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THE SAMPLING DISTRIBUTION OF LEAST ABSOLUTE
RESIDUALS REGRESSTON ESTIMATES

by

Barr Rosenberg and Daryl Carlson

Regression by minimization of the sum of the abso-
lute values of the residuals (LAR) is shown to be pref-
erable to least squarea regression (LS) when the dis- _
turbance distribution has massive tails. For the special
case of a single regressor, the exact sampling distribu-~
tion of the LAR estimation error ie derived. For multi-
variate regression with a symmetric disturbance distribu-
tion, the LAR estimation error is approximately multivariate
normally distributed with mean zero and variance matriz

'A(X'x)-l, where T ig the sample size and AT is the vari-
ance " of the median of a sample of size T from the dis-
turbanee distribution. The approximate sampling theory
ig8 validated by extensive Monte Carlo studies.



I. INTRODUCTION

This article is concerned with the familiar linear regression model:

(1.1) Ve = x, B, 4 u_ =xf+u t=1,...,T

where X, is the row vector of explanatory variables for observation t,

and B is the columm vectqr of parameters, or in matrix form:
y= XB + u,

where the disturbances are independently distributed_according.to some pro-
bability distribution yet to be specified and are independent of the ex-

planatory variable. The Least Squares (IS) estimate of the regression

coefficient vector is the vector, b

1.8° which minimizes the gum of squared

~

residuals ELS’ t=1,...,T A general "least-

I -1+

r2 where r_ =y X
, = -
tlt t t‘t

~

alpha" estimate mav be defined analogously as that estimate b which min-
P y g y D

imizes

T
(1.2) 8 = I lr

The estimator for g= 1——
——— 3 has been variouély termed the "Minimum Absolute Deviations™ (MAD)
[1], "Minimum Sum of Absolute Errors" (MSAE) [19,20,25], "Minimun Devia-
tions" (@) [21], "Léast Deviatiﬁns" (LD) [16], '"Least Absolute"” (LAY [14],
”Ll” (since the least-alpha espimator is the outcome of projection of the

dependent on the explanatory variables with Euclidean norm La) [2], and
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"Least Absolute Residuals" (LAR) [23) Estimator. The last term, LAR, be-
ing perhaps the clearest and most analoéous to the accepted terminology
for Least Squares estimation, will be used here.

In this paper several theorems concerning the sampling distribﬁ—
tion of the LAR estimator are derived and an appréximate sampling theory,
which is closely analogous to the LS sampling theory, is proposed. In
multivariate regression with a disturbance dis;ribution having mean zero
and variance 02, the familiar sampling distribution for the LS estimators

is
Mgt Brg - &I @H™

This is the exact distribution when the disturbanées are normally dis-
tributed, and the 1arge~sampie approximation when the disturbances
have any finite—ﬁariance distribution. Provided that the disturbance
distribution 1s symmetric¢, the proposed épproximate sampling theory

for LAR is
ALpt Biap ~ NBAEDED™Y,

where A(F,T) = TGiED’ and U;ED ig the variance of the median of a

sample of size T from the disturbance distribution ¥. Since 02 = TGﬁEﬁN’
the LAR approximate distribution theory differs from LS only in that the
variance of the sample median replaces the variance of the sample mean. A
similar approach can be applied to the sampling distributions of the re-
matning lcaétwalpha estimatoys, bul wa omit the details since the com-

putational diflicultios associared with these estimators appeav to render

thely use fwpractifoal,



Y

In the balance of this section, some background on the "least-

alpha” family of estimators is provided. In Section II, the LAR param-

eter estimates are expressed - >
as a function of the explanatory variables and the unobserved_disturbm
ances, and several Theorems concerning the basic properties of the error
distribution are deduced. Then, for the special case of a single re—
gressor, a nearly complete sampling theory is derived in Section III.
When the disturbance distribution is symmetric, the existence of moments
for the estimation error distribution is simply related to the existence
of the moments of the disturbance distribution and to the sample size.
The LAR estimator is highly robust and, in particular, LAR will have

finite variance for common sample sizes when the disturbances have the

infinite-variance stable Paretian distribution. Moreover, >

-3 the LAR estimates are consistent for a wide clagss of disturbance

distributioné. In Section 1V, several easily computed approximations to
the exact sampling theory are evaluated by Moﬁte Carlo studies. Section V
introduces the difficult case of several regressors, and in Section VI
ALAR is validated by extensive Monte Carlo studies. Somg remarks con-

cerning the use of LAR estimates complete the article.

1.1 The members of the least-~alpha family of estimators can be compared
on the basis of three criteria: computational economy, the precision
of the estimators, and the richness of the distribution theory available

for the estimatrors,



With regard to computational economy, the LS estimator is far

superior, being the only estimator that is linear in the observations.

In general, a least—alpha estimator minimizes

T o
5 = % ‘r 1
) £=1 t
subject to the constraints
X1 b1 + .. . F X1 bK + ry =¥
X1 bl + . . .+ Xpo bK + T, =Y,
b I T i o +r, = Yy .

When alpha equals 1, the objective function is linear, so the LAR
estimate can be computed by the familiar simplex algorithm for linear pro-
gramming.l Several iﬁqutant gimplifications in thg dual problem result
from the simple structure of the constraint tableau [28,7,23]. A program
prepared by the presént_aﬁthors may be obtained on request. Computation
time for a seven—vgriable regression with eighty observations on the CDC
6400 i 2.866 seconds, compared to 0.348 secoﬁds for an L8 regression pro-
gram which computed the va;iénce—covarianée matrix of eétimation erfors.
Another computational approach that is claimed to be still more efficient
[26,27] has come into use recently [14].

Since the LAR estimate is computed in a linear programming frame-

work, inequality constraints on the ccoefficients and differing weights for

1 [10,11]

Edgeworth, who suggested LAR as an alternative to LS in 1887/, pro-
posed a geometric algorithm which was improved by Rhodes [21] and Single-
ton [24]. Wagner [28] developed the linear programming solution.
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positiﬁe and negative residuals in the objective function (appropriate for
asymmetric loss functions) are introduced at negligible cost. lowever,
the use of quadratic loss functions to introduce prior estimates necessi-
tates quadratic programming. For LS, in contrast, quadratic loss func~
tions (the degenerate case of which is an exact lincar constraint) can
easily be used for prior information on the parameters, but inequality
constraints and asymmetry require quadratic programming. In sum; LAR is
computationally more difficult than LS, but not prohibitively so.

The remaining estimators in the least-alpha family require nonlinear
programming and do not.yield the same simplified dual problem. Accord-
ingly, the required computafion time may be as much as several orders of
magnitude greater than for LAR.2 Thus, LAR stands next after LS in com-—
putational simplicity.

1.2 With regard to the accuracy of the estimators, LS is ideal in
the presence of normally distributed disturbances, where it is the maximum-
likelihood and minimum-variance unbiased estimator from the classical view-
point and the mean for the posterior distributiéﬁ of the parameters from
the Bayesian standpoint. However, this superioritj of LS does not extend
to other disturbance diétributions. The least-alpha estimator is the

maximum-likelihood estimator for the disturbance distribution:3

o
(1.3) £(u) ~ exp —(-E§L> .

2One exception is the case alpha = « (the Chebychev estimator),
where the maximal absolute residual {8 minimized [3]. However, this
estimator has the very worst sampling characteristics for disturbance
distributions with massive tails, and hence does not compete with LAR
in those applications where LAR is shown below to be superior to LS.

3For a more complete discussion of this point, see the recent
paper of Zeckhauser and Thompson [30].



For alpha equal to two, this is the normai distribution, and LS is the
agsociated ML estimator; For alpha equal to one, this is the Laplace
distribution, and LAR is the ML éstimator. As o =+ 0, the distribution
becomes increasingly peaked, with a small cusp at u =0 and with ex-
tremely flat tails extending from this cusp to infinity; in respbnse,
the objective function becomes sensitive only to those residuals with
smallest absolute value, and - the estimator approaches the mode. Con~
versely, as QO > %, the distribution approaches the uniform distribution
with a flat plateau between u = —§ and u = +S, and a near-zero level
outside of this ihtérval; in response, the objective function becomes
sensitive only to those residuals.with largest magnitude, and the egti-
mator approaches the mid-range or Chebychev estimator. Moving élong

the continuum from o = « toward o = 0, the tails of the distributions
become relatively more massive, and the weight accorded to large resid-
uals by the least-alpha estimator decliﬁes. _LAR, being nearer the
magsive-tailed case, éan be expected to outperform LS when there is a

high probability of large residuals or outliers in a data series [2].

