
et al. 2004a; Busetti et al. 2012; Shen 2012; Smart et al. 2012) or by defining 
a process-zone stress (Ramurthy et al. 2009a, b) that is used to calculate the 
stress intensity factor in the surrounding of fractures. Most fracture 
propagation models neglect the presence of microscale discontinuities in the 
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process zone (Shlyapobersky and Chudnovsky 1994). Neglecting the effects 
of microcracks leads to ignoring the degradation of solid stiffness and to 
underestimating fracture toughness and overestimating fracture propagation, 
which, for example, could lead to errors in determining hydraulic fracture 
initiation pressure (Ramurthy et al. 2009a). Recent studies established an 
explicit relationship between rock grain-size distribution and the dimensions of
the fracture process zone (Tarokh and Fakhimi 2013), which illustrates the 
importance of relating rock fabric to rock stiffness in the surrounding of large-
scale discontinuities. Oda (1984) and Lubarda and Krajcinovic (1993) related 
microcrack density and orientations to a mesoscopic fabric tensor. Cowin 
(1985) related the fabric tensor to the elastic stiffness tensor without resorting 
to any sort of homogenization scheme. Economides and Valko (1994) and 
Valko and Economides (1993, 1994) postulated the expression of a modified 
fracture toughness to predict fracture propagation in a damaged rock mass. 
The macroscopic fracture reaches a given location when the mesoscopic 
damage variable at that location is equal to unity. Wu and Chudnovsky (1993) 
studied the influence of a static array of microcracks on fracture propagation. 
The framework assumes that the microcracks do not propagate; therefore, the
interaction between fracture propagation and damage evolution is not 
captured in the model. Suzuki (2012) modeled the interactions between 
microcrack nucleation and kinking and the growth of a shear fault plane. 
However, the defects (at both the microscopic and macroscopic scales) are all
considered to be flat debonded surfaces. Therefore, the model cannot be 
extended to fracturing problems with fluid injection, in which fracture aperture 
and crack-induced porosity play an important role in the viscosity fracture 
propagation regime. Purely mechanistic models were recently proposed to 
explain the interaction between stress reorientation and rock stiffness 
softening around dynamic shear faults (Yamashita 2000; Faulkner et al. 
2006; Healy 2008; Heap et al. 2010). These studies focus on flat microcrack 
nucleation, flat fracture tip propagation, and plane fault slip. Capturing the 
transition from fracture nucleation, which occurs at the microscale, to 
propagation and interaction at the mesoscales and macroscales, is a 
challenge in modeling fracturing processes due to complications, including 
simulating growth as a function of time, coupling equations, and time stepping 
(Adachi et al. 2007). The numerical solution is highly mesh dependent: the 
localized zone narrows with mesh refinement, and nonstructured meshes lead
to a nonsymmetric plastic zone, even when the problem is symmetric 
relatively to the fracture plane.
The goal of this study is to capture the effects of microcrack-induced damage 
in shale by using the FEM. The approach is based on the implementation of a 
robust material model that can be used in both continuous and discontinuous 
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media. The CDM provides a suitable theoretical framework with which to 
relate geometrical fabric tensors (with various types of microcracks in different
directions) to stiffness, and to predict the degradation of rock mechanical 
properties subsequent to damage propagation (Lyakhovsky et al. 
1997; Hamiel et al. 2004b; Colovos et al. 2013; Gaede et al. 2013). 
Combining finite-element modeling to a CDM-based constitutive model of 
damage allows for the simulation of a range of realistic geometric 
configurations at different scales, in three dimensions. For example, in 
reservoir production models anisotropic damage can be linked to permeability 
enhancement within the quasi-elastic domain to improve reservoir forecasting 
models (Shalev and Lyakhovsky 2013; Xu and Prévost 2016). Anisotropic 
damage was also used in tectonic deformation models as a proxy for 
heterogeneous natural fracturing (Busetti et al. 2014). Implementation of peak 
strength and postfailure softening and coupling with macrocrack propagation 
are outside of the current scope but will be addressed in future enhancements
to the model.
The next section presents the theoretical outline, the calibration, and the 
verification of the differential stress-induced damage model (DSID) (Xu and 
Arson 2014) used in this paper to predict the stress–strain response of shale. 
The DSID model was implemented using the FEM in MATLAB (a 
multiparadigm numerical computing environment and fourth-generation 
programming language developed by MathWorks, Natick, Massachusetts) 
and Abaqus (a product of Simulia, a division of Dassault Systèmes) (Simulia 
2013). The model allows for the prediction of the initiation and propagation of 
cracks in the damaged zone surrounding large-scale discontinuities, such as 
faults or hydraulic fractures. A second-order tensor damage variable is used to
indirectly couple the microscales and mesoscales, similar to the fabric tensor 
introduced by Oda (1984) (Cowin 1985). The damage variable gives a 
representation of distributions of microcracks several orders of magnitude 
smaller than the large-scale discontinuity. Triaxial compression tests from 
ConocoPhillips’ subsurface core from the Bakken shale, Williston Basin, North
Dakota, were used to calibrate a representative DSID model. Details on the 
experiments are provided in Amendt et al. (2013). Calibrations were 
conducted for a representative sample set from the Bakken formation. 
Experimental stress–strain curves from a few representative rock mechanics 
tests in the Middle Bakken member, a low porosity (<10%<10%) tight 
calcareous mudstone, were used to compare the difference between 
experimental and numerical results. In the next section a finite-element 
analysis is presented to study the effects of sample size on stress 
concentrations and damage localization, and to predict the anisotropy induced
by microscopic crack propagation in initially isotropic and anisotropic shale 

https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897


samples. Triaxial compression tests were simulated using both the standard 
ASTM 25.4 × 50.8-mm cylindrical plug dimensions used in the laboratory tests
and the larger 101.6 × 152.4-mm whole core size. The distribution of stress 
around a bedding delamination plane was computed with a smeared 
damaged zone model and compared with that obtained with a discrete 
fracture model.

