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Abstract 

“Faded” examples are example problems that provide a 
solution, but first require students to generate a portion of the 
solution themselves.  Empirical studies have shown that such 
examples can be more effective teaching aids than completely 
worked examples that require no work from the student.  
Cascade is a model of problem-solving skill acquisition that 
was originally developed to explain other empirical 
regularities associated with human problem solving and 
learning, most notably the self-explanation effect.  Past 
research demonstrated that Cascade might also explain the 
mechanisms underlying the effectiveness of example fading.  
This paper analyzes new protocol data, and finds that it is 
consistent with predictions derived from Cascade. 

Overview 
Renkl, Atkinson, and Maier (2000) empirically 
demonstrated the qualitative result that, when learning 
problem-solving skills, students studying a series of “faded” 
examples show improved post-test performance over 
students studying only completely worked examples.  Jones 
and Fleischman (2001) argue that this result can be 
explained by Cascade (VanLehn, Jones, & Chi, 1991), a 
computational model of problem-solving skill acquisition.  
Cascade was originally developed to understand the 
mechanisms of the self-explanation effect (Chi, Bassok, 
Lewis, Reimann, & Glaser, 1989; Pirolli & Anderson, 
1985).   Jones and Fleischman demonstrated that the 
mechanisms underlying self-explanation might also explain 
the effectiveness of studying faded examples.  Although 
they showed that Cascade is consistent with the fading 
result, the explanation involved assumptions that had not yet 
been tested empirically.  Therefore Jones and Fleischman 
(2001) finished with a small set of predictions and 
suggestions for new experiments to confirm or dispute 
Cascade’s account.  Since that time, Renkl, Atkinson, and 
their colleagues have run additional experiments, collecting 
detailed transcripts of subjects studying two types of faded 
sequences of problems.  Although the experiments are not 
yet complete, we have been able to perform a qualitative 
analysis of the protocol data for eight of the subjects.  
Additionally, we have fine-tuned Cascade’s knowledge base 
(but not its underlying mechanisms) to more faithfully 
model the current data. This paper reports the result of using 
Cascade to develop a qualitative analysis of the eight 
subjects.  The primary result is that the findings remain 

consistent with Cascade’s account of example fading, as 
well as the predictions made by Jones and Fleischman 
(2001). 

Background 
Years of research have demonstrated effective techniques 
for teaching students problem-solving skills in a variety of 
task domains.  In particular, a number of studies show that 
students benefit from being given a series of completely 
worked example problems, followed by a series of 
unworked practice problems (e.g., Chi et al., 1989; Pirolli & 
Anderson, 1985; Renkl, 1997, VanLehn, 1996).  Other 
studies show that the effectiveness of such a curriculum 
depends in part on the willingness of the students to explain 
the worked examples to themselves in detail, rather than 
simply giving the examples a superficial read (Chi et al., 
1989; Fergusson-Hessler & de Jong, 1990; Pirolli & 
Bielaczyc, 1989).  VanLehn and Jones (1993a, 1993b; 
VanLehn et al., 1991) developed Cascade in order to 
determine the cognitive mechanisms behind this self-
explanation effect.  In essence, Cascade suggests that 
thorough study of worked examples help students 
consciously expose and patch gaps in their task knowledge. 
In addition, self-explanation provides contextual memories 
that can guide future problem solving by analogy to familiar 
examples.  

Subsequent experiments by Renkl et al. (2000) suggest 
that student learning can improve even further by fading a 
curriculum from fully worked examples to partially worked 
examples.  The partially worked examples provide a 
complete solution to the problem (as with fully worked 
examples), but first require students to derive one or more 
steps on their own.  This in turn requires the students to 
understand the rest of the example in at least enough detail 
to be able to attempt a solution. 

Jones and Fleischman (2001) argue that the reason faded 
examples improve learning is that they retain much of the 
guidance provided by the context of a solved example, but 
they force the students to work on particular parts of the 
problem, in turn possibly forcing them to expose and patch 
knowledge gaps.  This is in contrast to studying completely 
worked examples, where it is basically up to the students to 
decide whether they are going to put any effort into 
understanding the examples (because the students are not 
required to produce any answers in that case).  This 
argument came directly from the assumption that Cascade is 



an accurate model of human problem solving and learning 
(at this level of abstraction).  