When thé'only explanatory variable in the regression is a constant--
that is, where the centfal tendency of the population of dependent var-
iables is to be estimated--LS is the sample average énd LAR is the sanple
median, Thus, the four cases, @ > g, d = 1, @ =2, and &> o cor-

respond to the mode, median, mean, and mid-range estimators.



For a continuous'disturbance distribution, where the mode is not well
défined, the median is the preferred estimator when the tails of the
distribution are massive. For instance, in a recent Monte Carlo study,
Fama and Roll [12] found that for nonnormal members of the stable
Paretian distribution, the error variance of the median is considerably
smaller., Since these distributions have been suggested as appropriate
to describe the probability distribution of price changes in specula=
tive markets [5: 297-332}, the Monte Carlo results have been interpreted
as justification for the use of LAR in this context.

Several empirical studies over the past few years have illustrated
the superiority of LAR estimates over LS estimates in forecasting applica-
tions. For example, in.a study by Meyer and Glaubér, various quarterly
investment models were esfimated by both LAR and LS [lg]. These estimates
were then evaluated over a seven-quarter forecast period, and the LAR es-
timates were superior for five out of six of the investment models, both
on a sumvof"squared—forecast;errors énd a sum—ofnabso1ute—forecas@—errors
criterion. Similarly, in a study by Richard Oveson, wiﬁh the Houthakker-
Taylorx consumption.equations, the LAR estimates wére superior over the

forecast-evaluation period {20], 1In a $lightly different application,



~casting performance of LAR was due to the resulting unstable disturbance

John Wigintén used botﬁ LAR ana LS to estimate the parameters of the Sharpe
diagonal "portfolio-selection" model [29]. His results indicated that the
model utilizing the 1AR estimates yielded poftfolios that performed better,
with respect to a return-versus-risk criterion over'a forecast period, than
the model using the LS estimates. It is probable that.in at least some of
these studies the models were poorly specified, and that tﬁe superior fore-
distriEution. However, the fact remains that LAR was more robust in the
presence of this misspecification and, in many areas of applied statistics,
data limitations fender misspécification unavoi&able.

1.3 Finally we come to the question of available sampling theory
for the estimates. Here, again, LS has had the dominant advantage. . Since
the estimation error is linear in the disturbance terms, the distriﬁution
of the egkimétes is moét simply reiated to the distribution of disturbances.
In contrast, the sampling theory for the other least-alpha estimates has
been virtualiy nil., Several Monte Carlo studies [1,4,13,14] have reached
rather tentative conclusions about tﬁe relative error moments of LAR and

LS. 1In the special case of the median, the distribution has been derived

directly [17, VYol. I, Ch. 14; 15]. -
In this article, the saﬁpling_distribution of the LAR estimates
is descfibed fairly satisfactcrilj for the case where the disturbance
distributicn is symmetric. - The results of the Monte Caflo studies

suggest that the approximaté sampling theory will be gsatisfactory for

many applications,



11. BASIC PROPERTIES OF THE LAR ESTIMATOR -10-

The first step in developing a distribution theory for LAR esti-
mators is to express the estimates as a functiqn of the observed explanaf
tory variables and the unobserved disturbances. This function maps each
possible vector of disturbances onte a wvector of LAR parameter esti-
mates. Any ﬁrobability distriﬁﬁtion of the disturbances defermines,
through this mapping, a proﬂability distribution fér the parameter es-
timates. In the case of least squareé, the function relating estimates.

to disturbances has the explicit form:

@1 b= @ xy s @ rEs sy - g @ X

For LAR-éstimation, there is no explicit expression of thié kind. The
LAR ﬁaxameter eétimates are defined implicitly as the ﬁegtor b which
minimizeé

T

sp) = I ly, - bl

t=1
A problem of nqnﬂniquenesé can arise, since SQE) may achieve its mini-
mum, not at a singlé point} R,-but oﬁ a subset of any;diﬁension up to K
of B, the space of all estimateé,’g. For thé momenf, we will consider
any vector Jﬁ to be.an LAR gstimatbr if it minimizes .SSB), not requiring

the estimator to be unique.
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S{b) can be rewritten in terms of X and u as:
o~ -~ ~

T T
b3 I(x B4 u ) - x b! = ¥ ]x (b-R) - u !
i S S 5 o t

.

(2.2) é(g)

1

"

X !X ] — Utl il

7 .
% Ot(e) = 0(e)
t=1 7 =1 "7 N

t=1

where e 1is the vector of errors in the parameter estimates and Ot{g)
th . \ ' (ndividual

ijs the absolute value of the t residual. Since each individua

function 0t is convex from below, so is the sunmation O(E) and,

equivalentiy, the surface S(b). This vields:
LEMMA 1: The surface S 1is convex from below.

Therefore, any local minimum for § will be a global minimum and, hence,

an LAR estimate,

By definition, a vector

wr

minimizes S(b) Zocally if

S(b+d) > 8(b) for all vectors

¥

[Ran

whose length, []él] (read "the norm
of d"), is sufficiently small. The minimum is unique if there is a

strict inequality S(b+§) > S(E). It will be convenient to select the

I e B

norm EIQII = la.l. We now derive:

1

»

1

LEMMA 2: The necessary and sufficient -ondition that b be an LAR esti-

+

mate of B, expressed in terms of the error, e =b - B, is: For 211 d

such that (2.3) is satisfied, (2.4) holds.
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P s

(2.3) 0 < |ld]} <& = b o _—

K
max L Ix,‘I
t i=1 1t

(sign [x, (e + ) - u.]) x4 2 0.

minl{]x e - ut[ I' (ftf f ut) # 0}

(2.4)

It

t=1

The estimate is unique iff (2.4) holds as a strict inequality.

Proof:

From (2.2) S(b+d) - S) = £

EXERCELEEN S PN

When |§tg.~ ut[.% 0,
Jx, (etd) - u | - Ix.e - u.| = sign [x (etd) - v 1 x,d.

When ]x e - utl # 0, and d satisfies (2.3

| IIK! I(K[ l) K[O K.l | <]
x dl < I |x,d.] £ I |x, L o|d, <81 |x <ilxe-u |3
~t~ = 5=1 it i’ = 1=1 it <i=1 i i=1_ it t t

and, therefore, sign [gt(g+§) - ut} = gign [§£§ - ut] and, again,

t%t(g+§) - utl - |§t§ —.utI = gign [Et(g+§) - ut} ghg.
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(sign
1

tlence, for those d which satisfy (2.3), O0(etd) - 0O(e) =
~ L

(I e B

[xt(e+d) - ut] xtd} and (2.4) is equivalent to the condition that e

-~

minimize 0 locally.

Equation 2.4 18 the implicit equation relating e, X and u which
will be used in the balance of this paper. Notice that the estimation

error does not depend on the true value of the parameters:

THEOREM 1: 1In the repgression model (1.1), the estimation error
is independent of @.

The symmetry of (2.4) yields:

THEOREM 2: In regression model (1.1), if either of the following
holds: .

(1) u, 1is symmetrically distributed for all t, or
(11) the explanatory variable vectors Xy are symmetrically dis-

tributed about zero and the disturbances u_ are identically

t
distributed,

the estimatlon error vector, e, will be symmetrically distributed about

ZEY 0.

Proof:

Equation (2.4) iz equivalent to the condition
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T
(2.3 *g Zl sign [(—%—i) X - (—ut)] X, >0
t:

and also to the condition

T ,
(2.6 -d Zi sign [(~e-d){(-x.) - u,J ("ft) > 0.
t:‘.

Since d takes both positive and negative signs, substituting

d% = -d does not change the nature of (2.5) and (2.6), and they can be

~

rewritten as:

[

T
2.7 d* L. sign [{~etd®) x - (ud]lx 20
t=1 :
T
(2.8 ¥ I sign [(“Q+d*)(—xt) = Ut] (—xt) > 0.
-~ :1 ~ o~ ~ ~ ~

Since (2.4 and (2.7) are equivalent, the vector of disturbances

~

u = (ul,. .,ut) will result in error e in the LAR estimator, iff the

-~

vector -u will zesult in error -e. Thus, if u is symmetrically

-~
~

distributed about zero, so is e,

~

Similarly, (2.8) is the condition that -e is the error in the

LAR estimator with the signs of the explanatory variables reversed. If

the wvectors ét are symmetrically distributed around zero, a change of
sign to .HEt will only permute the order of appearance of the ft; and
if u, .is identically distributed for all t, the order of appéarance

is immaterial. .Thus, the likelihood of e given X (equal to the lke-
lihood of -c given u§) is equal to the likelihood of ~e glven X,

and e is symmetrically distributed about zero.
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THEOREM 31 Let F*(elx, F(u)) be the cumulative probability
distribution for the LAR estimation error in (1.1}, as a function of the
explanatory variables X and the disturbance distribution F(u). Then

for 8 > 0 and A any nonsingular KxK matrix,
(e X, F(u)) = F2(SA e |¥A,F(su)).