Outline of the DSID Model: A Damage Model for Fractures 
Process Zone
Continuum methods usually predict the behavior of the material with 
phenomenological approaches at mesoscale. For example, the disturbed 
state concept (DSC) presented in Desai (2000, 2015) is a model in which the 
fully adjusted (degraded or strengthened) material remains a continuum with 
updated properties. The model can relate the initiation and growth of 
microcracking with its state variables to macroscopic status, such as stresses 
and deformations. An internal length parameter is implicitly accounted for 
(Desai et al. 1997) in the DSC. However, the state variables in the DSC 
cannot indicate the evolution of the characteristic features (geometry and 
arrangement or orientation) of the microcracks. Therefore, the nonlocal nature
of the DSC is limited. It needs to be enriched with micromechanics to capture 
the evolution of these characteristic features. The DSID is proposed to couple 
the damaged and undamaged part of a continuum but is limited to the 
coupling between microscale crack propagation and mesoscale damage 
propagation. The equations of the damage model previously formulated by 
two of the authors (Xu and Arson 2014) decompose the total strains into a 
pure elastic part, an irreversible part (due to crack opening), and an 
elastodamage part (the coupling between elastic part and damaged part). The
model expression contains the internal length of the microcracks implicitly as 
well (Jin et al. 2016). Also, the DSID can provide assumptions on the 
microcracks’ geometry and orientation based on the model’s hypothesis. The 
details of the DSID model are summarized in the following sections.

Definition of the Representative Elementary Volume and Meaning of the 
Damage Variable
The DSID model allows for the prediction of mechanical anisotropy induced by
a reorientation of stress principal directions in the rock mass (change of 
differential stress) and associated damage weakening. The damage 
variable ΩΩ is the crack density tensor defined by Kachanov (1992), 
projected in its principal base
(1)

Ω=∑k=13ρknk⊗nkΩ=∑k=13ρknk⊗nk
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The kth eigenvalue of damage (ρk) is the porosity of all the crack planes 
oriented perpendicular to the kth direction of space (nknk). For instance the 

vertical damage Ω11Ω11 = volume fraction of penny-shaped cracks parallel to

a plane of normal n1n1, i.e., the volume fraction of horizontal cracks. 

Similarly, horizontal (or lateral) damage components Ω22Ω22 and Ω33Ω33 = 
volume fractions of penny-shaped cracks parallel to planes of 
normal n2n2 and n3n3, respectively, i.e., the volume fraction of vertical 
cracks. Damage is a symmetric second rank tensor that characterizes the 
arrangement of the microstructural components in a multiphase or porous 
material (Cowin 1985). As illustrated in Fig. 1, the damage variable is similar 
to Oda’s fabric tensor (Oda 1984), and it is used to predict damage-induced 
anisotropy of deformation and stiffness.
The DSID model is formulated at the mesoscale to predict damaged elastic 
properties that can be measured in the laboratory on a representative 
elementary volume (REV – 10−3 m – 1 m). Damage is equivalent to three 
mesocracks at the REV scale: each mesocrack is oriented perpendicular to 
one of the three damage eigenvectors, with a volume fraction equal to the 
porosity of all the microcracks oriented in that same direction. This 
representation assumes that microcracks that have approximately the same 
normal vector can be gathered into families of microcracks of the same 
orientation (Arson 2009). The REV should be at least two orders of magnitude
larger than the typical size of a microcrack (Horii and Nemat-Nasser 1986). It 
can either be defined to represent the average behavior of a family of parallel 
microcracks [Fig. 2(a)] or the evolution of one microcrack that does not 
interact with the other microcracks located in its surroundings [Fig. 2(b)].
In the DSID model, the evolution law of the damage tensor is chosen to 
capture the expected evolution of rock stiffness on microcrack propagation. 
Fig. 3 explains how the propagation of the REV-scale mesocrack affects the 
stiffness tensor in the hypothetical case of unidirectional damage. The DSID 
model captures damage propagation and damage initiation. Therefore, in the 
reference state, it is assumed that the REV contains an initial crack of 
length l0, which means that the initial stiffness is less than the undamaged 
stiffness of a homogeneous solid. This is represented by a broken spring in 
Fig. 3(a). The length of the crack remains the same as long as the material is 
in the elastic domain. After the crack propagation threshold is reached, the 
mesocrack propagates and becomes longer (l>l0l>l0), and stiffness in the 
direction orthogonal to the mesocrack decreases. This is represented by an 
increased number of broken springs in Fig. 3(b).
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Multiple mechanisms (including crack propagation in tension and compression
for instance) are most often modeled by coupling damage and plastic 
potentials (Cicekli et al. 2007), which tremendously increases the model 
complexity and the number of material parameters involved. To facilitate 
numerical implementation and convergence, the DSID model accounts for 
material nonlinearity using a modified hyperelastic framework, in which a 
single energy dissipation function is used to predict damage evolution and 
irreversible crack-induced deformation. The total deformation tensor (εε) is 
split as follows:
(2)

ε=εE+εid=εel+εed+εidε=εE+εid=εel+εed+εid

where εelεel = purely elastic deformation (undamaged part), which would be 

produced in the absence of damage); εedεed = additional recoverable 
deformation that results from stiffness degradation (coupled terms accounting 
for both damaged and damaged parts); and εidεid = irreversible crack-
induced deformation, which represents the existence of residual crack 
openings after unloading (damaged part). Although the DSID model assumes 
no residual strength in the damaged part, mechanical interactions between 
the undamaged and damaged parts are accounted for through the 
elastodamage term εedεed, in the sense that damage results from both 
elastic and crack-induced irreversible 
deformation. εE=εel+εedεE=εel+εed is the total recoverable deformation. 
In the proposed model, solving for the full damage tensor is emphasized to 
capture the evolution of anisotropic microcrack generation under applied 
loading (differential stress). The thermodynamic framework of the DSID model
is explained in the following subsections. In summary, damage evolution is 
controlled by a damage function, similar to the Drucker-Prager yield function 
(but depending on the energy release rate due to damage, instead of stress). 
The damage flow rule is nonassociated, and the damage potential is chosen 
to ensure the positivity of the damage dissipation potential. The flow rule of 
the irreversible deformation is associated and avoids the irreversible strain 
development contradicting the damage evolution induced by deviatoric stress.
Thermodynamic Framework of the DSID Model
The free energy stored in the REV considered is transformed into deformation
energy and heat, or dissipated in the form of irreversible microstructure 
changes (e.g., damage and irreversible deformation). Deformation and 
dissipation variables are work-conjugate to stress and force variables and can
be obtained by deriving the free energy potential.
Free Energy
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The expression of the free energy considered in the DSID model is a 
polynomial of order two in stress and of order one in damage (Shao et al. 
2005)
(3)

