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SUMMARY

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated 

with therapy resistance in multiple cancer types. To gain insight into the underlying molecular 

events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small 

cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using 

human prostate basal cells and identify a shared developmental, arc-like, and entropy-high 

trajectory among all transformation model replicates. Further mapping with single cell resolution 

reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. 

Temporal regulation by groups of transcription factors across developmental stages reveals that 

cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 

feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study 

provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and 

lung cancers, as well as connections to normal neuroendocrine cell states.

Graphical Abstract
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eTOC blurb

Chen et al. use temporal profiling of a small cell neuroendocrine prostate cancer model to 

inform anti-androgen therapy-induced trans-differentiation. An arc-like trajectory common to 

developmental biology is observed, and a bifurcation marked by ASCL1 and ASCL2, with 

parallels to SCLC. TFAP4 is identified as a common regulator of ASCL1 and ASCL2.

Keywords

Neuroendocrine; prostate; cancer; trans-differentiation; ASCL1; ASCL2; TFAP4; stem-like; small 
cell; lineage plasticity

INTRODUCTION

Small cell neuroendocrine (SCN) cancer is an aggressive variant that arises from multiple 

tissues such as the lung and prostate 1,2. SCN is characterized by its histologically defined 

small cell morphology of densely packed cells with scant cytoplasm, poor differentiation, 

and aggressive tumor growth, as well as expression of canonical neuroendocrine markers 

including SYP, CHGA and NCAM1 3. In addition to their phenotypic resemblance, SCN 

cancers across multiple tissues show a striking transcriptional and epigenetic convergence 

in clinically annotated tumors 4,5. This molecular signature convergence is recapitulated by 

our established SCN transformation model that utilizes either normal lung epithelial cells, 

patient-derived benign prostate epithelial or bladder urothelial cells as the cells of origin 6,7.
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Small cell neuroendocrine prostate cancer (SCNPC) occurs either de novo (<1% of 

untreated prostate cancer cases), or through therapy-mediated transversion of castration 

resistant prostate cancer (CRPC) (~20% of the resistance cases). The terminology SCNPC 

is canonical for the prostate cancer field, while the SCN terminology has been adopted 

to reflect the shared pan-tissue aspects of multiple SCN tumors, such as small cell lung 

cancer (SCLC). CRPC is a resistant variant of prostate adenocarcinoma (PRAD), which 

often responds to androgen deprivation therapy 8,9. Trans-differentiation from PRAD to the 

SCNPC state entails complicated epigenetic reprogramming at the chromatin level, resulting 

in transcriptional changes driven by a number of key master regulators 10,11. For example, 

methylation modulated by EZH2 and activation of transcriptional programs by SOX2 are 

required in TP53 and RB1 loss-mediated neuroendocrine differentiation in mouse transgenic 

models of SCNPC 12,13. Oncogenic mutation of FOXA1 potentiate pioneering activity and 

differentiation status of prostate cancer 14,15. Lastly, knockdown of transcription factors such 

as ONECUT2 has been shown to inhibit SCN differentiation 16,17. While the importance of 

these factors has been demonstrated, the chronological sequence of the associated epigenetic 

and transcriptional changes remains uncharacterized during the progression to SCNPC. 

Examination of the temporal evolution of lung cancer revealed a connection between 

transcription factor defined subtypes and cell plasticity 18,19. In our study, we sought to 

answer the following questions: 1) when do SCN-associated transcription factors emerge 

during SCNPC progression, 2) how do they coordinate SCN differentiation, and 3) can we 

identify a transition state defined by transcription factors that can be targeted?

Leveraging our previously developed human pan-small cell neuroendocrine cancer 

model, the PARCB forward genetics transformation model (driven by knockdown of 

RB1, alongside exogenous expression of dominant negative TP53, cMYC, BCL2 and 

myristoylated AKT1 via three lentiviral vectors) 6,7, tumor samples were harvested at 

different time points for multi-omics analyses. The transcriptional and epigenetic status 

of each time point was determined using integrative bulk RNA sequencing, ATAC 

sequencing, and single cell RNA sequencing. This longitudinal study provides insight 

into the temporal evolution of the epigenetic and transcriptional landscape during trans-

differentiation and small cell cancer progression. We found consistent transcriptional 

patterns and differentiation trajectories across samples generated from independent patient 

tissues, as well as a bifurcation of end-stage neuroendocrine lineages, defined by ASCL1 

and ASCL2 and their associated programs.

Achates-scute complex (AS-C) proteins are basic helix-loop-helix (bHLH) transcription 

factors, first identified in Drosophila Melanogaster 20. They are important in the 

development of peripheral nervous systems and sensory organs 21. Mammalian ASCL1 is a 

well-known neuroendocrine transcription factor in small cell cancers 22–24. Independently, 

ASCL2 is involved in embryonic development, colorectal stem cell biology and cancer 
25–30. ASCL2 is largely understudied in SCNPC, mainly shown to be co-expressed with 

POU2F3 in non-neuroendocrine cell populations 5,31. Here, our study reveals temporal 

transcriptional patterns during small cell neuroendocrine differentiation in prostate cancer 

and associated lineage programs governed by general mutually exclusivity between ASCL1 

and ASCL2. Follow-up analysis elucidated a transcriptional network circuity between 
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ASCL1, ASCL2, and the transcription factor TFAP4 which was implicated by the trajectory 

data.

