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ABSTRACT OF THE THESIS 

 
 
 

Wave-Induced Motion of Ramp-Interconnected Craft 
 
 
 

by 
 
 
 

Stephen Holt Oonk 
 

 
Master of Science in Engineering Science (Mechanical Engineering) 

 
 

University of California, San Diego, 2008 
 

 
Professor Miroslav Krstic, Chair 

 
 
 
 The behavior of a system consisting of two ships connected by a ramp 

subject to external forcing from ocean waves is a relevant issue when 

considering the possible transportation of cargo. The resulting motions of the 

interconnected dynamical system can be extremely complex due to the nonlinear 

nature of the problem. As such, the development of a mathematical model is 

bypassed in favor of a computer-based method using MATLAB, Simulink, and 



 

 xiii 

SimMechanics. In order to maintain a reasonable level of complexity, this method 

rests on several assumptions and simplifications such as the modeling of the 

ocean waves as sinusoidal surface forces. The effects of altering the ramp length 

and the ocean wave incidence angle on the motions of the system are explored, 

where special attention is given to the angles formed between the ramp and the 

ships, as they are quantities that need to be minimized. Surface plots are 

generated which highlight the dependence of these angles on the length of the 

ramp and wave orientation, and it is concluded that for longer ramp lengths and 

wavefront angles of about 62° from the ship-ramp-ship axis, the angles are 

reduced. A penalty function is then created based on the knowledge that 

increasing the ramp length results in a prohibitive weight and fails to decrease 

the roll component of the angles. With this penalty included, the surface plots 

assume a more convex shape with well-defined minima. The method of 

extremum seeking is then given, and its applicability to this system is discussed. 
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CHAPTER 1:  BACKGROUND 

                                                                                                   

 
 
 The motion of a system consisting of two ships connected by a ramp in a 

bow-to-stern configuration subject to external forcing from ocean waves can be 

simulated using SimMechanics and Simulink provided by MATLAB. The 

mathematical formulation of the equations of motion of a single marine vehicle 

has already been thoroughly investigated in various papers and textbooks such 

as that by Fossen [3]. Unfortunately, the level of complexity that results from the 

addition of another ship connected by a ramp renders the mathematical 

approach undesirable as up to 24 state equations would result. Instead, the 

SimMechanics toolbox of Simulink can be utilized to model the system without 

having to deal with the mathematical calculations that would usually be required.  

 Figure 1.1 illustrates the bow-to-stern configuration of the two ships 

connected by a ramp that is implemented in the computer program.  

 
Figure 1.1: SimMechanics representation of the Sea Base connected to the T-Craft by a ramp in 
a bow-to-stern configuration. The local coordinate systems are represented in red, and the points 

to be forced by an ocean wave are represented by the blue vectors.
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The larger of the two vessels will from here on be referred to as a Sea Base (an 

LMSR: Large, Medium-Speed Roll-On/Roll-Off Ship) whereas the smaller vessel 

will be referred to as a T-Craft. In SimMechanics, the points on Figure 1.1 labeled 

by the acronym CS (Coordinate System) are locations on the rigid bodies which 

may be actuated, sensed, connected to a joint, etc. For instance, the CS points 

labeled 1 and 2 on the ramp and the CS points labeled 1 on the ships form 

locations where joints are inserted. The geometries of the ships and ramp are 

given below in Figures 1.2 and 1.3 along with the formulas for the moments of 

inertias. For simplicity, the geometry of the two ships is simplified to that of half 

cylinders, and the ramp is modeled as a rectangular prism of very small height. 

 
Figure 1.2: Geometry of the T-Craft and Sea Base and corresponding moments of inertia 

 

 

 

 
Figure 1.3: Geometry of the ramp and corresponding moments of inertia 
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In order to simulate the forces due to buoyancy F = ρgV and gravity F = 

mg that act upon the ships, each CS point on the ships is connected to a spring 

and damper in parallel whose constants can be wisely chosen to make the most 

physical sense possible. As a consequence, no hydrodynamic modeling is used 

in the simulations at hand. This idea that a heaving, floating body can be 

modeled as a second order dynamical system is proposed by Biran [2], where 

the equation of motion is similar to that of a simple spring, mass, and damper: 

)cos(0 tFkxxbxm ω=++ &&&                      (1.1) 

where x is the state variable governing the motion of the mass, ω the exciting 

frequency, b the damping coefficient, and k the spring constant. For a heaving 

body subject to ocean waves, Biran gives the following equation of motion: 

)cos(

)(

0

33

tgAF

gAk

FkxxbxAm

W

W

ωξρ

ρ

=

=

=+++ &&&

           (1.2) 

where AW is defined as the waterplane area (a horizontal slice through the hull at 

the water level) and A33 is an added mass term. It is obvious upon comparison of 

Equation (1.1) that this is exactly the same equation of motion except with m = 

(m+A33), k = ρgAW, and F0 = ρgAWξ0. Therefore, in the simplified model, the ships 

connected by a ramp can be described as a spring-mass-damper system where 

the springs emulate the restoring nature of gravity and buoyancy. As a 

consequence of using the spring-mass-damper of Equation (1.2) to represent the 

system, the exciting ocean waves must be modeled purely as forces. 
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The CS points on the ships are externally actuated by vertical (along the z 

axis) sinusoidal forces which are designated by the blue vectors in Figure 1.1. 

These points of external forcing can be collectively used to simulate an 

approaching wavefront at any desired orientation. The particular method that is 

used to accomplish this is discussed in the next chapter. Figure 1.4 shows the T-

Craft, ramp, and Sea Base system with an incoming wavefront at various 

orientations. These cases all induce different types of motions on the system, 

and as such, will be thoroughly investigated throughout this report. It should be 

noted that it is assumed for simplicity that the waves are purely surface 

disturbances, and thus act along a two dimensional plane (x-y plane in Figure 

1.1). The validity, as well as the feasibility of removing such assumptions will be 

discussed in greater detail in Chapter 3.  

 
Figure 1.4: Different cases of wavefront orientations in the simulation. The points marked by 

numbers represent actuation points in the computer simulation.
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CHAPTER 2:  MODELING OF THE WAVEFRONT 

                                                              

 

2.1 Mathematical Description of the Wave Model 

 

Generally when a ship is out at sea, there are three major types of 

environmental disturbances that it may encounter: waves, wind, and ocean 

currents. The mathematical representations of these disturbances, usually based 

on empirical data, are explored in the textbook by Fossen [3]. For simplicity, the 

ocean currents and the direct contribution of wind will be neglected here, 

whereas the waves (which are generated from wind) will still be considered.  

Before discussing the mathematical description of the ocean waves, some 

terminology must first be introduced. In the analysis of signals, it is well known 

that signal spectra represent the different frequency contents of a signal. In order 

to capture this fact, a signal’s power spectrum is usually defined as: 

∑
∞

−∞=

−=Φ
τ

τωτω i

ss eR )()(                          (2.1) 

where Rs(τ) is the covariance function of a signal s(t), and is usually given as: 

∑
=

∞→
−=

N

t
N

s tsts
N

R
1

)()(
1

lim)( ττ           (2.2) 

An interesting application of a power spectrum as defined in Equation (2.1) is in 

determining how a signal’s properties will change as it is filtered through a linear 

system. Theorem 2.2 in the textbook by Ljung [4] states that if w(t) is a quasi- 

stationary signal (the expectations E{w(t)} and E{w(t)w(t - τ)} are bounded) with a
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spectrum Φw(ω), and G(q) is a stable transfer function with s(t) being defined as:    

)()()( twqGts =                                                                        (2.3) 

Then the signal s(t) is also quasi-stationary, and the spectrum of s(t) is given by:                                     

)()()(
2

ωω ω
w

i

s eG Φ=Φ            (2.4) 

 Wind-generated waves can also be described as a signal with a certain                           

power spectrum, or a wave spectral density function, S(ω). In [3], Fossen notes             

that typically the ocean wave elevation may be represented as the sum of a 

number of individual components: 

)()(2cos
2

1
)cos(),(

3

1

2

1

i

N

i

iiiii

N

i

iiii AOxktAkxktAtx ∑∑
==

++−++−= ϕωϕωζ       (2.5) 

where φi is a random, uniformly distributed phase angle, and ki is the wave                  

number. Each component contributes a certain frequency, ωi to a small portion of                                               

the total spectral density. Therefore, when all components are considered, a 

wind-generated wave’s signal spectrum exhibits a range of frequencies, typically 

with one peak frequency.  

 There are a multitude of empirical-based equations that represent the 

signal spectra of waves for a range of conditions. An in-depth analysis of the 

various formulations is not included here. Instead, it is sufficient to recognize that 

one of the simpler methods of representing the wave spectrum is to use a linear 

approximation of S(ω) given by the following wave model: 

)()()( swsGsy =             (2.6) 

where y(s) is the output from the wave and w(s) is a zero-mean Gaussian white 
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noise process with a spectrum Φw(ω) = 1. Due to the similarity of this equation 

with Equation (2.3), Theorem 2.2 by Ljung can now invoked to yield a similar 

expression as that in Equation (2.4): 

22
)()()()( ωωωω jGjG wy =Φ=Φ             (2.7) 

The work of Saelid, Jenssen, and Balchen, as discussed in [3], yielded a wave 

model that uses the following second order transfer function to represent G(s): 

2

00

2
2

)(
ωζω ++

=
ss

sK
sG w

                     (2.8) 

where σw is a constant for the wave intensity, ζ is a damping coefficient, and ω0 is 

the primary frequency. The gain Kw is often defined as Kw = 2ζω0σw, and thus: 

2

00

2

0

2

2
)(

ωζω
σζω ω

++
=

ss

s
sG            (2.9) 

This transfer function is a rough approximation of the empirical-based Pierson-

Moskowitz (PM) spectrum which is based on a fully developed sea. Substituting 

Equation (2.9) into Equation (2.6) yields the second order approximation of the 

wind-generated wave signal: 

)(
2

2
)(

2

00

2

0 sw
ss

s
sy

ωζω
σζω ω

++
=         (2.10) 

For this simple system, the plant G(s) essentially acts as a second-order filter of 

white noise, and the wave is considered to be the output. Using Equation (2.7), 

and still assuming that Φw(ω) = 1, the signal spectrum of the wave is given as: 

( )
( )

( )
( ) ( )2

0

222

0

22

0

2

0

22

0

0

4

4

2

2
)(

ωζωωω

ωσζω
ωζωωω

ωσζω
ω ωω

+−
=

+−
=Φ

j

j
y     (2.11) 
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Equations (2.10) and (2.11) completely describe this commonly used 

approximation of a wind-generated wave along with its frequency contents. One 

interesting aspect of this wave model is that it very nearly resembles a sine 

wave, but with additional noise superimposed. Graph 2.1 compares the second 

order transfer function approximation directly with a sine wave. The dominating 

frequency, ω0 is equal for both cases. Except for a few locations, the second 

order approximation overlaps with the sinusoidal approximation quite well (minus 

the high frequency contents, small phase shifts, and some amplitude variations).  

Graph 2.1: Different ways of describing a wind-generated ocean wave 
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 Keeping in mind the conclusions formed about Graph 2.1, in this report yet 

another wave model approximation is introduced. Here it is proposed that the 

general sinusoidal nature and additional high frequency contents in the second 

order transfer function approximation can be modeled as a sine wave with 

additive noise. As such, the wave model will take an even more simple form: 

)()sin()(
0

twtAty ++= ϕω                   (2.12) 
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where ω0 is the wave frequency, w(t) is a zero-mean Gaussian white noise 

process, φ represents a possible phase shift, and A is an amplitude. Note that 

setting A = ρgAWξ0, φ = π/2, and considering the wave output y(t) as a force 

yields the same expression for the wave force given in Equation (1.2) except for 

the addition of a noise process. Graph 2.2 shows the standard second order 

transfer function approximation and the wave model provided by Equation (2.12). 

It is apparent that describing the wave as a sinusoid with additive noise is similar 

to the transfer function approximation of Equation (2.10). The high frequency 

components are emulated quite well; however, the lower frequency components 

(observed in the oscillations between 90 to 100 seconds) are missed entirely.  

Graph 2.2: Describing an ocean wave as a sinusoid with additive noise 
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2nd Order Transfer Function Approximation

Sinusoidal Approximation with Additive Noise

 
For the sake of simplicity, the wave model described by Equation (2.12) will be 

used instead of the traditional approach offered by Equation (2.10). This will 

facilitate the implementation of the wavefront based on phase shifts described in 

the next section, as a phase shift is already provided in Equation (2.12).  
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2.2 Representation of Approaching Wavefront 

 
 
 An approaching wavefront on the x-y plane that is about to collide with the 

Sea Base and T-Craft can be approximated by vertically (z axis) actuating the 

ships with the wave force at points designated by the numbers 1-8 in Figure 2.1.  

 
Figure 2.1: Figure 1.4 shown again for ease of analysis 

 

The motivation behind this method of implementing the ocean wave is based on 

simple intuition. Consider a line of particles that is always parallel to the 

wavefront such that as the wave progresses, the line of particles moves along 

with the wave. Due to the geometry of the system as well as the orientation of the 

wavefront, these particles will collide with the ships at different times. For 

example, if the waves are aligned parallel to the ship-ramp-ship axis, the 

particles would first reach points 1 and 2, then points 3 and 4, and so on.
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In this case, one could choose a phase shift of zero for the points 1 and 2, 

meaning that the ocean wave (a sine wave with superimposed noise) will 

immediately act upon those points. However, the particles will hit points 3 and 4 

at a later time, which by Figure 2.1, will be dependent on the length of the T-

Craft. This means that in order to simulate the same line of particles hitting the 

points at a different time, the sine wave component of the ocean wave at those 

points should have a phase shift. This phase shift is proportional to the distance 

the wave particles have to travel, multiplied by 2π/λ, where lambda stands for the 

wavelength of the ocean wave and is used as a normalizing factor. The choice of 

the constant 2π is motivated by the fact that if the distance needed to travel 

divided by the wavelength is an integer, there is a 360 degree phase shift 

(meaning no phase shift at all). This makes physical sense since given a steady 

bombardment of waves that are parallel to a ship’s axis, if the distance is divisible 

by the wavelength, (for example, if the ship’s length is equal to the wavelength) 

the ship should move up and down in the waves without any tilting. 

 
Figure 2.2: Graphical illustration of a continuous wavefront 
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By using the formula π
λ

2
Length

Phase =  where length stands for the 

distance that a particle on a line parallel to the wavefront has to travel, and λ is 

the wavelength, the appropriate phases for the sine wave components of the 

ocean waves can be found. Due to the symmetry about the x axis of the system, 

the angle θ in Figure 2.1 will only be considered in this report as it varies from 0° 

to 180°. The derivations in this chapter will only cover the angles of θ from 0° 

(Case 1) to 90° (Case 3). The phase shifts for angles from 90° to 180° are 

provided in the appendix. It should be noted that this type of mathematical 

construction only holds in the case that the ship displacements (in all 6 degrees 

of freedom: heave, sway, surge, roll, pitch, and yaw) due to the waves are 

relatively small. Large displacements of the ships will cause the lengths in the 

phase formulas to be different than those that will now be derived. 

 
Case 1: Waves are parallel to ship-ramp-ship axis (θ = 0°): 

Case 1 is particularly trivial in the phase shifts for the sine waves are 

directly proportional to the T-Craft, Sea Base, and ramp lengths. These phase 

shifts correspond to the first scenario in Figure 2.1 and are given as follows: 

Points 1 and 2  Phase Shift: 0  
 

Points 3 and 4   Phase Shift: π
λ

2tcL
 

 

Points 5 and 6  Phase Shift: π
λ

2
ramptc LL +

 

 

Points 7 and 8  Phase Shift: π
λ

2
sbramptc LLL ++
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Case 3: Waves are perpendicular to ship-ramp-ship axis (θ = 90°): 
 

The possibility that the waves are aligned perpendicular to the ship-ramp-

ship axis is explored in Case 3. This situation is only slightly more complicated 

than Case 1 in that an intermediate distance, 
22

tcsb ww
− is necessary since the T-

Craft and Sea Base generally have different widths (i.e. wsb ≠ wtc). The phase 

shifts are motivated by the third scenario in Figure 2.1 and are given below: 

 
Points 5 and 7  Phase Shift: 0 
 

Points 6 and 8   Phase Shift: π
λ

2sbw
 

Points 1 and 3  Phase Shift: π
λ

222

tcsb ww
−

 

Points 2 and 4  Phase Shift: π
λ

2
22

tc

tcsb w
ww

+







−

 

 
 
Case 2: Waves are at a θ degree angle to ship-ramp-ship axis: 
 

The formulation of the phase shifts for this possibility is far more 

complicated in that considerable trigonometry must be used. Consider first the 

simplification in that the ships have no width (or equal widths) as in Figure 2.3. 

The incoming waves meet the ship-ramp-ship axis designated by points 1-4 at an 

angle θ. The angle between the wavefront and the ship-ramp-ship axis is given 

as φ and can be defined in terms of θ. The length of the arrow vectors in Figure 

2.3 determine the phase shifts. Given a line of particles parallel to the wavefront 

(as previously mentioned), and following the line as the waves approach the 
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ships, points on the line will reach different locations at different times due to the 

angle θ. The lengths of the arrow vectors basically determine how long it will take 

for that line to reach certain locations.  

 
Figure 2.3: Wavefront approaching ship-ramp-ship axis for the simplified case  

of the ships and ramps having an no width (or equal widths) 

 
 
Realizing that the distance from 1 to 2 is the length of the T-Craft, 2 to 3 is that of 

the ramp, and 3 to 4 is that of the Sea Base, the magnitudes of the arrow vectors 

can be represented in terms of sinφ and the known lengths of the ships and 

ramp. Using the general formula of π
λ

2
Length

Phase =  results in the following 

phase shifts (where it should be noted that in the event that φ is equal to π/2, or 

equivalently θ = 0, we arrive at the formulas given in Case 1): 

 
Point 1  Phase Shift: 0 
 

Point 2   Phase Shift: π
λ
ϕ

2
sintcL

 

 

Point 3  Phase Shift: 
( )

π
λ

ϕ
2

sinramptc LL +
 

 

Point 4  Phase Shift: 
( )

π
λ

ϕ
2

sinsbramptc LLL ++
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In the actual simulation, the widths of the ships must be taken into account 

such that when φ is equal to 90 degrees (θ = 0°) we arrive at the formulas given 

in Case 1, and when φ is 0 degrees (θ = 90°), the expressions for Case 3 are 

produced. Figure 2.4 provided below takes variable widths into consideration, 

and shows the arrow vectors that determine when a point on the wavefront line 

will meet a certain location on the ships. 

 
Figure 2.4: Wavefront approaching ship-ramp-ship axis at an angle 

 

The phase shifts are once again formed by using the formula π
λ

2
Length

Phase = , 

where the length stands for the magnitude of the arrow vectors given in Figure 

2.4. The auxiliary angle φ is used for ease of derivation and is defined as: 








 +−=
2

π
θπϕ            (2.13) 

Simplifying this expression yields a compact representation of θ in terms of φ:  

ϕ
π

θ −=
2

           (2.14) 
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By considering the geometry of the system in Figure 2.4 and the relationship 

given by Equation (2.14), the following points have fairly obvious phase shifts: 

Point 1  Phase Shift: π
λ

ϕ
π

2
2

sin
22








 −







− tcsb ww

 

 

Point 2   Phase Shift: π
λ

ϕ
π

2
2

sin
22








 −







−+ tcsb

tc

ww
w

 

 

Point 5  Phase Shift: 
( )

π
λ

ϕ
2

sinramptc LL +
 

 

Point 7  Phase Shift: 
( )

π
λ

ϕ
2

sinsbramptc LLL ++
 

 
When φ = π/2, the wavefront is parallel to the ship-ramp-ship axis, and the phase 

shifts for points 1, 2, 5, and 7 simplify to those given for Case 1. Furthermore, 

when φ = 0, the phase shifts for these points reduce to those listed for Case 3. 

Now consider the more difficult problem posed by point 3. In order to find 

the necessary phase shift, the unknown length x in Figure 2.5 must be solved for. 

 
Figure 2.5: Trigonometry to find length of arrow vector to point 3 
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This unknown quantity represents the length of the arrow vector in Figure 2.4 that 

connects the wavefront with point 3. The solution of x can be used to build the 

appropriate phase shift formula. In order to solve for x, various intermediate 

variables must first be found. The length of b expressed in terms of Ltc is: 

θcos

tcL
b =            (2.15) 

Likewise, the lengths of a and a’ can quickly be determined to be equal to: 

θtantcLa =     







−−=

22
tan' tcsb

tc

ww
La θ        (2.16) 

Noting that the length of b’ can be expressed in terms of a’ in Equation (2.16): 

ϕθϕ cos
22

tancos'' 















−−== tcsb

tc

ww
Lab       (2.17) 

It is clear from Figure 2.5 that x = b - b’, therefore, simply subtracting Equation 

(2.17) from Equation (2.15) yields the formula for x in terms of known quantities: 

ϕ
ϕ
ϕ

ϕ
π

cos
22sin

cos

2
cos

















−−−








 −
= tcsb

tc

tc ww
L

L
x       (2.18) 

The final expression for the phase shift for point 3 is given as: 

Point 3  Phase Shift for 





∈
2

,0
π

ϕ : 

 π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
22sin

cos

2
cos

















−−−








 −

tcsb

tc

tc ww
L

L

 

Phase Shift for 0=ϕ : π
λ

222

tcsb ww
−
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When φ = 90 degrees the above expression reduces to the formula in Case 1 for 

point 3. Unfortunately, as φ approaches 0 degrees we arrive at a technicality due 

to division by 0. As the angle φ approaches 0, it is apparent from Figure 2.5 that 

the length b’ becomes extremely large (in order to complete the upper triangle 

with the hypotenuse a’). This means that b also becomes extremely large. 

However, x remains finite sized because we are subtracting two very large 

quantities (b - b’) to arrive at a smaller quantity. In the limit that φ approaches 0 

degrees we cannot use the formula for x to arrive at the appropriate phase shift. 

This is because b = ∞ and b’ = ∞ and x = b - b’ = ∞ - ∞ is not well defined. 

However, we know from physical intuition that the length of the arrow vector in 

this case will still be finite sized. Thus, a separate formula for the phase shift is 

given in the case when φ = 0°. These formulas are identical to those found in 

Case 3, but they are also derived in the next section using L’Hôptial’s rule.  

Now consider a similar problem posed by point 4. In order to find the 

phase shift, the unknown length x must once again be solved using Figure 2.6. 

 
Figure 2.6: Trigonometry to find length of arrow vector to point 4 



           

   

 

19

In order to express the magnitude of x in terms of known quantities, a, a’, b, and 

b’ must all be solved for first. As before, b is related to Ltc by a cosine term in: 

θcos

tcL
b =                (2.19)  

The expression for the variable a remains the same; however, an additional wtc 

term is added to a’ as follows: 

θtantcLa =     







+−−= tc

tcsb

tc w
ww

La
22

tan' θ       (2.20) 

Once again, substitution of Equation (2.20) into the expression for b’ yields: 

ϕθϕ cos
22

tancos'' 















+−−== tc

tcsb
tc w

ww
Lab      (2.21) 

Subtracting Equation (2.21) from Equation (2.19) finally yields the unknown x: 

ϕ
ϕ
ϕ

ϕ
π

cos
22sin

cos

2
cos

















+−−−








 −
= tc

tcsb

tc

tc w
ww

L
L

x     (2.22) 

The necessary phase shift for point 4 is obtained by inserting the expression for x 

in Equation (2.22) into the standard phase formula π
λ

2
Length

Phase = :  

Point 4  Phase Shift for 





∈
2

,0
π

ϕ : 

 π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
22sin

cos

2
cos

















+−−−








 −
tc

tcsb

tc

tc w
ww

L
L

 

Phase Shift for 0=ϕ : π
λ

222
tc

tcsb w
ww

+−
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Just as with the case for point 3, the second condition for when φ = 0 is 

necessary in order to avoid division by zero. Also, when φ = 90 degrees, it is 

apparent that we arrive at the formula for point 4 given in Case 1.  