Gs(σ,Ω)=12σ:�0:σ+a1TrΩ(Trσ)2+a2Tr(σ·σ·Ω)
+a3TrσTr(Ω·σ)+a4TrΩTr(σ·σ)Gs(σ,Ω)=12σ:S0:σ+a1 TrΩ(Trσ)2+a2 

Tr(σ·σ·Ω)+ a3TrσTr(Ω·σ)+a4TrΩTr(σ·σ)
where Gs = Gibbs free energy; σσ = stress; ΩΩ = damage variable; �0S0 = 
initial compliance tensor; and ai = material parameters. The total elastic 
strain εEεE (ratio between the total elastic displacement and original material 
length) is conjugated to stress (which can be computed from the external 
load). Conjugation relationships write
(4)
εE=∂Gs∂σ=1+ν0E0σ−ν0E0(Trσ)δ+2a1(TrΩTrσ)σ+a2(σ·Ω+Ω·σ)

+a3[Tr(σ·Ω)δ+(Trσ)Ω]
+2a4(TrΩ)σεE=∂Gs∂σ=1+ν0E0σ−ν0E0(Trσ)δ+2a1(TrΩ Trσ)σ+ 

a2(σ·Ω+Ω·σ)+a3[Tr(σ·Ω) δ+(Trσ) Ω ]+2a4(TrΩ) σ
where ν0 and E0 = initial Poisson’s ratio and Young’s modulus. The damage 
variable is used to describe the degradation of the stiffness on crack 
propagation. The damage driving force Y is defined as the partial derivative of 
the free energy by damage
(5)

Y=∂Gs∂Ω=a1(Trσ)2δ+a2σ·σ+a3Tr(σ)σ+a4Tr(σ·σ)δY= 
∂Gs∂Ω=a1(Trσ)2 δ+a2σ·σ+a3Tr(σ)σ+a4Tr(σ·σ)δ

where δδ = second-order identity tensor (Kronecker delta).
Damage Function
CDM initially aimed to model brittle behavior observed in metals (Krajcinovic 
1996; Lemaître and Desmorat 2005). In early damage models proposed for 
concrete (Mazars 1986; Mazars and Pijaudier-Cabot 1989), two damage 
scalar variables were introduced to distinguish stiffness degradation rates in 
tension and compression. Following the same idea, Frémond and Nedjar 
(1996) split the damaged elastic deformation energy into potentials associated
with tension and compression. Damage evolution laws are made dependent 
on negative and positive strains, for compression and tension, respectively. 
The formulation allows for the modeling of unilateral effects of crack closure 
on stiffness, i.e., the recovery of compression strength without recovery of 
tension strength when cracks close. Note that damage models resorting to 
two different scalar variables are weakly anisotropic models: the determination
of the principal directions of the strain (or stress) tensor is necessary to 
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evaluate the energy dissipated in tension and in compression. However, the 
scalar form adopted for the damage variables does not allow for the prediction
of damage-induced anisotropy: anisotropy of strain (or stress) controls 
damage rates, but stiffness anisotropy does not depend on damage. In 
Lubliner’s concrete damage model (Lubliner et al. 1989), the damage variable 
is defined as the ratio of dissipated plastic energy for both tensile and 
compressive cases. Based on this framework, Lee and Fenves (1998) 
coupled damage and plasticity by using different hardening variables for 
different stress states. Damage models that are not coupled to plasticity 
require the definition of damage potentials. Abu Al-Rub and Kim (2010) used 
two separate potentials for two different damage variables (damage due to 
tensile stress and damage due to compressive stress). In Frémond’s model 
(Frémond and Nedjar 1996), the variables that are work-conjugate to damage 
variables (called affinities or energy release rates) are discontinuous functions
of strain: ∂Ψs/∂βc∂Ψs/∂βc depends on ε-ε-, and ∂Ψs/∂βt∂Ψs/∂βt depends 

on ε+ε+. This implies that the rate of damage depends on a nondifferentiable 
field function. The rate of damage (computed from the normality rule) is not 
unique at singularity points, which raises important numerical issues.
In geomaterials, such as rock and concrete, compression strength typically 
differs by one order of magnitude from tensile strength. Although damage 
under isotropic compression was observed in hardened cement paste 
(Ghabezloo et al. 2008), compression damage in geomaterials is generally 
associated with cracking under a differential stress. First, consider a brittle 
material sample subjected to a triaxial compression stress. If the sample is 
homogeneous and if there is no friction at the top and bottom boundaries, 
then the sample undergoes lateral expansion. If boundaries are frictional and 
the sample is homogeneous, then shear cracks will form. The granular fabric 
of rock and concrete tends to drive cracks around the stiffest crystals or 
aggregates, which results in splitting effects in tension and crossing effects in 
compression (Ortiz 1985). In CDM, crossing effects in geomaterials are 
modeled as tension damage: a crack parallel to the axis, driven by axial 
compression, is considered to have the same mechanical effects as a crack 
parallel to the axis, driven by lateral tension. Based on the concepts of 
splitting and crossing effects, the author’s define the following damage 
function fd to control the triggering of anisotropic damage in the DSID model:
(6)

fd(Y,Ω)=J∗‾‾‾√−αI∗−kfd(Y,Ω)=J*−αI*−k
in which
(7)
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J∗=12(ℙ1:Y−13I∗δ):
(ℙ1:Y−13I∗δ),I∗=(ℙ1:Y):δJ*=12(ℙ1:Y−13I*δ):(ℙ1:Y−13I*δ), 

I*=(ℙ1:Y):δ

The projection tensor ℙ1ℙ1 is introduced to constrain the damage driving 
force to remain parallel to the external stress load
(8)

ℙ1(σ)=∑p=13[H(σ(p))
−H(−σ(p))]n(p)⊗n(p)⊗n(p)⊗n(p)ℙ1(σ)=∑p=13[H(σ(p))

−H(−σ(p))]n(p)⊗n(p)⊗n(p)⊗n(p)
where H(·)H(·) = Heaviside function. The damage threshold k is the sum of 
an initial damage threshold (C0) and an additional term that accounts for 
damage hardening effects (controlled by the parameter C1)
(9)

k=C0+C1Tr(Ω)k=C0+C1Tr(Ω)
Damage Potential
A nonassociated damage flow rule is used: the direction and magnitude of the 
damage increment are obtained by deriving the following damage potential 
(gd):
(10)

gd=12(ℙ2:Y):(ℙ2:Y)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√−C2gd=12(ℙ2:Y):
(ℙ2:Y)−C2