RESULTS

Temporal gene expression programs of the PARCB transformation model reveal SCNPC 
trans-differentiation pathways

To determine the timing of SCN differentiation events during prostate cancer development, 

we utilized the PARCB model system 6. Independent transformations were performed 

on basal cells extracted from benign regions of epithelial tissue from 10 prostate 

adenocarcinoma patients. Basal cells were transformed by the oncogenic lentiviral PARCB 

cocktail and subsequently cultured in an organoid system in vitro6. Transformed organoid-

expanded cells from each patient tissue sample were subcutaneously implanted into 

multiple immunocompromised mice to allow for time-course collection of tumors from 

the matched starting material (Figure 1A). The tumors were collected at approximately 

two-week intervals until reaching 1 cm3 in size or occurrence of ulceration, whichever 

came first. The transformed tumor cells were triply fluorescent due to the lentiviral 

integration6, which allowed for cancer cell purification by fluorescence-activated cell 

sorting (FACS) followed by multi-omics sequencing and analysis (Figure 1A). Each patient 

series (P1-P10) contains five to six time point samples ranging from basal cells (TP1) 

to organoids (TP2) to tumors (TP3-TP5/TP6) (Figure 1A). Upon histological examination 

of the tumor issues by pathologists, we found that the time course tumors transitioned 

from squamous, to adenocarcinoma, then to mixed and eventually SCN phenotypes (Figure 

1A and Figure S1A–C). Furthermore, clinically defined neuroendocrine markers, including 

SYP and NCAM1, emerge during the transition to late stages of the tumor progression 

(Figure 1A). The basal cell marker p63 were only positive in early-stage tumors by 

immunohistochemistry (IHC) staining (Figure S1D).

We first performed a temporal analysis of gene expression using bulk RNA sequencing to 

understand the changes in the transcriptional landscape during SCNPC trans-differentiation. 

By projection of PARCB samples onto principal component analysis (PCA) of clinical 

lung and prostate cancer tumor samples4,10,32–36, we validated that PARCB time course 

samples follow the transcriptionally defined convergence trajectory from adenocarcinoma 

to SCN states (Figure 1B and Figure S1E). Additional SCNPC associated factors including 

ASCL1 and NEUROD1 were also elevated during the progression (Figure 1C). The mRNA 

of androgen receptor (AR) was expressed in tumors at the early stage (Figure 1C), but 

the protein level was not detectable by immunostaining (Figure S1D). Taken together, the 

histological and omics data indicate that PARCB time course tumors recapitulate both the 

phenotypic and transcriptional changes observed in the clinic and provide a model system 

for studying the temporal evolution of SCNPC development.

To determine the transformation trajectories among the time course series generated from 

the 10 independent patient samples (P1-P10), we performed clustering and PCA of the 

transcriptomic data. To account for potential asynchronous development among each patient 

series and each individual tumor, we defined hierarchical clusters (HCs) of samples by 

their corresponding differential gene modules and found the resulting 6 clusters (HC1-6) to 
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generally correspond with the time of collection (Figure 1D and Table S1A). This provides 

a clustering-based trans-differentiation reference frame and informs our subsequent multi-

omics analyses. Unsupervised PCA demonstrates that the individual transformation paths of 

each series follow a generally consistent “arc-like” trajectory with a discernable bifurcation 

in late-stage samples (Figure 1E, Figure S1E–F and Table S1B). The late tumors were 

hence further defined as “Class I” and “Class II” tumors with correspondent HC5 and HC6 

gene modules, respectively. HC2 to HC6 had elevated SCNPC signature scores compared 

to adenocarcinoma signature score (Figure S1G). This last finding supports the existence of 

two transcriptional programs or end points defining the terminal SCNPC tumor phenotypes.

Gene ontology enrichment analysis of the corresponding 6 differential gene modules 

identified biological processes enriched uniquely or shared among HCs, including 

Inflammatory response (HC1 and HC3, patient derived basal cells and early tumors, 

respectively), cell proliferation (HC2, in vitro organoids), epidermis development (HC3, 

early tumors), cell activation (HC4, transitional tumors), stem cell differentiation (HC5, 

Class I late tumors) and neuro-/chemical synapse (HC5 and HC6, both classes of late 

tumors) (Figure 1E and Table S1C). The transcriptome evolution supports the idea that 

trans-differentiation from adenocarcinoma to the SCN state is a systematically coordinated 

process, that involves a transitional stage followed by bifurcated pathways enriched in 

neuronal/neuroendocrine gene signatures.