Jones and Fleischman ran Cascade on a mock “faded” 
curriculum in order to demonstrate the plausibility of their 
hypothesis.  This exercise confirmed that the proposed 
explanation is a sufficient account of the general fading 
results, but the explanation rests on a number of 
assumptions that had not yet been confirmed by empirical 
data.  The first assumption was that the classical physics 
problem domain (implemented in Cascade and studied by 
Chi et al., 1989) is sufficiently similar to computing simple 
probabilities (studied by Renkl et al., 2000).  The second 
assumption was that Cascade’s underlying processes 
accurately match what subjects do when learning from 
faded examples.  Data had simply not yet been collected to 
argue this point either way.  Thus, Jones and Fleischman 
(2001) presented three specific predictions to be confirmed 
or denied by subsequent empirical research: 

1. “Faded examples cause effective learning by 
forcing the student to encounter and overcome 
an impasse.” 

2. There is likely “…at least some benefit to 
example fading from the learning of search 
control knowledge.” 

3. “The primary benefit of a faded example is that 
it forces the student to process parts of the 
example that they might otherwise ignore.” 

They also suggested that these predictions be tested with 
new experiments that include the collection of protocol data. 

The current work tackles both of these issues.  To begin 
with, Renkl and Atkinson (and their colleagues) have 
initiated an additional study to collect more detailed subject 
data, including transcribed talk-aloud protocols generated 
by the subjects while studying and solving problems.  
Although their experiment and analysis is not yet complete, 
they provided us with eight initial transcripts, enabling us to 
generate a partial coding that tests the predictions listed 
above. 

We have also generated a new task knowledge base for 
computing probabilities, so Cascade can solve precisely 
they same problems given to the subjects in the new 
experiments.  This allows us to remove a model assumption, 
and verify the Cascade results with a more accurate match 
to the data.  The next section describes the methods we used 
to generate the new knowledge base and encode the 
protocols.  The following sections present the results of 
those activities in more detail. 

Methods 
Given the study material presented to the experimental 
subjects, we first performed a thorough task analysis.  This 
involved identifying the probability equations required for 
solving the set of study problems.  This set serves as the 
target knowledge base that we would expect a “perfect 
learner” to have acquired after complete study of the 
curriculum.  The task analysis allowed us to replace 
Cascade’s physics task knowledge with task knowledge 

about computing probabilities.  It is important to note that 
we only changed Cascade’s task knowledge.  We did not 
change any of the underlying problem-solving or learning 
mechanisms built into Cascade.  Once we defined the target 
knowledge base, we represented each problem as a set of 
given and sought quantities, using Cascade’s representation 
language within Prolog.   

After doing the task analysis, we ran Cascade on each 
problem in order to perform a content analysis.  The content 
analysis records the required equations for each solution.  
This allows us to predict interactions between performance 
on separate problems by a single subject.  For example, if a 
subject fails to use an identified equation in one problem (as 
suggested by an error combined with protocol evidence), 
but then correctly solves a subsequent problem that requires 
the same equation, we can safely hypothesize that some sort 
of learning took place even if there is no direct evidence of a 
learning episode in the protocol transcript.  This helps us 
track learning across a series of problems.  The content 
analysis also helps constrain the encoding of the subject 
protocols.  In the face of ambiguous utterances that lead to a 
correct solution, we can generally infer which equations the 
subject must have used correctly. 

Our final task was to encode the subject protocols for 
behavior episodes relevant to the predictions reported 
above.  Future work (when all subject protocols are 
available) will contain thorough quantitative analyses of 
various protocol encodings.  For the current effort, however, 
we performed a qualitative analysis, looking for general 
trends in the data.  The goal was to investigate whether there 
were any relationships between example fading and 
learning, the use of analogies for search control, and the 
generation of self-explanations.  We constrained the 
protocol encoding by performing a goal decomposition to 
match each subject protocol.  Running Cascade on the same 
problems generates similar goal decompositions, which we 
can then use to inform the coding process.  