The projection tensor ℙ2ℙ2 ensures that damage propagates in the direction 
parallel to the deviatoric stress (the projector ensures that only tensile 
deviatoric stress can trigger damage)
(11)

ℙ2=∑p=13H[maxq=13(σ(q))
−σ(p)]n(p)⊗n(p)⊗n(p)⊗n(p)ℙ2=∑p=13H[maxq=13(σ(q))−σ(p)] 

n(p)⊗n(p)⊗n(p)⊗n(p)
Note that according to Eqs. (6)–(11), damage propagates as long as the net 
difference between two principal stresses exceeds a certain value. Thus, the 
DSID model can handle both compression and tension-driven crack 
propagation. The DISD model assumes that the critical energy release rate 
necessary to trigger damage is the same in all directions of space and for both
compressive and tensile behaviors (note that different thresholds could be 
used to distinguish tensile and compressive rock strength).
Flow Rules
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Flow rules are used to calculate the damage increment and the irreversible 
strain increment. An associated flow rule is used for the irreversible strain 
rate ε ̇ idεε̇id (which means that the damage potential is assumed to be equal 
to the damage function), whereas a nonassociated flow rule is used for the 
damage rate, Ω ̇ Ωε̇ (from the damage potential, which is different from 
damage function)
(12)

ε ̇ id=λ̇ d∂fd∂σ=λ̇ d∂fd∂Y∂Y∂σεε̇id=λε̇d∂fd∂σ=λε̇d∂fd∂Y∂Y∂σ
(13)

Ω̇ =λ̇ ∂gd∂YΩε̇=λε̇∂gd∂Y

where λ̇ dλε̇d = Lagrangian multiplier, which is the magnitude of the 
irreversible strain here.
Principle of the DSID Model for Shale Brittle Deformation Regime
Shale is the generic name used for any fine-grained sedimentary rock 
characterized by discontinuities along thin laminae or parallel layering or 
bedding [Fig. 4(a)]. Shale can include a range of distinct low porosity and 
permeability lithologies (e.g., marl, mudstone) with varying amounts of silica, 
carbonate, clay, and organic content (kerogen). Samples used to characterize 
shale mechanical properties are cut from the full coring diameter (commonly 
63.5- to 133.4-mm-diameter whole core) to get long plugs (25.4 mm diameter 
× 50.8 mm long). Often, plugs are cored parallel and perpendicular to the 
bedding planes to obtain homogeneous test samples more easily and to 
determine mechanical properties in the principal fabric directions of the rock, 
controlled by fine depositional layering or bedding due to delamination (poker 
chipping). To calibrate the DSID model, a set of laboratory triaxial 
compression tests from the Middle Bakken member of Bakken shale were 
used (Amendt et al. 2013). The Middle Bakken samples used in this study 
were composed mostly of carbonate (45%), silica (30%), clay (>10%), void 
space (porosity <10%), kerogen, and other (<10%) heterogeneously 
distributed in fine laminations [Fig. 4(a)]. Although the optimal plugs for triaxial 
testing contain no flaws, in some rock intervals the presence of microcracks, 
and bedding planes, some of which were being fully delaminated, is 
unavoidable (Amendt et al. 2013).
A typical stress–strain path for rock under a triaxial compression test is shown 
in Fig. 5. Three main deformation regimes are noted. First, shale exhibits a 
quasi-linear elastic behavior. Zone I describes the linear elastic behavior of 
the rock (characterized by Young’s modulus and Poisson’s ratio), defined by 
fully reversible deformation and no hysteresis. It is important to note that Zone
I may also include the early onset of strain hardening: elastic moduli 
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measured on unloading are lower than the ones of the pristine rock, due to 
microcrack generation. The true elastic response of shale has been observed 
to be a small portion of the curve represented in Zone I. Zone II exhibits the 
onset of ductile behavior: plastic deformation accumulates with increased 
axial loading. Irreversible strains are more dominant than during the quasi-
linear elastic deformation regime in Zone I. Zone III is the postpeak domain, 
which starts at the failure point. After failure, the sample is fully fractured and 
stress drops to the residual strength of the rock. In Zone III, microcracks 
rapidly intersect and coalesce to form a propagating macroscopic fracture; 
therefore, the strength of the rock also decreases rapidly. The present work 
focuses on Zone I, i.e., the quasi-linear elastic regime, which is assumed to 
consist primarily of reversible deformation followed by the onset of early brittle
microcracking. It is within this deformation stage in shale, prior to significant 
plastic yielding, that pervasive microcracking, stiffness and strength reduction,
and heterogeneous material degradation occur within heterogeneously 
stressed portions of the rock (e.g., areas of local stress amplification). 
Classical linear elastic models cannot capture this early strain hardening 
phenomenon. Nonlinear elastic models could capture strain hardening, but not
the decrease of elastic moduli resulting from crack propagation. The DSID 
model allows for the prediction of both damage heterogeneity and anisotropic 
stiffness degradation induced by deformation and microcrack propagation, as 
described by the associated energy dissipation.

Calibration of DSID Model Parameters
Triaxial compression tests provided by ConocoPhillips were used to determine
the DSID model parameters. The calibration was done iteratively with a 
dedicated MATLAB code. The algorithm was similar to the one used in the 
maximum likelihood method presented in Bakhtiary et al. (2014), except that 
the optimization problem was solved by minimizing the squared residuals of 
the distance, ri, between experimental data, yi, and numerical 
predictions, f(x,B)f(x,B)