Sequential transcription regulators modulate reprogramming and neuroendocrine 
programs through a highly entropic and accessible chromatin state

Temporal analyses on single transcription factor defined subtypes of small cell lung 

cancer (SCLC) models have delineated lineage plasticity in the development of lung 

neuroendocrine tumors 18. We sought to define the transcriptional evolution in SCNPC 

through an extensive survey of over 1600 transcription factors 37 by chromatin accessibility 

analyses using ATAC sequencing 38. A significant increase in overall accessible chromatin 

peaks across chromosomes is observed starting at the tumors at transitional stage (HC4) to 

late stages (HC5 and HC6) (Figure 2A). Unsupervised PCA using ATAC-sequencing data 

showed an arc-like and bifurcated trajectory consistent with the pattern observed using the 

RNA-sequencing data (Figure 1D and 2B). The Shannon entropy has been used to estimate 

the plasticity potential of a biological sample to change cellular state 39,40. We found that 

transitional samples (HC4) have the highest entropy (Figure 2B), suggesting there exists 

a high potential and less well-defined transcriptional state during the trans-differentiation 

process.

To identify transcription factors that recognize the chromatin accessible regions at each 

stage of the transformation trajectory, we first looked at the overall accessibility near 

the transcription start sites (TSS) (Figure 2C). Transitional samples (HC4) have a strong 

increase in the accessible peaks as estimated by Shannon entropy calculations (Figure 2B 

and 2C), consistent with the gene-expression-based entropy calculations (Figure S2A). Next, 

motif enrichment analysis was performed on the accessible peaks from each HCs in a “one 

versus the rest” fashion. Since transcription factors from the same family share similar 

motifs and are deposited into a variety of databases, we used a pipeline that applies an 
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ensemble of existing computational tools and suites of motifs (de novo and known) 41 

(Figure 2D and Table S1D). Motif enrichment analysis implicated that 1) representative 

stress-responsive factors such as NFkB, JUN, ATF and STAT proteins were active from early 

to transition stage (HC1-4), 2) reprogramming factors such as POU/OCT and SOX families 

were active in Class I (HC5) tumors, and 3) neuronal/neural factors including ASCL and 

NEUROD family proteins were found at the later stage in Class II (HC6) tumors (Figure 

2D). Due to ASCL1, ASCL2 and other bHLH factors sharing the same E-box motif, and 

the stringent “one HC versus the rest” differential accessibility analysis, the motif suite 

containing ASCL1 and ASCL2 factors is highly enriched and ranked in HC6 compared to 

HC5 (Figure 2D). Nonetheless, when HC6 is left out of the analysis, HC5 does demonstrate 

strong enrichment for the motif suite containing ASCL1 and ASCL2 factors, compared to 

HC1-4. (Figure S2B). The enrichment of stem-like and neuroendocrine programs in HC4-5 

and HC6, respectively, was further confirmed by signature scores derived from the literature 
33,42 (Figure S2C). This analysis provides a view of the overall transcriptional shift of the 

chromatin accessibility during trans-differentiation.

To determine whether expression of the transcription factors corresponds to their inferred 

activity from the motif enrichment analysis, we summarized the top ranked transcription 

factors (based on PC1, PC2 and PC3 loadings) across the transformation stages (HC1-

HC6) (Figure 2E and Figure S2D, Table S1E) from the perspective of the PCA-based 

transformation trajectory (Figure 1E and Figure S1F). Overall, we observed that 1) AR 
mRNA expression is lost during progression towards late-stage tumors, 2) FOXA1, a 

known transcription factor of SCNPC 14,15, is shown to emerge at the early-transition 

stage, and 3) well-known neuroendocrine transcription factors such as ASCL1, NEUROD1, 

ONECUT2, SOX2, INSM1 and FOXA2 were increased towards the late stage (Figure 

2E and Figure S2D)43–45. This analysis also revealed additional candidate stage-specific 

transcription factors that are largely understudied in SCNPC, such as LTF, ESR1, ZIC2 and 

TBX10 (Figure 2E). ASCL1 and ASCL2 expression were elevated in the late tumor stages 

(Figure 1C and Figure 2E–F). Notably, their expression was enriched in separate tumor 

endpoints (HC5: ASCL2+ and HC6: ASCL1+), supporting their probable contribution to the 

bifurcated trajectories (Figure 2E–F and Figure S2D).

Transcription factor-defined cell populations contribute to lineage divergence and tumor 
heterogeneity

To determine the degree of heterogeneity within the time course tumors, we performed 

single cell RNA sequencing on four time-defined serial tumor sets: P2, P5, P7 and P8 

(TP3-TP6) (Figure 3A). Dimension reduction analysis (Uniform Manifold Approximation 

and Projection, UMAP) was used to visualize the overall distribution of cell populations 

at each time point of SCNPC development (Figure 3A–B and Figure S3A). Overall, a 

lineage differentiation from basal (KRT5+) to luminal (KRT18+) was observed from early 

to late tumors (Figure 3B–C). YAP1, whose expression defines a non-neuroendocrine SCLC 

subtype 46 and whose high expression is frequently seen in CRPC-PRAD but not SCNPC 47, 

is enriched in the early tumor cell populations (Figure 3B–C).
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To understand the association of known SCN transcription factors in contributing to intra-

tumoral heterogeneity, we first assigned a SCNPC score 33 to each cell (Figure S3B). 