That is, the scale of the estimation error distrdibution varies propor-
tionately with the scale of the disturbarce distribution, and any linear
transformation of the X variables results in the inverse transformation

of the estimation error.

Proof:
The theorem follows immediately from Lemma 2, Since
T

. " 1
L signix f(etd) - u Ix & = %
=1 ot t' ot~ & ¢

o3

stnlx AA e + 8878 ) (51 (617N,

-1

the pair X 'and u result in estimation error e if and only if the

-~ ~

. . : " . -1
pair XA and Su result in estimation ervor &A Te,

ITI. THE SAMPLING THEORY FOR LAR REGRESSION
WITH ONL EXPLANATORY VARIABLE

Let yt == th-+ u t=1,...,T, where Xy is a single explanatory

t’
variable. Assume that the disturbances are independent of x and are

distributed independently and identically accerding to some probability

distribution,
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The sum of absolute residuals S(b) = 0(e) is now a function of
a single variable. The function is convex from below, and accordingly

will reach its minimum at a point e greater than ¢ if the function

0  is downward sloping at ¢, i.e. < 0. The converse of this

also holds, with the exception that when the slope is zero in an interval
containing ¢, the LAR estimator is ill-defined over.the interval. PFrom
a practical standpoint, this difficulty is resolved by defining the LAR
estimator as the midpoint of the interval, but the estimation error can-
not be bounded by the slopé of the objective function. For the purposes
of this section, assume that the occurrence of a zefo slope has zero pro-

bability. (As will be apparent below, this assumption will hold when no

summation-of the form

-1

+ xt) equals zero.) Then the cumulative dis-
t=1
tribution F*(+) of the estimation error relates simply to the slope of

the objective function:4

4It may illuminate the coming sections to note that the approach to be
taken toward the LAR sampling theory, in which the estimation error is bound-
ed by the slope of the objective function, can also be used to derive the
sampling distribution of the LS estimators. For LS, the objective function

T ds

S, = L (xe~-nu )2 is again convex, so that Ple > ¢] =P 2 0
2 e=1 C t = de
ds, T o T,
and ——] =2 I x (x.c - u_ ). This summation has mean 2c¢ ¥ x° and
de i t ) t
.ot=l t=1
2T 2
variance 4¢° I x, when ¢ 1is finite. Approximating the probability
Ct=l _
distribution of the summation by a normal distribution
T T ) 2 -
Ple > ¢] ~ P 7;,(2c . xz, 1}0'2 b} xz) >01=PpPll0, -"g—_-— > ¢, Thus, the
== t t L
t=1 t=1 5 2
N

t=1
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3.1) 1 - Fa{c) = Ple > c] = P{%Qﬁgl- < 0}.

de

C

The right-hand derivative of the objective function is given by

T dO (e) T
o
(3.2) Vi) Eg_a%e_)_ =1 ——|=7% V),
¢ t=1 ¢ t=1
where
_ I ¥y mu =0
(3.3) Vt(c) = if
; - X Cx -
sigo (Ct ut) c X, U, # 0
. ®
[Etl u, £ eX, and Xt > 0 or u, z«?xt and e < 0
(3.4) = if ,
-[Xt| u > ex, and @t > 0 or u <ex, and X, < 0

For the balance of this scction, the disturbance is assumed to be sy-
s t o] - > = - < - = < -
mretrically distributed, Ihgn, P{ut F{cxt] PI u, s el xt)] P[ut < el xt)},

and we find

approximation yields the result that the error is normally distributed with

T h

. 2 2 . )

-mean zero and variance 0‘///( z Xt)’ which is the exact result when dig-
t=1

turbances are normally distributed and the large sample approximation in
general,
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]

PIV () = Jx |1 = Plu_ < elx,]]
(3.5) | | s B =T

P[V (c) = - [th] Plu, > Clxtli

Let G(-) be the cumulative distribution funection of the abgolute

value of wu, i.e. G() = P[|u] <wl = 2F(lw|) - 1. Then, for ¢ > 0

3>

Glelx
Ix ] 1/2 + L
t
(3.6) VtG;) = with probability
et |x |
t
_lxtl 1/2 - —— g

The exact cumulative distribution function for e can now be
represented T
/ as follows: Let Q be the set of 2" vectors comprising all possible
ordered combinations of T elements equa’ to * 1. Let l§| =

(lx1|,...,[xT[)'. Then each possible combination of values Vl(c),...,VT(C)

can be written as (ql Ey seeeslp Xg ), for some ge Q, and the slope of

"

the objective function will be given by I V_(c) q'fX|. " Therefore,

0,

for ¢

v

(3.7).1 - F*(c) = Ple>c] = P|
t

g

. T /1-q G(e|x_|)
V,(c)<0] = ? ( I ( qt-:%-li_)>.

1 g.3.q'}X[<0\e=1

By Theorem 2, the estimation error distribution will be symmetric since
the disturbance distribution is symmetric. Hence, the distribution for
¢ < 0 will be the reflection of the distribution given here, i. e.

Fa(-c) = 1 « F%{e).
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For the special case X, o= 1, t=1,...,%, where the LAR esti-
mator reduces to the sample median, the sample size must be odd for the
median to be defined. When T = 2r 4+ 1, the above formula reduces to:

T

(3.8) 1-F*() = ¥ ?%ET)TF@)T"J‘ (1~F(c))j,
; J=r+l 7’ o .

and the probability differential simplifies further [|7, Vol. 1, Ch. 14] to

' !
(3.9) dPt(e) =~ AP(eIF ()T (A-F ().
™
In the general case, (3.7) is useless for computatiohal pur-
voses. However, it does yield a strong.existence theorem for the moments
of the LAR estimation error. Let the asymptotic order of a function f(z)

be defined as the power <y such that lim ACI N, where 0

Z7  Z

iy some
finite constant [9]. This will be written "f(z) is 'O(ZY)," or if

N= 0, "f(z) is o(zY)." The following Lemma will be needed:

LEMMA 3: Let H(z) be any cumulative distribution function for =z.

[

K
it J z 'di(z), the moment of order ¥, exists, then

(1 -6 =Pllz] > wl = otw™).

— (K S '
Conversely, if (1 - G{w)) = ofw (< + E:)) for any € > 0, then z has

moments of order up to and including w~ .
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Proof:
By the definition of existence for the moment of order K,

°

o K N K .
J z dh(z) and J z dH(z) are finite and, therefore, the absoluté
0 - oo

o
. K
moment of order Kk, I |z| di(z), is finite. For any w > O,
_—o

Kd}l(z))
. W o _ W |
Wlfnm (w" U dH(z) + J dH(z)) + J ]zl“dncz))

- w -w )

i

“ | : ~W W : )
J 2| “an(z) - 1im (J |21 dn(z) + J lz[€an(z) + J e
- . .

- -t

v

(3.10) - lim (wn(l-—(}(w))) +[ 2| du(z).

14 K X
Thus, w iﬁm w (1-G(w)) = 0, and therefore (1-G(w)) is ofw ).

Conversely, all moments of order up to and including K will ex-
. th . . . '
ist when the K~ absolute moment is finite. This moment can be ex~

prescsed in terms of the function G as follows:

@ K ®
J‘ ]4’ dd{z) < LIw -plw-1 < lzl < ]
. =

- ;WK((I-—G(w-—l)) - (1-C(w))

w=l
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(1-6(2)) ((z+1)* - ).
0

(3.11)

I
N~ 8

2

But 1im ,{iﬂiﬁ:wif
w1

z > Z

K by L'Hospital's rule. Thus, the right-hand

. K
terms in the summation are O0(z 1). Therefore, when (1-G(z}) is

(k%e)) -(1+£)

0z this is a summation of terms which are O(z ) and,

hence, the summation converges to a finite limit., Under these conditions,
: A

{ea)
L
then, J [zl dH(z) is finite and the proof is complete.

We now derive an existence theorem for the moments of the estima-

tion error.

THEOREM 4: Assume that the disturbances in the regression
model (1.1) are identically and symmetrically distributed. Let h be
the smallest number, such that for some combination of the indices

1,2,...,T, denoted by tl,...,tT,

(3.12) | .
I

Then the LAR estimate b will have moments up to and including XK,

if u has moments up to (K/h + §) for some § > 0.