(14)
S=∑i=1nr2i,ri=yi−f(x,B)S=∑i=1nri2, ri=yi−f(x,B)

where x = vector of known input variables; and B = vector of parameters that 
need to be calibrated. The algorithm was initialized with the mean, minimum, 
and maximum values of the model parameters. Using these parameters, a 
triaxial compression test was simulated at the material point using the DSID 
model. The gradient method was used to minimize the difference between 
numerical and experimental stress–strain curves and to find the optimal set of 
parameters. The algorithm started with the initialized vector B0B0, and 

iteratively finds the sequence B1,B2,…Bn+1B1, B2, …Bn+1 by solving
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(15)
Bn+1=Bn−γn∇f(Bn)Bn+1=Bn−γn∇f(Bn)

where the value of the step size γn is allowed to change at each iteration.
The stress–strain curve used for model calibration was obtained for a rock 
sample taken from the subsurface core that was first subjected to a 27.6-MPa 
(4,000-psi) isotropic compressive stress and then subjected to a contractional 
axial strain (which causes some deviatoric stress in the sample). The Young’s 
modulus and Poisson’s ratio in the reference state were read from the 
experimental stress–strain curve, and the remainder of the DSID parameters 
was calibrated iteratively. Results are reported in Table 1. Fig. 6 shows the 
experimental stress–strain curve (solid line) and the numerical stress–strain 
curve obtained after model calibration (dashed line). At a given axial 
(respectively, lateral) strain, the maximum difference between the value of the 
deviatoric stress measured in the experiments and that calculated with the 
DSID model is less than 13% (respectively, 9%), which is on the same order 
as the measured variability between samples taken from the same depth, in 
which minor differences in the experimental data are due to intrinsic lithologic 
heterogeneity. Although it is possible to fine-tune the calibration for each 
triaxial plug, the calibrated stress–strain curve instead reflects representative 
behavior for the particular Bakken shale depth interval. Therefore, the authors 
consider that both axial and radial strains predicted with the DSID model 
match experimental results within acceptable limits. A parametric study was 
conducted to assess the sensitivity of the model to the hardening 
parameter C1: the range of variations of the stress–strain curves are shaded in
gray in Fig. 6. This sensitivity analysis shows that deformation and damage 
increase when C1 decreases.

Table 1. DSID Parameters Calibrated for Shale under a Confining Pressure of 27.6 MPa (4,000 psi), 

with E0=46E0=46 GPa and ν0=0.186ν0=0.186

Table 1. DSID Parameters Calibrated for Shale under a Confining Pressure of
27.6 MPa (4,000 psi), with E0=46 GPa and ν0=0.186

Calib
rated

Free energy
Damage
function

a1 a2 a3 a4 C0 C1

α (
−)

Param
eters

GPa–1 GP
a–1

GPa–1 GPa–1 M
Pa

M
Pa

—
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Calib
rated

Free energy
Damage
function

a1 a2 a3 a4 C0 C1

α (
−)

Optim
al

7.35×10
−47.35×10−4

0.1
21

−3.15×10
−2−3.15×10−2

2.39×10
−32.39×10−3

0.
01

1.
18

0.3
99

Upper 
bound

7.35×10
−47.35×10−4

0.1
21

−3.15×10
−2−3.15×10−2

2.39×10
−32.39×10−3

0.
01

1.
78

0.3
99

Lower
bound

7.35×10
−47.35×10−4

0.1
21

−3.15×10
−2−3.15×10−2

2.39×10
−32.39×10−3

0.
01

0.
71

0.3
99

Note: The upper and lower bounds indicate the range of values considered for the parametric study 

on the hardening parameter C1.

In the calibration proposed earlier, the damage threshold was assumed to be 
reached at less than 0.005% axial strain, and the reference elastic moduli 
were computed from the slopes of the lines joining the origin of the stress–
strain plot to the points in which damage first occurred in the axial and radial 
directions. The value considered for E0 was higher than the values reported by
the lab for the particular Bakken shale samples. This is because the definition 
of a reference mechanical state is by itself contingent on the level of accuracy 
with which damage triggering is detected during the triaxial compression test. 
Within the CDM framework adopted in this paper, rock is viewed as a 
damaged material, even in the initial state. If a change of slope in the stress–
strain curve is detected in the early stage of the brittle deformation regime 
(Zone I in Fig. 5), then the damage threshold will be low, and the 
corresponding reference stiffness will be high. The estimation of the reference 
elastic properties E0 and ν0 is a long-standing research issue. In previous 
modeling publications (Halm and Dragon 2002; Hayakawa and Murakami 
1997), the authors proposed calibration methods in which the damage 
threshold (C0) was estimated manually, from the modeler’s judgment. Some 
experimental works considered the onset of damage to occur at the point in 
which the volumetric strain curve inverts (Crawford and Wylie 
1987; Pagoulatos 2004), which may correspond to an increase in acoustic 
emission activity (Paterson 1978; Butt and Calder 1998) associated with 
microcracking. Other studies (Katz and Reches 2004) used microscopic 
mapping techniques to link damage onset with a change in the derivative of 
the axial strain curve, reflecting reduced elastic stiffness. The second author 
of this paper previously applied both the volumetric and axial strain methods 
to the Bakken shale data set and found the actual damage initiation point to 
be ambiguous compared with the sandstone and granite samples of the prior 
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publications. Additional experimental study using acoustic emissions or 
microcrack mapping would be required to better constrain the damage 
threshold in these samples. Three different damage thresholds were 
estimated from the experimental stress–strain curve of a triaxial compression 
test performed under a confining stress of 20.7 MPa (3,000 psi). The 
corresponding values found for the reference Young’s modulus and Poisson’s 
ratio are reported in Table 2. For the three different thresholds estimated, the 
calibrated damage parameters were used to simulate the triaxial compression 
test conducted under a confining stress of 20.7 MPa (3,000 psi). The 
comparison between the experimental and numerical stress–strain plots, 
shown in Fig. 7, indicates that a better accuracy is achieved for a higher 
reference Young’s modulus. This was expected, because a high reference 
Young’s modulus was considered in the calibration of the DSID model under a
confining stress of 27.6 MPa (4,000 psi). The differences noted between the 
plots obtained with different sets of reference elastic moduli also highlight the 
dependence of rock mechanical stiffness to confining pressure, which is 
accounted for in the DSID model as soon as the rock REV is in the damage 
domain: damage propagates faster under higher differential stress.

Table 2. Reference Young’s Moduli and Poisson’s Ratios Determined from the Experimental Stress–Strain Plot 

Obtained under a Confining Stress of 20.7 MPa (3,000 psi)

Table 2. Reference Young’s Moduli and Poisson’s Ratios Determined from the
Experimental Stress–Strain Plot Obtained under a Confining Stress of 20.7

MPa (3,000 psi)

Case
Young’s
modulus

(GPa)

Poisson’s
ratio

Damage threshold

Axial
strain
(%)

Lateral
strain
(%)

Differential
stress (MPa)

1 35.71 0.169 0.1045 0.0177 37.31
2 37.19 0.143 0.0543 0.0078 20.19
3 38.79 0.122 0.0316 0.0039 12.26

The calibrated DSID model was verified against stress–strain curves obtained 
during triaxial compression tests conducted under confining stresses of 6.9 
MPa (1,000 psi), 13.8 MPa (2,000 psi), and 20.7 MPa (3,000 psi). For each 
verification test, the Young’s modulus and Poisson’s ratio were calculated from
the experimental stress–strain plots by choosing the damage threshold 
manually (Table 3). The comparison between experimental and numerical 

https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897


responses is shown in Fig. 8. As expected, the higher the confining stress is, 
the higher the reference Young’s modulus (because confining stress tends to 
close initial defects and stiffen the rock).