Continuing onto the remaining points of the Sea Base, the phase shift 

required for point 6 can be found by solving for the length x in Figure 2.7: 

 

Figure 2.7: Trigonometry to find length of arrow vector to point 6 

The expression for b is now slightly different in that it includes the ramp length: 

θcos

ramptc LL
b

+
=                (2.23) 

The variables a and a’ now incorporate an additional term in Lramp, and only wsb is 

subtracted in a’ as given below: 

( ) θtanramptc LLa +=     ( )
sbramptc wLLa −+= θtan'      (2.24) 

As always, b’ is defined as the magnitude of a’ multiplied by a cosine term: 

( )[ ] ϕθϕ costancos'' sbramptc wLLab −+==       (2.25) 
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Subtraction of Equation (2.25) from Equation (2.23) then yields our solution of x: 

( ) ϕ
ϕ
ϕ

ϕ
π

cos
sin

cos

2
cos









−+−








 −

+
= sbramptc

ramptc
wLL

LL
x       (2.26) 

Using Equation (2.26) in the phase formula generates the required phase shift: 

Point 6  Phase Shift for 





∈
2

,0
π

ϕ : 

 

( )

π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
sin

cos

2
cos









−+−








 −

+
sbramptc

ramptc
wLL

LL

 

Phase Shift for 0=ϕ : π
λ

2sbw
 

Lastly, consider the determination of the phase shift for point 8 on the Sea 

Base and solve for the unknown length x with the aid of Figure 2.8: 

 

Figure 2.8: Trigonometry to find length of arrow vector to point 8 
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The value of b is now modified to include the lengths of both ships and the ramp: 

θcos

sbramptc LLL
b

++
=             (2.27) 

Likewise, the variables a and a’ also contain all of the lengths at hand: 

( ) θtansbramptc LLLa ++=     ( )
sbsbramptc wLLLa −++= θtan'     (2.28) 

The expression for b is then found using Equation (2.28): 

( )[ ] ϕθϕ costancos'' sbsbramptc wLLLab −++==        (2.29) 

Applying the fact that x = b – b’ yields the value of the unknown x: 

( ) ϕ
ϕ
ϕ

ϕ
π

cos
sin

cos

2
cos









−++−








 −

++
= sbsbramptc

sbramptc
wLLL

LLL
x     (2.30) 

Using Equation (2.30) in the phase formula yields the expression for the last 

point to be considered in this derivation: 

Point 8  Phase Shift for 





∈
2

,0
π

ϕ : 

  

( )

π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
sin

cos

2
cos









−++−








 −

++
sbsbramptc

sbramptc
wLLL

LLL

 

Phase Shift for 0=ϕ : π
λ

2sbw
 

 The phase shifts for Case 2 have now been completely determined for all 

of the points considered in Figure 2.4. These phase shifts are used in the 

SimMechanics computer program to represent the incoming wavefronts. 
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2.3 L’Hôpital’s Rule and Summary of Phase Shifts for Wavefront Model 

 
 

A summary of the phase shifts for all of the cases that were just explored 

are provided in this section in order to facilitate quick referencing. The phase shift 

expressions for points 3, 4, 6, and 8 in Case 2 all have the extra condition for 

when φ = 0 as previously discussed. This condition was said to be pulled directly 

from the corresponding formula in Case 3. However, it is interesting to note that 

for Case 2, the terms that do not blow up in the expressions defined for 







∈
2

,0
π

ϕ  are exactly those terms that are retained when φ = 0. This is not a 

coincidence, but rather a consequence of L’Hôpital’s rule that was alluded to. 

In Stewart [6], L’Hôpital’s rule is defined for two differentiable functions f 

and g, where g’(x) ≠ 0 (except at a) such that the following conditions hold: 

0)(lim0)(lim ==
→→

xgandxf
axax

 

or that  ∞±=∞±=
→→

)(lim)(lim xgandxf
axax

 

Then the limit formed when dividing the two functions can be found from: 

)('

)('
lim

)(

)(
lim

xg

xf

xg

xf

axax →→
=  

For simplicity, the calculation of the limit as φ approaches zero will only be 

done for the phase shift of point 3. However, all of the work here easily extends 

to the phase formulas that correspond to the other points. Consider first the 

length portion of the phase shift formula given for point 3 (provided by Equation 

(2.18)). Simply taking the limit as φ tends to zero yields the expression:
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

































−−−








 −
→

ϕ
ϕ
ϕ

ϕ
πϕ

cos
22sin

cos

2
cos

lim
0

tcsb

tc

tc ww
L

L
     (2.31) 

The following terms in the preceding formula blow up in the limit taken above: 

∞==








 −
→ ϕϕ

πϕ sin

2
cos

lim
0

tctc LL
   and   ∞=

→ ϕ
ϕ

ϕ sin

cos
lim

2

0
tcL      

Therefore, the problem in Equation (2.31) has ∞ - ∞ along with the subtraction of 

a term containing the widths wsb and wtc and a cosine. Unfortunately, L’Hôptial’s 

rule cannot yet be applied directly to solve this limit problem. This is because we 

do not have the standard indeterminate form of type 0/0 or ∞/∞. A little bit of 

algebra in order to get rid of the terms containing the widths must be used to 

reach this form. First expand the expression in Equation (2.31) out and separate 

the terms with the widths as done below: 

















−+−

→
ϕ

ϕ
ϕ

ϕϕ
cos

22sin

cos

sin
lim

2

0

tcsb

tc

tc ww
L

L
      

ϕ
ϕ
ϕ

ϕ ϕϕ
cos

22
lim

sin

cos

sin
lim

0

2

0








−+









−=
→→

tcsb

tc

tc ww
L

L
      









−+









−=
→ 22sin

cos

sin
lim

2

0

tcsb

tc

tc ww
L

L

ϕ
ϕ

ϕϕ
      (2.32) 

Now the problem has reduced to finding the limit of the following expression: 









−
→ ϕ

ϕ
ϕϕ sin

cos

sin
lim

2

0
tc

tc L
L

         (2.33) 
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Combining the two terms in Equation (2.33) then yields the following simple 

fraction and gets rid of the ∞ - ∞ issue: 

ϕ
ϕ

ϕ sin

cos
lim

2

0

tctc LL −
→

         (2.34) 

 

Defining ϕ2
cos)( tctc LLxf −=  and ϕsin)( =xg  in Equation (2.34), it is apparent 

that the conditions for L’Hôptial’s rule are now satisfied for the 0/0 indeterminate 

form: 

0sin)(lim0cos)(lim
0

2

0
===−=

→→
ϕϕ

ϕϕ
xgandLLxf tctc  

We now know from L’Hôptial’s rule that the following equalities of the limits hold: 

0
1

0

cos

sincos2
lim

)('

)('
lim

sin

cos
lim

)(

)(
lim

0

2

0
====

−
=

→→→→ ϕ
ϕϕ

ϕ
ϕ

ϕϕ

tc

ax

tctc

ax

L

xg

xfLL

xg

xf
 

Therefore, it can be concluded that the limit of Equation (2.33) is equal to zero: 

0
sin

cos

sin
lim

2

0
=








−
→ ϕ

ϕ
ϕϕ tc

tc L
L

 

The limit given by Equation (2.32) is then equal to: 









−=








−+









−=
→ 2222sin

cos

sin
lim

2

0

tcsbtcsb

tc

tc wwww
L

L

ϕ
ϕ

ϕϕ
 

This means that in the phase formula for point 3, by taking the limit as φ 

approaches zero we finally arrive at: 

π
λ

π
λ

ϕ
ϕ
ϕ

ϕ
π

ϕ
2222

cos
22sin

cos

2
cos

lim
0

tcsb

tcsb

tc

tc

ww

ww
L

L

−
=

















−−−








 −

→
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This is precisely the conditional statement that is provided for point 3 when φ = 0. 

Therefore, L’Hôptial’s rule validates the choice that was previously made to 

simply use the expressions from Case 3. It can now be said with complete 

confidence that as φ = 90 degrees (θ = 0°), the formulas for Case 2 reduce to 

those in Case 1, and when φ = 0 degrees (θ = 90°), the expressions for Case 2 

simplify to those given for Case 3. All of the phase shifts that simulate the 

approach of a wavefront at any angle between θ = 0° and θ = 90° are provided 

below: 

 

 Summary of Phase Shifts for Case 1 (Bow-to-Stern Configuration) 
Points 1 and 2  Phase: 0 
 

Points 3 and 4   Phase: π
λ

2tcL
 

 

Points 5 and 6  Phase: π
λ

2
ramptc LL +

 

 

Points 7 and 8  Phase: π
λ

2
sbramptc LLL ++

 

 
 
 

 Summary of Phase Shifts for Case 3 (Bow-to-Stern Configuration) 
Points 5 and 7  Phase: 0 
 

Points 6 and 8   Phase: π
λ

2sbw
 

Points 1 and 3  Phase: π
λ

222

tcsb ww
−

 

Points 2 and 4  Phase: π
λ

2
22

tc

tcsb w
ww

+







−
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  Summary of Phase Shifts for Case 2 (Bow-to-Stern Configuration) 

Point 1          Phase:                           π
λ

ϕ
π

2
2

sin
22








 −







− tcsb ww

 

Point 2          Phase:        π
λ

ϕ
π

2
2

sin
22








 −







−+ tcsb

tc

ww
w

 

 

Point 3          Phase for 





∈
2

,0
π

ϕ :      π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
22sin

cos

2
cos

















−−−








 −

tcsb

tc

tc ww
L

L

 

                     Phase for 0=ϕ :          π
λ

222

tcsb ww
−

 

Point 4          Phase for 





∈
2

,0
π

ϕ :    π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
22sin

cos

2
cos

















−+−−








 −

tcsb

tctc

tc ww
wL

L

 

                     Phase for 0=ϕ :                                         π
λ

222

tcsb

tc

ww
w −+

 

 

Point 5          Phase:                                                       
( )

π
λ

ϕ
2

sinramptc LL +
 

 

Point 6          Phase for 





∈
2

,0
π

ϕ :        

( )

π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
sin

cos

2
cos









−+−








 −

+
sbramptc

ramptc
wLL

LL

          

                     Phase for 0=ϕ :                                                π
λ

2sbw
 

 

Point 7          Phase:                                                  
( )

π
λ

ϕ
2

sinsbramptc LLL ++
 

 

Point 8          Phase for 





∈
2

,0
π

ϕ :   

( )

π
λ

ϕ
ϕ
ϕ

ϕ
π

2

cos
sin

cos

2
cos









−++−








 −

++
sbsbramptc

sbramptc
wLLL

LLL

 

 

           Phase for 0=ϕ :                                                 π
λ

2sbw
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2.4 Alternative Ship and Ramp Configuration 

 
 

The two ships connected by a ramp can also be expressed in a starboard-

to-port configuration. Such an arrangement is illustrated in Figure 2.9 where the 

ramp is connected to the port side of the T-Craft and the starboard side of the 

Sea Base (the front of the ship is assumed to be in the positive y quadrant). All 

other aspects of the problem such as the method of wave forcing, local 

coordinate systems, etc. remain identical. Figure 2.9 shows that the geometry 

(on the x-y plane with z = 0) of this alternative way of representing the system is 

identical to the bow-to-stern configuration except that the lengths and widths of 

the ships are switched. Therefore, an in-depth derivation of the phase shifts is 

unnecessary. Instead, the phase shifts are determined by using the expressions 

in the previous section while noting that everywhere Ltc and Lsb are found, they 

are to be replaced with wtc and wsb respectively (and the same holds conversely).  

 

Figure 2.9: SimMechanics representation of the Sea Base connected to the T-Craft by a ramp in 
a starboard-to-port configuration
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 The different scenarios of wavefront orientations that may be encountered 

in the starboard-to-port situation are depicted below in Figure 2.10. This 

illustration is basically identical to Figure 1.4. The only distinction in the two 

figures is that the ships are now “taller” whereas before they were “wider”, but 

there is no fundamental difference in the geometry beyond that.  

 
Figure 2.10: Different cases of wavefront orientations in the simulation  

for the starboard-to-port configuration 

  
In this report, only the bow-to-stern configuration is examined as it takes 

full advantage of the actuation capabilities that the T-Craft has in creating a 

variable ramp length. Using the T-Craft surge velocity to extend the ramp will 

ultimately be employed as a method of minimizing the angles formed between 

the ships and ramp. Unfortunately, such a beneficial effect is not provided in the 

starboard-to-port configuration (it is difficult to manually move a ship in the sway 

direction). Because of this, and the reality that the geometries are identical when 

considering phase shifts, means that this arrangement will not be studied.
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CHAPTER 3:  SHIP MODELING AND ASSUMPTIONS 

 
 

3.1 Uncoupled Ship Equations of Motion 

 

Due to the complexity that is inherent in this interconnected dynamic 

system, a complete description of the equations of motion is not provided in this 

report. Instead, the system is modeled as a second order spring-mass-damper 

similar to that given by Equation (1.2). From this equation we know that there is a 

damper with a coefficient b and a spring with a constant equal to ρgAW. However, 

it should be recognized that this formulation was developed for uncoupled heave 

motions and does not account for the pitch and roll motions that are also affected 

by hydrostatic restoring forces. Although no rigorous mathematical model is 

provided, it is still necessary to extend Equation (1.2) to the pitch and roll 

motions. This in turn will influence the choices of damping coefficients and spring 

constants along the pitch and roll degrees of freedom that are used in the 

computer simulations.  

Denoting the roll state variable (angle) by α, the pitch state variable 

(angle) by β, and the heave state variable by x, the uncoupled equations of 

motion taken from Biran [2] can be used to extend the spring-mass-damper 

analogue to include heave, pitch, and roll. It should be noted that the remaining 

degrees of freedom in surge, yaw, and sway are not opposed by hydrostatic 

restoring forces, and thus the respective spring constants and damping 

coefficients are set to zero. As such, the equations governing the motion in those



           

   

 

31

directions are not considered here. The uncoupled roll equation of motion is 

given by: 

( )tb nrnr ω
λ
πζ

ωαωαα sin
2

2 022 =++ &&&          (3.1) 

where ωnr is the ship natural angular frequency of roll, ω is the ocean wave 

exciting frequency, ζ0 is the wave amplitude, b is the damping coefficient of roll, 

and λ is the wavelength. Notice that Equation (3.1) is almost of the spring-mass-

damper form given by Equation (1.1) except that no mass term appears in front 

of the acceleration α&& . The ship natural angular frequency of roll is commonly 

expressed as: 

2

mr

R

nr
i

gGM
=ω             (3.2) 

where GMR is defined as the metacentric height in roll and imr is the mass radius 

of gyration for roll. The meaning of the metacentric height will be discussed later. 

Substitution of Equation (3.2) into Equation (3.1) yields a slightly more 

transparent version of the equation of motion in roll: 

( )t
i

gGM

i

gGM
b

mr

R

mr

R ω
λ
πζ

ααα sin
2

2 0

22
=++ &&&         (3.3) 

The mass radius of gyration about the axis of inclination for roll motions is 

proportional to the width (in naval terminology referred to as breadth) of the ship 

and is given for our half-cylinder ship geometry as: 

32

w
imr =               (3.4) 
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This quantity can also be used to relate the mass moment of inertia, J to the 

mass displacement, ∆ by the following expression.  

∆= 2

miJ              (3.5) 

The mass displacement is formally defined as the mass of the water displaced by 

a floating body. By Archimedes’ principle the mass of the water displaced is 

equal to the mass of the ship, therefore, ∆ = mship. The mass moment of inertia, J 

is typically thought of as the rotational analogue of mass. Substitution of Equation 

(3.5) into Equation (3.3) results in: 

( )tGMgGMgJbJ RR ω
λ
πζ

ααα sin
2

2 0∆=∆++ &&&        (3.6) 

This equation is now of the spring-mass-damper form given by Equation (1.1). 

Likewise, the following equation describes uncoupled and undamped pitch: 

( )t
i

gGM

i

gGM

mp

P

mp

P ωγββ sin
22

=+&&           (3.7) 

where γ is the maximum pitch amplitude and imp is the mass radius of gyration for 

pitch. It is known that imp is proportional to the length of the ship: 

32

L
imp =              (3.8) 

Substitution of Equation (3.5) in order to introduce a mass term in front of the 

acceleration yields: 

( )tGMgGMgJ PP ωγββ sin∆=∆+&&          (3.9) 

Once again, the heave equation of motion is represented below: 

( )tgAxgAxbxAm WW ωξρρ cos)( 033 =+++ &&&       (3.10) 
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Equations (3.6), (3.9), and (3.10) represent the uncoupled ship equations 

of motion for roll, pitch, and heave.  These equations were developed for a single 

ship, and thus cannot be used to accurately describe the motion of the 

interconnected ship-ramp-ship system. However, at each CS point (refer to 

Figure 1.1 for the locations of the CS points) on the ships there is a connected 

spring and damper in parallel. As discussed in Chapter 1, these springs and 

dampers emulate the roles of gravity and buoyancy. Therefore, Equations (3.6), 

(3.9), and (3.10) may at the very least be used to form an estimate of the spring 

constants and damping coefficients in the computer simulations. Upon 

comparison with the standard spring-mass-damper system provided by Equation 

(1.1), it is obvious that the spring constants for roll, pitch, and heave are given as: 

Rroll GMgk ∆=    Ppitch GMgk ∆=            Wheave gAk ρ=               (3.11) 

The damping coefficients are not explicitly given in Biran [2]; however, from 

Equation (3.8) we know that no damping is used on the pitch motions. With 

regard to the heave and roll motions it is only known that the damping coefficient 

is a function of the frequency of oscillation. Thus, the damping coefficients will be 

chosen in an ad hoc manner such that the resulting motions make physical 

sense. In order to implement the choices of spring constants given above, Aw, 

GMR, and GMP must be solved for. Although these quantities change as a ship is 

in motion, they will be assumed invariant such that k remains constant. 

The waterplane area, Aw is defined as a horizontal slice of the ship hull at 

the water level. Consider a cross section of the ship hull geometry partly 

submerged in water as depicted in Figure 3.1.  
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Figure 3.1: Cross section of the ship hull in hydrostatic equilibrium where 

 the shaded region is submerged under water 

 

It is clear that the width of the ship (distance along the y axis) at the waterline is 

equal to the variable denoted by c. The waterplane area would be this width 

multiplied by the length of the ship (distance along the x axis). Unfortunately, c is 

a quantity that is not readily available, and instead must be expressed in terms of 

other variables. In particular, the draught, T is defined as the vertical distance 

between the waterline and the bottom of the hull and can be easily measured 

provided the ship has a “draught scale” on the side of the hull. As a result of this 

definition, the distance from the waterline to the surface of the ship is given by r – 

T. Now consider the triangle on the right with a base of c/2, height of r – T, and a 

hypotenuse of r. The Pythagorean Theorem then yields: 

( ) 22

2

2
rTr

c
=−+








 

After a little bit of algebra, c can be represented in terms of r and T as follows: 

( ) 222
222 TTrTrrc −=−−=         (3.12) 
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The waterplane area is then expressed in terms of known variables as: 

2
22 TTrLcLAW −==          (3.13) 

It can also be reasoned that the quantity r – T is perhaps easier to measure. In 

this case the waterplane area is equal to: 

( )22
2 TrrLAW −−=          (3.14) 

 The metacentric height, GM is a familiar term in the study of ship 

hydrostatics and is best understood by observation of Figure 3.2. 

 
Figure 3.2: Metacentric heights for both the roll, GMR and pitch, GMP geometry.  

This drawing is based on the discussion of Figure 2.9 in [2] 

 

In the drawings above, the ship is in an initial, upright position denoted by the 

subscripts 0, and is then perturbed to an angle denoted by the subscripts φ. G is 

the center of gravity through which the weight force, W of the ship acts through. 

B0 is the initial center of buoyancy through which the buoyancy force, ∆ acts 
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through. M0 is the original metacenter which lies along the line of action of the 

buoyancy force. R0L0 is the initial waterline and is always perpendicular to the 

line of action of the buoyancy force. When the ship rolls at an angle φ, the 

waterline is now RφLφ, the center of buoyancy moves to a new position Bφ, and 

the line of action of the buoyancy force moves as well. The metacenter, Mφ is 

defined as the intersection of the new buoyancy force line of action and that of 

the old buoyancy force line of action. The metacentric height is expressed as: 

→→→→

−+= KGBMKBGM             (3.15) 

where KB is the z coordinate of the center of buoyancy, BM is the metacentric 

radius, and KG is the z coordinate of the center of gravity. In order to solve for 

GM, these quantities must first be determined. 

 KG is the easiest vector to determine as the center of gravity for common 

shapes is usually available. For simplicity, it will be assumed that the mass of 

both ships is uniformly distributed, meaning that the center of gravity (center of 

mass) is identical to the geometric centroid. For the roll motions, the center of 

gravity corresponds to the location of the point G on the top drawings of Figure 

3.2. The centroid of a semicircle measured from the flat side is given as: 

π3
4r

CG =  

By defining the keel of the hull at point K as having the value z = 0, and 

measuring positive z upwards, the distance KG for the semicircle is then: 

π3
4r

rKG roll −=
→

          (3.16) 
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Finding the center of gravity for the pitch motions is even simpler as the 

geometry along this plane is now that of a rectangle as shown on the bottom 

drawings of Figure 3.2. The length of the vector KG is given as: 

2

r
KG pitch =
→

                (3.17) 

 KB can be determined by finding the location of the center of buoyancy, 

which is identical to the centroid of the submerged part of the hull in Figure 3.3.  

 
Figure 3.3: Cross section of the ship hull in hydrostatic equilibrium 

 

Several intermediate quantities must first be determined before the coordinates 

of the center of buoyancy can be found. First consider the area of the two right 

triangles from Figure 3.1, which when combined form an isosceles triangle. Using 

Equation (3.12), the area of this triangle is given as: 

( ) ( ) ( )22

2

1
TrrTrTrcAtriangle −−−=−=       (3.18) 

Now consider the shaded area in Figure 3.3 which includes the isosceles triangle 

and the region below the waterline. This area of this sector is given as: 
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θ2
sec

2

1
rA tor =           (3.19) 

The angle θ can be expressed in terms of the radius and draught as: 








 −
= −

r

Tr1
cos2θ             (3.20) 

Therefore, by inserting Equation (3.20) into Equation (3.19) we arrive at: 








 −
= −

r

Tr
rA tor

12

sec
cos          (3.21) 

From Figure 3.3 it is clear that the area of the submerged hull is the area of the 

sector defined in Equation (3.21) minus that of the triangle in Equation (3.18). 