Proof:

We first show that

(3.13) ' ORDER {P[e > ¢]} = h ORDER {(1-G(c))}.
. c = c & o0
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From (3.7 ), since the order of a finite sum is the maximum of

the orders of its elements, Ple > ¢l has order equal to

T /1 - q.G(clxtI)
(3.14) ORDER {Ple >el) = max ORDER ¢ I ( 32 .
c > ® qj-e-q5IXl<0 c + o [ =]

Now, as ¢ = w«, G(c]xtl) approaches 1 for all X, # 0 and

remains constant for x, = 0. Hence, all terms where qj = ~1 approach
a positive constant and do not affect the order of Ple > ¢]. Where
qj = 1 and X, # 0, the terms épproach zero with order equal to that of
(1-G(w)).

The order of a product is the sum of orders of its terms, so the

above equals:

(3.15) max b ORDER {(1~G(c))}
q.3.q'lx_|<0 t-a.qtz-}-l
and xt#O
= max h(g) ORDER (1-G(c))
q-3-q" [X[<0

where h{q) is the number of positive entries in q corresponding to
nonzere values of x,.

The order of (l~G(é)) is nonpositive, since G(.) is a decreas-
ing function. Therefore, the summation will be maximized if h(g) is
minimized. Since we are considering only those sign combinations q for
which q'[x] < 0, the mipnimum is the smallest number h, such that if the

terms lxt! arce arranged Iin order from largest to smallest with subscriptls
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t.s..-,t,, the condition -Ix |— ces —lx ]+ Ix l + ...+ ]x
v ! % ten T

holds. This is the desired result.

Next, since the estimation error distribution is symmetric,

ORDFR {P[e > c]} = ORDER {1-G%(c)}, where G¥(c) = P[le} < c].

Cc > c > w

We now apply Lemma 3: e will have moments of order up to X if

-(R + L-:))’

(1-G*(c)) is O(c € > 0; which will hold if (1-G(c)) is

O(c—(K/h + 6))’ § >0, by (3.13); and this, in turn, will hold if the

disturbance has moments of order %-%‘5.

This is a very strong result. It implies, in particular, that if
h > 3, the estimate g must have a finite variance when the disturbance
u has a finite mean. Since h will be as large as 3 for all usual
samples, and since all the disturbance distributions that have been sug-
gesteﬂ (including the Pareto &ith location parameter, generally denoted
"g'", between 1 and 2) have finite means, this implies that the LAR esti-
mate will heave a finite variance in general. In contrast, LS has a finite

variance only when the disturbance u has a finite variance.

Tufning to the asymﬁtotic properties of LAR as the sample size T
increases, let the estimator b be termed consistent if for all € > 0,

limp [|b-B) > €] = 0. Then

T-co
THROREM 5: For the ;egresaion model in Theorem 4, the following

are gufficient conditions for the LAR estimator to be consistent:
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(ii) as T+ ® gsome positive proportion, p, of the X, have
absolute value greater than some positive constant, ¥.

(ii1) for every ¢ > 0, P[lut’ < g}l = (1-6(g)) > 0. That is,
the disturbance falls in every interval containing zero

with positive probability.

Proof:

3

Let V{c,T) = I vt(c} be the slope of the objective function,
=1

2
with mean M{c,T) and variance ¢ (¢,T). For any c > 0

T
(3:16) M(e,T) =| % [xtic(c]xti) > ooyGlelx |) > £ ¥Gley)
t=1 t<T t<T
3 [>y 3|, [y

Therefore, by conditions (ii) and (iii)

(3.17) lim Me.T)  pTYG(ey) o o
' T > o T == T

Also, by conditiom (i),

: _ 2 2 5
2oy T x (1-6(c]x [ . e
{3.18) 1im ——‘—T""‘“ = lim % 5 < ldim -———2‘“”" = (3,
T+ T T » w\t=1 T T\ T

Hence, by Chebychev's inequality,

> 2
T o T T > AM(e, 1)

2 (e, @)
(3.19) lim Ple.> c¢] = Lim P[V{e,T) < 0] < linl(ELw-JJ“ < 1lim (é~—ww~ = Q.
) T > o\O(TT)




By the symmetry of the disturbance distribution, the probabiliry

#

that the error is negative behaves identically, and we have, for any.

c >0, lim P[[b-B8| > c] = 0.

T >

The robustness of the LAR estimator in the face of massive
tailed distributions is shown by the fact that consistency does not
require any restriction on the tails of the disturbance distribution.
The conditions stated.here are not necessary for consisfency; and
alternative sets of sufficient conditions can be formulated.
To summarize the conclusions of this section, the univariate
LAR estimator will be unblased, will possess finite variance, and
will be consisteﬁt for virtually all regressions with symmetric
disturbance distributions which can be imagined in practice. When
the disturbance distribution is asymmetfic, the mwoofs of Theorgms
4 and 5 can be generalized to show that the moments of the LAR esti-
mator will still exist, and the LAﬁ estimator will still converge

to its mean, but the estimator will no longer be unbiased unless the
explanatory va;iable is symmetrically distributed. Since the hiés
1s, in general, a cumbersome function of the disturbance distribution
and the explanatory variables, it will be difficult to correct for,:

and may be regarded as a defect of the estimator.

The results of this section can‘Be extended to cover the'éase cf
heteroscedasticity. The proﬁfs of Theorems 4 and 5-are possible with
minor changes when the disturbance distributions are drawn froﬁ some
famiiy, with the range of the dispersion parameters bounded above and
below, Ffficient estimation of b will then requive welghting the ob-

- servations by a functlon of the changlug paramcters,
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IV. AN APPROXIMATE SAMPLING THEORY FOR LAR REGRESSION
WITH ONE EXPLANATORY VARIABLE AND
SYMMETRICALLY DISTRIBUTED DISTURBANCES

When the disturbence distribution is symmetric, from (3.7)

1~ Fo(e) = P[jg v (e) < 6},
=1 )
Since each VC depends only on the corresponding u_, and the disturb-
ances are independéntly distributed, the Vt are independent of one
another, Tﬁerefore, the slope V is the sum of T independent variables
and will be_approximatély normally distributed.  From (3.6), for ¢ > 0

" the moments of the Vt are

(4.1) uit = E{Vt(c)} = lxtl'G(chtl)
(42w = B - 110" =[x 12 @ - etz DY)
(4.3)  ug = ELO () = w1071 = e, [P etelx, ) - 26¢e]x 1))
3t £ T 1y t A" CiEy
8w = IO - w0 = fx Y acte]x D® ¥ 2etelx D2+ 1)

The slope of the objective function, beinz the sum of the T in~

dependent random variables Vt, therefore has moments:

T ) T
py = E[V{c)) = I W, = E[(V(e)-pl)"] = Z oy
1 coq it 2 = ELOVCe)-1y oy 2t
(4.5)
B = 3 4 = L@ = 3l & 3 e
Hy = )=y -t=1u3t M, = BEL(V(e)~1) ] = 31 til(u4t—3w2,t)

Thus, for c > 0,

T T 2 2
1~ Fx{c) ~ P72 +E1Ext G(clxtl), L§1lxt|'<1—ccc|xt|) >) < 0].
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It 3

bx letel= D
(4.6) =P 12 (0,1) > —= = = He).

3

2 2
TxC(1-Glc|x |)
ey € t

L i

Thus . the cumulative distributicen of the LAR estimation errof may'be approx-
imated by H(-). The third and fourth moments of V can be used to im—
prove this approximation somewhat (by Edgeworth's expansion [6:227-230]),
but In all cases thesg moments have been so close to the corresponding
moments of the normal distribution that the improvement has been insigni-

ficant. The approximate cumulative distribution is

A
[en]

H(|eD) if ¢

4.7 A F(c) = Ple < c] = .
' 1 -~ H(c) if e >0

The LAR estimatlon error can be expected to be approximately normally
distributed, since the error is the compound effect of a large number of
independent disturbances, and is insensitive to the value of any one dis-

turbance. Accordingly, a second approximation is
A e ~ 7200 o )
2° LAR ? Al i

where Ui , the variance of the approximate distribution A

1

1 is computed

by numerical integration.
In searching for an easily computed approximation, we conjectured
that the varlance of the estimation error for LAR might be related to the

socond moment of the explanatory variable as in the casc of 1S5, i.e.,
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T -1
that VAR(eLAR) | ¥ X, . Then, the estimation error wvariance can be
’ t=1
T 2 -1 ‘
computed as VAR(eLAR) = A(F,T) X X, , where A(¥,T)}/T is the vari-~
t=1

ance of the LAR estimation in the simplest possible regression with a
sample.of size T from the disturbance distribution F, where xt = 1,
t=1,...,T, and tha LAR estimator reduces tc the median of the disturb-
ances. Computations are then greatly reduced, for when %, £ 1, expres-

sion (4.6) simplifies to

vT G c)lI
1-G(c)” -

| v

= H{c).