Table 3. Reference Young’s Moduli and Poisson’s Ratios Determined from the Experimental Stress–Strain Plot 

Obtained under Confining Stresses of 6.9 MPa (1,000 psi), 13.8 MPa (2,000 psi), and 20.7 MPa (3,000 psi)

Table 3. Reference Young’s Moduli and Poisson’s Ratios Determined from the
Experimental Stress–Strain Plot Obtained under Confining Stresses of 6.9

MPa (1,000 psi), 13.8 MPa (2,000 psi), and 20.7 MPa (3,000 psi)

Confining 
stress 
(MPa)

Young’s
modulus

(GPa)

Poisson’s
ratio

Damage threshold

Axial
strain
(%)

Lateral
strain
(%)

Deviatoric
stress
(MPa)

6.9 28.34 0.172 0.2004 0.0344 56.80
13.8 32.24 0.163 0.2005 0.0328 64.64
20.7 38.79 0.122 0.0316 0.0039 12.26

Finite-Element Simulation of Laboratory Tests
A UMAT subroutine was written to use the DSID model in Abaqus finite-
element software. Triaxial compression tests were simulated at the scale of 
the whole core and at the scale of a standard plug sample, in two stages. 
First, an isotropic confining stress of 27.6 MPa (4,000 psi) was applied on the 
top, bottom, and lateral boundaries of the domain. Second, the top and bottom
boundaries were subjected to an axial displacement of equal magnitude 
(given in the following sections), under constant lateral confining stress. The 
simulations presented next aim to study the effects of sample size, intrinsic 
anisotropy, and initial delamination planes on the overall mechanical response
of shale under states of differential stress. All the simulations were conducted 
with the optimum set of parameters reported in Table 1, with hexahedral linear
elements (each element had eight integration points). Both the rock specimen 
and the metal platens at the top and bottom of the sample were modeled with 
the FEM. At the interface between the rock sample and the metal platens, 
normal and tangential displacements were constrained by a normal 
nonpenetration condition and a friction law (Fig. 9). Before the critical shear 
stress limit line is reached, the surfaces are fully bonded. If the equivalent 
shear stress exceeds the critical line, the surfaces start to slide. The 
equivalent shear stress is computed as
(16)
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τ⎯⎯=∑i=1nτ2i‾‾‾‾‾‾⎯τ¯=∑i=1nτi2

For the rock/metal contact, a friction coefficient μ=0.8μ=0.8 was adopted.

Effect of Sample Size on Stress Concentrations and Damage Localization
The finite-element model simulates a plug deformed under triaxial 
compression loading conditions (Fig. 10). The laboratory experiments were 
conducted on 50.8 mm long × 25.4-mm-diameter plugs cut from subsurface 
core of the Bakken shale. The sample is loaded in a triaxial cell by first 
applying confining pressure to the sides of the sample via a jacket until the 
overall confinement level is reached [27.6 MPa (4,000 psi), in the case studied
here). Next, axial displacement is applied vertically at a strain rate 
of 10−5s−110−5 s−1 applied by moving pistons that act on the sample by 
metal platens, which are in frictional contact with the rock plug. Axial 
displacement at the pistons and radial displacement using strain gauges 
attached to the sample recorded incremental deformation. The laboratory 
sample was then loaded through failure and postfailure to capture the full 
deformation cycle. The finite-element model reflects a simplified version of the
laboratory experiment and allows for the direct comparison of the constitutive 
behavior at the element level in different regions of deformation (e.g., center 
versus edges of the plug) with the overall constitutive behavior, as derived 
from the laboratory sampling approach. Two finite-element models were 
compared:
1
.

The standard size recommended by ASTM for plug tests: 25.4 mm (1 in.) in diameter 
and 50.8 mm (2 in.) in height; and

2
.

A portion of whole core: 101.4 mm in diameter and 152.4 mm in height.

The authors ran a range of tests changing the mesh size from 0.8 to 5 mm. 
Element sizes ranging from 0.8 to 5 mm showed minimal variation on the 
deformation pattern and were accurate within 3%. The element size of 2.5 mm
giving a 1% error was therefore considered appropriate to capture strain 
heterogeneity and the onset of damage localization. To focus the comparison 
on sample size effects, both the plug test and the core test were simulated 
with finite elements of the same size, 2.5×2.5×2.52.5×2.5×2.5 mm; 
2,200 elements were used to model the plug, and 93,208 elements were used
to model the whole core.
Figs. 11 and 12 show the vertical stress σ11 concentration at the edges of the 
contact surfaces between the platens and the rock specimen. Stress 
decreases gradually from the edges to the center of the contact surface. 
Boundary effects decrease from the platens to the center of the sample. For 
the two sample sizes tested, the vertical stress distribution is not uniform. 
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Stress in elements located in the middle of the sample is not equal to the 
stress applied at the boundary. Stress components in the other directions (not 
shown here) also exhibit a heterogeneous (i.e., nonuniform) and anisotropic 
(i.e., directionally variant) distribution in the sample. At certain loadsteps, the 
lateral confining pressure exceeds the vertical compression, which induces 
vertical damage (i.e., horizontal cracks). In contrast, horizontal damage 
represents vertical microcracks that open because the vertical compression 
stress exceeds the lateral confining stress, and it concentrates in the corners 
of the sample (Fig. 13). As expected, vertical damage is minimal during the 
triaxial compression test (Fig. 14).
To assess the boundary effects noted previously, the stress–strain curve 
computed in a central element of the mesh was compared with the stress–
strain curve obtained numerically with the MATLAB code written to simulate 
one-element tests. The one-element test corresponds to ideal conditions, with 
no edge effects. Fig. 15shows the axial loading phase of the triaxial 
compression test for the one-element simulation and for the two finite-element
models described in Fig. 10. Note that for consistency, the strains at the end 
of the confining stage were subtracted from the cumulated strains, which 
explains why the plots start at zero strains in Fig. 15. As expected, simulation 
results obtained with the FEM show some deviation from the ideal stress–
strain curve predicted in the one-element simulation (Fig. 16). The error of the 
stress deviation from the one-element test for both FEM simulations is 
checked at the same strain levels. Overall, results are more sensitive to lateral
strains. Despite stress heterogeneity in the sample due to edge effects (<10% 
variability for both tests in axial strains, and >10% in lateral strains), the 
stress–strain curves obtained in individual finite elements are similar to the 
ones obtained at the material point with MATLAB. Higher heterogeneity and 
stress concentration were noted in the whole core sample because 
simulations involved the same element size but a larger domain than in the 
plug test. Consequently, higher departure from the reference one-element test
is noted in the results obtained for the whole core sample test than for the 
plug test, especially for the radial strains. The pattern of stress observed 
within the whole core sample is a main departure from the uniformity 
assumption required for property calibrations and should be considered when 
calibrating to laboratory and field tests. Overall, edge effects do not appear to 
significantly affect the overall constitutive response of elements in the model, 
and the finite-element simulations are considered acceptable at both scales. 
These findings suggest that for the quasi-linear elastic deformation stage 
(Zone I, Fig. 5), the single-element calibrated material model is suitably 
scalable to larger geometric configurations to predict stress concentrations 
and damage localization.