Despite the high SCNPC scores across populations of single cells, the number of NEUROD1 
and/or ONECUT2 positive cells is very low, while deeper single cell sequencing depth 

would be required to fully investigate this result (Figure 3C and Figure S3B). Other 

well-known neuroendocrine transcription factors such as ASCL1, INSM1 and FOXA2 are 

enriched in the same cell cluster with high SCNPC score (Figure 3C and Figure S3B). 

However, in another cell cluster, ASCL2, POU2F3 and SOX9 were co-expressed with a 

medium level of SCNPC score (Figure 3C and Figure S3B). The general mutual exclusivity 

of ASCL1 and ASCL2 in single cells further supports ASCL1 and ASCL2 contributing 

to the bifurcated endpoint trajectories observed in the bulk tumors (Figure 3C and Figure 

S3C–D).

Single cell datasets available as reference from longitudinal clinical samples in advanced 

prostate cancer are rare, thus a cell type inference analysis using reference pure cell types 

was applied to infer the identity of individual cells in PARCB tumors 48. Five out of a total 

of 36 reference cell types from the Human Primary Cell Database were highly enriched 

in the PARCB time course tumor samples (Figure 3D). All tumor cells share a similar 

transcriptome as epithelial cells (Figure 3D). Particularly, a majority of tumor cells (other 

than early stage cells) exhibit stem-like gene expression patterns reflective of embryonic 

stem cells and induced pluripotent stem cells, indicative of a de-differentiation shift during 

SCNPC development and trans-differentiation (Figure 3D). Additionally, later-stage cells 

expressing either ASCL1 or ASCL2 had neuronal-like gene expression profiles, confirming 

the emergence of SCN differentiation (Figure 3B–D).

Single cell analysis supports the overall gene expression and chromatin accessibility patterns 

observed in bulk tumors. Projection of single cells onto the PCA framework generated 

from bulk RNA-sequencing samples (Figure 1E and Figure S1F) demonstrated that tumors 

clustering distinctly by bulk RNA-sequencing indeed consist primarily of single cells in 

the corresponding different transcriptional states, with some degree of heterogeneity (Figure 

3E). Furthermore, transcription factors with high expression in tumors defined by bulk 

RNA-sequencing analysis (Figure 2E) show heterogenous patterns among single cells 

(Figure S3E). Tumors at transitional stage (HC4) and late stage (HC5) have the highest 

degree of gene fluctuation, further highlighting a potential role for increased intratumoral 

heterogeneity during the trans-differentiation process (Figure S3E). Importantly, we further 

validated the mutually exclusive expression pattern of ASCL1 and ASCL2 in multiple 

clinical and GEMM single cell RNA-sequencing datasets31,49–51. This analysis confirmed 

that ASCL2 is generally enriched in non-NE cells/adenocarcinoma and ASCL1 is more 

abundant in high NE cells/SCNPC clinically (Figure 3F), consistent with the PARCB 

temporal study (Figure S3F). ASCL1 and ASCL2 double-positive cells are observed at a 

low frequency, primarily in SCNPC tumors, and may reflect a transitional state between 

adenocarcinoma and SCN phenotypes (Figure 3F).
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ASCL1 and ASCL2 specify independent transcriptional programs and sub-lineages in 
SCNPC

Given that ASCL1 and ASCL2 expression levels are mutually exclusive in single cells, 

we asked whether ASCL1 and ASCL2 represent separate cellular sub-lineages by inferred 

clonal tracing analyses52. With KRT5 (basal marker) set as the beginning of the tracing, 

the inferred tracing results in three primary lineage branches/states (Figure 4A). As 

hypothesized, single cells expressing either ASCL1 or ASCL2 are enriched in different 

lineage branches (Figure 4A–B). This result is further supported by a different analytic tool 

(RNA velocity) that measures the temporal ratio of un-spliced to spliced mRNAs to infer 

lineage trajectory 53 (Figure S4A). The inferred clonal tracing results complemented the 

real-time-based analysis visualized as the total composition of ASCL1- or ASCL2-positive, 

double positive and negative populations over time (Figure 4C), supporting that ASCL1 

and ASCL2 are associated with independent sub-lineages. Double-positive cells are very 

infrequent in the PARCB temporal tumors. The double-positive population observed in the 

P2-TP5 tumor may capture the cells undergoing the transitional state (Figure 4C), and the 

overall low double-positive frequency is consistent with the clinical results above (Figure 

3F).