Task and Content Analysis 
As mentioned above, the task analysis determined all of the 
equations, or knowledge chunks, required to solve the set of 
probability problems from the empirical study.  We did not 
include more basic arithmetic reasoning (such as addition, 
multiplication, and the ability to isolate variables) in the 
analysis.  This is because, for the domains Cascade has been 
used to study so far, it simplifies the model to assume that 
subjects have well rehearsed knowledge of these tasks.  For 
the problems in question, we identified twelve distinct, 
required equations.  Some of the equations compute simple 
probabilities by dividing the cardinality of various sets of 
objects.  The task knowledge includes cases for choosing 
objects at random with and without replacement.  The target 
knowledge base also includes various equations for 
combining probabilities.  These include the special 
multiplication rule  

P(e1 and e2) = P(e1) × P(e2) 
the addition rule 



P(e1 or e2) = P(e1) + P(e2) – P(e1 and e2) 
and the subtraction rule 

P(not e) = 1 – P(e). 
It is worth comparing some features of this domain with 

classical mechanics, the domain used in previous studies 
with Cascade.  The physics and probabilities domains share 
the feature of involving mostly symbolic problem-solving 
skills, which we feel is the defining characteristic that 
allows Cascade to model both well.  However, there are also 
some potentially significant differences between the two 
domains. 

To begin with, the target knowledge base for computing 
probabilities is much smaller than the physics knowledge 
base.  In contrast to the current set of 12 equations, Cascade 
required explicit representation of 62 separate chunks of 
knowledge for classical physics.  Another significant 
difference is that subjects often relied on common-sense 
reasoning to explain and learn physics skills.  Thus, the 
Cascade model for physics included a number of general 
common-sense rules that could be used to guide the learning 
of correct (and sometimes incorrect) physics knowledge.  In 
contrast, there seems to be much less opportunity to 
generate common-sense explanations for the rules of 
probabilities (although there are certainly some).  In the 
protocols we have studied so far, subjects generally made 
little use of common-sense principles when they got stuck.   

To perform the content analysis, we encoded the 
problems provided by Renkl and Atkinson into Cascade’s 
representation.  This essentially involved translating the 
problems’ given and sought quantities into a Prolog-style 
predicate representation.  Once complete, we ran Cascade to 
ensure it could solve each problem with the complete 
knowledge base.  Each problem run generated an execution 
trace that provides explicit detail about which equations are 
necessary to solve each problem.  With these tools in hand, 
we proceeded to analyze each subject protocol to track the 
usage of individual equations, self-explanation behavior, the 
use of analogy to guide problem solving, and learning. 

Protocol Analysis 
The basic approach to the protocol analysis was to assume 
that Cascade provides an accurate model of each subject’s 
behavior and then to look for inconsistencies.  We patterned 
this approach after Jones and VanLehn’s (1992) evaluation 
of Cascade’s ability to model the fine-grained behavior of 
individual subjects studying and solving physics problems.  

For each subject-problem pair, we generated the 
hypothetical solution trace that Cascade would have to 
generate in order to produce the utterances observed in the 
subject.  We allowed ourselves to tune the trace only by 
assuming that Cascade has missing or incorrect knowledge 
about computing probabilities.  Any other discrepancies 
between Cascade and the protocol data are marked against 
Cascade’s ability to explain the subject’s performance.  
Table 1 presents an example protocol excerpt and the 
corresponding Cascade trace that matches the internal 
behavior suggested by the subject’s utterances. 

We constructed Cascade-like traces for a number of 
problems, and used those results to guide the rest of our 
protocol analysis.  Recall that the predictions presented by 
Jones and Fleischman (2001) focused on self-explanation, 
forced impasses, knowledge acquisition from impasses, and 
knowledge tuning.  Thus, our protocol analysis focuses on 
these three issues.   

Self-Explanation 
For Cascade’s account of fading to be correct, it must mean 
that subjects tend to generate more self-explanations (or 
problem-solving activity) for faded examples than they do 
for completely worked examples.  This prediction is borne 
out in the protocol data we examined.  Subjects rarely 
engaged in self-explaining on fully worked examples.  
Subjects were much more engaged in the faded examples, 
presumably because the faded examples demanded them to 
generate some kind of answer.  The protocols show 
evidence that sometimes even this was not enough to ensure 
self explanation.  Sometimes, subjects would simply “click 
through” the faded portions of the examples, and skip on to 
the solutions.  For example, after revealing a solution step, 
one subject simply said “Boy…summmsumm…I don’t 
know this right now,” and proceeded to the next step.  
However, there were certainly many more instances of self-
explanation for faded examples than there were for 
completely worked examples. 