https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897
https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0000897


Effect of Initial Anisotropy on Stress-Induced Anisotropy
Because of its sedimentary deposition, shale is naturally anisotropic. The 
DSID model can be used to account for initial anisotropy (existing prior to 
loading) and for stress-induced anisotropy (due to damage propagation in the 
three directions of space). Note that in the following, Ω = 0 refers to intact rock
and Ω = 1 refers to a state of pervasive microcracking. The current version of 
the DSID model is limited to pervasive microcracking with no crack 
coalescence (Zone I in Fig. 5); therefore, the DSID model cannot be used to 
predict full weakening (zero strength). The triaxial compression test described 
previously was simulated for a plug 25.4 mm in diameter and 50.8 mm in 
height, for the following initial damage conditions:
1
.

No initial damage: The sample is initially homogeneous and isotropic 

(Ω11=Ω22=Ω33=0Ω11=Ω22=Ω33=0), in which Direction 1 is vertical and 
Directions 2 and 3 are in the horizontal plane.

2
.

Initial damage in the lateral directions (Ω11=0,Ω22=Ω33=0.1Ω11=0, 
Ω22=Ω33=0.1): This condition represents natural microcracking damage (vertical 
cracks), due to tectonic loading, or uplift, for instance.

3
.

Initial damage in the vertical direction (Ω11=0.1,Ω22=Ω33=0Ω11=0.1, 
Ω22=Ω33=0): This condition represents bedding delamination planes (horizontal 
cracks).

In the second loading phase, a vertical strain of 0.8% was applied. The ratio 
between the vertical elastic modulus and horizontal elastic modulus is used as
an anisotropy index
(17)

α=E1E3α=E1E3

Fig. 17 illustrates the evolution of stiffness anisotropy for an element with no 
initial damage, i.e., initially isotropic. Isotropic materials have an elastic 
anisotropy index of α = 1 at the beginning of the axial loading stage. Damage 
propagates as differential stress increases, which results in a decrease of the 
elastic moduli. However, vertical microcracks are more prone to open during 
the axial loading; thus, the horizontal Young’s moduli E2 and E3 decrease 
faster than the vertical modulus E1.
Fig. 18 shows the changes of Young’s modulus observed during the tests, 
normalized by the initial undamaged modulus. Note that the modulus plotted 
was the one calculated in a central element of the mesh, in which the axial 
strain is not equal to the loading strain. This explains why the final axial strain 
is not the same for the samples tested. This difference does not change the 
conclusions drawn from the results concerning the evolution of mechanical 
anisotropy. During the initial confinement loading stage, damage weakening 
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occurs. The predamaged samples (dot and cross markers in Fig. 18) 
experience less stiffness reduction than the samples without predamage 
(diamond markers in Fig. 18). In other words, the existence of preexisting 
microcracks in the sample makes the material more compliant, and it also 
tends to reduce stress amplification inhibiting subsequent microcracking.
Fig. 19 shows the evolution of horizontal damage (vertical microcracks) at the 
end of the triaxial compression test. In accordance with the boundary 
conditions, the space distribution of damage is symmetric. The final amount of
horizontal damage in the sample with initial vertical cracks is similar to that in 
the initially undamaged sample, which means that less damage is 
accumulated during the test simulated with the initially damaged sample, and 
that stress in the sample with initial damage remains in the elastic domain for 
a higher axial displacement load than in the initially undamaged sample. Once
vertical cracks have formed in the initially damaged sample, damage evolves 
in a way similar to the sample that already contained vertical cracks. The 
sample with initial vertical damage (horizontal microcracks) is more compliant 
in the vertical direction (i.e., the Young’s modulus E1 is initially smaller than in 
the other samples). Loading is controlled in displacement. Therefore, the 
sample with initial vertical damage develops less internal stress than in the 
other samples and remains in elasticity for a higher axial displacement load. 
As a result, the horizontal damage cumulated in the sample with initial vertical 
damage is almost zero, except at the edges. Overall, the intensity of 
deformation throughout the sample follows a similar distribution in the three 
samples. The space distribution of horizontal damage in Fig. 19 explains the 
space distribution of horizontal deformation in Fig. 20: a higher increment of 
horizontal damage calculated during the test leads to higher horizontal 
irreversible deformation, and higher horizontal total deformation. It follows that
horizontal deformation in the sample with no initial damage is higher than that 
in the sample with initial horizontal damage, which is itself higher than that in 
the sample with initial vertical damage.
In a core that contains vertical cracks, the plug modeled here with initial 
vertical cracks can represent a sample cored in the axial direction of the core, 
and the plug containing initial horizontal cracks can represent a sample cored 
in the transversal direction of that core. Therefore, the previously mentioned 
numerical results indicate that plugs extracted from the same core in two 
orthogonal directions can exhibit very different stress–strain responses: a high
compression strength is expected for the plug cored in the transversal 
direction, whereas a low compression strength is expected for the plug cored 
along the axis of the core. The DSID model can be used to characterize 
intrinsic mechanical anisotropy from induced damage anisotropy. A sample 
containing one family of vertical cracks subjected to vertical compression can 
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be seen as the equivalent of a sample containing a family of horizontal cracks 
subjected to lateral compression. Therefore, experiments on samples with 
different states of initial damage can be done to test the three-dimensional 
states of stress with triaxial compression cells, and modeling initial damage 
predicts the behavior of anisotropic rock under different states of differential 
stress.