( ) ( )2212
cos TrrTr

r

Tr
rAsubhull −−−−







 −
= −

     (3.22) 

The weighted mean of z measured from the flat surface of the submerged hull 

can be found from integration and is given as (where Equation (3.20) is used for 

the angle θ): 
















 −
=






= −

r

Tr
rrz

13333
cossin

3

2

2

1
sin

3

2
θ       (3.23) 

The geometric centroid of the submerged hull is then given as the distance from 

point K to point B (the center of buoyancy). This vector is found from the division 

of Equation (3.23) with Equation (3.22) while making sure to measure from z = 0: 

( ) ( )2212

133

cos

cossin
3

2

TrrTr
r

Tr
r

r

Tr
r

r
A

z
rzrKB

subhull

roll

−−−−






 −
















 −

−=−=−=
−

−

→

  (3.24) 
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The value of KB for the pitch motions is far easier to determine due to the simpler 

geometry. Once again assuming that K is located at z = 0, then the distance from 

the bottom of the hull to the center of buoyancy is given by: 

TKB pitch

2

1
=

→

             (3.25) 

 All that is left in the computation of GM is to find BM, the metacentric 

radius. In Biran [2], the metacentric radius is defined as: 

∇
=

→ I
BM              (3.26) 

where I is the moment of inertia of the waterplane about the axis of inclination, 

and ∇  is the volume of the immersed part of the ship. The volume is the area of 

the submerged hull given by Equation (3.22) multiplied by the length of the ship: 

( ) ( ) 







−−−−







 −
=∇ − 2212

cos TrrTr
r

Tr
rL      (3.27) 

Since the top faces of the ships are rectangles, the moment of inertia of the 

waterplane about the axis of inclination is the same as finding the area moment 

of inertia of a rectangle. For roll, the axis of inclination is parallel to the length, 

and thus the area moment of inertia is given as: 

12

3
Lw

I roll =            (3.28) 

On the other hand, for pitch, the axis of inclination is perpendicular to the length. 

Therefore, the area moment of inertia is now expressed as: 

12

3
wL

I pitch =           (3.29) 
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By substituting Equations (3.27) through (3.29) into Equation (3.26), we arrive at 

the final expressions for the metacentric radius: 

( ) ( ) 







−−−−







 −
=

∇
=

−

→

2212

3

cos

12

TrrTr
r

Tr
rL

Lw

I
BM roll

roll     (3.30) 

( ) ( ) 







−−−−







 −
=

∇
=

−

→

2212

3

cos

12

TrrTr
r

Tr
rL

wL
I

BM
pitch

pitch     (3.31) 

 Now that the vectors KB, BM, and KG have all been determined for both 

the pitch and the roll cases, the metacentric heights GMR and GMP are given as: 

rollrollrollR KGBMKBGM
→→→→

−+=  

( ) ( )
...

cos

cossin
3

2

2212

133

+
−−−−







 −
















 −

−=
−

−

→

TrrTr
r

Tr
r

r

Tr
r

rGM R  

                       

( ) ( )







 −−









−−−−







 −
+

− π3
4

cos

12...
2212

3

r
r

TrrTr
r

Tr
rL

Lw

  (3.32) 

pitchpitchpitchP KGBMKBGM
→→→→

−+=  

( ) ( ) 2
cos

12

2

1

2212

3

r

TrrTr
r

Tr
rL

wL

TGM P −









−−−−







 −
+=

−

→

   (3.33) 
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Finally, all of the unknown quantities listed in Equation (3.11) for the spring 

constants are now determined in terms of the known variables: Length L, width 

w, radius r, mass ∆, gravity g, density of water ρ, and draught T. The spring 

constants used to represent the hydrostatic restoring moments and forces that 

oppose motion through F = -kx are given as: 

 

Heave spring constants: 

Wheave gAk ρ=  

( )22
2 TrrLg −−= ρ  

Roll spring constants: 

=∆= Rroll GMgk  

 

( ) ( ) ( ) ( )
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

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
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




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+
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





 −





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

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
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−
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4
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2
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Pitch spring constants: 
 

( ) ( ) 

















−









−−−−







 −
+∆=∆=

− 2
cos

12

2

1

2212

3

r

TrrTr
r

Tr
rL

wL

TgGMgk Ppitch          
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3.2 Modification of Spring Constants and Damping Coefficients  

 

Recall the uncoupled equations of motion for heave, pitch, and roll that 

were used in the previous section to choose the spring constants:  

Roll: ( )tGMgGMgJbJ RR ω
λ
πζ

ααα sin
2

2 0∆=∆++ &&&  

Pitch: ( )tGMgGMgJ PP ωγββ sin∆=∆+&&           

Heave: ( )tgAxgAxbxAm WW ωξρρ cos)( 033 =+++ &&&  

It was noted that these equations resemble the typical second order spring-

mass-damper system but with different values of mass, damping, and spring 

constants. In order to better compare these equations with Equation (1.1), 

neglect the added mass term, A33 in heave and express 2πζ0/λ in the roll and γ in 

the pitch as amplitudes: ξ0. Also, now consider damping in the pitch motions as 

this damping will be used in the simulations to attenuate some of the high 

frequency behavior that would otherwise be present: 

Roll: ( )tGMgGMgJbJ RR ωξααα sin2 0∆=∆++ &&&  

Pitch: ( )tGMgGMgJbJ PP ωξβββ sin2 0∆=∆++ &&&      

Heave: ( )tgAxgAxbxm WW ωξρρ cos0=++ &&&  

Except for the masses that multiply the accelerations, the terms on the left hand 

side (damping and spring constants) can be implemented independently for each 

individual degree of freedom. This is due to the fact that separate spring-mass-

damper systems can be inserted for roll, pitch, and heave. The fact that the 
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masses cannot be changed for the different equations is inconsequential since 

the same mass (translational and then rotational) is multiplying all of the 

accelerations. It should be noted that significant damping will be used in the roll 

and pitch equations since the damping coefficients are multiplied by the mass 

moment of inertia. Substitution of Equations (3.4), (3.5), and (3.8) expresses the 

terms that multiply the velocity components by the translation mass: 

Roll: ( )tGMgGMgb
w

J RR ωξααα sin
32

2 0

2

∆=∆+







∆+ &&&  

Pitch: ( )tGMgGMgb
L

J PP ωξβββ sin
32

2 0

2

∆=∆+







∆+ &&&   

Now assuming that the actual damping coefficients, b are all very small 

compared to the spring constants and have values around ~ 0.01, the damping 

will still be very large in the rotational components due to the multiplication of the 

extra mass and length terms. 

On the right hand side of the rotational equations dealing with roll and 

pitch are sinusoidal moments with amplitudes of g∆GMξ0. Since a moment is 

defined as a force acting over a distance, and the distance here is the 

metacentric height GM, the force component of the amplitude is just g∆ξ0. On the 

right hand side of the translational equation for heave is another force with an 

amplitude of ρgAwξ0. Thus, the force components of the moments in the 

rotational equations and the force in the heave equation are not equivalent 

because generally g∆ξ0 ≠ ρgAwξ0 (often by many orders of magnitude). This 

introduces a significant problem in implementing the spring-mass-damper 
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concept into the computer program, as the program only allows for one force (i.e. 

either having a magnitude of g∆ξ0 or ρgAwξ0). Since the wavefront is introduced 

as a series of sine wave actuators along the z axis, the term ρgAwξ0 from the 

heave force is used as the magnitude for all of the forces. Unfortunately, the 

equations cannot be correctly implemented into the program as the pitch and roll 

moments with ρgAwξ0 as the force component magnitude will turn out to be much 

less than they should be with g∆ξ0 (generally g∆ξ0 > ρgAwξ0). In order to cope 

with this shortcoming, the pitch and roll spring constants will be modified by the 

multiplication of a term η < 1 which will decrease the spring constants accordingly 

to cope with the smaller force component of the moments. This constant is 

defined as the ratio of the components that make the force in the heave equation 

and the forces of the moments in the pitch and roll equations different: 

∆
= WAρ

η            (3.34) 

If this procedure is not used, with the force component of the moments having a 

magnitude of ρgAwξ0 and the spring constants still having magnitudes of g∆GMξ0, 

then even for a considerable sea state there will be virtually no roll or pitch 

motions at all - quite unrealistic. Lastly, it is worth nothing that the terms that 

comprise the damping in the equations can also be multiplied by this constant. 

However, this is not necessary as the damping terms have a tunable parameter b 

that can offset any change that multiplication by η would introduce.   
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3.3 Possibilities of Joints for the Ships and Ramp 

 
 
 Now that the wavefront and ships have been mathematically represented 

for the simulations, it is worth discussing the importance of the choice of joints 

that link the Sea Base and T-Craft to the ramp. The six degrees of freedom 

possible for the joints are listed depicted below, where the arrows indicate the 

motions that may occur between the ships and ramp. The naval terminology for 

these degrees of freedom (i.e. sway, pitch, surge, etc) is also used to describe 

the motions of the ships themselves throughout this report.  

 
Figure 3.4: Motions that may occur in the joints linking the ships to the ramp 

 

Due to the extremely complex motions that may be created from the 

external wave forcing (which can come from any direction) of this interconnected 

system, all six of the above motions can be experienced between the ships and 

ramp. However, it would not be realistic to design such a joint that permits all six 

motions, and it is more likely that some of the motions would not be allowed 

(constrained), while others would be penalized, possibly by a stiff spring. It 

should be noted that although not present in the SimMechanics framework, 

motions that are not allowed, or are penalized, will result in stresses within the 
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ramp. Because it is unreasonable to study all of the different combinations of 

these degrees of freedom in a joint (and on top of that varying the spring 

constants in the joints), only the most physically realistic combinations are of 

interest here. In particular, it is assumed that the translational motions (sway, 

surge, and heave) are constrained as those would result in a very complex joint. 

Pitch is the most obvious motion to allow, as it is the type of rotation that results 

from using a simple hinge. Therefore, the simulations will use a revolute joint that 

allows for only pitch, and constrains all other motions. In addition, a revolute joint 

that enables pitch and roll motions will also be studied. The differences between 

using a torsional spring on the roll motions in this joint and not using a spring at 

all will be explored. Lastly, a gimbal type joint which allows for pitch, and has 

torsional springs on both the roll and yaw motions will be used in the simulations.  

 As an aside, it was mentioned in the introduction that up to 24 state 

equations would be necessary in order to completely describe the interconnected 

system of two ships and a ramp. When unconnected, the three rigid bodies 

would result in a system of 18 degrees of freedom (6 for each body), and thus 36 

states. The presence of the constraints imposed by the joints then accordingly 

decreases the number of degrees of freedom depending on how many motions 

are suppressed. As such, there are 24 states with the pitch-roll-yaw joint, 20 

states with the pitch-roll joint, and 16 states with the pitch-only joint. These 

numbers are easily calculated by realizing that the total system can be described 

by 6 DOF (12 states) and the additional DOF contributed by each motion allowed 

between the ships and ramp (two DOF for each motion as two joints are used).
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3.4 Discussion of Assumptions 

 
 
 The most critical limitation of the simulation results in the next chapter is 

that they become less accurate for large rotations (in the x-y plane) of the ship-

ramp-ship system. This is due to the fact that the phase formulas of Chapter 2 

must be defined relative to a ship’s local coordinate system rather than a global 

coordinate system. As a result, when the ships rotate away from the starting 

position, the wavefront also rotates in order to maintain the same angle of 

incidence on the ships. This is physically unrealistic as the wavefront should 

really be modeled as a vector field that remains in the same direction for all time. 

Fortunately, this limitation does not invalidate the simulations in this report, as 

fairly small time scales (100 seconds) are used, thus preventing large angles of 

rotation. Also, the optimization results of Chapters 5 and 6 that examine the 

effects of wave orientation on the pitch and roll angles between the ships and 

ramp are not impacted by this shortcoming. This is because a new simulation is 

performed for each individual wave orientation. While not considerably detracting 

from the results in this paper, a real-time method of updating the phase formulas 

to cope with a changing ship heading direction (equally, the wave incidence 

angle) will be necessary to apply extremum seeking. Research efforts have in 

fact yielded a program that relies on a feedback loop that measures the amount 

of rotation and then updates the phase formulas accordingly.  

In Chapter 1 it was recognized that the waves approaching the ships act 

purely as surface disturbances along the x-y plane. This was obvious from Figure 
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1.1, where the wave force vectors all reach the same surface. To arrive at a more 

realistic model of the waves, one could instead consider a polyhedral shape for 

the ship hull (although the semicircle would still be possible in SimMechanics). At 

each extreme point of the polyhedron, a force vector from the waves could be 

used. This would introduce a “depth” to the wave, removing the assumption of it 

being a surface disturbance. Then, incorporating some knowledge of ocean 

waves, the relative strength vs. depth of the wave forces could be used to arrive 

at a more realistic model (at the expense of a far more complicated program).   

 
Figure 3.5: Cross section of ship hulls. Blue vectors indicate wave forcing vectors 

 
 Another assumption made in the simulations was that the waves act only 

along the z axis. It is reasonable to think that when the ships are out at sea, there 

would be considerable movement and even drift in the sway and surge directions 

(directions perpendicular to the z axis) due to wave-induced forces. However, the 

simulation results in Chapter 4 will show that even though the waves act along 

the z axis, there will still be movement in the sway and surge directions. This 

seems to indicate that the assumption of the waves acting only along the z axis is 

a decent one. Alternatively, one could still implement forces along the x-y plane 

to simulate both ships in motion, or to create a more viscous fluid. 
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CHAPTER 4:  SIMULATION RESULTS 

 
 

4.1 Opening Comments 

 

 

The following pages document simulation results using various different 

combinations of joints between the ships and ramp while examining three cases 

of wave incidence angles. The scenario when the waves are aligned parallel to 

the ship-ramp-ship axis with θ = 0° is referred to as Case 1. On the other hand, 

Case 3 will refer to the waves approaching perpendicular to the ships with an 

angle of θ = 90°. In Chapter 2, Case 2 referred to the general situation with the 

waves at an arbitrary θ° angle to the ship-ramp-ship axis. It was shown that this 

case includes Case 1 and Case 3 (after application of L’Hôptial’s rule). However, 

here Case 2 will refer to the intermediate situation when θ = 45°. All of the 

simulations examine the behavior of the ships given a constant ramp length and 

assume the bow-to-stern configuration in Figure 1.1. Sections 4.2-4.4 explore the 

situation when the joints between the ships and ramp allow only for pitch, and 

constrain all other motions. Using this joint, Case 1 is explored in Section 4.2, 

Case 3 in Section 4.3, and Case 2 in Section 4.4. Section 4.5 examines the joint 

that allows both pitch and roll between the ships and ramp for Case 3. Section 

4.6 documents the results from using a spring on the roll motions but for the 

same wave orientation as in Section 4.5. Likewise, Sections 4.7-4.8 explore the 

joint that allows for pitch and roll with and without springs on roll motions for 

Case 2. Sections 4.9-4.10 consider a gimbal type joint that permits pitch, roll, and
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yaw motions, but has springs inserted for the roll and yaw degrees of freedom. A 

table summarizing the various findings is included in Section 4.11.  

The particular m-file that is used for the following simulations is included in 

the appendix. However, for easy reference some of the numerical values that 

were chosen are provided below: 

Mass of Sea Base: 45,359,237 kg or 50,000 tons 

Length of Sea Base: 200 meters 

Radius of Sea Base: 15 meters 

Draught of Sea Base: ½ of radius 

Mass of T-Craft: 2,721,554.22 kg or 3,000 tons 

Length of T-Craft: 40 meters 

Radius of T-Craft: 8 meters 

Draught of T-Craft: ¼ of radius 

Length of Ramp: 25 meters 

Wave Amplitude (trough to crest): 2 meters (mid to high sea state 4) 

Spring Constant between Joints: 500,000 N/m (50,000 N/m for yaw joint) 

Time between Wave Crests: 8 seconds 

Distance between Wave Crests: 38.1 meters 

The geometry and moments of inertia of the craft and ramp are given by 

the pictures and equations in Figures 1.2 and 1.3. The forces of buoyancy and 

gravity are emulated using springs and dampers in parallel on the heave, pitch, 

and roll degrees of freedom. The particular spring constants and damping 

coefficients used in the simulations are taken from the results of Chapter 3.  
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4.2 Case 1: Waves are Parallel to Ship-Ramp-Ship Axis (Pitch in Joint) 

 

  

 The simulation is first performed using the phase values from the first case 

in order to simulate the waves aligned with the ship-ramp-ship axis. Only pitch is 

allowed in the joint between the ships and ramp, and there is no spring in the 

joint. This is the only time this wave orientation will be studied, as the future joints 

will not change ship motions when the waves are parallel. Figure 4.1 shows the 

heave motions that result and the relative pitch between the ramp and ships. It is 

interesting to note that there is very little pitch of the ships themselves. This can 

be attributed to two important factors. First, the restoring forces for pitch motions 

are proportional to the longitudinal metacentric height along the x-z plane which 

has a cubed length term. This causes the metacentric height to be significant, 

and thus results in a large spring constant to oppose the pitch motions. Secondly, 

the length of the T-Craft (and the length of the Sea Base) is nearly divisible by 

the ocean wavelength, thus causing the ship to heave up and down together 

without much tilt or pitch (see Figure 2.2). Further implications regarding the 

length of the ships compared to the wavelength will be discussed in Chapter 5.  

 
Figure 4.1: View of the ship-ramp-ship configuration along the x-z plane
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Since the waves are approaching parallel to the ships, there are no roll, yaw, or 

sway motions present as indicated in the second picture of Figure 4.2.  

 
Figure 4.2: Left: 3-Dimensional view. Right: View along the y-z plane 

 

In order to better quantify the motions observed in the simulations, the 

displacements along particular directions as functions of simulation time will be 

provided in this chapter. Graph 4.1 compares the heaving motions of the two 

ships along with the exciting ocean wave (input signal), where it is apparent that 

for this wave orientation the two ships have comparable heave magnitudes.  

 

Graph 4.1: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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Both ships have complex heave motions which are combinations of many 

sinusoids. The dominant component of these sinusoids has the same frequency 
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of the exciting ocean wave but with a phase shift and a difference of amplitude 

that is a result of the dynamics of the system. In addition, there are some lower 

frequency components shown by the periodic motions that occur every 30 

seconds as well as higher frequency components (especially in the Sea Base 

heave plot). The left plot in Graph 4.2 shows that surge (a degree of freedom that 

is not opposed by hydrostatic forces) develops for the T-Craft. A comparable 

amount of surge is also experienced for the Sea Base. On the right in Graph 4.2 

is a plot of the pitch angle between the Sea Base and ramp which varies 

between ±5.5° with a maximum magnitude of 5.37°. This angle is dependent on 

quantities such as wave orientation, ship length, and ramp length. The input 

signal is superimposed to show that the dominant component of the pitch angle 

has the same frequency of the ocean waves but with a considerable phase shift. 

As with the heaves, this phase shift is a result of the dynamics of the system. It 

should be noted that the amplitude of the input signal is meaningless here as it is 

measured in meters while the pitch angle is measured in degrees.  

 
Graph 4.2: Left: T-Craft surge. Right: Pitch angle between Sea Base and Ramp 
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4.3 Case 3: Waves are 90° to Ship-Ramp-Ship Axis (Pitch in Joint) 

 

 

 Performing the simulation with the waves perpendicular to the ship-ramp-

ship axis shows that now roll motions, although small, occur as would be 

expected. Since only pitch is allowed between the ramp and ships, the two ships 

roll together as one rigid body. While in Case 1 only surge was detected, here 

the ships undergo sway motions despite the fact that the forces act in the z 

direction. In fact, as the ships undergo sway, they also experience yaw as shown 

by the slightly non-horizontal alignment depicted in Figure 4.3 (the system 

experiences yaw as one rigid body since the joints only allow for pitch). In 

addition, the simulations show that surge is negligible (the little surge that does 

occur is induced by yaw), and that the ships heave up and down without pitch.  

 

Figure 4.3: Left: View along the x-y plane. Right: View along the y-z plane. Waves approach in 
direction indicated by cyan arrows  

 

The heave motions are provided in Graph 4.3, where it is noted that these 

motions are measured with respect to the center of gravity. With the waves 

approaching from this orientation, the heave motions are reduced drastically for 

the T-Craft: down from a magnitude of 2.8 meters in the previous section to only 
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0.8 meters. The Sea Base is less affected by the change in orientation, as the 

heave only decreases by 0.1 meters. Once again, the dominant component of 

the heave motions has the same frequency of the excitation waves (input signal).  

Graph 4.3: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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The ships now experience sway instead of surge as evident by Graph 4.4 which 

shows the sway of the T-Craft. The net sway of the Sea Base is comparable, but 

slightly larger. The sway is due to the waves approaching in the perpendicular 

direction but also to the yaw. In addition, Graph 4.4 shows that the pitch angles 

have been reduced and now vary between ±4° with a maximum value of 4.42°.  

 

Graph 4.4: Left: T-Craft sway. Right: Pitch angle between Sea Base and Ramp 
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4.4 Case 2: Waves are 45° to Ship-Ramp-Ship Axis (Pitch in Joint) 

 

 

Simulation results with the waves coming in at a 45° angle to the ship-

ramp-ship axis show that more motions are observed than in the previous cases. 

Due to the waves approaching at this intermediate angle, the system begins 

rotating clockwise. The reason for the rotation is largely due to the fact that the T-

Craft is of much smaller mass, size, and inertia that the Sea Base, and is thus 

more readily affected by the waves. The greater sway and surge displacements 

for the T-Craft than those for the Sea Base are evidence of this fact. This 

disparity in surge and sway magnitudes in turn causes the system to rotate. 

 
Figure 4.4: 3-Dimensional view showing the clockwise rotation of the system. Waves approach in 

direction indicated by cyan arrows 
 

 
Figure 4.5: Left: x-z plane showing pitch. Right: y-z plane showing yaw and roll  

(It is easier to see pitch and roll during a running simulation)
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In addition to the net rotation, it is apparent that all of the rotational degrees of 

freedom: pitch, roll, and yaw are active upon the entire system as illustrated in 

Figure 4.5 above (although the pitch and roll motions are small and quite hard to 

detect). The surge and sway motions that were discussed as they pertained to 

the rotation of the system are included below for the T-Craft. While the T-Craft 

has a net surge of about 1 meter and a net sway of 20 meters, the surge and 

sway values for the Sea Base are only -0.02 and 2.9 meters respectively.  

Graph 4.5: Left: Surge motion of T-Craft. Right: Sway motion of T-Craft 

0 10 20 30 40 50 60 70 80 90 100
-32.6

-32.4

-32.2

-32

-31.8

-31.6

-31.4
T-Craft Center of Gravity Surge

Simulation Time [s]

X
 P

o
s
it
io

n
 [

m
]

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
T-Craft Center of Gravity Sway

Simulation Time [s]

Y
 P

o
s
it
io

n
 [

m
]

 
 
Included in Graph 4.6 on the following page are the heave motions of the Sea 

Base and T-Craft. The T-Craft has a larger heave of 1.7 meters, whereas the 

Sea Base has a heave of only about 0.4 meters. The T-Craft heave is larger than 

in the previous case (perpendicular waves) but smaller than the first case 

(parallel waves). On the other hand, for the Sea Base this is clearly the case with 

the smallest heave values. It seems that it would be reasonable to think that with 

the waves oriented further from the ship-ramp-ship axis, the heaves should be 

reduced (i.e. smallest in Case 3). However, the ratio between the length of the 
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ships and the wavelength of the ocean wave must also be taken into 

consideration. Recall that when the length of the ship is divisible (or nearly) by 

the wavelength, the ship will heave up and down without tilt. This type of 

relationship affects the heave since pitch motions are known to induce heave. 

Graph 4.6: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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The same observation can be made about the pitch angle evolution shown below 

in Graph 4.7. The pitch angles between the Sea Base and ramp now only vary 

between ±2° with a maximum of 2.22°. Hence, we get the surprising result (a 

consequence of the ship length to wavelength ratio) that a perpendicular wave 

does not always attenuate the pitch angles the most. 