To further characterize the transcriptional difference between cells expressing a high level 

of ASCL1 or ASCL2, we analyzed their differential gene expression profiles (Figure 4D 

and Table S1F). Genes that are involved in synaptic and neuroendocrine regulation such as 

DDC, CACNA1A and INSM1 are enriched in ASCL1+ cells. ASCL2+ cells express genes 

with stem-like characteristics such as SOX9 and POU2F3 (Figure 4D). SOX9 is directly 

regulated by ASCL2 in intestinal stem cells 29, suggesting a possible contribution to stem-

like properties in SCNPC trans-differentiation. Upon further investigation, we observed that 

genes implicated in the intestinal stem cell program such as EPBH3 and TNFRSF9 29 are 

positively correlated with ASCL2, but not ASCL1 (Figure S4B). In contrast, a well-known 

intestinal stem cell marker, LGR5 54, has no correlation with either ASCL1 or ASCL2, 

consistent with it having a more tissue specific intestinal role (Figure S4B).

To identify the transcriptional programs that are associated with either ASCL1 or ASCL2 in 

prostate cancer, we constructed an inferred network 55 using multiple bulk RNA sequencing 

prostate cancer and model datasets including The Cancer Genome Atlas (TCGA), additional 

patient tumor (Beltran), and SCNPC model (Park) datasets 6,33. The analysis identified 

336 and 352 genes regulated independently by ASCL1 or ASCL2 (Figure 4E and Table 

S1G). Strikingly, there are only 5 genes from the inference analysis that are regulated by 

both factors: TMEM74, RGS16, LHFPL4, CDCA7L and SOX2 (Figure 4E). This result is 

consistent with the demonstrated role of SOX2 in regulating neuroendocrine differentiation 

in null TP53 and RB1 backgrounds 13, hence showing that SOX2 is involved in both 

ASCL1 and ASCL2 associated neuroendocrine sub-lineages. Genes that are regulated by 

ASCL1 are enriched in neuroendocrine differentiation markers and factors such as SYP, 

CHGA, NCAM1, and NEUROD1 (Figure 4E). ASCL2 is associated with genes including 

PTGS1/COX1, POU2F3, ANXA1 which are generally immune and stress responsive, and 

stem-like (Figure 4D–E). We further confirmed that PARCB tumor-derived cell lines from 

different tissues of origin (prostate, bladder, and lung) all have only one or the other 
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gene expression patterns associated with either ASCL1 or ASCL2 expression (Figure 4F 

and Figure S4C). We next validated the predicted transcriptional programs of ASCL1 and 

ASCL2 by exogenously expressing either ASCL1 or ASCL2 in ASCL2+ or ASCL1+ cell 

lines, respectively. ASCL1 exogenous expression in ASCL2+ cells, increased the ASCL1 

transcriptional program as indicated by increased signature score (Figure S4D). However, 

ASCL2 exogenous expression in ASCL1+ cells, did not have notable effect, suggesting that 

the ASCL1 endpoint state has higher stability (Figure S4D).

In situ hybridization of ASCL1 and ASCL2 mRNA in the transitional PARCB tumor 

samples further confirmed the mutually exclusive expression pattern (Figure 4G). The 

staining patterns demonstrated both ASCL1 and ASCL2 mixed populations (left, Figure 

4G), as well as patch regions potentially resulting from local clonal expansion (right, Figure 

4G) of ASCL1+ or ASCL2+ cells. Our combined results support that ASCL1 and ASCL2 

define independent cellular sub-lineages and transcriptional programs with stem-like and 

neuroendocrine enrichment in SCNPC.

ASCL1 and ASCL2 as pan-cancer classifiers

Clinical subtypes are fairly well-defined in SCLC 46,56, but molecular subtyping remains an 

evolving challenge in SCNPC 8. By performing projection analysis of our samples onto a 

gene expression or chromatin accessibility PCA framework defined by the Tang et al. dataset 

of patient metastatic CRPC phenotypes57, we found that PARCB temporal samples share 

similar transcriptome and epigenome signatures, including a shared stem-cell like (SCL) 

group and a shared NEPC group (Figure 5A).

Given the high degrees of similarity in transcriptional profiles of SCLC and SCNPC 4, we 

compared our HC classification of the PARCB time course samples to the SCLC clinical 

subtypes: ASCL1 (A), NEUROD1 (N), POU2F3 (P) and YAP1 (Y) (Figure 5B) 32,46. The 

class I/ASCL2+ (HC5) tumor group shares transcriptome similarity with SCLC-P (Figure 

5B), which is consistent with the co-expression pattern of ASCL2 and POU2F3 observed 

in multiple analyses (Figure 3C and 4D). Likewise, and concordant, the Class II/ASCL1+ 

(HC6) tumor group is transcriptionally aligned to SCLC-A (Figure 5B).

To investigate whether the ASCL1 and ASCL2 sub-classes from PARCB temporal study 

recapitulate patterns observed in clinical samples of prostate cancer, we compared ASCL1 
and ASCL2 expression in PARCB temporal samples versus numerous clinical profiling 

datasets10,33–36. The results demonstrate that the expression levels of ASCL1 and ASCL2 
are comparable between the PARCB model and clinical samples, and the transcriptional 

patterns of HC1 to HC6 generally corresponded with the transition from PRAD/CRPC-

PRAD to SCNPC (Figure 5C). We further confirmed the general mutual exclusivity and low 

double positivity of ASCL1/2 expression using an RNA in situ hybridization assay on both 

CRPC-PRAD and SCNPC clinical samples and CRPC PDX models (Figure 5D and Figure 

S5A–B).