(4.8) Ple 2 c]l =p [H(O,l)
v

Moreover, the exact distribution of the median 1s known, so that A can
be computed by numerical integration of the distribution (3.9), thus
avoiding approximation (4.6) entirely. Finally, and perhaps most im-
portantly, the cbmputations need only be done once for anﬁ given dis-
turbance distriﬁution F(*), for a variety of sample sizes T, and then
the computed values A{F,T) can be substituted, whenever the distri-

bution is encountered, into the approximation

T 5 -1
ALAR: e ap ~ N 0,A(F,T) tflxt

To evaluate these approximations, we resorted to Monte Carlo
studies. This approach, which has been aptly criticized as capital-
intensive, is the only viable approach in the present case, since
evaluation of the exact distribution (3.7) is prohibitively costly

for large T. The one exception is the case of the median, where the
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exact distribuﬁion given by (3.9) can be computed and compared to the
approximations. In this case approximaticn'Al, computed via (4.8),
yields a good approximation to the true standard error. In Table 4.1,
ratios of the standard error of the median to that of the mean (G/Vﬁ}
are given for the normal distribution and for two massive-tailed dis-
tributions which are used in the Monte Carlo studies reported below.
These "contamiﬁated normal" distributions are defined by the parameters
(p,V) as follows: the disturbance is selected randomly from two normal
distributions, being drawn from a standard normal with probability (1-p),
and from a normal with mean 0 and variance V with probability p. The
resulting distribution hés_variance {pV + (1-p)) and kurtosis

3(pV2 + (1-p))/{(pV + (1—p))2. As is apparent from (4.8), the approxi-
mated standard error decreases proportionately with l/ff, and this is
not accurate as seen in Table 4.1. Although the approximafﬁon is

quite satisfactory for odd values of T between 31 and 119, the most
common range in econometrics, the imperfections in the approximation

A1 underscore the potential importance of ALAR’ where the exact dis-~

tribution (3.9) may be used.

TABLE 4.1-~Approximated and True Standard Errors of the
the Median, as Multiples of the Standard Error of the Mean

Distribution Approximation Al True Values for Sample Sizes
15 a1 59 119
Normal 1.24 1.2351 1.2446 1.2488  1.2511
Contaminated Normal 7177 0.781% 0.7824 (.7828 (.7831
(0.15,16)
Contaminated Normal _ .658 0.6642 0.6639 0.6639 0.6639

(0.15,25)
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The several approximations were then compared by Monte Carlo
simulation over a wide range of symmetric disturbance distributions,
sample sizes, and distributions of the eﬁpianatory variable. TIn all
cases the LAR estimation error distribution did not differ sipnificantly

from the normal distribution, so that A, was dropped from consideration.

1
The normality of BLAR’ which is preserved through all our Monte Carlo
studies, even for infinite variance disturbance distributions, is the conse-
quence of the estimator’s insensitivity to extreme values of the dis~

turbances. A second and unexpected result was that the approximation

A was generally equivalent to or better than A

LAR Apparently, despite

¢
its closer adherence to the form of the exact distribution, the approxi-
mation (4.6) introduces greater errors when the explanatory variable

is widely dispersed than does approximation ALAR'. This result allows
the most easily computed and most readily generalized approximation,
ALAR’ to be accepted as the approximatidn of choice.

Extensive Monte Carlo studies of the validity of ALAR vere
conducted neit. We anticipated that the validity of the approximation
would increase with T, would decrease with the kurtosis of the dis-
turbance distribution, and would decrease with the kurtosis of the
explanatory variable. Accordingly, the experiments are varied along
each of these three factors: (i) sample sizes are T = 31 and T = 59:
(ii) disturbance distributions are normal fkurtosis = 3), contaminated
normal (0.15, 16.0) with kurﬁosis U4f04 = 11.8, and contaminated

normal {0.15, 25.0) with u4/04 = 13,44 {1ii) the explanatory varlables

are constant, normally distributed, and widely dispersed with very
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high kurtosis. Thus, there are two sample sizes, three disturbance
distributions, and three explanatory variable distributions, or eigh-~
teen cases in all. For each case, two to four experiments were con-
ducted, each cdnsisting of 1000 replications with identical values of
the explanatory variable but different realizationa from the disturbance
distribution. The results for the sixty-two experiments, involving
62,000 regressions in all, are given in Tables 4.2, 4.3 and 4.4

At the left of the tables, the type of explanatory variable, and
the actual coefficient of absolute variation (¢ = E[(fx[—E{]x]])2]jEEIXI]2)
and kurtosis (ué/daj'of the explanatory variable are given. Then the
average sample variance and average sample kurtosis from the 1000 samples
of T pseude-random disturbances in the experiment are given.

Then, for each estimation method, the performance of the approxi-
mate thecretical disteibution for the estimation'errofs (normal, with
varianée equal to ci/(zx?) in the 1S case and with variance equal to
A/(ng) in the LAR case, with A computed by numerical integration of
(3.9)), is summarized by four statistics. The first of these is the
ratio of the actual root mean square estimation error to the standard
deviation of estimation error implied by the theoretical distribution
(8/0).. Since the estimation errors ave independently and approximately
normally distributed, this ratioc is distributed gimilarly to
v xioooflooo, where r is the ratio of the standard error of the true
estimation error distribution to the approximated standard error.

Under the null hypothesis that the approximated distribution:is

cofrect, 8/0 is approximately normally distributed with mean value
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TABLE 4&.5--Summary of Univariate Monte Carlo Results

Disturbance Distribution

Regression with X Constant

31

It

T = 31

31

59
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unity and standardideviation of V172000 {17,1:371-374], and the 99 per-
cent confidence region for the ratio is (.942, 1.058). The second and
third statistics ére the percentages of the actual estimation errors
which fall outside of the 95 and 99 percent confidence.regions‘of the
app?oximated distribution. Under the null hypothesis that the approxi-
mated distribution 1s correct, the mean values of these binomial vari-
ables are 5 and 1 and the exact 99% confidence regions are (3.4, 6.9)
and (.3, 1.9). The final statistic is the Kolmogorov test statistic
(d) for the distribution as a whole, equal to tte maximum, over n = 1,,.,
1000 of [P(en) - F(en)], where P(en) is the percentage of errors in
the sample of 1000 which are smaller than e s and F(en) is the value
of the approximated cumulative distributien function at e s expressed
as a percentage., Under the null hypothesis, the 99 percent confidence
region for d 1s (0, 5.14) [17:II: 457]. At the right~hand side of the
tabie, the theoretical (0/0) and actual (S/S) ratios of thg LAR to LS
root mean sguare errvors are given, and then the sample correlation
between LS and LAR estimation exrors. The maxima, means and minima
of the statistic S/o, Z »95, and %7 >99 are given in Table 4.5 for
the normal disturbances and for the two contaminated normal distri-
butions taken together. The latter can be discussed jointly, since
the results for the two are similar,

The pseudo-random disturbances satisfy all tests of randomness.6

The mean 1s never significantly different from zero and the variance

6To avoid the serial dependence of the pseudo-random numbers
generated by most algorithms, several stages of random sampling were
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is always appropriate for the frequency distribution from which the
disturbances are drawn. The average sample kurtosis is generally lower
than for the frequency distribution, but this is due to the downward
bias of the estimated kurtosis in a small sample. Tbe true LS sampling
theory is never rejected at the 99 percent confidence level in the
sixty-two experiments: the theoretical 1S standard error is never re-
jected, and for the seventeen experiments with normally distfibuted
disturbances, where the hypothesized normal diétribution for the 18
estimation error is also the true distribution, the normal distyibu-
tion is never rejected at the 99 percent level by any of the three
applicable statistics (Z >95, Z >99, and d). It is, therefore, un-
likely that the results of the Monte Carlo experiments are significantly
biased due to deviations from randomness in the pseudo-random dis-
turbances.