Influence of Delamination Planes on Damage Propagation
The influence of a horizontal bedding delamination plane on damage 
propagation within a whole core sample (101.6 mm in diameter and 152.4 mm
in height) was studied with two different numerical models (Fig. 21):
1
.

Discrete fracture model: At midheight of the sample, a discontinuity was introduced. The
top and bottom parts of the sample were debonded. At the interface, a nonpenetration 
condition was adopted in the normal direction, and a friction law (Fig. 9) was used in the
tangential directions, with a friction coefficient of 0.8 (note that in real geological 
conditions this coefficient varies largely with the type of fracture surface and gouge 
material in the fracture).

2
.

Smeared damaged zone: A 5-mm-thick layer of initially damaged finite elements 

(Ω11=0.2Ω11=0.2) is introduced in the middle of the shale sample.

During the axial compression phase, a vertical strain of 1% was imposed 
under a constant confining stress of 27.6 MPa (4,000 psi). As noted 
previously, stress concentrations occur near the contact surfaces between the 
steel platens and the rock sample due to friction. In the discrete fracture 
model, sliding can occur once friction at the interface between the top and 
bottom parts of the sample exceeds its frictional strength. Compared with a 
linear elastic model [Fig. 22(a)], contact properties introduced in the discrete 
crack model [Fig. 22(b)] constrain the material at the crack surfaces, which 
results in slightly higher stress. Overall results in the homogeneous sample 
[Fig. 22(a)] are similar to those in the sample containing a horizontal discrete 
fracture [Fig. 22(b)], because the fracture is closed during the axial 
compression phase. In contrast, the behavior of a plug containing a uniform 
distribution of initial horizontal microcracks [Fig. 20(c)] differs from that of a 
plug that is initially undamaged [Fig. 20(a)], because the DSID model 
assumes that closed horizontal microcracks affect stiffness in the same way 
as open horizontal microcracks. To account for the increase of compression 
strength during crack closure, a unilateral condition would have to be added in
the DSID model (Chaboche 1993). In the test with a smeared damaged zone 
[Fig. 22(c)], the stiffness tensor decreases only in the zone that contains 
microcracks due to damage propagation. As expected, internal stress 
developed in the sample is lower than in the linear elastic test. The main 
difference with the discrete fracture case is the presence of stress 
concentrations near the damaged zone. The delamination results indicate that
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the DSID model can be used to approximate discrete features. However, the 
triaxial stress–strain calibration approach is based on capturing the effect of 
crack-generating processes. If the model is used for discrete crack-closing 
processes, then stiffness evolution should instead be calibrated to 
experiments on fracture closing and asperity weakening (e.g., considering 
Hertzian contact theory).
The evolution of the energy dissipation provides a way to analyze the physical
processes, such as crack opening and crack debonding, which dominate 
damage propagation before failure. Figs. 23 and 24 show the energy 
dissipated in the smeared damaged zone due to the accumulation of 
irreversible deformation (induced by crack opening: Wirr) and due to crack 
debonding (Wd)
(18)

Wirr=∫σ:ε ̇ iddtWirr=∫σ:εε̇id dt
(19)

Wd=∫Y:Ω.dtWd=∫Y:Ω. dt

Energy dissipation starts at the external boundary of the sample and 
propagates toward the center. Finite elements close to the boundary 
experience less confinement than the elements in the center, which results in 
higher deformation close to the lateral boundary. The space distribution of the 
energy dissipated by crack debonding is similar to that of the energy 
dissipated by irreversible deformation.

Conclusion
A CDM model, named the DSID model, was formulated by two of the authors 
to capture the anisotropy of rock deformation and stiffness induced by tensile 
stress differences. This model was calibrated against laboratory data obtained
during triaxial compression tests performed on Bakken shale by using an 
optimization technique to match the stress–strain behavior.
1
.

The triaxial compression test used for model calibration was simulated for different 
sample sizes with Abaqus finite-element software. The effects of sample size on stress 
concentrations and damage localization, and the anisotropy induced by microscopic 
crack propagation in initially isotropic and anisotropic shale samples, is captured by the 
DSID model. The nonuniform state of stress reached after the axial loading stage in 
elements located in the central zone of the mesh reveals boundary effects.

2
.

Overall, stress–strain curves obtained with the FEM match the stress–strain curves 
obtained with the one-element model used for calibration, which justifies the use of the 
DSID model to study stress-induced anisotropy at multiple scales.

3
.

When considering different states of initial damage representing thin laminae, the 
anisotropy index grows faster in the plug tests simulated for samples with initial 
horizontal damage (i.e., initial vertical microcracks).
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4
.

The influence of a horizontal bedding delamination plane located at midheight of a linear
elastic shale sample was studied by using a discrete fracture model and a smeared 
damage zone model. The evolution of the energy dissipation rate in the sample illustrates
two main differences between the two numerical models. First, the CDM smear zone 
model predicts vertical weakening in the damage zone that is not included with the hard 
normal contact option of the discrete surface model. Second, the discrete fracture model 
uses a sliding friction threshold that is not exceeded under axial loading, whereas the 
CDM zone predicts strain localization, gradual energy dissipation, and further material 
weakening at the delamination interface.

This numerical study of damage anisotropy and damage propagation 
demonstrates the utility of the DSID model to simulate realistic rock 
deformation using a common laboratory testing configuration. Although a 
simple scenario was considered, results suggest that the model is suitable for 
a range of engineering and geologic problems in which anisotropic 
mechanical properties are expected. The model will be further enhanced by 
plastic coupling so that the full stress–strain and failure response can be 
modeled, and by coupling of pressurization damage to fluid flow, for future 
applications in hydraulic fracturing simulation. Future work will be dedicated to
the coupled simulation of fracture and damaged zone propagation, which 
could allow the prediction of rock strength and failure subsequent to 
microcrack propagation.
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