By comparing the expression levels of ASCL1 and ASCL2 across a broad panel of pan-

cancer cell lines, we found that almost all cancers, apart from lung cancers, can be divided 

into three categories (i) demonstrating expression of ASCL1 (neuroblastoma), (ii) of ASCL2 
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(colorectal and breast cancers), and (iii) double negative (other cancers) (Figure 5E). Only 

SCLC and other lung cancer cell lines have mixed levels of ASCL1 and ASCL2. Combined 

with our results, this suggests a potential role for ASCL2 and POU2F3 in specifying 

intermediate, and/or heterogenous states in (small cell) lung cancer (Figure 5E). Protein 

expression analysis in lung squamous carcinoma (NCI-H1385), SCLC-A (NCI-H1385, 

NCI-H146 and DMS79), SCLC-P (NCI-H526 and COR-L311) and SCNPC (NCI-H660) 

cell lines further highlighted a mutually exclusive pattern of ASCL1 and ASCL2 (Figure 

S5C). SCLC-N (NCI-H1694) is double negative for ASCL1 and ASCL2 and positive for 

NEUROD1 as expected (Figure S5C). Last but not the least, in patient tumor pan-cancer 

data, the exclusive expression of either ASCL1 or ASCL2 is again observed, highlighting 

that binary distinctions defined by ASCL1 and ASCL2 occur across multiple tissue types 

(Figure 5F). In sum, an inverse and generally mutually exclusive relationship between 

ASCL1 and ASCL2 is observed in multiple and pan-cancer contexts, and mutual exclusivity 

is strongly observed at the single cell level.

Alternating ASCL1 and ASCL2 expression through reciprocal interaction and TFAP4 
epigenetic regulation

With the evidence that ASCL1 or ASCL2 expression levels are mutually exclusive in single 

cells during SCNPC trans-differentiation, we explored two hypotheses: 1) These two factors 

mutually regulate each other’s expression, or 2) they share a common upstream transcription 

factor that alternates their transcription through regulated differential binding to respective 

gene regulatory elements. To test the first hypothesis, we expressed V5-tagged ASCL2 in 

multiple PARCB tumor derived cell lines (lung and prostate) and observed that ASCL1 

protein expression was significantly suppressed in these cells (Figure 6A). In contrast, 

expression of V5-tagged ASCL1 increased ASCL2 expressions both at protein and mRNA 

levels (Figure 6A and Figure S6A). Thus in our model cells, ASCL1 and ASCL2 mutually 

regulate each other at the protein level, but each in the opposite manner.

To test the second hypothesis of a common regulator, known promoter and enhancer regions 

of ASCL1 and ASCL2 were first annotated in the PARCB time course ATAC-sequencing 

data (Figure 6B). An opposing pattern of open and closed chromatin formation is found 

on both the ASCL1 promoter and the ASCL2 enhancer regions (Figure 6B). A rank 

list of transcription factors that have matching motifs in the regions was generated to 

determine potential shared regulators 58 (Figure 6C and Table S1H). An extensive literature 

search of all the factors whose motifs were found in both ASCL1 and ASCL2 regulatory 

regions revealed that TFAP4 was reported to form different transcription complex to either 

activate or repress target genes, including facilitating epithelial-to-mesenchymal transition in 

colorectal cancer and repressing neuronal programs in non-neuronal cells 59,60. The TFAP4 

motif was shared in both the ASCL1 promoter (ranked 2nd) and the ASCL2 enhancer 

region (ranked 6th) in the top 8 list of shared transcription factor motifs (Figure 6C), and is 

expressed across all the SCLC, SCNPC and PARCB tumor derived cell lines tested (Figure 

S5C and S6B). Interestingly, NCI-H1385, a lung squamous carcinoma (non-small cell) cell 

line, has lower TFAP4 expression compared to other small cell neuroendocrine cell lines 

(Figure S5C).
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The direct differential binding of TFAP4 to the ASCL1 promoter and the ASCL2 enhancer 

region was confirmed by the CUT&RUN technique 61, a chromatin immunoprecipitation 

experiment using TFAP4 antibody in both ASCL1+ and ASCL2+ PARCB tumor derived 

cell lines. Despite cell lines having various degrees of TFAP4 binding signals due to 

potential mixed cell clones within the cell lines, TFAP4 was found to have higher binding 

affinity near the ASCL1 promoter in ASCL1+ cell lines (P7-TP6) than ASCL2+ cell lines 

(P2-TP6 and T3-TP5) (Figure S6C). In contrast, TFAP4 consistently bound to ASCL2 
enhancer regions in ASCL2+ cell lines compared to ASCL1+ cell line (Figure S6C). This 

result supports that TFAP4 potentially regulates transcription of ASCL1 and ASCL2 in a 

context-specific manner.