Turning to the evaiuation of ALAR’ the results for the normally
distributed disturbances are excellent (Tables 4.2 and_é,S). The null
hypothesis that the estimation error is normally distributed with
variance A(n,T)( g xi)-l is nowhere rejected at the 9972 confidence

t=1
level by any of the statistics d, S/o, %Z>395, %>99, and in fact

coupled in generating the disturbances. The integers from 1 to 1000 were
first pseudo-randomly reordered by pseudo-random sampling without replace-
ment, and then thoroughly scrambied by 10,000 pseudo-random exchanges of
position, to form a pool of 1000 pseudo-random integers. "Uniformly
distributed random numbers" were then constructed by pseudo-random samp-
ling with replacement of three integers, Il’ 12, 13, from this pool by

3 6

the formula R = (11-1) 1077 + (1,-1) 10

disturbance distribution other than the normal, the random disturbances

+ (13—1) 10_9. For any desired

are constructed through the inverse of the cumulative probability distri-

bution, u = F_l(R). Random normal variates are constructed as the sum of
sixteen independent uniformly distributed variables,
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the divergences from the mean values of these statistics are only
marginally worse than for the LS sampling theory.

The results for the two high-kurtosis disturbance distributions
may be discussed jointly (Tables 4.3, 4.4 and 4.5). Note that in these
experiments, the LS estimation error is no ldnger exactly normally dis-
tributed, so that the normal approximation to the LS sampling theory
i8 susceptible to error. Where x is constant, the performance of ALAR
contiques to be satisfactory. The approximation is never rejected at
the 997 level of confidence for incorrect standard error {any rejection
would indicate that A was computed incorrectly), and the coincidence
to the normal distribution of the LAR estimation error is as good as
for the LS estimation error. Both the LS and LAR approximations are
rejectéd once‘at the 997 level, in both cases because the percentage
of errors bhevond the 997 confidence region is excessively large.

In the experiments where x is not constant and the u kurtosis
is high, the LAR estimation error is distributed moré closely to thé
normal: the null hypotheéis that the estimation érror is normally
distributed is rejected at the 997Z level by the d-statistic 19 times
for LS, never for LAR.

+

Where % 1s normally distributed, the performance of ALAR is
satisfactory. Insofar ag the standard error is concerned, there
appéars to be a downwar& biag of about 1 percent, but the approximated
standard error 1s never rajected at the 997 confidence level. Insofar

as the confidence regions are concerned, ALAR is slightly superior

to AL%' ALS is rejected 3 times because of excessive errors beyond
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the 99% confidence region while ALAR is rejected only once, and in addi-
tion ALS is refected once because of excessive errors beyond th; 95%
confidence region. Both approximations underestimate thg tails of the
error distribution on average, with’ALs the worse offender, but the de-
gree of underestimation will probably not be regarded as a serious
problem in hypothesis testing.

Where both the X distribution and the u distribution have high
kurtosgis, ALAR clearly underestimates the standard error of the LAR
estimaté; The average dowﬁward bias is 8.67% for sample size 31, and
5.4% for sample gize 59. For each sample size, the bias is almest
monotonically related to the kurtosis of the explanatory variables,
and the extreme biases occur where the x kurtosis is extraordinarily
high (the kurtosis of the 31 observations of x leading to the extreme
downward bias 1s 11.27, and the largest downward biases with 59 ob~
servations correspond to x kurtoses of 16.62, 14.09 and 12,17). For
T = 31, the ALS cenfidence regions are superior, with a smaller
average error, and with 6 rejections versus 9 for ALAR at the 99%
level of confidence. For T = 59, the ALAR confidence regions are
superior, with the smaller average error, and with 4 rejections versus
§ for ALS‘ The degree of underestimation of the tails of the arror
distribution is now substantial, and warrants attention in hypothesis
testing.

To summarize the results of this section, A is not signifi-

LAR
cantly inferior to the familiar LS normal approximation A?g, with the

exception that when both the x distribution and the u distribution
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have high kurtosis, ALAR understates the standard deviation of the

estimation error.

V. The Case of Several Explanatory Variables

In multivariate regression with the explanatory variable matrix
g, lgt'gLAR be the variance matrix of estimation errors for the multi-
variate LAR estimator. Let 99' = (%'%}—l. " Then the transformed vari~
ables wl,...,wK_dgfiued by W = XD are orthonormal, that is, y'w = I. It
follows from Theorem 3 that gLAR = PELARP" where ELAR is the wvariance
matrix of the LAR estimation errors in the transformed regression with ex-
planatory variables w. Thus, the variance matrix of the LAR estimation

error can always be related to the variance matrix in a multivariate re-

gression with orthonormal explanatory variables.

2 o
We know Fhat for the LS estimator, ELS = gJ I, and hence gLS

02(§'§)_1. From a geometrical point of view, this holds because LS
is a projection, with quadratic norm L2, of the vector y onto the sub-
space Y spanned by X within Euclidean T-dimensional space, and this
projection decomposes into the sum of projections onto ahy orthogonal

basis for the subspace Y. When the explanatory variables are trans-

formed into the variables w, the estimates of the regression coefficients
for these transformed variables are distinct orthogonal linear functions

of the dependent varisbles, yielding estimation errors that are uncorrelated

when disturbances have finite variance, are indevendent, and 7
~———— are normally distributed. In deriving the sampling distri-

bution for each of these transformed regression coefficients, either
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the familiar univafiate approach or the indirect approach used in Sec-
tion III (see fn. 4, p. 15) can be followed. 1In either case, the re-
sults yield the estimation error variance matrix 02(§'§)_l in the
original coordinate system.

The least-alpha estimators are projections in La and the giffi-
culties in developing multivariate samplimg theory can be associated
with the properties of these spaces. For La spaces other than L2, there
is no analog to orthogonality and, indeed, distance cannot be expressed
in terms of an inner product over any basis. For this reason, it is
impossible to decompose the multivariate estimator into a set of un-
related univariate components.‘ Thus, although the w are orthonormal
with respect to a quadratic norm, there is no assurance that their
least-alpha parameter estimates will be uncorrelated, and it is not
possible to construct analytically a basis for ¥ which will possess
this property.

When the multivariate estimator cannot be decomposed into
univariéte elements, the slope of the objective function cannot be
used to bound the estimation error--it is quite possible for the
slope of a multivariate objective function to be ﬁositive with respect
to a parameter at some point, although the minimum of the objective
function is reached at a greater value of that parameter. Hence,
the approach of Section III cannot be generalized exactly. Moreover,
the complexity ﬁf the LAR projection makes it unlikely that any
easily computable function of the explanatory variables will exist

N

which is analogous to the information matrix X'X in least squares.
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Thus, the outlook is pessimistic, insofar as generalizing the exact
distribution is concerned, and it appears certain that the computa-
tional difficulty will be at least as great as for the univariate case,
where it is prohibitivé. Accordingly, an approximate sampling theory
appears to be required for any applications. It seems reasonable to
expect that if the variables w are orthonormal, the corresponding LAR
parameter estimates will be virtually uncorrelated and that their
marginal distributions will follow the univariate approximation developed
in Section IV, In this case gLAR ~ k(F,T)E, and yLAR ~ X(F,T)(§'§)_l.
The Monte Carlo résults in Section VI below confirm this approximation,
in that the multivariate results are entirely consistent with the uni-
variate results already reported. The reader who is primarily interested
in applications can skip to Section VI.

One possible approach to the exact probability distribution of
the multivariate LAR estimates is as follows:r examining the LAR re-
gression as a linear programming problem, it is easy to establish that
when the explanatory variables are not linearly dependent, the regres-
sion hyperplane § = §§ will pass through K observations of the dependent
variables. (In rare cases where the optimalrregression estimates are
not uniquely determined, some optimal estimate will satisfy this con-
dition; and in cases where more than K of the observation vectors
(yt:§ ) are linearly dependent, the regression hyperplane may pass
through more than K observations.) Thus, in general, K or more of the
residuals in the final estimated regression will be zero, and the cor-

responding observations will determine the hyperplane,
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We can speak of the X explanatory variable vectors as a hasis,
It can be shown that as long as a set of K linearly independent ex-
planatery variable vectors exists, there will always be a linearly in-
dependent basis that yields the minimal value of the objective function
and; for a continuous disturbance distribution, there is zero probabil-
ity that a linearly dependent basis can also vield the minimal value.
One possible approach to the sampling distribution is to partition the
problem by deducing necessary and sufficient conditions for each set
of K regression observations to be selec;ed as those determining the
regression hyperplane.