 

Graph 4.7: Pitch angle between Sea Base and Ramp 
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4.5 Case 3: Waves are 90° to Ship-Ramp-Ship Axis (Pitch and Roll) 

 

 

The simulation is performed with the waves perpendicular to the ship-

ramp-ship axis, but now allowing for pitch and roll in the joints (without springs to 

hinder these motions). The visualizations in Figure 4.6 (which use a larger wave 

to highlight the motions) below show that roll is now experienced in the joint. 

Before the ships rolled together; however, now they are allowed to roll at different 

rates due to an extra degree of freedom being added to the joint. As was the 

case when using the pitch-only joint for this wave orientation, there is still a slight 

amount of yaw experienced by the total system (but not between the ships and 

ramp). This causes a small amount of rotation as depicted in Figure 4.7.  

 
Figure 4.6: Left: 3-D view. Right: View along the y-z plane (all motions are exaggerated) 

 

 
Figure 4.7: View along the x-y plane. 
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It is immediately obvious that the rotation shown in Figure 4.7 is considerably 

less than the 45° case. This is due to the fact that the difference between the 

sway motions of the two ships is not as great. As an aside, it should be noted 

that rotation can still occur if the sway magnitudes of the two ships are equal but 

opposite in sign. The surge and sway of the T-Craft are depicted in Graph 4.8, 

where it is noted that the surge is comparable to the previous 90° case. Because 

of the extremely small values and periodic nature of the surge, it is likely that this 

motion is induced by the combination of roll and yaw (the roll can affect the surge 

motions due to the rotation of the system from the presence of yaw). The T-Craft 

sway is increased by about 1 meter from the 90° case with the other joint. The 

Sea Base still has a slightly larger sway (now ~6 meters) than the T-Craft and 

exhibits negligible surge. This difference in sway values of the two ships is what 

contributes to the yaw motions that were previously observed. The reason for this 

discrepancy is due to the size and mass differences of the two ships. Also, the 

fact that the sway values of the ships have changed compared to the previous 

joint can be attributed to the ships now being able to roll at different rates.  

Graph 4.8: Left: Surge motion of T-Craft. Right: Sway motion of T-Craft 
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The heave motions of both ships are shown below in Graph 4.9. Upon 

comparison with Graph 4.3, it obvious that these heaves are extremely similar to 

the heave motions with this same wave orientation but using the pitch-only joint.  

Graph 4.9: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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The joint now allows for both pitch and roll motions to occur between the ships 

and the ramp, as evident by Graph 4.10 below. The pitch angles are basically the 

same as before, varying between ±4° with a maximum value of 4.43° (increased 

by 0.01°). The roll angles are quite small, ranging between ±0.6° with a maximum 

value of 0.70°. The roll motions are almost completely a single sinusoid with the 

same frequency of the ocean wave but with a phase shift.  

Graph 4.10: Left: Ramp pitch angle. Right: Ramp roll angle 
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4.6 Case 3: Waves are 90° (Pitch and Roll with Springs on Roll Motions) 

 

 

 A similar scenario to that in Section 4.5 is explored here, with the waves 

approaching perpendicular to the ship-ramp-ship axis, but now with a torsional 

spring inserted for the roll motions. For simplicity, the spring constant is given the 

value of 500,000 (which is considerably less than the spring constants used for 

gravity and buoyancy). The purpose of this spring is to attenuate the roll motions 

that were observed in Graph 4.10. However, the roll motions between the ships 

and the ramps are not at all constrained, as can be observed in Graph 4.11. 

Graph 4.11: Left: Ramp pitch angle. Right: Ramp roll angle 
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While the tendency for the ships to want to roll at different rates has not been 

eliminated from this choice of spring constant, the ship-ramp roll angles have 

clearly been reduced. The presence of the spring has also introduced an 

additional high frequency component to the time evolution of the roll. Here, the 

roll angles vary between ±0.2° with a maximum value of 0.20°, which is down 

from 0.70° when no spring was used. Interestingly, the pitch motions are almost 



           

   

 

63

identical, with a maximum value of 4.43°. In fact, the heave, surge, and sway 

motions are all nearly the same as without the spring. Therefore, it can be 

concluded that introducing a spring to decrease the roll motions has little effect 

on the other motions of the ships. The little differences that do exist are most 

likely due to components of the motions that are induced from the roll of the 

ships. Since the total roll of the system and the relative roll between the ships 

and ramp are always very small for these simulations, the induced effects of roll 

on other motions are minimal. Graph 4.12 shows the heave plots of the two 

ships, whereas the sway of the Sea Base and T-Craft are plotted in Graph 4.13.   

Graph 4.12: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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Graph 4.13: Left: Sway motion of Sea Base. Right: Sway motion of T-Craft 

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5

6

7
Sea Base Center of Gravity Sway

Simulation Time [s]

Y
 P

o
s
it

io
n
 [

m
]

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5
T-Craft Center of Gravity Sway

Simulation Time [s]

Y
 P

o
s
it
io

n
 [

m
]



           

   

 

64

4.7 Case 2: Waves are 45° to Ship-Ramp-Ship Axis (Pitch and Roll) 

 

 

 Now we revert back to using the pitch and roll joint without any springs, 

and instead introduce the 45° wave orientation into the simulation. Similar to 

when the pitch-only joint was utilized for this case, there is a significant amount of 

clockwise rotation experienced by the system. This fact is depicted in Figure 4.8.  

 
Figure 4.8: View along the x-y plane showing the clockwise rotation of the system 

 

Also, as before when the waves were at a 45° angle using the pitch-only joint, all 

six ship motions are easily observed. The most significant difference is that the 

two ships are now allowed to roll at different rates due to the addition of a joint 

that allows for both pitch and roll. This fact is obvious from Figure 4.9, where the 

motions are exaggerated by using a larger wave to highlight this important fact.  

 
Figure 4.9: Left: 3-D view. Right: View along the y-z plane (all motions are exaggerated)
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It was discovered in the 90° case that when transitioning from using a pitch-only 

joint to a joint that also allows for roll, the sway of the two craft were affected. 

Whereas with that orientation the addition of the roll degree of freedom in the 

joint only altered the net sway displacements by about 1 meter each, the joint 

now has a greater influence. As evident from Graph 4.14, the net sway of the T-

Craft is only 7 meters, down from 20 meters when using the other joint (for the 

same 45° wave orientation). The Sea Base is also significantly affected, as the 

sway has decreased from 2.9 meters with the pitch-only joint to only 0.32 meters. 

However, now the magnitudes of surge are affected as well. The T-Craft surge 

has decreased by 0.83 meters while the Sea Base surge has switched directions.  

Graph 4.14: Left: Sway motion of Sea Base. Right: Sway motion of T-Craft 
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Graph 4.15: Left: Surge motion of Sea Base. Right: Surge motion of T-Craft 
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The reasons for the changes in the surge and sway motions when implementing 

this new joint can be attributed to the fact that the ships are now allowed to roll at 

different rates. This same observation was made for the 90° case, except then 

the surges were less affected as they were extremely small to begin with. It was 

also found in the 90° case that the heaves of the two ships were not considerably 

altered by the pitch-roll joint. Graph 4.16 shows that the same can be said here: 

Graph 4.16: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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Graph 4.17 includes the plots of the pitch and roll angles between the Sea Base 

and ramp. The maximum pitch is now 2.20° instead of 2.22° when using the 

pitch-only joint, whereas the new roll angle has a maximum value of 0.60°.  

Graph 4.17: Left: Ramp pitch angle. Right: Ramp roll angle 
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4.8 Case 2: Waves are 45° (Pitch and Roll with Springs on Roll Motions) 

 

 

A similar scenario to that in Section 4.7 is explored here, with the waves 

approaching at a 45° angle to the ship-ramp-ship axis, but now a torsional spring 

is inserted for the roll motions. As in Section 4.6 when the spring was used for 

the 90° case, the purpose of this spring is to attenuate the roll motions between 

the ships and the ramp. Graph 4.18 shows that the Sea Base-ramp roll angles 

now only vary between ±0.25° with a maximum of 0.31°. Without the spring, this 

maximum angle was 0.60°. It is important to note that the decrease from using 

the spring with this orientation is 0.29°, whereas the decrease from using the 

spring in the 90° case is 0.5°. Therefore, it seems that the springs are more 

efficient at decreasing the roll angles for the perpendicular orientation. 

Furthermore, as a consequence of this, the roll angle is smaller for the 90° case 

when using a spring, but without a spring the roll angle is smaller in the 45° case. 

Graph 4.18 also shows that the ship-ramp pitch angle has remained unchanged.  

Graph 4.18: Left: Ramp pitch angle. Right: Ramp roll angle 
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In Section 4.6 it was noted that the addition of the torsional spring on roll motions 

has very little influence on other motions. The same is true here, as both the 

sway plots in Graph 4.19, and the heave plots in Graph 4.20 are very similar to 

those when no spring is used. In Section 4.6 it was also postulated that the 

changes that do occur when using the spring are mostly due to the influence the 

roll has on certain aspects of the other motions. Since the roll magnitudes of the 

ships themselves as well as the roll between the joints are both very small for this 

wave orientation, the effects of the roll on other motions must also be very small.  

Graph 4.19: Left: Sway motion of Sea Base. Right: Sway motion of T-Craft 
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Graph 4.20: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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4.9 Case 3: Waves are 90° (Pitch, Roll, and Yaw with Springs on Roll and 
Yaw Motions) 

 

 

 The last joint that will be investigated is a gimbal joint that allows for all of 

the rotational degrees of freedom to occur between the ships and the ramp. 

Torsional springs are used for the roll and yaw motions, although the spring 

constant will be decreased to only 50,000 in order to better examine the effect of 

this additional degree of freedom. Figure 4.10 shows the system at two different 

times, where it is apparent that there is now a yaw angle between the ships and 

ramp. Before, when no yaw was allowed in the joint, there was a slight rotation of 

the entire system for this wave orientation. In Figure 4.10, the system still 

appears to rotate, although now the ships are allowed to rotate at different rates 

due to yaw in the joint. It is also interesting to note that the rotation of the system 

is a combination of the usual counterclockwise rotation (observed for all of the 

90° angle scenarios) and the effects of the new yaw motions from this joint.    

 
Figure 4.10: View along the x-y plane showing the yaw between the ships and ramp 

 

As would be expected, the surge and the sway are slightly different when using 

this new joint. Graph 4.21 shows the net sway displacements experienced by 
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both the Sea Base and T-Craft. The Sea Base sway has increased by about 0.2 

meters when using this joint as opposed to the joint with pitch and roll. The T-

Craft sway is affected even more, as it is only 2 meters instead of the 4.9 meters 

before. It is obvious from Figure 4.10 that a great deal of this sway is due to the 

yaw rotation rather than a translational displacement. Furthermore, it can be 

concluded that the T-Craft sway is now only 2 meters because the entire system 

wants to move in the positive y direction (as before with any of the other joints), 

but the yaw causes the T-Craft center of gravity to move in the negative y 

direction, thus resulting in a canceling effect. This same basic idea can be 

attributed to the slight increase in the Sea Base sway. The yaw angle of the Sea 

Base and ramp has an opposite sign from that of the T-Craft and ramp, meaning 

that the yaw here causes the Sea Base center of gravity to move in the positive y 

direction - the same direction of the translational movement.  

Graph 4.21: Left: Sway motion of Sea Base. Right: Sway motion of T-Craft 
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Graph 4.22 shows that the surge values have also changed when compared to 

those from the pitch-roll joint. However, the surge magnitudes are still quite 

small, and are mostly a result of motions induced from pitch, roll, and yaw.  
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Graph 4.22: Left: Surge motion of Sea Base. Right: Surge motion of T-Craft 
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Unlike the surge and sway, the heave motions shown in Graph 4.23 are relatively 

unaffected. In fact, the Sea Base and T-Craft heaves are nearly identical to the 

case when the pitch-roll joint was used. One possible reason for this is that yaw 

is a degree of freedom that acts perpendicular to the heave motions, and thus 

fails to have any considerable effect. Instead, the addition of yaw has a larger 

effect on motions along its plane of action, namely surge and sway.  

Graph 4.23: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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Along with the heave motions, the ship-ramp pitch angles are not greatly 

influenced by the addition of yaw. Graph 4.24 contains a plot of the Sea Base-

ramp pitch angle that shows the maximum value to be 4.43°. This is nearly the 

same value that was found when using the joint that allowed for pitch and roll. 
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The roll motions are different now, varying between ±0.25° with a maximum 

angle of 0.33°. This value is up from the 0.20° when using the pitch-roll joint with 

springs. The reason for the different roll motions is not due to yaw but to the 

smaller spring constant that was used in this joint. When considering the pitch-

roll joint, the spring constant was 500,000. However, here we are using a spring 

constant of 50,000, which naturally results in a larger range of roll values. The 

yaw angles of both the Sea Base with the ramp and the T-Craft with the ramp are 

provided below in Graph 4.25. It is apparent that the angles have different signs, 

a fact that was just discussed as it pertained to the changes in sway motions. 

Graph 4.24: Left: Ramp pitch angle. Right: Ramp roll angle 
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Graph 4.25: Left: Sea Base and ramp yaw angle. Right: T-Craft and ramp yaw angle 
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4.10 Case 2: Waves are 45° (Pitch, Roll, and Yaw with Springs on Roll and 
Yaw Motions) 

 

 

 Once again, the joint with all of the rotational degrees of freedom is 

allowed, but this time the waves are oriented at a 45° angle to the ship-ramp-ship 

axis. As was the case with the previous scenarios studied for this wave 

orientation, the system experiences considerable clockwise rotation shown in 

Figure 4.11. The yaw motions that are now allowed between the joints that 

connect the ships with the ramp can also be easily observed. The amount of 

rotation that is experienced by the system is affected by these yaw motions. This 

is because the yaw motions affect the surge and sway of the ships, which then in 

turn influence how much the system will appear to rotate.  

 
 

Figure 4.11: 3-Dimensional view showing the yaw between the ships and ramp 

 

In order to better quantify the impact the yaw motions have on the system, Graph 

4.26 is provided below which shows the angles between both the Sea Base and 

ramp and the T-Craft and ramp. In the previous section (waves at a 90° 

orientation) the yaw angle between the Sea Base and ramp was positive, and 
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thus resulted in an increase in the total sway experienced by that ship. The exact 

opposite case was present for the T-Craft, instead causing a decrease of the 

sway. The same can be said here, in that the yaw angle between the Sea Base 

and ramp, which reaches up to 5.2°, results in an increase of sway from 0.32 

meters (when using the pitch-roll joint) to now 0.55 meters. Likewise, the 

negative yaw ramp angle for the T-Craft decreases the sway from 7 meters with 

the pitch-roll joint to only 3.1 meters. To help illustrate these facts, the evolution 

of the sway with time for both ships is included below in Graph 4.27. 

Graph 4.26: Left: Sea Base and ramp yaw angle. Right: T-Craft and ramp yaw angle 
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Graph 4.27: Left: Sway motion of Sea Base. Right: Sway motion of T-Craft 
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The surge of the ships is also affected by the introduction of yaw in the joint; 

however, these motions are of less importance due to their already small 

magnitudes. Nevertheless, Graph 4.28 is included below to show the surge 

values of both ships, where it is apparent that once again the higher frequency 

periodic type motions are present. This behavior is due to motions induced from 

pitch, roll, and yaw. When compared to the previous pitch-roll joint, the surge of 

the Sea Base has decreased by 0.001 meters whereas the surge of the T-Craft 

has increased by 0.06 meters. A decrease in Sea Base surge and increase in T-

Craft surge was also observed in the previous section using the 90° wave 

orientation. However, it should be clarified that the absolute value of the Sea 

Base surge increased in that case due to the surge having a negative sign.  

Graph 4.28: Left: Surge motion of Sea Base. Right: Surge motion of T-Craft 
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In the previous section, it was reasoned that the new degree of freedom in the 

joint should have little influence on the heave motions. Graph 4.29 on the next 

page shows that the heave motions of the two craft are extremely similar to the 

motions when using the previous joint. This seems to further validate the 

conclusion that heave is not significantly affected by yaw in the joints.  



           

   

 

76

Graph 4.29: Left: Heave motion of Sea Base. Right: Heave motion of T-Craft 
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Graph 4.30 includes the pitch and roll angles between the Sea Base and ramp 

over the simulation time. Unsurprisingly, the pitch angle is relatively unchanged, 

with a maximum angle of 2.20°. However, the roll angles now vary between ±4° 

with a maximum value of 0.45°. This is up from 0.31° when using the previous 

pitch-roll joint. As was touched upon in the previous section, the reason for the 

different roll angles here is because of the new spring constants in the joint. The 

spring constant used on the roll motions is 50,000 instead of 500,000, a fact that 

can be attributed to the increase of roll experienced.  

Graph 4.30: Left: Ramp pitch angle. Right: Ramp roll angle 
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4.11 Summary of Results 

 

 

 Provided in the table below are the maximum values of the pitch, roll, and 

yaw angles between the Sea Base and ramp during the various scenarios that 

were just analyzed. These values are only valid within the 100 second 

simulations that were studied and may increase slightly for longer simulations.  

 
Table 4.1: Maximum angles between the Sea Base and ramp for various scenarios 

  Max Pitch Angle 
Between Sea 
Base and Ramp 
(deg °) 

Max Roll Angle 
Between Sea 
Base and Ramp 
(deg °) 

Max Yaw Angle 
Between Sea Base 
and Ramp (deg °) 

Joint: Pitch (no spring)   

Case 1 (parallel) 5.3703 0 0 

Case 2 (45°) 2.2202 0 0 

Case 3 (perpendicular) 4.4244 0 0 

Joint: Pitch, Roll (no 
spring) 

  

Case 2 (45°) 2.2024 0.6009 0 

Case 3 (perpendicular) 4.4284 0.6990 0 

Joint: Pitch, Roll (large 
spring on Roll) 

  

Case 2 (45°) 2.2024 0.3055 0 

Case 3 (perpendicular) 4.4286 0.2012 0 

Joint: Pitch, Roll, Yaw 
(small springs on Roll and 
Yaw) 

  

Case 2 (45°) 2.2006 0.4548 5.1846 

Case 3 (perpendicular) 4.4326 0.3330 3.7076 

 

 

The translational motions of the ships are listed in the next table. The trough to 

crest values of the T-Craft and Sea Base heaves are provided, as well as the net 

surge and sway displacements for each ship. It should be understood that 
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whereas the rotational values provided in the previous table were measured 

between the Sea Base and ramp, the translational values here are measured 

between the ships and a global coordinate system.  

 
Table 4.2: Translational quantities of the ships for various scenarios 

  T-Craft 
Heave (m) 

Sea 
Base 
Heave 
(m) 

Net T-
Craft 
Surge 
(m) 

Net Sea 
Base 
Surge 
(m) 

Net T-
Craft 
Sway 
(m) 

Net Sea 
Base 
Sway 
(m) 

Joint: Pitch (no 
spring) 

  

Case 1 (parallel) 2.8 3.0 -0.5 -0.5 0 0 

Case 2 (45°) 1.7 0.4 1.0 -0.022 20 2.9 

Case 3 
(perpendicular) 

0.8 2.9 0.07 -0.006 3.8 5.3 

Joint: Pitch, Roll (no 
spring) 

  

Case 2 (45°) 1.7 0.4 0.17 0.01 7 0.32 

Case 3 
(perpendicular) 

0.8 2.9 0.07 -0.006 4.8 6.0 

Joint: Pitch, Roll 
(large spring on Roll) 

  

Case 2 (45°) 1.7 0.4 0.16 0.01 7 0.32 

Case 3 
(perpendicular) 

0.8 2.9 0.07 -0.006 4.9 6.0 

Joint: Pitch, Roll, Yaw 
(small springs on Roll 
and Yaw) 

  

Case 2 (45°) 1.7 0.4 0.22 0.009 3.1 0.55 

Case 3 
(perpendicular) 

0.8 3.0 0.2 -0.012 2.0 6.2 
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CHAPTER 5:  CONSEQUENCES OF RAMP LENGTH AND WAVE 
ORIENTATION 

 
 

5.1 Motivation for Studying a Variable Ramp Length 

 

 

The simulations performed in the previous chapter assumed a constant 

ramp length of 25 meters. With this constant length, various relationships were 

observed using the different joints and wave orientations. Of particular interest 

were the angles (pitch, roll, and yaw) that form between the ramp and ships, as 

they are quantities that are undesirable for cargo transfer and need to eventually 

be minimized. Chapter 4 briefly touched upon some consequences that the wave 

orientation has on these angles, such that aligning the waves parallel to the ship-

ramp-ship axis generally results in the largest pitch angle. However, these 

findings do not provide us with enough information for a method of minimizing the 

angles. As a result, the scope of wave orientations must be increased beyond the 

three cases studied in the previous chapter. In addition, a variable ramp length 

should also be taken into consideration as it also affects the angles of interest. 

Even neglecting the dynamics of the system, it is clear from geometry that a 

longer ramp length will generally decrease the pitch angle. This is illustrated in 

Figure 5.1 which shows that the length of the arc is given by s = Lθ.  

 
Figure 5.1: Geometry showing that with constant arc length s, increasing L decreases θ
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Now consider L to represent the length of the ramp whereas s represents the 

heave of one of the ships. Although the heave acts along a straight line and not a 

curve, for small angles the arc in Figure 5.1 can be approximated by a straight 

line. Realizing that the heave of the ship is for the most part independent of the 

ramp length (it depends on the wave conditions), and thus fixing s to be a 

constant, it is apparent that for longer ramp lengths the angle θ decreases 

accordingly. Therefore, from a purely geometric standpoint, a longer ramp length 

will decrease the pitch angles. Unfortunately, this increase in length fails to 

decrease the roll and yaw angles as they act along different planes. The next few 

pages will present various graphs to show that the roll angle is constant over a 

wide range of ramp lengths. This is because the roll is dependent on ramp width 

(since roll acts along the transverse direction), a quantity that will not be varied.  

 Before considering a continuous range of wave orientations, some 

important relationships can first be observed by examining the ship-ramp angles 

for a fixed ship heading and a large number of ramp lengths as in Graph 5.1. 

Graph 5.1: Sea Base-ramp angles vs. ramp length for pitch-only joint 
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Graph 5.1 shows the maximum pitch angle between the Sea Base and ramp for 

increasing ramp lengths. The three basic cases of wave orientations represent 

each line, and the pitch-only joint is used. From this graph, it is evident that the 

pitch angles do indeed generally decrease for longer ramp lengths. However, it is 

also apparent that for the parallel case (blue line) there are certain regions in 

which there are temporary increases in the angles with ramp length. This is 

because the geometric approach previously described does not account for 

everything. In particular, recall that the ratio between the length of a ship and the 

wavelength of the ocean wave also characterizes the heave and pitch motions of 

that ship. If the length of a ship is nearly divisible by the wavelength then the ship 

will tend to heave up and down without much tilting. This tilting then in turn 

obviously has an effect on the pitch angle between the ship and ramp. From 

Graph 5.1 it can be concluded that with ramp lengths of about 45, 83, and 120 

meters there are peaks of local maxima in which the pitch angle has actually 

increased. These ramp lengths are all about 1/6 greater than being perfectly 

divisible by the ocean wave wavelength of 38.1 meters. In addition, since the 

waves approach from the T-Craft side, and because that ship has a length of 40 

meters, the T-Craft will move up and down without much tilting. Apparently, it is 

then the case that the largest angles between the Sea Base and ramp are 

formed for this particular situation. It is obvious from the graph that the largest 

pitch angles are generally experienced when the waves are parallel to the ship-

ramp-ship axis (blue curve), and the smallest angles occur when the waves are 

at an intermediate angle (green curve).  
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 It was already discussed that the roll angle between the ships and ramp 

should be relatively constant over a wide range of ramp lengths. Graph 5.2 

depicts both the pitch and roll angles vs. ramp lengths for the pitch-roll joint. 