Impasses 
Subjects encountered impasses during fully worked 
examples even more rarely than they bothered to self-
explain the examples.  This is because a subject cannot 
experience an impasse without first engaging in some self-
explanation.  However, subjects experienced many impasses 
when working on faded examples.  This is because, if the 

So I have a total of 12 bottles and there are 4 that are turned into 
vinegar.  So a total of 4 vinegar and 8 drinkable.  Probability of 
vinegar is 1/3 and drinkable is 2/3.  Now if we take one then 
we’re left with…There is a 1 in 3 chance that that will be 
vinegar… 
 

    S: value(p(event1a)) 
      S: solve(p(event) = size(selectionpool) / size(totalpool)) 
        S: value(size(selectionpool)) 
        F: value(size(selectionpool)) = 4 
        S: value(size(totalpool)) 
        F: value(size(totalpool)) = 12 
      F: solve(p(event) = size(selectionpool) / size(totalpool)): 1/3 
    F: value(p(event1a)) = 1/3 

Table 1.  A protocol excerpt and its corresponding analysis in the 
form of a Cascade trace. 



subject made a mistake, they received relatively immediate 
feedback by then being shown the correct solution step.  If 
the subject bothered to read the revealed solution, they 
would have to acknowledge a discrepancy and go back to 
refigure things.  The following excerpt shows an example of 
a subject first reading a completely worked example 
(Problem 5) with no impasse, and then working a faded 
example (Problem 6) that forces an impasse.  Both problems 
require precisely the same set of equations to generate a 
correct solution. 

Problem 5: 
S: Okay, let’s see here.  Probability is 1/10 time 1/5, 
okay, I see how they did it, allright.  Probability of 
stitching and/or color defects is 1/10 plus 1/5 minus 
the total probability that’s 1/50, and that equals 
(reads aloud) okay, next. 
 
Problem 6: 
S: Okay, allright.  Now.  This is the difference, that’s 
going to be 1 minus the 2/50 plus the 23/50, that’s 
going to be, 1 minus okay, 2/50 or, 2/50 equals .04, 
and plus 23/50 equals .46, now, .46 and .04, give me 
.50, 1 minus .50 equals .50, so, I’m doing this right, 
it should be .50, no, okay, allright, let’s see, okay, I 
guess I…, okay, so that’s 1 minus that, okay, I see 
what I did. 

In this excerpt, the subject essentially just reads Problem 
5 and claims to understand it (which is, paradoxically, a 
hallmark of subjects that are not doing enough self 
explanation).  The subject generates an answer to Problem 6 
that they think is correct, but when they reveal the correct 
solution step they discover they are wrong.  This forces an 
impasse.  In this particular excerpt, there is no convincing 
evidence that the subject actually resolved the impasse and 
learned the correct solution sequence, but the impasse at 
least gave them the opportunity.  The following sections 
discuss analysis of actual learning episodes in the protocols. 

Knowledge Acquisition 
We were surprised to find no obvious episodes of 
knowledge acquisition in the protocols.  That is, we found 
no evidence that subject were missing entire chunks of 
knowledge that they were then able to discover in response 
to an impasse.  This was particularly surprising because 
Jones and Fleischman (2001) assumed a key role for 
knowledge acquisition episodes during their initial Cascade 
study with physics problems.  It appears that this is a place 
where differences in the task domains are significant.  As 
mentioned previously, knowledge acquisition episodes were 
an extremely important part of Cascade’s account of the 
self-explanation effect for the physics domain.  However, in 
all of the protocols for subject computing probabilities, it 
appears that they already know all of the equations they 
need; they just have not yet learned the right times to use 
them.  This is admittedly a subtle distinction that cannot 
always be verified in the protocol data, so we plan to give it 
a much closer look in future studies.  However, since our 

original proposal gave such a large role to knowledge 
acquisition, we feel we are being conservative by suggesting 
that there are no knowledge acquisition episodes at all in the 
current protocol data.  There are clearly other types of 
learning episodes in the data, which we describe below, and 
we feel that those remain consistent with Cascade’s 
predictions about fading. 