To determine whether TFAP4 directly regulates the expression of ASCL1 and ASCL2, we 

introduced a doxycycline-inducible CRISPR sgRNA targeting TFAP4 in multiple ASCL1+ 

and ASCL2+ cell lines, including PARCB tumor-derived cell lines and the patient-derived 

cell line NCI-H660. Both ASCL1 and ASCL2 expression decreased, with various strength, 

after TFAP4 knockout was induced by the addition of doxycycline in the respective cell 

lines (Figure 6F and Figure S6D). However, other lineage associated proteins did not 

change (Figure 6F and Figure S6D). Cell growth assays showed a mild decrease in P7-TP6 

(ASCL1+) cell growth, and in contrast a drastic increase in P3-TP5 (ASCL2+) growth upon 

the knockout of TFAP4 (Figure 6E). To explore the clinical relevance of TFAP4 in cancer 

and SCNPC, we surveyed the expression of TFAP4 across subtypes of cancers compared 

to normal tissue. There is a substantial increase in TFAP4 expression in small cell cancers 

compared to adenocarcinoma, and compared to normal tissue, in both prostate and lung 

cancer indications (Figure 6F), as well as in pan cancer tumors (TCGA) vs. normal tissue 

(GTEx) (Figure S6E).

Thus in our transcriptional regulatory circuit studies, we found a reciprocal, non-symmetric 

regulatory relationship between ASCL1 and ASCL2; and that within this circuit, ASCL1 

and ASCL2 have a shared positive regulatory factor, TFAP4. In the sum of our studies, the 

PARCB model provided a blueprint of SCNPC trans-differentiation as specified by temporal 

transcription factors (Figure 6G). In particular, ASCL1 and ASCL2 define distinct bifurcated 

sub-lineage trans-differentiation trajectories in small cell cancers, and binary transcriptional 

profiles in a pan-cancer context.

DISCUSSION

SCNPC has a rare de novo presentation, however, trans-differentiation from prostate 

adenocarcinoma to SCN cancer is a frequent adverse consequence of cancer cells acquiring 

resistance to therapeutics repressing AR signaling 8,9. In a pan-cancer context, therapy-

induced trans-differentiation from adenocarcinoma to SCN cancer is a growing clinical 

challenge in lung cancer with the expansion of effective targeted therapies, such as EGFR, 

ALK, BRAF, KRAS inhibitors 62. Genetically engineered mouse models of SCNPC and 

SCLC have been generated to provide insight into the tumorigenesis of SCN cancers 
12,18,31,43,63,64, with some models demonstrating evidence of the adenocarcinoma to SCN 

cancer transition 13,31,65,66. Patient tumor-derived organoids and circulating tumor cells 

have also provided models for monitoring differentiation state transitions 50,67, including 
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reversion to non-SCN states via specific signaling inhibition 50. Our PARCB froward 

genetics in vivo temporal transformation model further adds to these resources by being 

human cell-based, recapitulating the adenocarcinoma to SCN phenotype trans-differentiation 

at both the histological and molecular signature levels, and providing the temporal resolution 

to reveal an arc-like plasticity trajectory and associated stem cell-like (reprogrammed) 

intermediate states. A limitation of the PARCB model is that inhibition of the AR axis 

is not an initiating component of the trans-differentiation process.

Such an arc-like trajectory is commonly observed in unbiased profiling of development and 

differentiation processes, including in cancer contexts 39,68–74. The pattern is reminiscent 

of temporal regulation in development, with the differentiation transition stage promoted by 

temporally regulated epigenetic and transcriptomic plasticity programs 75–77.

The transcription profiles of the transition stage from adenocarcinoma to SCNPC provide 

evidence for an initial de-differentiation or reprogramming step when cells enter the trans-

differentiation process, with enrichment of stem cell and iPSC programs. Furthermore, 

we find samples in the transitional state have a higher degree of entropy at both the 

epigenetic and gene expression level. Our findings are in concordance with a recent study 

in an adenocarcinoma lung cancer mouse model where a highly plastic intermediate state 

was seen as cells transitioned from lung hyperplasia to adenocarcinoma 19, and with 

past observations of increased entropy proceeding differentiation processes 39. Together 

these findings support the idea that de-differentiation, and epigenetic loosening and/or 

cellular heterogeneity are prerequisites for further lineage trans-differentiation during cancer 

evolution.

At the end-stages, the trans-differentiation trajectory demonstrates a bifurcation, resulting 

in two neuroendocrine states, one characterized by ASCL2 and POU2F3 expression 

(Class I tumors), the other by ASCL1 expression (class II tumors). Throughout the trans-

differentiation trajectory, individual cells demonstrate mutually exclusive expression of 

either ASCL1 or ASCL2, with emergence of ASCL2 generally earlier and more prominent 

than ASCL1. Thus, the ASCL2 state and double positive state may reflect a semi-stable and 

transitional state. The molecular switch from ASCL2 to ASCL1 demonstrates the dynamic 

transcriptional control in SCNPC. An analogous temporal shift from FOXA1 to FOXA2 

orchestrated transcriptional programs was observed in an independent SCNPC temporal 

GEMM model 43, and the FOXA1 to FOXA2 transition is reflected in the PARCB model 

(Figure S2D).