Once again, the three wave orientations from Chapter 4 are provided, and 

separate curves designate each angle (roll or pitch) and case that is considered. 

It is clear from the graph that this new joint has little effect on the pitch angles- a 

conclusion that was also reached in the previous chapter. In fact, for Case 1 the 

pitch angle is identical to that when using the pitch-only joint. This is a 

consequence of the absence of roll motions for the parallel wave orientation. The 

magenta and cyan lines show that the roll angles are indeed fairly constant over 

the range of ramp lengths. The yellow line represents the roll angles for Case 1, 

which is always zero as there is never any roll in this situation (the fact that there 

is no roll for parallel waves, but there is pitch for perpendicular waves is due to 

alignment of the ramp and symmetry about the x axis instead of the y axis). 

Graph 5.2: Sea Base-ramp angles vs. ramp length for pitch-roll joint 
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 It was found in Chapter 4 that adding a torsional spring to decrease the 

roll motions between the ships and ramp has little impact on other motions and 
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quantities, such as the pitch angles. Graph 5.3 shows the pitch and roll angle 

correlation with ramp length when using the pitch-roll joint with a spring inserted 

for the roll motions. Although the roll angles have been generally diminished, the 

pitch angles remain unaffected by this change.  

Graph 5.3: Sea Base-ramp angles vs. ramp length for pitch-roll joint with a spring for roll 
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 The last joint that was explored allowed for all of the rotational degrees of 

freedom to occur between the ships and ramp: pitch, roll, and yaw. These angles 

as functions of ramp length are provided below in Graph 5.4 where it is apparent 

that the yaw angles are also relatively independent of ramp length.  

Graph 5.4: Angles vs. ramp length for pitch-roll-yaw joint with springs for roll and yaw 
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 The one shortcoming of the previous graphs is that they use a scalar 

quantity (maximum angle generated during a simulation) to describe what is 

essentially a vector. The pitch, roll, and yaw angles are functions of time, and in 

the case of the pitch and roll, are fairly periodic in time (the yaw is not periodic, 

and its time history is more complicated to describe). It is beneficial to instead 

express the angles as functions of both simulation time and ramp length, thus 

creating a three-dimensional surface plot. These plots must assume a constant 

wave orientation, and the only scenarios considered here are when the waves 

are approaching parallel to the ship-ramp-ship axis with the pitch-only joint. The 

angles between the ramp and T-Craft (left pitch angles) and the ramp and Sea 

Base (right pitch angles) are both provided in Graphs 5.5 and 5.6.  

Graph 5.5: Pitch angle vs. ramp length and time (waves approaching T-Craft first) 
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The angles have been squared to better highlight the decreasing nature with 

respect to ramp length and to prevent negative values. This can also explain why 

the pitch angle evolution vs. time does not look like the pitch angle plots in 

Chapter 4. As would be expected, with greater ramp lengths the mean amplitude 

of the pitch angle oscillations does decrease. It should be acknowledged that 

here we are only using ramp lengths up to 40 meters, and for greater lengths the 

slight pitch angle increases observed in Graph 5.1 do exist. Lastly, it should be 

noted that the pitch angles are slightly different when the waves approach the 

Sea Base side first due to the differences in size and mass of the two ships. 

These results are provided below, where φ = -π/2 is the angle for the waves 

parallel to the ship-ramp-ship axis but approaching the Sea Base side first.  

Graph 5.6: Pitch angle vs. ramp length and time (waves approaching Sea Base first) 
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5.2 Dependence of Angles on Wave Orientation and Ramp Length 

 

 

Now that some basic relationships have been established between the 

ship-ramp angles and ramp lengths, the dependence on the wave orientation can 

also be included for φ = 90° (Case 1), to φ = 0° (Case 3), up to φ = -90° (similar 

to Case 1 but approaching the Sea Base side). Variable ramp lengths will still be 

considered, and the surface plots will be generated with the angles as functions 

of wave direction and ramp length. Since the ship-ramp-ship system is symmetric 

along the widths, it is only necessary to consider wavefront angles from 90° to     

-90°. Figures 5.2 and 5.3 below illustrate the range of these wave orientations. 

The situation when φ varies from 0° to -90° is slightly different than when it varies 

from 90° to 0°, so new phase formulas must be derived. The derivations of these 

formulas are omitted in this report as they follow the same basic trigonometric 

ideas used in Chapter 2. A complete list of the phase formulas for angles 

between φ = 90° and φ = -90° is provided in the appendix.  

 
Figure 5.2: Illustration of the angle φ varying from 90° to -90°
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Figure 5.3: Wavefront approaching the ship-ramp-ship axis at an arbitrary angle from the Sea 

Base side first 

 

In the following sections, the maximum ship-ramp pitch and roll angles will 

be provided as functions of wave orientations from φ = -90° to 90° and ramp 

lengths from 5 to 40 meters. This will result in surface plots where the ramp 

length will form one axis, φ another axis, and the ship-ramp angle the vertical 

axis. It should be acknowledged that the ramp angles here are back to being 

defined as the maximum angle encountered during the simulation time. 

Furthermore, for simplicity, only the angles subtended by the ramp and Sea Base 

will be considered. Instead of examining all of the possibilities, the pitch-only and 

pitch-roll joints will be the only joints studied. The pitch-roll joint with a spring on 

roll motions and the pitch-roll-yaw joint will be omitted as they generally have the 

same behavior as the pitch-roll joint. Recall that when using a spring, the only 

quantity that changed was the roll angle, which would decrease according to the 

size of the spring constant. Furthermore, the introduction of yaw, while having an 

impact on the sway and surge of the ships, does not appreciably change the 

pitch or roll angles. The plots all use a 30×30 grid, meaning 900 data points.  
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5.2.1 Analysis of Pitch-Only Joint 

 

 

The maximum pitch angle as a function of ramp length and wave 

orientation for the pitch-only joint is provided in Graph 5.7. It is apparent that the 

pitch angle decreases nearly monotonically with respect to the ramp length. 

However, the rate of decrease is contingent on the wave orientation. For 

example, at φ = 27.93° the pitch angle only decreases from 2.40° to 0.28° 

whereas when φ = -83.70° the angle decreases from 37.2° to 3.45°. The greatest 

decreases are seen when the waves are aligned parallel to the ship-ramp-ship 

axis. Although it is difficult to detect, there are minor increases in pitch angles 

around the ramp length of 40 meters. As previously mentioned, this increase can 

be attributed to the ratio of the ship/ramp lengths vs. the ocean wave wavelength. 

Graph 5.7: Maximum pitch angle vs. ramp length and wave orientation 
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The relationship between the pitch angle and wave orientation is more 

complex as there are many local peaks and valleys. However, on average the 

largest pitch angles form when the waves are parallel (φ = 90°) and the smallest 

angles are found when φ = ± 28° (which means 62° removed from the parallel 

cases). This is consistent with the result found in Chapter 4 that the pitch angles 

are not minimized when the waves approach perpendicular to the ship-ramp-ship 

axis (φ = 0°). It is also worth mentioning that while the largest angles are found 

for the parallel orientations, this is also when the decrease with respect to 

increasing ramp lengths is the greatest. Likewise, although the smallest angles 

are found when φ = ± 28°, the rate of decrease is smaller compared to the other 

wave directions. Graph 5.8 portrays the relationship of the maximum pitch angle 

and wave orientation from a two-dimensional perspective.  

Graph 5.8: Maximum pitch angle vs. wave orientation 
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5.2.2 Analysis of Pitch-Roll Joint 

 

 

 The additional degree of freedom in roll that is allowed by the pitch-roll 

joint is important in that it is also an undesirable quantity that needs to be 

minimized. As such, it is now necessary to show both the maximum pitch and roll 

angles as functions of ramp length and wave orientation.  First consider Graph 

5.9 which contains information on the maximum pitch angle for this new joint.  

Graph 5.9: Maximum pitch angle vs. ramp length and wave orientation 

 

This plot is almost exactly the same as Graph 5.7 which represented the pitch-

only joint in the previous section. In fact, for φ = 90° and -90° the plots should be 

identical as no roll ever occurs for these scenarios (even though the joint allows 

for roll). At other locations, the differences that do occur are usually on the order 

of 0.01°, and as a result cannot be visibly distinguished in the surface plots.
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 The dependence of the maximum roll angles on the ramp length and wave 

incidence angle is provided in Graph 5.10. It is immediately obvious that except 

for some anomalous results for the smaller ramp lengths, the roll angle is 

basically independent of the ramp length. The uncharacteristic peaks that are 

observed for the smaller ramp lengths occur at L = 6.21 meters and φ = -77.59° 

as well as L = 5 meters and φ = 71.38°. It can only be guessed as to why these 

peaks occur, but perhaps all the conditions: ramp length, wave orientation, ship 

length, and ocean wave wavelength somehow create a unique situation that is 

very favorable to a large roll angle.  

Graph 5.10: Maximum roll angle vs. ramp length and wave orientation 

 

 Graph 5.11 on the next page shows a “zoomed” in visualization of Graph 

5.10 for ramp lengths greater than 10 meters. It is apparent from this surface plot 

that the roll angles do indeed drop off to zero when the waves are parallel to the 

ship-ramp-ship axis (φ = 90°). It is also clear that the roll angles are largely 
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independent of ramp length. More surprising is the overall lack of a strong 

dependence on wave orientation as well. Although the plot is very active along 

the φ axis, with many local peaks and valleys, it lacks the almost convex 

behavior that the pitch angles demonstrated in Graph 5.8 for wave orientations 

from φ = [90°, 0°] and φ = [0°, -90°]. This will make the roll angle a very difficult 

quantity to deal with when considering optimization. Nevertheless, a few 

conclusions can still be made. First, the parallel orientation clearly minimizes the 

roll angle whereas values of φ around ±70° with ramp lengths less than 10 

meters maximize the angle. Also, wave orientations around 34° result in the 

largest roll angles when considering all ramp lengths. The value of φ = 28° that 

minimized the pitch angle is a very good wave orientation here as it lies in a 

valley. Lastly, although the roll angle is basically constant over ramp length, 

either a ramp longer than 10 meters should be used, or the ships should stay 

away from the φ = ±70° regions in order to avoid the peaks that are present.  

Graph 5.11: Considering only ramp lengths greater than 10 meters 
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 It is constructive to include a single surface plot which incorporates both 

the pitch and roll angles. Therefore, a composite cost function which is a linear 

combination of the roll and pitch angles can be used:  

( ) ( ) ( )
ramprampramp LRLPLJ ,,, maxmax ϕβϕαϕ +=         (5.1) 

where Pmax and Rmax are the maximum pitch and roll angles respectively, and α 

and β are weighting constants. These constants determine which angle should 

be emphasized more in the composite cost function. A greater emphasis on a 

certain angle means that this angle is considered to be more important and 

potentially more dangerous for cargo transfer. For example, minimization of a 

cost function with the ship-ramp pitch angle weighted more means that the 

optimal ramp length and ship orientation will be more dependent on the pitch 

angle than the roll angle. In Graph 5.12, equal weighting is given to both angles.  

Graph 5.12: Composite cost function vs. ramp length and wave orientation 
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Since the roll angles are small compared to the pitch angles for the simulation 

parameters used in this report, the composite cost in the graph above more 

readily resembles the pitch angle surface plot. However, instead setting α = 1 

and β = 10 in Equation (5.1) increases the emphasis on the roll angles and 

generates the plot shown in Graph 5.13. One interesting outcome of this is that 

for longer ramp lengths, the composite cost function fails to decay anymore. This 

is because in those regions the roll angles are now larger than the pitch angles 

(the pitch angles continue to decrease with ramp length yet the roll angles remain 

constant). Since the roll angles are independent of ramp length, the composite 

cost function reaches a constant state and fails to decrease anymore.   

Graph 5.13: Composite cost function vs. ramp length and wave orientation with additional 
weighting on roll 
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CHAPTER 6:  OPTIMIZATION RESULTS 

 
 

6.1 Optimization of Ramp Length 

 
 

By now it is clear that generally (with the exception of a few local maxima) 

the pitch angles between the ships and ramp decrease with the length of the 

ramp. This information alone would lead one to believe that choosing an infinitely 

long ramp may be the best method of minimizing the angles. However, except for 

small lengths, increasing the ramp length has little effect on the roll and yaw 

angles, and thus seems to result in a wasted effort. Combining this observation 

with the fact that an extensive ramp would introduce a prohibitive weight leads to 

the conclusion that a very long ramp is actually not desirable.  

Given that an infinitely long ramp is not a reasonable option for minimizing 

the ship-ramp angles, the following discussion can instead be used to motivate a 

method of finding an optimal length. It was previously found that the pitch angle 

vs. ramp length plot does not decrease monotonically for the parallel wave 

orientation. This can be observed in Graph 5.1, where the regions around 35, 70, 

and 110 meters form areas of local minima. These regions are locally convex, 

and the minima represent the smallest pitch angles in a certain neighborhood. 

Unfortunately, the fact that there exist many local minima raises the question as 

to which one to choose. However, of the three primary cases, these areas of 

local convexity exist only for the scenario when the waves are parallel to the 

ship-ramp-ship axis. For the other wave orientations the pitch angle and ramp 
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length relationship is indeed represented by a monotonic decrease. Instead, it 

would be advantageous to force the pitch angle plots to be globally convex for all 

wave orientations. This can be accomplished by utilizing a penalty function 

(which may be linear, exponential, etc) that increases monotonically with longer 

ramp lengths and is added to the curve that represents pitch angle vs. ramp 

length. Such an increasing function can be defended as it takes into account both 

the prohibitive weight and wasted effort with respect to the yaw and roll angles 

when using longer ramps. By adding the penalty function to the pitch angle 

curve, the resulting curve is nearly globally convex, and contains a clear 

minimum value. The ramp length that corresponds to this minimum value is then 

deemed the optimal ramp length for minimizing the pitch angles. It should be 

noted that it is unnecessary to add this penalty to the roll or yaw plots as they are 

fairly constant with ramp length, and would not become convex. Instead, the 

penalty is only added to the pitch angle plots as in Graph 6.1 (for clarity and 

simplicity only the parallel wave case with the pitch-only joint is presented below). 

Graph 6.1: Optimal value of ramp length for minimizing the pitch angle with a linear penalty 
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When considering the linear penalty function provided in Graph 6.1, it is 

apparent that the optimal ramp length for the parallel wave orientation is about 15 

meters. By simply increasing the penalty function’s slope, this optimal ramp 

length can be pushed back. A penalty with a greater slope is a function that 

further emphasizes the need for a shorter ramp. The quadratic curve in Graph 

6.2 places less of an importance on achieving smaller lengths, but penalizes the 

longer lengths even more due to the continuously increasing slope. As a result, 

the optimal value is now 30 meters as opposed to 15 meters. It is important to 

note that the convex curves are simply tools used to determine the optimal ramp 

length in the pitch angle plots. Although they can find the best ramp length, the 

corresponding minimum angle is always larger than the actual minimum angle 

due to the addition of a positive function. Also, the penalty functions are user-

defined and can be used to arrive at any desired “optimal value”. As such, these 

functions should be chosen carefully by considering the physical constraints of 

increased ramp lengths and then approximating these “trade-offs” with a curve.  

Graph 6.2: Optimal value of ramp length for minimizing the pitch angle with a quadratic penalty 
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6.2 Optimization of Ramp Length and Ship Heading 

 
 

The results of the previous section were provided for the scenario when 

the waves are aligned parallel to the ship-ramp-ship axis. Linear and quadratic 

penalties were used, and with the quadratic penalty the optimal ramp length that 

minimized the pitch angle was found to be 30 meters. Unfortunately, this method 

failed to take into account all of the possible wave directions, and was instead 

demonstrated for a single case. In this section, a method is introduced which 

considers the wave orientations as well. As such, the optimal values of both the 

ramp length and ship heading can be determined. 

Extending the procedure to optimize over two parameters entails taking 

the pitch angle surface plot in Graph 5.7 and adding a penalty function that now 

depends on both ramp length and wave angle. However, in this report the 

penalty function is allowed to be invariant in the φ direction as there is not 

enough evidence to permit the penalization of some wave orientations. In fact, 

the only possibility for penalizing certain wave directions would be if the roll angle 

vs. wave orientation relationship was fairly smooth and convex, and contained 

particular regions that were obviously desirable. Instead, it was previously noted 

that the roll angles are erratic functions of wave orientation and are difficult to 

deal with for optimization purposes. As a result, the correlation between the roll 

angle and wave incidence angle cannot be used as a basis for a penalty function. 

Since the penalty functions are invariant with wave orientation, they are basically 

identical to those in the previous section except that they are extended along the 



           

   

 

99

φ direction. Graph 6.3 shows the pitch angle vs. ramp length and wave 

orientation plot for the pitch-only joint with a quadratic penalty function given by 

( ) 2
003.0, rampramp LLP =ϕ            (6.1) 

In Graph 6.3 the penalty function is represented by a clear mesh grid, the old 

pitch angle plot by a smooth shaded surface, and the resulting convex plot by a 

shaded surface with grids. Here, the term convex refers to convexity along the 

ramp length, as there is never global convexity along the wave orientations 

(although they can be roughly approximated as locally convex from [90° 0°] and 

[0° -90°]). The pitch-only joint is the only joint considered for optimization as the 

pitch angle surface plots are all quite similar for each joint (see Chapter 5).  

Graph 6.3: Cost function formed by adding a quadratic penalty function to the pitch angle vs. 
ramp length and wave orientation surface plot 
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Finding the optimal ramp length and wave orientation from the above 

graph is a more complex matter than before due to the extra parameter, φ that is 

being optimized over. In addition, the particular ramp length that minimizes the 

pitch angle is different for each wave orientation. For example, at φ = 27.93°, the 

minimum pitch angle occurs when the ramp length is 13 meters, whereas at φ = 

90°, the minimum angle is reached for a ramp length of 31.5 meters. Graph 6.4 

below shows the convexity along the ramp length of the curves that are 

generated when adding the penalty function (separate faint blue line). Each non-

vertical line in the shaded region represents the relationship of the pitch angle 

and ramp length for a given wave orientation. It is then obvious from the graph 

that the minimum values of the various curves occur at different ramp lengths. 

Graph 6.4: Cost function formed by adding a quadratic penalty function viewed from a two-
dimensional perspective 

 
 An interesting consequence of the penalty function being invariant with 

respect to the φ direction is that the pitch angle and wave orientation relationship 

remains the same as it was before incorporating the penalty. This means that the 
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wave orientation of φ = ±28° that was found in Chapter 5 to minimize the pitch 

angle is still the best direction, even after adding the penalty function. From the 

surface plots, the optimal ramp length for this particular wave orientation occurs 

at a value of 13 meters. Therefore, the global minimum of the surface plots after 

adding a quadratic penalty function occurs at a ramp length of 13 meters and a 

wave orientation of φ = ±28°. Although the optimal wave direction (which can 

conversely be thought of as the desired ship heading) is not up for the user to 

decide, the optimal ramp length is still contingent on the type of penalty used.  

 The findings in this chapter as well as Chapter 5 can be used by the ship 

operators of the Sea Base and T-Craft to change the ship heading as well as 

adjust the ramp length (assuming that the ramp is retractable and capable of 

length adjustment) in order to minimize the angles between the ramp and the 

ships. The roll angles, although independent of ramp length, can be reduced by 

rotating the ship-ramp-ship system such that the waves are 62° removed from 

the parallel cases (this means that φ = ±28°). Fortunately, it has been found that 

this wave orientation is also optimal when considering the pitch angles. However, 

the choice of the best ramp length depends on a user-defined function that 

penalizes longer ramp lengths as they introduce a prohibitive weight and fail to 

decrease roll or yaw angles. It can be concluded that selecting a quadratic 

penalty given by Equation (6.1) results in an optimal ramp length of 13 meters 

when φ = ±28°. If the ship operates at a different wave orientation for whatever 

reason, Graphs 6.3 and 6.4 can then be used to find the corresponding optimal 

ramp length that reduces the pitch angles.  
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CHAPTER 7:  EXREMUM SEEKING 

 
 

7.1 Introduction to Extremum Seeking 

 
 

A major limitation of using surface plots that depict the ship-ramp angles 

as functions of ramp length and ship heading for optimization is that the ship 

operators would have to obtain large look-up tables which contain the data from 

these plots. Furthermore, the validity of these plots rests upon many assumptions 

and simplifications regarding the wave and ship modeling which are necessary 

for implementation into the computer program. The actual dynamics of the 

interconnected system out at sea are obviously not fully captured by the spring-

mass-damper mathematical construction that has been provided. As such, 

instead of using results from the surface plots, it would be advantageous to 

employ a real-time optimization method which would actively update the ramp 

length and ship heading in order to reduce the ship-ramp angles. This would 

allow the system to operate at the global minimum of the angles (specifically, the 

global minimum of the pitch while reducing roll as much as possible) without 

referring to graphs or tables. One possibility that will be briefly explored here is to 

incorporate the method of extremum seeking. This method was a popular tool in 

controls as early as the 1940’s. However, it has been recent advances that have 

led to a well-defined theory discussed in the text of Ariyur and Krstic [1].  

Extremum seeking is a method of adaptive control that has the objective 

of selecting an operating set point that keeps the output at an extremum 
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(maximum or minimum) value. Typically, adaptive control methods are model 

based and deal with the stabilization of a known set point or reference. However, 

extremum seeking can be distinguished from such methods in that it is not model 

based and works even with an uncertainty in the set point which extremizes the 

output. These characteristics of extremum seeking are precisely catered to the 

problem at hand since a rigorous mathematical model of the system has not 

been developed. Furthermore, even though the input-to-output map is unknown 

(assuming we cannot use the surface plots of the previous chapters), extremum 

seeking can still be applied to find the optimal ramp length and ship heading that 

reaches the unknown extremum. In this application, the extremum will be the 

minimum value of the ship-ramp pitch angles (using measurements from either 

the pitch displacement, velocity, acceleration, or some combination).   

Extremum seeking applies the method of sinusoidal perturbations fed into 

the plant in an effort to extract the gradient information of the input-to-output 

map. The particular schemes discussed in [1] permit fast adaptation and achieve 

convergence to the optimal value on a time scale similar to that of the plant 

dynamics. Figure 7.1 shows a simple version of the extremum seeking scheme.  

 
Figure 7.1: Extremum seeking static map. Figure is taken from K.B. Ariyur and M. Krstic in [1] 
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The purpose of the algorithm represented in the above block diagram is to 

operate at an unknown parameter, θ* which corresponds to an unknown output 

extremum, f*. Any function that is continuously differentiable with a continuous 

second derivative (C2 function) can be approximated locally by the expansion: 

( ) ( )2**

2

''
θθθ −+=

f
ff            (7.1) 

From Equation (7.1) it is clear that for the output to reach the extremum value of 

f*, the term θ - θ* must be minimized (i.e. our input must track to the optimal 

value). As with the case of most tracking problems, this can be viewed as 

meeting a stabilization objective in which the estimation error θθθ ˆ~ * −=  must be 

stabilized to a neighborhood around the origin.  

Unfortunately, the algorithm in Figure 7.1 fails to take into account the 

multiparameter nature of the problem that arises from the need to optimize over 

both ramp length and ship heading. In addition, the plant dynamics of the ship-

ramp-ship system need to be accounted for. Accordingly, a generalized version 

of the extremum seeking scheme as provided below in Figure 7.2 is necessary.  