Knowledge Tuning 
One of the predictions about Cascade’s account of fading 
was that fading enables students to tune knowledge they 
have already acquired, by allowing them to use it in a useful 
problem-solving context.  In Cascade, all knowledge tuning 
occurs via a process of analogical search control.  Thus, we 
expect to see subjects learn after they have successfully 
drawn an analogy between two problems.  We observed 
many such episodes in the current protocol data.  The 
following excerpt provides one of the clearest examples: 

Problem 2: 
S: …The chance of it being drinkable is 8 to 11 so 
the probability of her drinking, probability that the 
first bottle is vinegar but the second is drinkable, 2 
red balls and 2 white balls is 4, probability is 1/2 so 
if we multiply 1/3 times 8/11 that will be 8/33… 

Problem 2 involves a collection of bottles containing wine 
and vinegar.  However, in the middle of the excerpt, the 
subject makes an explicit analogical reference to Problem 1, 
which deals with selecting a particular configuration from a 
collection of red and white balls.  In a subsequent problem 
that uses precisely the same solution technique, the subject 
easily solves the problem correctly, without any evidence of 
an impasse or overt analogical reference. 

It seems clear that this particular episode involves 
knowledge tuning via analogy.  There are other episodes of 
knowledge tuning that are not overtly analogical.  The 
current Cascade model dictates that all knowledge tuning 
occurs by analogy, but that happens at a low enough 
cognitive level that it is difficult to prove or disprove.  
Certainly there are many cognitive theories that posit some 
sort of similarity-based memory for skills and facts. 

There is one aspect of knowledge tuning that Cascade 
does not model well.  Some subject protocols show 
basically the same pattern as the excerpt above, but the 
tuning occurs more gradually across 3 or 4 problems.  
Cascade’s knowledge tuning mechanism is more of an all-
or-nothing proposition.  As soon as Cascade solves one 
problem by analogy, it can immediately retrieve the same 
knowledge in similarly structured future problems.  This 
seems to be a clear weakness in the Cascade model.  
However, it does not invalidate Cascade basic account of 
fading.  The subject protocols show that the use of analogy 
occurs more frequently during fading-driven impasses than 
during the study of completely worked examples. 

In prior Cascade studies in the physics domain, there were 
strong interactions between the knowledge tuning and 
knowledge acquisition mechanisms (VanLehn & Jones, 
1993b).  We expect that similar interactions could help 



explain the effectiveness of fading examples.  However, 
since we have so far seen no evidence of knowledge 
acquisition in the current study, it has not been important to 
analyze potential interactions. 

Conclusions 
We conclude by reiterating the predictions that Jones and 
Fleischman (2001) proposed to gather evidence for 
Cascade’s account of the benefit of faded examples: 

1. “Faded examples cause effective learning by 
forcing the student to encounter and overcome 
an impasse.” 

2. There is likely “…at least some benefit to 
example fading from the learning of search 
control knowledge.” 

3. “The primary benefit of a faded example is that 
it forces the student to process parts of the 
example that they might otherwise ignore.” 

We feel that our initial analysis of protocol data from 
Renkl, Atkinson, and colleagues confirms each of these 
predictions to some extent.  The basic effect is strong: 
students often do not expend much effort on understanding 
completely worked examples, but fading the examples gives 
the students a strong impetus to do so.  This encouragement 
to work out portions of the examples leads to more 
opportunities to identify incorrect (or incorrectly applied) 
knowledge, which in turn provides opportunities to correct 
or tune that knowledge.  We were surprised to find that 
knowledge acquisition did not appear to play a significant 
role in the probabilities task domain.  However, future 
analysis will more closely search for such episodes.  In 
addition, although it makes the model less interesting in 
some ways, the preponderance of analogical knowledge 
tuning is entirely consistent with the Cascade model.  Since 
Jones and Fleischman’s (2001) original study of fading with 
Cascade did not focus strongly on knowledge tuning 
(because it played less of a role in the physics domain), an 
important future task is to run a thorough set of experiments 
with Cascade to confirm that knowledge tuning can account 
for all of the observed improvements in problem-solving 
skill. 

It is also certainly possible that future analysis will 
uncover data that is inconsistent with Cascade’s predictions.  
With this possibility in mind, our next course of action is to 
gather even more data and perform a more thorough 
quantitative analysis.  We also expect that we will find some 
ways in which Cascade should be improved.  For example, 
we already know that the knowledge tuning mechanism 
should be adjusted to account for more gradual forms of 
knowledge tuning observed in the subjects.  Any further 
mismatches of the model to the data should also serve to 
improve our understanding of how humans learn problem-
solving skills and, as a consequence, inform how we ought 
to teach them. 
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