From the linear programming viewpoint, the condition that the
estimate is optimal 1s that introduction of no other regression obser-
vation into the basis can lead to a reduction in the obiective func-
tion. For ease of expositioﬁ, suppose that the observations are re-

- numbered so as to have the first X be those in the optimal basis.
Since ﬁhese vectors fl";"fK will be linearly independeat, let each

of the remaining T-X explanatory variable vectors be expressed in terms

K
of the basis vectors as x' = (x! ... z)a_ = ¥ a .x'. Then it is
Tt ~ o G {=1 tili

readily verified that the erroneous component of the regression hyper-

plane at the tth explanatory variable vector is xt(B-B) = aéu?*where

u*s the vector of disturbances in the K basis observations. Hence,

the fitting error in the regression hyperplane iz given for the tth

observation by ?t -y = a;u*- u, .

t
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If we now consider rotating the regression hyperplane through the
shortest arc from some basis observation (yi'x ) to some excluded obser-

vation (y :xj), keeping the remaining basis observations unchanged, it

b
can be shown that for a sufficiently small rotation, the shift in the
objective function is proportional to
. N 2
{5.1) 1 - sign[a {a u®- u,)] £ a 51gn[a u*- u_]
5 A N e t')

and that the sign of this expreséion gives the sign of the change in the
objective function when the hyperplane 1s rotated until the nearest ob-
servation is touched and enters the basis. (To make the condition com-
pletely general, note that when one of the excluded observations alse
lies on the hyperplane by chance, so that féE*_' u, = 0, the expression
“sign{gég*— ut]” should be assigned whichever value will lead to an

1.

u* - u,) a

fi~3~ 37 el
Since the present basis will be at an optimum if and onily if

increase in the objective function, i.e. - sigafla_, (&’
the shift in the objective function is nonnegative for all such rota-
tions, the necessary and sufficient condition for the present basis

to be optimal is that, for all pairs of Inecluded and excluded observa-—

tions,
. N
> 1, % vk
(5.2) 12 sign[ajiigjg uj]] t=§+1ati sign{§tg ut] .

The term multiplying the summation can be chosen from ameng all the

excluded observations and, therefore, a term can always be found that
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has the same sign as the summation. Hence, this condition is equivalent

to the condition that, for i=1,...,K,

N
‘ I a ., signfa'u® u ]} < 1.
s ~Eeet T
Thus, we have:
LEMMA 4, When the explanatory variables are of full rank K, a necessary

and sufficlent corndition for a set of K observations with indices

(il,...,iK £ 1) to be chosen as uniquely determining the LAR parameter

[

estimates, § = A'fly;* where y#a . and A = (xi ves xi ), is that
- - y‘ - R | MR
Iy |

the vectors Xy ,...,xi be linearly independent and that, for i=l1,...,K,

! K

. i Toek - <
(5.3) E pX a,y sign[ftg ut] 1,
: % td1
-1, ‘
where for gI, a, = A X and
uy T
1

where u#* = . « When there is no unique estimate, a linearly in-

u

®
dependent set will exist which vields the minimal sum of the objective

function and which satisfy condition (5.3) with < rather than <.

We may use this lemma to express the probability distribution

of the estimation error vector. For any finite sample size T, there
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, ,
will be ?T:§§?—§7-possible bases, each comprising K vectors. We may

eliminate those bases which contain a set of linearly dependent vectors.

b

Let (-be the set of all linearly independent bases. The probability

element for a given estimation error vector becomes:

(5.4) P{g:n] = T <P{u=A‘n}-P I a sign(a'u—ut) <1 for iel 8

Aea v T egr ot ~E~ i

The first term is just [I [f(xin)], where f is the density function of

iel
u. The second term may be simplified by noting that aéu = x;A'_lu = X0
and that a, = Aixg, where A* is the ith row of A—l. Hence,
(5.5) Ple=n] = I T f(xin{) P Aj b x; sign (xtn—ut) 1
v Ae oo el " Toedr < T

for j=1,...,K .

This condition is somewhat sharper than (2.7) in that the only
directions of movement which are considered for each basis are the K
rows of ﬂ_l, i.e. d= Ql,...,ﬂK. However, it is less manageable since
- the probability has been expressed as the sum over all possible bases.
The condition reduces to condition (2.7) in the univariate case. It
may yield multivariate analogues to Theorems 2 and 3. L. D, Taylor
has conducted some Monte Carlo studies of the probability of occurrence
of bases {19]; However, the appropriate direétion for future research

on the exact multivariate sampling distribution does not emerge clearly.
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Vi. An Approximate Multivariate Sampling Theory
In Tables 6,1 through 6.6, results of Monte Carlo experiments
identical in format to the univariate experiments are given for regres-
slons with two explanatory variables and a constant. The previous
sumﬁary statistics are given for each of the three parameter estimates.
The distributions of these test statistics remain as in Section 4. 1In

addition, the statistic

1,0 =1
) - STR(BM )
w = ~2log(((e/1000) pET (au™1)) 100072, 270~ 7y

where
1000
2oe,
e, =8, -8 e-= i;éoo
- ~t ~ AX') " for LAR
M =

' ~ 2 o=l

1000 _ _ o“(X'X)" " for LS ,
B= 5§ (e,-e)le,~e)', T
2 e B A

is given as a test of the coincidence of the dispersion of the estima-
tion error vector with the approximate normal distribution A. Under
the null hypothesis that the approximated multivariate distribution

is valild, the statistic w is asymptotically distributed as XE(K+1)'

2
In these regressions, where K = 3, w is approximately distributed

with mean equal to 6, and the 99% confldence region for rejection of
excessive variance is (0,16.81).
In Tables 6.7 and 6.8, Monte Carlo experiments with six explana~

tory variables and a constant are raported. The format of the
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exp@rimen£s is the same as before, but only the standard errors of the
parameter estimates have been computed. Here the statistic w has mean
value equal to 28 under the null hypothesis, and the 99% confidence
reg;on for rejection of excessive variance is (0,48.28). Fiﬁally, in
Table 6.9 the results of the multivariate Monte Carlo experiments are
summarized as the univariate results were summarized in Table 4.5. Thare
are 42 multivariate regressions, with 150 estimated parameters in all.
The explanatory variables are constructed so as to be orthogonal
to one another and to the constant. As a precautionary measure, the
variances of the explanatory variables differ by factors of as much as
1000. This was done in order to confirm that LAR is not sensitive to
the numerical difficuities which arise from muiticoilinearity; the re-
sults of'the previous section have already shown that the accuracy of
ALAR is not éffected by the second moments of the explanatory variables,
Following the reasoning of the previous section, we hoped that the
marginal distributions of the estimated parameters would approximate -
the distributions already encountered in the univariate regressions;
that is, the constant term would be distributed as the median, the
regression coefficients for normally distributed variables would be
distributed as in univariate regression on a normal explanatory
variable, etc. We also hoped that the different parameteyr estimates
would be approximately uncorrelated, since the explanatory variables
arejorthogonal. The results are entirely consistent with these ex-

pectations.
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For the regressions.with normally distributed explanatory varia-
bles, the performance of ALAR is quite satisfactory. Only one experiment
was run with T=31 for each disturbance distribution; the number of cases
is too small to draw firm conclusions, although ALS appears to be slightly
superior to ALAR' ALAR is never rejected at the 99% level by any of the
statistics, while ALS is rejected twice by the d-statistic, The w-
statistics are near the mean value, indicating that the multivariaie
distribution of estimation errors does not differ significantly from the
appreximated multivariate normal distribution. One 7-variable and five
3-variable experiments were run with T=59 for each disturbance distri-
bution. ALAR is reiected twice for inappropriate standard error and
once for excessive errors befond the 997 confidence region, while ALS
is rejected once for excessive errors beyond the 95% confidence region,
twice for excessive errors bevond the 99% confidence region, and three
times by tﬁe d-statistic. For the constant term in the regrassion, the
performance OE'ALAR ig virtually perfect, with small diffarences hetween
the average values of the various statistics and their mean values under
the null hypothesis. These results are consistent with the results for
uﬂiﬁariate regression on a constant. For the normally distributed
explanatory variables, the ALAR confidence regions perform comparably
to the ALS confidence regions, with both slightly understating the
tails of the estimation error distribution, and the'ALAR estimated
standard error has an average downward bias of .87 for the two high
kurtosis digtributions. 'These reaults are agaln entirely consistent

with the unlvarilate results, for normally distributed X, The ALAR
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w-atatistics are well behaved, clustering around their mean value but
with a slight upward bias which is consistent with the understatement
of the standard error. In summary, thé multivariate ALAR performs
satisfactorily for applications with normally distributed X.