 
Figure 7.2: Extremum seeking for a plant with dynamics, time varying input and output: θ* and f*, 

and multiple parameters: p=1, 2,…, n. Figure is taken from K.B. Ariyur and M. Krstic in [1] 
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In the above block diagram, sin(ωpt + βp - θp) is referred to as the demodulation 

signal whereas apsin(ωpt + βp) is the perturbation signal. The input and output 

dynamics are provided by the terms Fi(s) and Fo(s). The optimal inputs θ*(t), and 

output f*(t), are allowed to be time varying and are represented in the frequency 

domain by λθpΓθp(s) and λfΓf(s) respectively. However, the system in this report 

does not have time varying optimal inputs or outputs. Thus, θ*(t) and f*(t) can be 

considered to be step functions: λθp/s and λf/s, where λθp and λf represent the 

unknown desired values. The washout (high pass) filter is designated by the 

block that contains Cop(s)/Γf(s). The compensators, Cop(s) must be chosen such 

that the necessary stability conditions and convergence rates of the algorithm are 

satisfied. It is also known that the compensators, Cip(s) in the block containing     

-Cip(s)Γθp(s) should also be chosen to satisfy the stability conditions and desired 

convergence rates. The stability conditions and compensator design guidelines 

are not provided here, and can instead be found in a text on extremum seeking. 

Cip(s) and Cop(s) are often chosen such that the following expressions hold:  

pf

op

hs

s

s

sC

+
=

Γ )(

)(
            (7.2) 

s

k
ssC

p

pip =Γ )()( θ             (7.3) 

where hp determines the cutoff frequency and kp is an adaption gain.  

When finding a minimum of the pitch angle, it has already been 

determined that the parameters to be varied are ramp length and ship heading. 

This means that a multiparameter extremum seeking scheme with p = 1, 2 must 

be used. The output is a quantity that characterizes the pitch angle evolution with 
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time between one of the ships and the ramp. As previously mentioned, possible 

choices include the pitch angle’s displacement, velocity, or acceleration. For 

clarity, it should be noted that only the pitch angle is being optimized over. This is 

because the roll is constant with respect to ramp length and difficult to optimize 

over wave orientation. Furthermore, yaw is fairly unimportant in that it does not 

hinder cargo transfer. However, the algorithm is quite general, and a combination 

of all three (or two) angles can be used if desired. The extremum seeking loop 

tailored to work so far for the ship-ramp-ship system is given in Figure 7.3. Here 

it is assumed that there is no measurement noise and the same washout filter, 

adaption gain, and frequencies are used: h1 = h2, and k1 = k2, and ω1 = ω2. 

 
Figure 7.3: Possible extremum seeking loop for ship-ramp-ship system 

 

A more in-depth discussion of how the above extremum seeking loop could be 

possibly modified and then applied to the ship-ramp-ship system will be provided 

in Section 7.3. However, before discussing the application of such a scheme, the 

algorithm is first tested in the next section on a simple multiparameter static map. 
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7.2 Multiparameter Extremum Seeking Example 

 

 

The purpose of the example in this section is to illustrate the extremum 

seeking algorithm on a simple three-dimensional convex map with a well-defined 

global minimum. Graph 7.1 shows that the static map considered consists of two 

input parameters, x and y, and an output, z. The input-to-output map is given as: 

22
)3()2(5),( −+−+= xyyxz           (7.4) 

It is clear from Equation (7.4) that the extremum (minimum) of the map at z = 5 

occurs when the parameters y and x are equal to 2 and 3 respectively. This fact 

can also be clearly observed from the surface plot below. 

Graph 7.1: Example of a two-parameter convex function for extremum seeking 

 
 

Since the map is smooth and convex everywhere, there are no local minima. 

Therefore, the method of extremum seeking can be used in order to get a 

measure of the gradient information of this map and then drive the parameters to 
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operate at the desired extremum. Figure 7.4 shows the Simulink multiparameter 

extremum seeking block diagram that is implemented. This diagram is similar to 

Figure 7.3 except that a static map is used instead of a dynamical system. An x-y 

plot depicting the trajectory of the parameters is included below in Graph 7.2. 

 
Figure 7.4: Simulink multiparameter extremum seeking block diagram 

 
Graph 7.2: Trajectory of input parameters during extremum seeking 
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Starting with an initial state at the origin, the trajectory of the system eventually 

approaches the extremum location. The only irregularity is the initial transient 

period in which there are large fluctuations in the parameters, and the trajectory 

starts off in the wrong direction. The adaption gain can be decreased to minimize 

this transient at the expense of convergence rate. Fortunately, this initial transient 

is of an extremely small time scale and cannot be detected in the plots below. 

Graph 7.3 shows that the input parameters reach the optimal values whereas 

Graph 7.4 proves that convergence to the extremum of the map is obtained.  

Graph 7.3: Evolution of input parameters for multiparameter extremum seeking example 
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Graph 7.4: Evolution of output. Since the map is static, the large simulation times required for 

convergence are simply a result of using perturbations of relatively low frequencies.   
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7.3 Applicability of Extremum Seeking to Ship-Ramp-Ship System 

 

 

It was briefly discussed in Section 7.1 how a general multiparameter 

extremum seeking scheme with plant dynamics could be tailored to work for the 

interconnected ship-ramp-ship system at hand. Figure 7.3 contained a possible 

version of the algorithm for two input parameters: ship heading and ramp length, 

and a single output: pitch angle (can be from displacement, velocity, or 

acceleration measurements). The purpose of this section is to further investigate 

possible modifications that would be necessary in order to utilize a real-time 

extremum seeking loop for the system while out at sea. Due to ongoing research 

that is being done in this area, no results will be provided. However, a possible 

candidate for an extremum seeking scheme will be presented. 

The optimization results of Chapter 6 relied on a penalty function which 

was used to create a global minimum (in the ramp length direction) for the pitch 

angle surface plots. This penalty was a monotonically increasing function that 

physically represented the probative weight and wasted effort with respect to the 

roll and yaw angles when using long ramps. Based on this information, the output 

of the extremum seeking loop should actually be the addition of the pitch angle 

with a user-defined penalty. Unfortunately, the resulting cost function, while fairly 

smooth and convex with a global minimum in the ramp length direction, is full of 

local minima and maxima in the wave orientation direction. The existence of a 

“spiky” cost function when using extremum seeking has been previously 

investigated by E. Schuster et al. on Beam matching adaptive control via 
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extremum seeking [5]. In the paper it is discussed that local minima can be dealt 

with by varying the amplitude of the sinusoidal excitation according to the value 

of the cost function. The amplitude of the probing signal would be reduced as the 

value of the cost function decreases, thus allowing the algorithm to continuously 

seek a lower value of the cost function. Future research will have to be 

conducted to see whether such an approach would be applicable here as well.   

In order for the terms asin(ωt) and acos(ωt) to be physically implemented, 

it would be necessary to introduce periodic perturbations to the ramp length and 

ship heading. This is a task that is not well suited for the given system due to the 

relatively large sizes and masses of the two ships. It would entail using the more 

mobile of the two ships, the T-Craft, to rapidly move back and forth in both the 

longitudinal direction (ramp length perturbations) and transverse direction (ship 

heading perturbations). These are unrealistic requirements and would involve a 

prohibitive amount of effort. Fortunately, it is suggested here that the signals 

apsin(ωpt + βp) are not even necessary. This is because there are perturbations 

due to the ocean waves that are already inherent to the system. Thus, no active 

actuation should be required to extract the gradient information, as the ocean 

waves may be sufficient (although the low wave frequency is a constraint).  

  The demodulation signals in the extremum seeking algorithm are also 

problematic in that no open-loop external sine wave signals are available. To 

solve this issue one could construct an actuator that outputs sine waves. 

However, it would be more desirable to use a signal that is readily available and 

internal to the system. In Chapter 2 it was discussed that ocean waves are often 
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composed of multiple sinusoids with a range of frequencies and one dominant 

frequency, ω0. As such, ocean waves can appear to be sine waves of frequency 

ω0 with additional low and high frequency components. The simulation results of 

Chapter 4 showed that quantities such as the pitch and roll angles and heaves of 

the ships also have a somewhat sinusoidal nature. More precisely, it was found 

that the dominant frequency of these quantities coincided with the dominant 

frequency of the exciting wave force. It will be up to future research efforts to 

determine whether a general signal that is not exactly periodic, but can be 

approximated as so, may be used as the demodulation signal. Little attention has 

been devoted to this possibility, and considerable theoretical work would have to 

first be developed before attempting to introduce such a signal. 

 Based on the previous discussion, a candidate for an extremum seeking 

scheme is provided in Figure 7.5. Ongoing research will ultimately determine 

whether or not such a loop will work, how realistic its physical application would 

be, and the acceptability of the resulting performance and convergence. 

 
Figure 7.5: Modified extremum seeking loop for ship-ramp-ship system
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CHAPTER 8:  CONCLUSION 

 

 

The wave-induced motion of an interconnected ship-ramp-ship system 

has been simulated using the computer programs of SimMechanics, Simulink, 

and MATLAB. Due to the overwhelming complexity of the system, it was 

necessary to utilize a simplified model based on a spring-mass-damper concept 

that approximated the forces of gravity and buoyancy. Furthermore, the ocean 

waves were modeled as sine waves with additive noise, and the incoming 

wavefront was emulated by applying phase formulas derived from simple 

trigonometry. Simulation results revealed that the dominant frequency of ship 

motions such as heave and pitch (between the ships and ramp) was equal to the 

exciting wave frequency. Various joints that enabled different motions between 

the ships and ramp were then explored, where it was realized that the reduction 

of such motions is important with regard to cargo transfer between the two ships. 

Optimization over both ramp length and ship heading showed that for greater 

ramp lengths and wave angles of about 62° from the ship-ramp-ship axis, the 

pitch angles between the ships and ramp were minimized. An increasing penalty 

function was then created to account for the prohibitive weight and wasted effort 

with respect to the roll and yaw angles when using longer ramps. The addition of 

such a user-defined function helps introduce a global minimum in a surface plot 

that is originally not globally convex. For wave angles of 62°, a ramp length of 13 

meters minimized the pitch angles. Finally, the possibility of applying an
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extremum seeking scheme to the system was discussed with a candidate block 

diagram. 

This report only considered the adjustment of ramp length and ship 

heading as a means of reducing the ship-ramp angles. The purpose of this 

minimization procedure is to facilitate the transfer of cargo between the two ships 

in the absence of direct control over the ramp motions. It should be noted that 

there are also other methods that can be used to reduce the relative motions 

between the ships and ramp. For example, a starboard-to-port configuration 

offers some key advantages. A considerable amount of literature is devoted to 

roll stabilization for a single ship out at sea. Using fins that extend beyond the 

hull of the vessel are an active method of reducing the roll experienced while 

moving. A passive means of roll reduction is provided by anti-roll tanks which 

allow water to move out of sync with the roll of the ship. In the starboard-to-port 

configuration, roll reduction of the ships themselves using such methods will 

result in pitch reduction of the ramp. On the other hand, selecting the bow-to-

stern configuration would entail minimizing the ship pitch motions, which is far 

more difficult, in order to achieve pitch reduction of the ramp. It will be up to 

future research to determine the feasibility of such methods and whether or not 

they can be combined with the optimization results and eventual extremum 

seeking algorithm. 
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APPENDIX 

 
 

A.1 Complete List of Phase Formulas 

 

 

 The representation of an approaching wavefront is a complex matter that 

rests upon various phase formulas. Provided below is a collection of all the 

phase formulas. This collection includes wave angles of 





∈ 0
2

π
ϕ  which 

represent the waves parallel to the ships (approaching the T-Craft first) up to 

almost perpendicular. The perpendicular formulas can be derived from 

application of L’Hôptial’s rule and are valid only for φ = 0. In addition, the angles 

of 





 −∈
2

0
π

ϕ  are included which represent the waves parallel to the ships 

(approaching the Sea Base first) up to almost perpendicular. The derivations of 

these formulas are not included in this report as they use the same trigonometric 

process outlined in Chapter 4. 
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Note: Taking absolute values of the angles is necessary as it prevents sign 

changes from placing the origin of the angles at the right side of the system (see 

Figure 5.3) instead of the left side.
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A.2 MATLAB m-file used in Chapter 4 (Simulation Results) 

 

 
%The following program is a general-purpose m-file to initialize 

%variables in the various Simulink/SimMechanics models. User inputs 
%Joint type and Case type and variables are entered into the workspace 
%accordingly.  

  
%Two-Ship Ramp Data for SimMechanics Model 

  
%Sea Base mass + dimensions 
m_sb= 45359237; %kg   50,000 tons 
L_sb= 200;  %m 
r_sb= 15;   %m 
w_sb= 2*r_sb; 

  
%T-craft mass + dimensions 
m_tc= 2721554.22; %kg   2,000 t + 1,000 t payload   (3,360 dwt) 
L_tc= 40;  %m 
r_tc= 8;   %m 
w_tc= 2*r_tc; 

  
%Ramp mass + dimensions 
%Assume Steel Ramp 
rho_steel= 7850;  %kg/m^3 density of steel 
L_ramp= 25;       %m   82.021 feet 
w_ramp= 4;        %m   13.1234 feet 
h_ramp= 0.0508;   %m   2 inches 
V_ramp= L_ramp*w_ramp*h_ramp; 
m_ramp= rho_steel*V_ramp; 

  
%Moment of Inertia Tensor of Ship 
%Assume Ship is modeled as half cylinder 
% Ixx= (1/2 - 16/(9pi^2))*mr^2 
% Iyy= 1/4*mr^2 + 1/2*(mL^2) 
% Izz= (1/4 - 16/(9pi^2))*mr^2 + 1/12*(mL^2) 

  
%Moment of Inertia of SeaBase through CG CS 
I_sb= [(1/2- 16/(9*pi^2))*m_sb*r_sb^2 0 0; 0 (1/4)*m_sb*r_sb^2 + 

(1/12)*m_sb*L_sb^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_sb*r_sb^2 + (1/12)*m_sb*L_sb^2]; 

     
%Moment of Inertia of T-craft through CG CS 
I_tc= [(1/2- 16/(9*pi^2))*m_tc*r_tc^2 0 0; 0 (1/4)*m_tc*r_tc^2 + 

(1/12)*m_tc*L_tc^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_tc*r_tc^2 + (1/12)*m_tc*L_tc^2]; 

  
%Moment of Inertia Tensor of Ramp 
%Assume Ramp is modeled as a thin rectangular prism  
%      [ 1/12mw^2  0       0  ] 
%   I= [ 0  1/12m(w^2+L^2) 0  ] 
%      [ 0         0 1/12mL^2 ]
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%Moment of Inertia of Ramp through CG CS 
I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 

(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 (1/12)*m_ramp*(L_ramp^2)]; 

  
%Draught Information 
T_tc= 1/4*r_tc; 
T_sb= 1/2*r_sb; 
%Waterplane Area 
Aw_tc= 2*L_tc*sqrt(r_tc^2-(r_tc-T_tc)^2); 
Aw_sb= 2*L_sb*sqrt(r_sb^2-(r_sb-T_sb)^2); 
%Density of sea water and gravity 
rho= 1025;  %kg/m^3 
g= 9.81; %m/s^2 

  
%Wave Information 
%8 seconds in between waves 
time= 8;           %s 
f= 1/time;         %linear frequency 
omega= 2*pi*f;  %angular frequency  
zetaknot=1;     %wave amplitude 
A_tc= rho*g*Aw_tc*zetaknot; %Wave for T-Craft 
A_sb= rho*g*Aw_sb*zetaknot; %Wave for Sea Base 

  
%Assume there is 125 ft between wave peaks 
lambda= 38.1;    %125 ft 

  
%Spring Constants to Simulate Springs in Joints 
SpringRoll= 500000; 
SpringRollYaw= 50000; %different only in these simulations, not for 

optimization 

  
%Metacentric Heights 

  
%Roll Motions 
GMrsb=(r_sb-(2/3*r_sb^3*((sin(acos((r_sb-

T_sb)/r_sb))^3))/(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)))+... 
    (((L_sb*w_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-(r_sb-((4*r_sb)/(3*pi)))); 

  
GMrtc=(r_tc-(2/3*r_tc^3*((sin(acos((r_tc-

T_tc)/r_tc))^3))/(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)))+... 
    (((L_tc*w_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-(r_tc-((4*r_tc)/(3*pi)))); 

  
%Pitch Motions 
GMpsb=(0.5*T_sb+(((w_sb*L_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-

T_sb)/r_sb)-(r_sb-T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-r_sb/2); 

  
GMptc=(0.5*T_tc+(((w_tc*L_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-

T_tc)/r_tc)-(r_tc-T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-r_tc/2); 
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%Account for the difference in forces 
eta_rolltc= (rho*Aw_tc)/(m_tc); 
eta_rollsb= (rho*Aw_sb)/(m_sb); 

  
eta_pitchtc= (rho*Aw_tc)/(m_tc); 
eta_pitchsb= (rho*Aw_sb)/(m_sb); 

  
%Spring Contstant to Simulate Gravity and Buoyancy 
P3tc= rho*g*Aw_tc;  %Heave Motions 
P3sb= rho*g*Aw_sb; 

  
R1sb= g*m_sb*GMrsb*eta_rollsb; %Roll Motions 
R1tc= g*m_tc*GMrtc*eta_rolltc; 

  
R2sb= g*m_sb*GMpsb*eta_pitchsb; %Pitch Motions 
R2tc= g*m_tc*GMptc*eta_pitchtc; 

  
%Damping Coefficients 
b=0.01; 
BP3tc= b;        %Heave 
BP3sb= b; 
BR1tc= 2*m_tc*((w_tc/(2*sqrt(3)))^2)*b;  %Roll 
BR1sb= 2*m_sb*((w_sb/(2*sqrt(3)))^2)*b; 
BR2tc= 2*m_tc*((L_tc/(2*sqrt(3)))^2)*b;  %Pitch 
BR2sb= 2*m_sb*((L_sb/(2*sqrt(3)))^2)*b; 

  
%JOINT CHOICE 
Joint= input('Enter Joint type (1 for Pitch-Only, 2 for Pitch-Roll, 3 

for Pitch-Roll-Spring, and 4 for Pitch-Roll-Yaw-Spring: '); 

  
%WAVE ORIENTATION CHOICE 
Case= input('Enter Case type (1 for phi= 90 (Case 1), 2 for phi= 45 

(Case 2), 3 for phi= 0 (Case 3): '); 

  
if (Case==1)    
    %Case 1 Phase Values 
    Phase1= 0; 
    Phase2= 0; 
    Phase3= (L_tc)*(2*pi/lambda); 
    Phase4= (L_tc)*(2*pi/lambda); 
    Phase5= (L_tc+L_ramp)*(2*pi/lambda); 
    Phase6= (L_tc+L_ramp)*(2*pi/lambda); 
    Phase7= (L_tc+L_ramp+L_sb)*(2*pi/lambda); 
    Phase8= (L_tc+L_ramp+L_sb)*(2*pi/lambda); 
end 

  
if (Case==3) 
    %Case 3 Phase Values 
    Phase1= (w_sb/2-w_tc/2)*(2*pi/lambda); 
    Phase2= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
    Phase3= (w_sb/2-w_tc/2)*(2*pi/lambda); 
    Phase4= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
    Phase5= 0; 
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    Phase6= (w_sb)*(2*pi/lambda); 
    Phase7= 0; 
    Phase8= (w_sb)*(2*pi/lambda); 
end 

  
if (Case==2) 
    %Case 2 Phase Values 
    phi= pi/4; %45 degree angle 
    Phase1= (w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
    Phase2= (w_tc+w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
    Phase3= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-(w_sb/2-

w_tc/2))*cos(phi))*(2*pi/lambda); 
    Phase4= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-

(w_tc+w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
    Phase5= (L_tc+L_ramp)*sin(phi)*(2*pi/lambda); 
    Phase6= (((L_tc+L_ramp)/cos(pi/2-phi))-

((L_tc+L_ramp)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
    Phase7= (L_tc+L_ramp+L_sb)*sin(phi)*(2*pi/lambda); 
    Phase8= (((L_tc+L_ramp+L_sb)/cos(pi/2-phi))-

((L_tc+L_ramp+L_sb)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
end 

  
%Input Signals 
for i=1:400 
    t= linspace(0,100,400); %up to simulation time 
    u_sb(i)= zetaknot*sin(omega*t(i))-4*w_sb/(6*pi); 
    u_ramp(i)= zetaknot*sin(omega*t(i)); 
    u_tc(i)= zetaknot*sin(omega*t(i))-4*w_tc/(6*pi); 
end 

  
%Joint Types 
if (Joint==1) 
    sim Simulation_3D_Pitch_Only 
end 

  
if (Joint==2) 
    sim Simulation_3D_Pitch_Roll 

     
    %Additional Plotting Commands 
    plot(RampAngleRR(:,1),RampAngleRR(:,2)) 
    title('Roll Ramp Angle Between Sea Base vs. Time'); 
    xlabel('Simulation Time [s]'); 
    ylabel('Angle [deg]'); 
    max_angle_RR= max(abs(RampAngleRR(:,2))) %Maximum Angle 
    hold on; 
    plot(RampAngleRR(:,1),u_ramp,'r--') 
    legend('Roll Angle','Input Signal'); 
    figure; 
end 

  
if (Joint==3) 
    sim Simulation_3D_Pitch_Roll_Spring 

     
    %Additional Plotting Commands 
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    plot(RampAngleRR(:,1),RampAngleRR(:,2)) 
    title('Roll Ramp Angle Between Sea Base vs. Time'); 
    xlabel('Simulation Time [s]'); 
    ylabel('Angle [deg]'); 
    max_angle_RR= max(abs(RampAngleRR(:,2))) %Maximum Angle 
    hold on; 
    plot(RampAngleRR(:,1),u_ramp,'r--') 
    legend('Roll Angle','Input Signal'); 
    figure; 
end 

  
if (Joint==4) 
    sim Simulation_3D_Pitch_Roll_Yaw_Spring 

     
    %Additional Plotting Commands for Roll 
    plot(RampAngleRR(:,1),RampAngleRR(:,2)) 
    title('Roll Ramp Angle Between Sea Base vs. Time'); 
    xlabel('Simulation Time [s]'); 
    ylabel('Angle [deg]'); 
    max_angle_RR= max(abs(RampAngleRR(:,2))) %Maximum Angle 
    hold on; 
    plot(RampAngleRR(:,1),u_ramp,'r--') 
    legend('Roll Angle','Input Signal'); 
    figure; 

     
    %Additional Plotting Commands for Yaw 
    plot(RampAngleRY(:,1),RampAngleRY(:,2)) 
    title('Yaw Ramp Angle Between Sea Base vs. Time'); 
    xlabel('Simulation Time [s]'); 
    ylabel('Angle [deg]'); 
    max_angle_RY= max(abs(RampAngleRY(:,2))) %Maximum Angle 
    figure; 

     
    %Additional Plotting Commands for Yaw 
    plot(RampAngleLY(:,1),RampAngleLY(:,2)) 
    title('Yaw Ramp Angle Between T-Craft vs. Time'); 
    xlabel('Simulation Time [s]'); 
    ylabel('Angle [deg]'); 
    max_angle_LY= max(abs(RampAngleLY(:,2))) %Maximum Angle 
    figure; 
end 

  
%Plotting Commands 
plot(SeaBaseX(:,1),SeaBaseX(:,2)) 
title('Sea Base Center of Gravity Surge'); 
xlabel('Simulation Time [s]'); 
ylabel('X Position [m]'); 
figure; 

  
plot(SeaBaseY(:,1),SeaBaseY(:,2)) 
title('Sea Base Center of Gravity Sway'); 
xlabel('Simulation Time [s]'); 
ylabel('Y Position [m]'); 
figure; 
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plot(SeaBaseZ(:,1),SeaBaseZ(:,2)) 
title('Sea Base Center of Gravity Heave'); 
xlabel('Simulation Time [s]'); 
ylabel('Z Position [m]');  
hold on; 
plot(SeaBaseX(:,1),u_sb,'r--') 
legend('Sea Base Heave','Input Signal'); 
figure; 

  
plot(TCraftX(:,1),TCraftX(:,2)) 
title('T-Craft Center of Gravity Surge'); 
xlabel('Simulation Time [s]'); 
ylabel('X Position [m]'); 
figure; 

  
plot(TCraftY(:,1),TCraftY(:,2)) 
title('T-Craft Center of Gravity Sway'); 
xlabel('Simulation Time [s]'); 
ylabel('Y Position [m]'); 
figure; 

  
plot(TCraftZ(:,1),TCraftZ(:,2)) 
title('T-Craft Center of Gravity Heave'); 
xlabel('Simulation Time [s]'); 
ylabel('Z Position [m]'); 
hold on; 
plot(SeaBaseX(:,1),u_tc,'r--') 
legend('T-Craft Heave','Input Signal'); 
figure; 

  
plot(RampAngleR(:,1),RampAngleR(:,2)) 
title('Pitch Ramp Angle Between Sea Base vs. Time'); 
xlabel('Simulation Time [s]'); 
ylabel('Angle [deg]'); 
max_angle_R= max(abs(RampAngleR(:,2))) %Maximum Angle 
hold on; 
plot(RampAngleR(:,1),u_ramp,'r--') 
legend('Pitch Angle','Input Signal'); 

  
%plot(RampAngleL(:,1),RampAngleL(:,2)) 
%title('Pitch Ramp Angle Between T-Craft vs. Time'); 
%xlabel('Simulation Time [s]'); 
%ylabel('Angle [deg]'); 
max_angle_L= max(abs(RampAngleL(:,2))) %Maximum Angle 
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A.3 MATLAB m-file used in Chapter 5.1 (Angles vs. Ramp Length) 

 

 
%2D Ramp Optimization: The following program explores the 3 different 

%wave orientations explored in the simulations (0 deg, 45 deg, and 90 
%deg) as well as the various ramp lengths. The resulting maximum 
%angles: pitch, roll, and yaw are then given with respect to the ramp 
%lengths. All joint types are explored at once 

  
%Sea Base mass + dimensions 
m_sb= 45359237; %kg   50,000 tons 
L_sb= 200;  %m 
r_sb= 15;   %m 
w_sb= 2*r_sb; 

  
%T-craft mass + dimensions 
m_tc= 2721554.22; %kg   2,000 t + 1,000 t payload   (3,360 dwt) 
L_tc= 40;  %m 
r_tc= 8;   %m 
w_tc= 2*r_tc; 

  
%Moment of Inertia Tensor of Ship 
%Assume Ship is modeled as half cylinder 
% Ixx= (1/2 - 16/(9pi^2))*mr^2 
% Iyy= 1/4*mr^2 + 1/2*(mL^2) 
% Izz= (1/4 - 16/(9pi^2))*mr^2 + 1/12*(mL^2) 

  
%Moment of Inertia of SeaBase through CG CS 
I_sb= [(1/2- 16/(9*pi^2))*m_sb*r_sb^2 0 0; 0 (1/4)*m_sb*r_sb^2 + 

(1/12)*m_sb*L_sb^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_sb*r_sb^2 + (1/12)*m_sb*L_sb^2]; 

     
%Moment of Inertia of T-craft through CG CS 
I_tc= [(1/2- 16/(9*pi^2))*m_tc*r_tc^2 0 0; 0 (1/4)*m_tc*r_tc^2 + 

(1/12)*m_tc*L_tc^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_tc*r_tc^2 + (1/12)*m_tc*L_tc^2]; 

  
%Draught Information 
T_tc= 1/4*r_tc; 
T_sb= 1/2*r_sb; 
%Waterplane Area 
Aw_tc= 2*L_tc*sqrt(r_tc^2-(r_tc-T_tc)^2); 
Aw_sb= 2*L_sb*sqrt(r_sb^2-(r_sb-T_sb)^2); 
%Density of sea water and gravity 
rho= 1025;  %kg/m^3 
g= 9.81; %m/s^2 

  
%Wave Information 
%8 seconds in between waves 
time= 8;           %s 
f= 1/time;         %linear frequency 
omega= 2*pi*f;  %angular frequency 
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zetaknot=1; 
A_tc= rho*g*Aw_tc*zetaknot; %Wave for T-Craft 
A_sb= rho*g*Aw_sb*zetaknot; %Wave for Sea Base 

  
%Assume there is 125 ft between wave peaks 
lambda= 38.1;    %125 ft 

  
%Spring Constants to Simulate Springs in Joints 
SpringRoll= 500000; 
SpringRollYaw= 500000;  

  
%Metacentric Heights 

  
%Roll Motions 
GMrsb=(r_sb-(2/3*r_sb^3*((sin(acos((r_sb-

T_sb)/r_sb))^3))/(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)))+... 
    (((L_sb*w_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-(r_sb-((4*r_sb)/(3*pi)))); 

  
GMrtc=(r_tc-(2/3*r_tc^3*((sin(acos((r_tc-

T_tc)/r_tc))^3))/(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)))+... 
    (((L_tc*w_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-(r_tc-((4*r_tc)/(3*pi)))); 

  
%Pitch Motions 
GMpsb=(0.5*T_sb+(((w_sb*L_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-

T_sb)/r_sb)-(r_sb-T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-r_sb/2); 

  
GMptc=(0.5*T_tc+(((w_tc*L_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-

T_tc)/r_tc)-(r_tc-T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-r_tc/2); 

  
%Account for the difference in forces 
eta_rolltc= (rho*Aw_tc)/(m_tc); 
eta_rollsb= (rho*Aw_sb)/(m_sb); 

  
eta_pitchtc= (rho*Aw_tc)/(m_tc); 
eta_pitchsb= (rho*Aw_sb)/(m_sb); 

  
%Spring Contstant to SImulate Gravity and Buoyancy 
P3tc= rho*g*Aw_tc;  %Heave Motions 
P3sb= rho*g*Aw_sb; 

  
R1sb= g*m_sb*GMrsb*eta_rollsb; %Roll Motions 
R1tc= g*m_tc*GMrtc*eta_rolltc; 

  
R2sb= g*m_sb*GMpsb*eta_pitchsb; %Pitch Motions 
R2tc= g*m_tc*GMptc*eta_pitchtc; 

  
%Damping Coefficients 
b=0.01; 
BP3tc= b;        %Heave 
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BP3sb= b; 
BR1tc= 2*m_tc*((w_tc/(2*sqrt(3)))^2)*b;  %Roll 
BR1sb= 2*m_sb*((w_sb/(2*sqrt(3)))^2)*b; 
BR2tc= 2*m_tc*((L_tc/(2*sqrt(3)))^2)*b;  %Pitch 
BR2sb= 2*m_sb*((L_sb/(2*sqrt(3)))^2)*b; 

  
%Relationship Between Ramp Length and Pitch Angle for 3 Cases 
for k=1:4 %JOINT LOOP 

  
    %k=1 Simulation_3D_Pitch_Only 
    %k=2 Simulation_3D_Pitch_Roll 
    %k=3 Simulation_3D_Pitch_Roll_Spring 
    %k=4 Simulation_3D_Pitch_Roll_Yaw_Spring 

  
    for j=1:3  %CASE LOOP 

  
        %j=1 Case 1 
        %j=2 Case 3 
        %j=3 Case 2 

  
        for i=1:25 %RAMP LENGTH LOOP 5 m to 125 m 

  
            %Ramp mass + dimensions 
            %Assume Steel Ramp 
            rho_steel= 7850;  %kg/m^3 density of steel 
            L_ramp= 5*i; %This changes with the iterations 
            w_ramp= 4;        %meters   13.1234 feet 
            h_ramp= 0.0508;   %meters   2 inches 
            V_ramp= L_ramp*w_ramp*h_ramp; 
            m_ramp= rho_steel*V_ramp; 

  
            %Moment of Inertia of Ramp through CG CS 
            I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 

(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 (1/12)*m_ramp*(L_ramp^2)]; 

  

  
            if (j==1) 
                %Case 1 Phase Values 
                Phase1= 0; 
                Phase2= 0; 
                Phase3= (L_tc)*(2*pi/lambda); 
                Phase4= (L_tc)*(2*pi/lambda); 
                Phase5= (L_tc+L_ramp)*(2*pi/lambda); 
                Phase6= (L_tc+L_ramp)*(2*pi/lambda); 
                Phase7= (L_tc+L_ramp+L_sb)*(2*pi/lambda); 
                Phase8= (L_tc+L_ramp+L_sb)*(2*pi/lambda); 
            end 

  
            if (j==2) 
                %Case 3 Phase Values 
                Phase1= (w_sb/2-w_tc/2)*(2*pi/lambda); 
                Phase2= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
                Phase3= (w_sb/2-w_tc/2)*(2*pi/lambda); 
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                Phase4= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
                Phase5= 0; 
                Phase6= (w_sb)*(2*pi/lambda); 
                Phase7= 0; 
                Phase8= (w_sb)*(2*pi/lambda); 
            end 

  
            if (j==3) 
                %Case 2 Phase Values 
                phi= pi/4; %45 degree angle 
                Phase1= (w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
                Phase2= (w_tc+w_sb/2-w_tc/2)*sin(pi/2-

phi)*(2*pi/lambda); 
                Phase3= ((L_tc/cos(pi/2-phi))-

(L_tc*(cos(phi)/sin(phi))-(w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
                Phase4= ((L_tc/cos(pi/2-phi))-

(L_tc*(cos(phi)/sin(phi))-(w_tc+w_sb/2-

w_tc/2))*cos(phi))*(2*pi/lambda); 
                Phase5= (L_tc+L_ramp)*sin(phi)*(2*pi/lambda); 
                Phase6= (((L_tc+L_ramp)/cos(pi/2-phi))-

((L_tc+L_ramp)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
                Phase7= (L_tc+L_ramp+L_sb)*sin(phi)*(2*pi/lambda); 
                Phase8= (((L_tc+L_ramp+L_sb)/cos(pi/2-phi))-

((L_tc+L_ramp+L_sb)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
            end 

  
            %Spring Constants to Simulate Gravity and Buoyancy 
            if (k==1) 
                sim('Simulation_3D_Pitch_Only'); 
            end 

  
            if (k==2) 
                sim('Simulation_3D_Pitch_Roll'); 
            end 

  
            if (k==3) 
                sim('Simulation_3D_Pitch_Roll_Spring'); 
            end 

  
            if (k==4) 
                sim('Simulation_3D_Pitch_Roll_Yaw_Spring'); 
            end 

  
            %Extract data for the various ramp angles    
            %Pitch Only Joint 
            if (k==1) && (j==1) %Case 1 
                pitchJ1C1(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
            end 

  
            if (k==1) && (j==2) %Case 3 
                pitchJ1C3(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
            end 

  
            if (k==1) && (j==3) %Case 2 
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                pitchJ1C2(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
            end 

  
            %Pitch Roll Joint 
            if (k==2) && (j==1) %Case 1 
                pitchJ2C1(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ2C1(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            if (k==2) && (j==2) %Case 3 
                pitchJ2C3(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ2C3(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            if (k==2) && (j==3) %Case 2 
                pitchJ2C2(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ2C2(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            %Pitch Roll Joint w/ Spring On Roll 
            if (k==3) && (j==1) %Case 1 
                pitchJ3C1(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ3C1(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            if (k==3) && (j==2) %Case 3 
                pitchJ3C3(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ3C3(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            if (k==3) && (j==3) %Case 2 
                pitchJ3C2(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ3C2(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
            end 

  
            %Pitch Roll Yaw Joint w/ Springs on Roll and Yaw 
            if (k==4) && (j==1) %Case 1 
                pitchJ4C1(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ4C1(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
                yawJ4C1(i)= max(abs(RampAngleRY(:,2)));  %Maximum Yaw  
            end 

  
            if (k==4) && (j==2) %Case 3 
                pitchJ4C3(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ4C3(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
                yawJ4C3(i)= max(abs(RampAngleRY(:,2)));  %Maximum Yaw  
            end 

  
            if (k==4) && (j==3) %Case 2 
                pitchJ4C2(i)= max(abs(RampAngleR(:,2))); %Maximum Pitch  
                rollJ4C2(i)= max(abs(RampAngleRR(:,2))); %Maximum Roll  
                yawJ4C2(i)= max(abs(RampAngleRY(:,2)));  %Maximum Yaw  
            end 
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            xaxis(i)= 5*i; 

  
        end 
    end 

  
    if (k==1) %Simulation_3D_Pitch_Only 
        figure; 
        plot(xaxis,pitchJ1C1); 
        hold on; 
        grid on; 
        plot(xaxis,pitchJ1C3, 'r'); 
        plot(xaxis,pitchJ1C2, 'g'); 
        xlabel('Ramp Length [m]'); 
        ylabel('Ramp Angle w/ Sea Base [deg]'); 
        title('Ramp Angle vs Ramp Length (Wavelength= 38.1 m) using 

Pitch-Only Joint'); 
        legend('Pitch Angles for Case 1','Pitch Angles for Case 

3','Pitch Angles for Case 2'); 
    end 

  
    if (k==2) %k=2 Simulation_3D_Pitch_Roll 
        figure; 
        plot(xaxis,pitchJ2C1); 
        hold on; 
        grid on; 
        plot(xaxis,pitchJ2C3, 'r'); 
        plot(xaxis,pitchJ2C2, 'g'); 
        plot(xaxis,rollJ2C1, 'y') 
        plot(xaxis,rollJ2C3, 'c'); 
        plot(xaxis,rollJ2C2, 'm'); 
        xlabel('Ramp Length [m]'); 
        ylabel('Ramp Angle w/ Sea Base [deg]'); 
        title('Ramp Angle vs Ramp Length (Wavelength= 38.1 m) using 

Pitch and Roll Joint'); 
        legend('Pitch Angles for Case 1','Pitch Angles for Case 

3','Pitch Angles for Case 2','Roll Angles for Case 1','Roll Angles for 

Case 3','Roll Angles for Case 2'); 
    end 

  
    if (k==3) %k=3 Simulation_3D_Pitch_Roll_Spring 
        figure; 
        plot(xaxis,pitchJ3C1); 
        hold on; 
        grid on; 
        plot(xaxis,pitchJ3C3, 'r'); 
        plot(xaxis,pitchJ3C2, 'g'); 
        plot(xaxis,rollJ3C1, 'y') 
        plot(xaxis,rollJ3C3, 'c'); 
        plot(xaxis,rollJ3C2, 'm'); 
        xlabel('Ramp Length [m]'); 
        ylabel('Ramp Angle w/ Sea Base [deg]'); 
        title('Ramp Angle vs Ramp Length (Wavelength= 38.1 m) using 

Pitch and Roll Joint w/ Spring on Roll'); 
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        legend('Pitch Angles for Case 1','Pitch Angles for Case 

3','Pitch Angles for Case 2','Roll Angles for Case 1','Roll Angles for 

Case 3','Roll Angles for Case 2'); 
    end 

  
    if (k==4) %k=4 Simulation_3D_Pitch_Roll_Yaw_Spring 
        figure; 
        plot(xaxis,pitchJ4C1); 
        hold on; 
        grid on; 
        plot(xaxis,pitchJ4C3, 'r'); 
        plot(xaxis,pitchJ4C2, 'g'); 
        plot(xaxis,rollJ4C1, 'y') 
        plot(xaxis,rollJ4C3, 'c'); 
        plot(xaxis,rollJ4C2, 'm'); 
        plot(xaxis,yawJ4C1, 'k') 
        plot(xaxis,yawJ4C3, 'k:'); 
        plot(xaxis,yawJ4C2, 'k-.'); 
        xlabel('Ramp Length [m]'); 
        ylabel('Ramp Angle w/ Sea Base [deg]'); 
        title('Ramp Angle vs Ramp Length using Pitch, Roll, and Yaw 

Joint w/ Springs on Roll and Yaw'); 
        legend('Pitch Angles for Case 1','Pitch Angles for Case 

3','Pitch Angles for Case 2','Roll Angles for Case 1','Roll Angles for 

Case 3','Roll Angles for Case 2','Yaw Angles for Case 1','Yaw Angles 

for Case 3', 'Yaw Angles for Case 2'); 
    end 
end 
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A.4 MATLAB m-file used in Chapter 5.1 (Time Dependent Angles) 

 

 
%The following m-file describes the evolution of the ramp-ship  
%pitch angle for various ramp lengths given phi=90 (theta=0) 
%meaning the parallel orientation, Case 1 with the waves  
%approaching the T-Craft first. Also examined is when phi=-90 
%which means the same case but when waves approach the Sea Base  
%first. The pitch-only joint is used in this m-file 

  
%Sea Base mass + dimensions 
m_sb= 45359237; %kg   50,000 tons 
L_sb= 200;  %m 
r_sb= 15;   %m 
w_sb= 2*r_sb; 

  
%T-craft mass + dimensions 
m_tc= 2721554.22; %kg   2,000 t + 1,000 t payload   (3,360 dwt) 
L_tc= 40;  %m 
r_tc= 8;   %m 
w_tc= 2*r_tc; 

  
%Moment of Inertia Tensor of Ship 
%Assume Ship is modeled as half cylinder 
% Ixx= (1/2 - 16/(9pi^2))*mr^2 
% Iyy= 1/4*mr^2 + 1/2*(mL^2) 
% Izz= (1/4 - 16/(9pi^2))*mr^2 + 1/12*(mL^2) 

  
%Moment of Inertia of SeaBase through CG CS 
I_sb= [(1/2- 16/(9*pi^2))*m_sb*r_sb^2 0 0; 0 (1/4)*m_sb*r_sb^2 + 

(1/12)*m_sb*L_sb^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_sb*r_sb^2 + (1/12)*m_sb*L_sb^2]; 

     
%Moment of Inertia of T-craft through CG CS 
I_tc= [(1/2- 16/(9*pi^2))*m_tc*r_tc^2 0 0; 0 (1/4)*m_tc*r_tc^2 + 

(1/12)*m_tc*L_tc^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_tc*r_tc^2 + (1/12)*m_tc*L_tc^2]; 

  
%Draught Information 
T_tc= 1/4*r_tc; 
T_sb= 1/2*r_sb; 
%Waterplane Area 
Aw_tc= 2*L_tc*sqrt(r_tc^2-(r_tc-T_tc)^2); 
Aw_sb= 2*L_sb*sqrt(r_sb^2-(r_sb-T_sb)^2); 
%Density of sea water and gravity 
rho= 1025;  %kg/m^3 
g= 9.81; %m/s^2 

  
%Wave Information 
%8 seconds in between waves 
time= 8;           %s 
f= 1/time;         %linear frequency
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omega= 2*pi*f;  %angular frequency  
zetaknot=1; 
A_tc= rho*g*Aw_tc*zetaknot; %Wave for T-Craft 
A_sb= rho*g*Aw_sb*zetaknot; %Wave for Sea Base 

  
%Assume there is 125 ft between wave peaks 
lambda= 38.1;    %125 ft 

  
%Spring Constants to Simulate Springs in Joints 
SpringRoll= 500000; 

  
%Metacentric Heights 

  
%Roll Motions 
GMrsb=(r_sb-(2/3*r_sb^3*((sin(acos((r_sb-

T_sb)/r_sb))^3))/(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)))+... 
    (((L_sb*w_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-(r_sb-((4*r_sb)/(3*pi)))); 

  
GMrtc=(r_tc-(2/3*r_tc^3*((sin(acos((r_tc-

T_tc)/r_tc))^3))/(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)))+... 
    (((L_tc*w_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-(r_tc-((4*r_tc)/(3*pi)))); 

  
%Pitch Motions 
GMpsb=(0.5*T_sb+(((w_sb*L_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-

T_sb)/r_sb)-(r_sb-T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-r_sb/2); 

  
GMptc=(0.5*T_tc+(((w_tc*L_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-

T_tc)/r_tc)-(r_tc-T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-r_tc/2); 

  
%Account for the difference in forces 
eta_rolltc= (rho*Aw_tc)/(m_tc); 
eta_rollsb= (rho*Aw_sb)/(m_sb); 

  
eta_pitchtc= (rho*Aw_tc)/(m_tc); 
eta_pitchsb= (rho*Aw_sb)/(m_sb); 

  
%Spring Contstant to Simulate Gravity and Buoyancy 
P3tc= rho*g*Aw_tc;  %Heave Motions 
P3sb= rho*g*Aw_sb; 

  
R1sb= g*m_sb*GMrsb*eta_rollsb; %Roll Motions 
R1tc= g*m_tc*GMrtc*eta_rolltc; 

  
R2sb= g*m_sb*GMpsb*eta_pitchsb; %Pitch Motions 
R2tc= g*m_tc*GMptc*eta_pitchtc; 

  
%Damping Coefficients 
b=0.01; 
BP3tc= b;        %Heave 
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BP3sb= b; 
BR1tc= 2*m_tc*((w_tc/(2*sqrt(3)))^2)*b;  %Roll 
BR1sb= 2*m_sb*((w_sb/(2*sqrt(3)))^2)*b; 
BR2tc= 2*m_tc*((L_tc/(2*sqrt(3)))^2)*b;  %Pitch 
BR2sb= 2*m_sb*((L_sb/(2*sqrt(3)))^2)*b; 

  

  
a1=1;  %Penalty on Pitch 
a2=1;  %Penalty on Roll 
n=30;  %Number of data points 

  
phi_range = linspace(-pi/2,pi/2,n); 
L_ramp_range = linspace(5,40,n); 

  

  
phi=pi/2;   %approach T-Craft first 
%RAMP LENGTH CHANGES 
for j=1:n         %VARY RAMP LENGTH 

     
    L_ramp = L_ramp_range(j); %This changes with the iterations 

  
        %Ramp mass + dimensions 
        %Assume Steel Ramp 
        rho_steel= 7850;  %kg/m^3 density of steel 
        w_ramp= 4;        %meters   13.1234 feet 
        h_ramp= 0.0508;   %meters   2 inches 
        V_ramp= L_ramp*w_ramp*h_ramp; 
        m_ramp= rho_steel*V_ramp; 

  
        %Moment of Inertia of Ramp through CG CS 
        I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 

(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 (1/12)*m_ramp*(L_ramp^2)]; 

  
        %Cases 1 and 2: Aligned with axis (Case 1) , Angled 

Wavefront(Case 2) 
        if (phi>0 && phi<=pi/2) 

             
            Phase1= (w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
            Phase2= (w_tc+w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
            Phase3= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-

(w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
            Phase4= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-

(w_tc+w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
            Phase5= (L_tc+L_ramp)*sin(phi)*(2*pi/lambda); 
            Phase6= (((L_tc+L_ramp)/cos(pi/2-phi))-

((L_tc+L_ramp)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
            Phase7= (L_tc+L_ramp+L_sb)*sin(phi)*(2*pi/lambda); 
            Phase8= (((L_tc+L_ramp+L_sb)/cos(pi/2-phi))-

((L_tc+L_ramp+L_sb)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
        end 

  
        %Run Program 
        sim Simulation_3D_Pitch_Only; 
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        R_Pitch_time(:,j)=RampAngleR(:,2); 
        L_Pitch_time(:,j)=RampAngleL(:,2); 

         
end 

  
phi=-pi/2;   %approach Sea Base first 
for j=1:n         %VARY RAMP LENGTH 

     
    L_ramp = L_ramp_range(j); %This changes with the iterations 

  
        %Ramp mass + dimensions 
        %Assume Steel Ramp 
        rho_steel= 7850;  %kg/m^3 density of steel 
        w_ramp= 4;        %meters   13.1234 feet 
        h_ramp= 0.0508;   %meters   2 inches 
        V_ramp= L_ramp*w_ramp*h_ramp; 
        m_ramp= rho_steel*V_ramp; 