For regression with highly dispérsed X and normally distributed
disturbances, the parformance of ALAR continues to be satisfactory,

'The average values of all statistics are near their mean values under
the null hypothesis. ALAR is rejected only once at the 99% level

(this rejection, in contrast to all others, is for too high a standard
error), while ALS is rejected once for inappropriate standard error,

once for excessive errors beyond the 95% confidence region, once by

. the w-statistic, and once by the d-statistic. (All these rejections

of ALS occur in two regrzizions; since the sampling theory is exact,
these rejections should/be regarded as disconfirming the null hypothesis,
but rather as random samples from the tail of tte sampling distributions
of the statistics!)

For regression with high-kurtosis U and high-kurtosis X, ALAR
shows the same underestimation of the standard error of estimates as
before. The average downward bias for the coefficients of high-kurtosis
X4g 11.1% for T=31 and 6.5% for T=59, and the bias increases with the
kurtosis of the explanatory variable. As a result, the confidence
intervals for ALAR show 14 rejections for T=31 versus 8 for ALS’ and
10 rejecticons for T=59 versus 8 for ALS’ As before ALAR underestimates

the tails of the estimation error distribution more seriously than ALS

for T=31, and similarly to ALS for T=59, Again as before, ALS is
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rejected far more often (7 times) by the d-statistic than is A {1

LAR
time). The underestimation of the standard errors leads to consistently
high values for the LAR w-statistie, but the-correlations between errors
remain near zero.

‘In these regressions with highly dispersed X, ALAR again performs
as in the univariate case. The marginal distribution of the estimation
error in the constant term is consistent with the distribution of the |
median, and the marginal distributions of the coefficients of the dis-
persed X are congistent with the univariate Monte Carlo results with
dispersed X, The presence of an explanatory varilable with very high
kurtosis in a regression appears to increase the standard errors of
the other coefficients slightly, as is to be expected if the estimated

parameters are not entirely independent, but the spillover effect is

too small to be conclusively demonstrated.

VII. Summary and Conclusion
Three characteristics which are relevant in evaluating an esti-

mator are (i) computational difficulty, {ii) sampling characteristics
(the.precision of the estimator), and (iii) the availability of a
sampling distribution theory. This paper has been concerned with
the comparison of the LS and LAR estimators. A first conclusion is
that LAR should not be rejected on the bagis of computational diffi-
culty alone. An LAR regression program developed by the present
authors requires roughly 7 times as many computations as a standard
LS regression program, and this differnnce will be insignificant in

most applications.
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The authors have attempted to provide a sampling theory for the
LAR estimator. The important consequence of Theorem 1 is that the LAR
estimator is symmetrically distributed about the true value of the’
parame;er vactor when the disturbances are symmetrically distributed.
Theorem 3 demonstrates that any linear transformation of the explanatory
variables results in the inverse tranaformation of the estimation errors,
s0 that the problem of multivariate regression can be reduced to that of
regression on orthonormal explanatory variables. The exact distribution
of the LAR estimator as a function of the disturbance distribution is
~ exhibited for univariate regression, and the estimator is shown to be
extremely robust in the presence of massive tzils in the disturbance
distribution., The univariate LAR estimator is consistent (Theorem 5)
and achieves finite varlance in small samples (Theorem 4}, even in
cases whare the tails of the disturbance distribution are so mgssive
that the LS estimator is neither consistent nor ever achieves finite
variance.

The exact distribution could not be generalized to the multi-
variate case, and even in the univariate case evaluation of the dis-
tribution is prohibitively costly. Accordingly, the following approxi-
mate sampling theorv was conjectured and evaluated by Monte Carlo
studies: im 2z regression with T cobservations and disturbance distri-

- n(g,l(?,T)(g'%)—l), where AE,T) is the varlance

LAR T
of the median of a sample of size T from the distribution F(-). This

butisn F(*}, B

approximation has the great virtue of computational simplicity, since

tables of A(F,T) can be computed by numerical integration of the exact
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distribution for the median (3.9). Moresover, since the approximate dis-
tribution differs from the normal approximation to the LS sampling
theory only in the scale factor, all of the familiar hypothesis tests
and inference procedures of 1§ sampling theory can be applied as an
approximation to LAR, with only this scale factor changed.

Thé ratios of LAR to LS standard error predicted by the approxi-
mation and actually observed in the Monte Carlo studies are given in

Table 7.1 for three disturbance distributions and two sample sizes,

TABLE 7.1--Relative Performance of LS and LAR for
3 Disturbance Distributions

Normal or
Contaminated
Normal
Pistribution Kurtosis Ratios of LAR/LS standard errors
Actual Sample ALAR Experimental Averages
: Averages X constant X normal X dispersed
e T=31 T=59 [T=3} T=59 T=3]l T=59 T=31 7T=59 T=31 T=39
3.0 2.8 2.9 11,245 1,249 1.248 1.246 1,286 1.250 1,238 1,231
(6.15,16.0) 11.8 6.9 8.5 .782 .783 794 784 .788 798 849  .819
(0.15,25,0) : 13.4 8.2 10.4 664 .664- 661 .669 590 .675 739,698

The results are also divided according to the kurtosis of the explanatory
variable, with the "dispersed" X having been constructed with very high
kurtosis. The approximated standard errors appear to be entirely satis-
factory when the kurtesis of the explanatorf variasble is not greatar

than that of the normal-diatribution.. In those cases where both tﬁe
axplanatory variables and the dizturbances have high kurtosis, the

approximation does understate the standard error of the estimate. The
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understatement is severe enough to warrant attention and in a subsequent
paper we will discuss a correction to the approximated standard errvor
which is a fuﬂction of the kurtosis . of the explanatory variable., How-
ever, the understatement is never large enough to threaten the predicted
superdority of LAR over LS for the disturbance distributions with higher
kurtosis.

| The approximation was also evaluated on the basis of the accuracy
of the 95% and 99% confidence intervals for the parameters. The per-
formance is as satisfactory here as in the case of the predicted stand-
ard errors, and when compared with the normal approximation to the LS
sampling theory, the performance appears fo be better still, The LAR
estimates are almost exactly normally distributed in the presence of
high-kurtosis disturbances, whereas the distribution of the LS aestimates
has a moré‘massive tall than the normal distribution. {The greater
coincidence with normality of the LAR estimator is due to the ability
of LAR to ignore extreme values of the disturbaﬁces.) As a result,
the normal approximation to the LS gsampling theory understages the
probability of large errors, and this biés is comparable to the LAR
understatement resulting from too low a predicted standard error.

Another important result of the Monte Carlo studles is that

the multivariate distribution of the LAR estimation error is entirely
congistent, according to all statistics which we have measured, with
the hypothesis that the multivariate distribution is a direct generali-

zation of the univariate distribution, as proposed in the approximate
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sampling theory. The generaiization is known to be inexact. Neverthe-
less, the Monte Carlo results suggest that the Theorems about the
existence of moments and consistency of the univariate estimator do
generalize in much the same form to the multivariate case.

Many previous articles have suggested that the LAR estimator may
be preferable to the L3 estimator in applications where the disturbance
distribution has massive tails, and our results confirm this, The
average measured kurtosis of the two.high-kurtosis distributions studled
here is given in Table 7.1 for sample sizes of 31 and 59. Kurtosis of

this magnitude 18 fregquently encountered in at least two areas of

statistical applications.

~

3 In speculative markets, the distribution of prices often has
high kurtosis, and the infinite variance distributions have beén pro-
posed as an approximation to the actual price distribution., Also, in
disagﬁrégated data of all kinds, extreme values, due both to legitimate
random events and to undetected data errors, are common. In these
applications LAR should be seriously consldered where the problem i1s
suffisiently important to warrant the computatinnal effort. In a
sequel to this article, Tables of A(F,T) will be published and some
other questions of importance in applications will be considered. In
particular, (i) Should the approximated standard error be adjusted in
respoﬁse to the kurtosis of the explanatory vafiable? (ii) How should
the distributionm of the disturbances be estimated from the regression
residuals? (iiil) To what extent are the estimated parameters independent
of the estimated A(¥,T}, and is the application of F and t tests appro-

priate?
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In conclusion, two notes of caution are appropriate. First, the
LAR estimator is unbiased.only if either the disturbance distribution
.or the explanatory variable distribufion ig symmetric. Second, the LAR
estimator has been shown to be superior to the LS estimater in the
presence of massive-tailed distributions as a result of its ability to
minimize the effect of extreme observations, but the LAR estimator has
not been shown to be optimal., A nonlinear estimation procedure consist-
ing of a preliminary screen to reject extreme observations followed by
the application of least squares to the surviving data may be superior

to both LS and LAR,
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