  
        %Moment of Inertia of Ramp through CG CS 
        I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 

(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 (1/12)*m_ramp*(L_ramp^2)]; 

  
        %Cases 1 and 2 but coming from the Sea Base side 
        if (phi<0 && phi>=-pi/2) 

  
            phia= abs(phi); %To prevent -1's from appearing 
            Phase1= (((L_sb+L_ramp+L_tc)/cos(pi/2-phia))-

((L_sb+L_ramp+L_tc)*(cos(phia)/sin(phia))-(w_sb/2-

w_tc/2))*cos(phia))*(2*pi/lambda); 
            Phase2= (((L_sb+L_ramp+L_tc)/cos(pi/2-phia))-

((L_sb+L_ramp+L_tc)*(cos(phia)/sin(phia))-(w_sb+w_tc/2-

w_sb/2))*cos(phia))*(2*pi/lambda); 
            Phase3= (((L_sb+L_ramp)/cos(pi/2-phia))-

((L_sb+L_ramp)*(cos(phia)/sin(phia))-(w_sb/2-

w_tc/2))*cos(phia))*(2*pi/lambda); 
            Phase4= (((L_sb+L_ramp)/cos(pi/2-phia))-

((L_sb+L_ramp)*(cos(phia)/sin(phia))-(w_sb+w_tc/2-

w_sb/2))*cos(phia))*(2*pi/lambda); 
            Phase5= L_sb*sin(phia)*(2*pi/lambda); 
            Phase6= ((L_sb/cos(pi/2-phia))-(L_sb*(cos(phia)/sin(phia))-

w_sb)*cos(phia))*(2*pi/lambda); 
            Phase7= 0; 
            Phase8= w_sb*sin(pi/2-phia)*(2*pi/lambda); 
        end 

  
        %Run Program 
        sim Simulation_3D_Pitch_Only; 

         
        R_Pitch_time_negpi2(:,j)=RampAngleR(:,2); 
        L_Pitch_time_negpi2(:,j)=RampAngleL(:,2); 

         
end 
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t=linspace(0,100,400); %for meshgrid 
L=linspace(0,30,400); 

  
%T-Craft Pitch Angle for phi= pi/2 
[L,to]=meshgrid(L_ramp_range,t); 
subplot(2,1,1); plot3(to,L,L_Pitch_time.^2) 
xlabel('time [sec]'); 
ylabel('Ramp Length [m]'); 
zlabel('(Pitch Angle)^2 [deg]'); 
title('T-Craft-Ramp Pitch Angle for \phi = \pi/2'); 

  
%Sea Base Pitch Angle for phi= pi/2 
[L,to]=meshgrid(L_ramp_range,t); 
subplot(2,1,2); plot3(to,L,R_Pitch_time.^2) 
xlabel('time [sec]'); 
ylabel('Ramp Length [m]'); 
zlabel('(Pitch Angle)^2 [deg]'); 
title('Sea Base-Ramp Pitch Angle for \phi = \pi/2'); 

  
figure; 

  
%T-Craft Pitch Angle for phi= -pi/2 
[L,to]=meshgrid(L_ramp_range,t); 
subplot(2,1,1); plot3(to,L,L_Pitch_time_negpi2.^2) 
xlabel('time [sec]'); 
ylabel('Ramp Length [m]'); 
zlabel('(Pitch Angle)^2 [deg]'); 
title('T-Craft-Ramp Pitch Angle for \phi = -\pi/2'); 

  
%Sea Base Pitch Angle for phi= -pi/2 
[L,to]=meshgrid(L_ramp_range,t); 
subplot(2,1,2); plot3(to,L,R_Pitch_time_negpi2.^2) 
xlabel('time [sec]'); 
ylabel('Ramp Length [m]'); 
zlabel('(Pitch Angle)^2 [deg]'); 
title('Sea Base-Ramp Pitch Angle for \phi = -\pi/2'); 
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A.5 MATLAB m-file used in Chapters 5.2 and 6.1 (3-D Surface Plots) 

 

 
%The following program explores the dependence of the roll and pitch 

%angles between the ships and the ramp on the wave orientation and ramp 
%length. For wave orientations varying from phi = [-pi/2,pi/2] and ramp 
%lengths varying from [5 40] surface plots are generated in which the z 
%axis indicates the ramp angle (individual or a composite function) 

  
%Sea Base mass + dimensions 
m_sb= 45359237; %kg   50,000 tons 
L_sb= 200;  %m 
r_sb= 15;   %m 
w_sb= 2*r_sb; 

  
%T-craft mass + dimensions 
m_tc= 2721554.22; %kg   2,000 t + 1,000 t payload   (3,360 dwt) 
L_tc= 40;  %m 
r_tc= 8;   %m 
w_tc= 2*r_tc; 

  
%Moment of Inertia Tensor of Ship 
%Assume Ship is modeled as half cylinder 
% Ixx= (1/2 - 16/(9pi^2))*mr^2 
% Iyy= 1/4*mr^2 + 1/2*(mL^2) 
% Izz= (1/4 - 16/(9pi^2))*mr^2 + 1/12*(mL^2) 

  
%Moment of Inertia of SeaBase through CG CS 
I_sb= [(1/2- 16/(9*pi^2))*m_sb*r_sb^2 0 0; 0 (1/4)*m_sb*r_sb^2 + 

(1/12)*m_sb*L_sb^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_sb*r_sb^2 + (1/12)*m_sb*L_sb^2]; 

     
%Moment of Inertia of T-craft through CG CS 
I_tc= [(1/2- 16/(9*pi^2))*m_tc*r_tc^2 0 0; 0 (1/4)*m_tc*r_tc^2 + 

(1/12)*m_tc*L_tc^2 0; ... 
    0 0 (1/4-16/(9*pi^2))*m_tc*r_tc^2 + (1/12)*m_tc*L_tc^2]; 

  
%Draught Information 
T_tc= 1/4*r_tc; 
T_sb= 1/2*r_sb; 
%Waterplane Area 
Aw_tc= 2*L_tc*sqrt(r_tc^2-(r_tc-T_tc)^2); 
Aw_sb= 2*L_sb*sqrt(r_sb^2-(r_sb-T_sb)^2); 
%Density of sea water and gravity 
rho= 1025;  %kg/m^3 
g= 9.81; %m/s^2 

  
%Wave Information 
%8 seconds in between waves 
time= 8;           %s 
f= 1/time;         %linear frequency 
omega= 2*pi*f;  %angular frequency 
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zetaknot=0.95;  
%zetaknot=1; 
A_tc= rho*g*Aw_tc*zetaknot; %Wave for T-Craft 
A_sb= rho*g*Aw_sb*zetaknot; %Wave for Sea Base 

  
%Assume there is 125 ft between wave peaks 
lambda= 38.1;    %125 ft 

  
%Spring Constants to Simulate Springs in Joints 
SpringRoll= 500000; 
SpringRollYaw= 500000; 

  
%Metacentric Heights 

  
%Roll Motions 
GMrsb=(r_sb-(2/3*r_sb^3*((sin(acos((r_sb-

T_sb)/r_sb))^3))/(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)))+... 
    (((L_sb*w_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_sb-

T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-(r_sb-((4*r_sb)/(3*pi)))); 

  
GMrtc=(r_tc-(2/3*r_tc^3*((sin(acos((r_tc-

T_tc)/r_tc))^3))/(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)))+... 
    (((L_tc*w_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_tc-

T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-(r_tc-((4*r_tc)/(3*pi)))); 

  
%Pitch Motions 
GMpsb=(0.5*T_sb+(((w_sb*L_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-

T_sb)/r_sb)-(r_sb-T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-r_sb/2); 

  
GMptc=(0.5*T_tc+(((w_tc*L_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-

T_tc)/r_tc)-(r_tc-T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-r_tc/2); 

  
%Account for the difference in forces 
eta_rolltc= (rho*Aw_tc)/(m_tc); 
eta_rollsb= (rho*Aw_sb)/(m_sb); 

  
eta_pitchtc= (rho*Aw_tc)/(m_tc); 
eta_pitchsb= (rho*Aw_sb)/(m_sb); 

  
%Spring Contstant to SImulate Gravity and Buoyancy 
P3tc= rho*g*Aw_tc;  %Heave Motions 
P3sb= rho*g*Aw_sb; 

  
R1sb= g*m_sb*GMrsb*eta_rollsb; %Roll Motions 
R1tc= g*m_tc*GMrtc*eta_rolltc; 

  
R2sb= g*m_sb*GMpsb*eta_pitchsb; %Pitch Motions 
R2tc= g*m_tc*GMptc*eta_pitchtc; 

  
%Damping Coefficients 
b=0.01; 
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BP3tc= b;        %Heave 
BP3sb= b; 
BR1tc= 2*m_tc*((w_tc/(2*sqrt(3)))^2)*b;  %Roll 
BR1sb= 2*m_sb*((w_sb/(2*sqrt(3)))^2)*b; 
BR2tc= 2*m_tc*((L_tc/(2*sqrt(3)))^2)*b;  %Pitch 
BR2sb= 2*m_sb*((L_sb/(2*sqrt(3)))^2)*b; 

  

  
a1=1;  %Penalty on Pitch 
a2=1;  %Penalty on Roll 
n=30;  %Number of data points 

  
%Range for ramp length and wave orientations 
phi_range = linspace(-pi/2,pi/2,n); 
L_ramp_range = linspace(5,40,n); 

  
%Initialize Cost Function 
for j=1:n 
    for i=1:n 
        J_L(i,j)=0; 
    end 
end 

  
%JOINT CHOICE 
Joint= input('Enter Joint type (1 for Pitch-Only, 2 for Pitch-Roll, 3 

for Pitch-Roll-Spring, and 4 for Pitch-Roll-Yaw-Spring: '); 

  
%RAMP LENGTH OPTIMIZATION 
for j=1:n         %VARY RAMP LENGTH 

  
    L_ramp = L_ramp_range(j); %This changes with the iterations 

  
    for i=1:n     %VARY PHI 

  
        phi = phi_range(i); %This changes with the iterations 

  
        %Ramp mass + dimensions 
        %Assume Steel Ramp 
        rho_steel= 7850;  %kg/m^3 density of steel 
        w_ramp= 4;        %meters   13.1234 feet 
        h_ramp= 0.0508;   %meters   2 inches 
        V_ramp= L_ramp*w_ramp*h_ramp; 
        m_ramp= rho_steel*V_ramp; 

  
        %Moment of Inertia of Ramp through CG CS 
        I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 

(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 (1/12)*m_ramp*(L_ramp^2)]; 

  
        %Cases 1 and 2: Aligned with axis (Case 1) , Angled 

Wavefront(Case 2) 
        if (phi>0 && phi<=pi/2) 

  
            Phase1= (w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
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            Phase2= (w_tc+w_sb/2-w_tc/2)*sin(pi/2-phi)*(2*pi/lambda); 
            Phase3= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-

(w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
            Phase4= ((L_tc/cos(pi/2-phi))-(L_tc*(cos(phi)/sin(phi))-

(w_tc+w_sb/2-w_tc/2))*cos(phi))*(2*pi/lambda); 
            Phase5= (L_tc+L_ramp)*sin(phi)*(2*pi/lambda); 
            Phase6= (((L_tc+L_ramp)/cos(pi/2-phi))-

((L_tc+L_ramp)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
            Phase7= (L_tc+L_ramp+L_sb)*sin(phi)*(2*pi/lambda); 
            Phase8= (((L_tc+L_ramp+L_sb)/cos(pi/2-phi))-

((L_tc+L_ramp+L_sb)*(cos(phi)/sin(phi))-w_sb)*cos(phi))*(2*pi/lambda); 
        end 

  
        %Case 3: perpendicular wavefront (phi = 0) 
        if (phi==0) 

  
            Phase1= (w_sb/2-w_tc/2)*(2*pi/lambda); 
            Phase2= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
            Phase3= (w_sb/2-w_tc/2)*(2*pi/lambda); 
            Phase4= (w_sb/2-w_tc/2+w_tc)*(2*pi/lambda); 
            Phase5= 0; 
            Phase6= (w_sb)*(2*pi/lambda); 
            Phase7= 0; 
            Phase8= (w_sb)*(2*pi/lambda); 
        end 

  
        %Cases 1 and 2 but coming from the Sea Base side 
        if (phi<0 && phi>=-pi/2) 

  
            phia= abs(phi); %To prevent -1's from appearing 
            Phase1= (((L_sb+L_ramp+L_tc)/cos(pi/2-phia))-

((L_sb+L_ramp+L_tc)*(cos(phia)/sin(phia))-(w_sb/2-

w_tc/2))*cos(phia))*(2*pi/lambda); 
            Phase2= (((L_sb+L_ramp+L_tc)/cos(pi/2-phia))-

((L_sb+L_ramp+L_tc)*(cos(phia)/sin(phia))-(w_sb+w_tc/2-

w_sb/2))*cos(phia))*(2*pi/lambda); 
            Phase3= (((L_sb+L_ramp)/cos(pi/2-phia))-

((L_sb+L_ramp)*(cos(phia)/sin(phia))-(w_sb/2-

w_tc/2))*cos(phia))*(2*pi/lambda); 
            Phase4= (((L_sb+L_ramp)/cos(pi/2-phia))-

((L_sb+L_ramp)*(cos(phia)/sin(phia))-(w_sb+w_tc/2-

w_sb/2))*cos(phia))*(2*pi/lambda); 
            Phase5= L_sb*sin(phia)*(2*pi/lambda); 
            Phase6= ((L_sb/cos(pi/2-phia))-(L_sb*(cos(phia)/sin(phia))-

w_sb)*cos(phia))*(2*pi/lambda); 
            Phase7= 0; 
            Phase8= w_sb*sin(pi/2-phia)*(2*pi/lambda); 
        end 

  
        %Case Scenarios 
        if (Joint==1) 
            sim('Simulation_3D_Pitch_Only'); 
            MaxPitch_R(j,i)= max(abs(RampAngleR(:,2)));  %Maximum Pitch 

Angle w/ Sea Base 
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            MaxPitch_L(j,i)= max(abs(RampAngleL(:,2)));  %Maximum Pitch 

Angle w/ T-Craft 
            J_L(j,i)= a1*MaxPitch_R(j,i); %Cost Function 
            RampAngleR=0; %Set back to zero for next simulation 
            RampAngleL=0; 
        end 

  
        if (Joint==2) 
            sim('Simulation_3D_Pitch_Roll'); 
            MaxPitch_R(j,i)= max(abs(RampAngleR(:,2)));  %Maximum Pitch 

Angle w/ Sea Base 
            MaxRoll_R(j,i)= max(abs(RampAngleRR(:,2))); %Maximum Roll 

Angle w/ Sea Base 
            MaxPitch_L(j,i)= max(abs(RampAngleL(:,2)));  %Maximum Pitch 

Angle w/ T-Craft 
            MaxRoll_L(j,i)= max(abs(RampAngleLR(:,2))); %Maximum Roll 

Angle w/ T-Craft 
            J_L(j,i)= a1*MaxPitch_R(j,i) + a2*MaxRoll_R(j,i); %Add 

together the two angles 
            RampAngleR=0; %Set back to zero for next simulation 
            RampAngleRR=0; 
            RampAngleL=0; 
            RampAngleLR=0; 
        end 

  
        if (Joint==3) 
            sim('Simulation_3D_Pitch_Roll_Spring'); 
            MaxPitch_R(j,i)= max(abs(RampAngleR(:,2)));  %Maximum Pitch 

Angle w/ Sea Base 
            MaxRoll_R(j,i)= max(abs(RampAngleRR(:,2))); %Maximum Roll 

Angle w/ Sea Base 
            MaxPitch_L(j,i)= max(abs(RampAngleL(:,2)));  %Maximum Pitch 

Angle w/ T-Craft 
            MaxRoll_L(j,i)= max(abs(RampAngleLR(:,2))); %Maximum Roll 

Angle w/ T-Craft 
            J_L(j,i)= a1*MaxPitch_R(j,i) + a2*MaxRoll_R(j,i); %Add 

together the two angles 
            RampAngleR=0; %Set back to zero for next simulation 
            RampAngleRR=0; 
            RampAngleL=0; 
            RampAngleLR=0; 
        end 

  
        if (Joint==4) 
            sim('Simulation_3D_Pitch_Roll_Yaw_Spring'); 
            MaxPitch_R(j,i)= max(abs(RampAngleR(:,2)));  %Maximum Pitch 

Angle w/ Sea Base 
            MaxRoll_R(j,i)= max(abs(RampAngleRR(:,2))); %Maximum Roll 

Angle w/ Sea Base 
            MaxPitch_L(j,i)= max(abs(RampAngleL(:,2)));  %Maximum Pitch 

Angle w/ T-Craft 
            MaxRoll_L(j,i)= max(abs(RampAngleLR(:,2))); %Maximum Roll 

Angle w/ T-Craft 
            J_L(j,i)= a1*MaxPitch_R(j,i) + a2*MaxRoll_R(j,i); %Add 

together the two angles 
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            RampAngleR=0; %Set back to zero for next simulation 
            RampAngleRR=0; 
            RampAngleL=0; 
            RampAngleLR=0; 
        end 
    end 
end 

  
%PENALTY 
for j=1:n         %VARY RAMP LENGTH 

  
    L_ramp = L_ramp_range(j); %This changes with the iterations 

  
    for i=1:n     %VARY PHI 

  
        phi = phi_range(i); %This changes with the iterations 

  
        P(j,i)=0.004*L_ramp^2; %Quadratic Penalty 

  
    end 
end 

  
%PLOT DATA AND INCLUDE PENALTIES FOR OPTIMIZATION 

  
if (Joint==1) 

  
    %----------------Pitch Only Joint------------------- 
    %Maxmum Pitch Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,J_L); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch Only'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Pitch Angle [deg]'); 
    figure; 
    %-------------Pitch Only Joint with Penalty----------------- 
    phi_range_deg= phi_range*(180/pi); %Convert to deg  
    surf(phi_range_deg,L_ramp_range,J_L); 
    shading flat 
    hold on; 
    mesh(phi_range_deg,L_ramp_range,P); 
    hold on; 
    surf(phi_range_deg,L_ramp_range,P+J_L); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and 

Additional Penalty'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maxmimum Pitch Angle'); 
    legend('Cost Function J(phi,Lramp)','Penalty on Ramp 

Length','J(phi,Lramp)+Penalty for Optimal Length'); 
    figure; 
end 
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if (Joint==2)  

 
    %----------------Pitch and Roll---------------------- 
    %Maxmum Pitch Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,MaxPitch_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Pitch Angle [deg]'); 
    figure; 
    %Maximum Roll Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,MaxRoll_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Roll Angle [deg]'); 
    figure;       
%     %Curve without odd peak at phi= -77 and Lramp=5 
%     %Maxmum Roll Angle Curve 
%     L_ramp_range_mod= linspace(10,40,n-5); 
%     for i=1:25 
%         for j=1:30 
%             MaxRoll_R_new(i,j)= MaxRoll_R(i+5,j); 
%         end 
%     end   
%     surf(phi_range_deg,L_ramp_range_mod,MaxRoll_R_new); 
%     title('Cost Function J(phi,Lramp) for Joint with Pitch and 

Roll'); 
%     xlabel('Phi [deg]') 
%     ylabel('Length of Ramp [m]'); 
%     zlabel('Maximum Roll Angle [deg]'); 
%     figure;   
    %Composite Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,J_L); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Linear Combination of Pitch and Roll Angles [deg]'); 
    figure; 
end 

  
if (Joint==3)  

 
    %-------------Pitch and Roll w/Spring----------------- 
    %Maxmum Pitch Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,MaxPitch_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll w/ 

Spring on Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Pitch Angle [deg]'); 
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    figure; 
    %Maxmum Roll Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,MaxRoll_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll w/ 

Spring on Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Roll Angle [deg]'); 
    figure; 
    %Composite Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,J_L); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch and Roll w/ 

Spring on Roll'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Linear Combination of Pitch and Roll Angles [deg]'); 
    figure; 
end 

  
if (Joint==4)  

 
    %----------------Pitch, Roll, and Yaw------------------ 
    %Maxmum Pitch Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to de 
    surf(phi_range_deg,L_ramp_range,MaxPitch_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch, Roll, and 

Yaw  w/ Spring on Roll and Yaw'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Pitch Angle [deg]'); 
    figure; 
    %Maxmum Roll Angle Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,MaxRoll_R); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch, Roll, and 

Yaw  w/ Spring on Roll and Yaw'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Maximum Roll Angle [deg]'); 
    figure; 
    %Composite Curve 
    phi_range_deg= phi_range*(180/pi); %Convert to deg 
    surf(phi_range_deg,L_ramp_range,J_L); 
    title('Cost Function J(phi,Lramp) for Joint with Pitch, Roll, and 

Yaw  w/ Spring on Roll and Yaw'); 
    xlabel('Phi [deg]') 
    ylabel('Length of Ramp [m]'); 
    zlabel('Linear Combination of Pitch and Roll Angles [deg]'); 
    figure; 

end
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A.6 MATLAB m-file used in Chapter 7 (Multiparameter Extremum Seeking) 

 

 
%-------------Multi-Parameter Extremum Seeking------------------ 
%The following program finds the extremum value of the following 
%map z= 5+(y-2)^2+(x-3)^2 which has a minimum value of z=5 for 
%parameter values of x=3 and y=2  
x=linspace(0,5,100);   y=linspace(0,5,100); 
[X,Y]=meshgrid(x,y); 
Z=5+(Y-2).^2+(X-3).^2; 
surf(X,Y,Z) 
shading interp 
xlabel('x'); 
ylabel('y'); 
zlabel('z'); 
title('Map of z(x,y)= 5+(y-2)^2+(x-3)^2')  
sim MultiParameter_Extremum_Seeking;  
figure; 
plot(ExtremumInput_y(:,1),ExtremumInput_y(:,2)); 
hold on; 
for i=1:length(tout) 
    thetay(i)=2; 
end 
plot(tout,thetay,'r--'); 
xlabel('Simulation Time [t]'); 
ylabel('Value of Input Parameter y'); 
title('Extremum Seeking of Unknown Optimal Input Parameter y for z= 

5+(y-2)^2+(x-3)^2'); 
legend('Extremum Seeking Value','Optimal Value of Parameter y');  
figure; 
plot(ExtremumInput_x(:,1),ExtremumInput_x(:,2)); 
hold on; 
for i=1:length(tout) 
    thetax(i)=3; 
end 
plot(tout,thetax,'r--'); 
xlabel('Simulation Time [t]'); 
ylabel('Value of Input Parameter x'); 
title('Extremum Seeking of Unknown Optimal Input Parameter x for z= 

5+(y-2)^2+(x-3)^2'); 
legend('Extremum Seeking Value','Optimal Value of Parameter x');   
figure; 
plot(ExtremumOutput_z(:,1),ExtremumOutput_z(:,2)); 
hold on; 
for i=1:length(tout) 
    extremum(i)=5; 
end 
plot(tout,extremum,'r--'); 
xlabel('Simulation Time [t]'); 
ylabel('Value of Output z'); 
title('Extremum Seeking of Unknown Minimum of Map z for z= 5+(y-

2)^2+(x-3)^2'); 
legend('Extremum Seeking Value','Extremum of Map'); 
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A.7 SimMechanics Block Diagram (Pitch-Roll-Yaw Joint) 
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