SCLC tumor subtypes are canonically defined by the predominant expression of one of 

four master regulators (ASCL1, NEUROD1, POU2F3, and YAP1) 46, and tumors expressing 

ASCL1 have been reported in therapy induced SCNPC 5,51. Nevertheless, single cell data 

from mouse models of SCNPC have identified both a distinct cell subpopulation with 

co-expression and open chromatin accessibility of ASCL2 and POU2F3 motifs 31, and a 

POU2F3 expression-dominant cell subpopulation 50. Upon close examination of clinical 

prostate cancer expression datasets 31,49–51, and upon performing RNA hybridization studies 

of prostate tumor histology sections, we found that ASCL2+ cells are common in castration-

resistant and therapy-exposed prostate cancers. Thus, the previous reports combined with 
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our findings support a potential cancer physiology role for the ASCL2/POU2F3 subtype 

in prostate cancer trans-differentiation. In parallel, NEUROD1, a marker of a previously 

defined prostate (and SCLC) cancer subtype 5,46 has relatively low expression in the PARCB 

temporal study. However, a NEUROD1-expressing cell cluster is situated between the 

ASCL1 and ASCL2 cell clusters in the lineage analysis, suggesting a potential facilitating 

role in lineage bifurcation and trans-differentiation.

Prior links between master regulators POU2F3 and ASCL2 have previously been reported, 

such as a unique dependency on ASCL2 in the POU2F3 subtype of SCLC cell lines 78. 

Whether ASCL2 and POU2F3 regulate highly overlapping transcriptional targets remains 

to be determined. One potential mechanism is through the co-activation of E-box and 

octamer DNA binding by ASCL2 and POU2F3, respectively. This interaction mechanism 

was observed previously between ASCL1 and POU3F2 (BRN2) in neurogenesis 79. Further 

work will help answer if ASCL2 facilitates the transitional stage and/or is a more default 

program during the de-differentiated transition stage.

Despite sharing similar nomenclature and pro-neuronal properties in the literature 20, 

ASCL1 and ASCL2 are known to play different roles in stem cell, lineage, and cancer 

biology 22,29. ASCL1 is a prominent driver for neuroendocrine differentiation in normal 

cells 22. However, recent cancer studies have shown that ASCL1 contributes to high lineage 

plasticity, resulting in subtype changes via remodeling of the global epigenetic state 18,24. 

The role of ASCL2 requires further investigation to determine its balance of compensatory 

and competitive characteristics in regard to ASCL1 function in small cell neuroendocrine 

cancers. In our mechanistic studies, we found that increased ASCL1 leads to increased 

ASCL2 expression, whereas ASCL2 suppresses ASCL1 expression using PARCB tumor-

derived cell lines from multiple tissues of origin (prostate and lung). This leads to a future 

testable hypothesis on whether existence or absence of ASCL2 is required to arrive at an 

ASCL1-positive neuroendocrine state via trans-differentiation.

A dynamic lineage plasticity among subtypes of SCLC has been reported 18. However, 

the triggers and mechanisms underlying cancer cells switching to different lineages remain 

elusive. In SCNPC, beyond our discovery of the reciprocal regulation between ASCL1 

and ASCL2, our results identified TFAP4 as an additional candidate member of this 

transcriptional circuitry. In particular, TFAP4 can alternate the expression of ASCL1 
and ASCL2 by differential binding to cis regulatory elements on both genes. TFAP4 

has been shown to have both activating and repressing properties in gene regulation 

through interactions with distinct transcription factors 59,60. TFAP4 demonstrates substantial 

increased expression in small cell vs. non-small cell cancers and is elevated in cancers 

compared to normal tissue. Future mechanistic and functional studies on TFAP4 will help 

clarify its master regulator role in lineage trans-differentiation in SCNPC and SCLC.

In clinical therapy, different forms of tumor plasticity define the battle grounds for acquired 

resistance. In the primary prostate cancer setting, the vast majority of prostate cancers 

are adenocarcinomas while all other histologic types are rare. In the castration-resistant 

setting, especially with the clinical introduction of next-generation anti-AR therapies, many 

different variant histology has been observed, including rare cases of squamous carcinoma80. 
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In this combat, trans-differentiation to a small cell neuroendocrine state in response to 

otherwise effective molecular therapies is an emerging challenge across multiple cancer 

types. The temporal profiling of SCNPC development in the human cell based PARCB 

model revealed that trans-differentiation from an adenocarcinoma to neuroendocrine state is 

a temporally complicated, yet systematically coordinated process. The combination of bulk 

and single cell profiling approaches allowed for the identification of an arc-like trajectory 

and a transitory period characterized by epigenetic loosening, which are shared in general 

by other differentiation and development processes. Consistent with genetically engineered 

mouse SCNPC models, and with the multiple subtypes of SCLC, we find a role for both 

ASCL1 and ASCL2/POU2F3 in trans-differentiation to SCNPC. The results from our model 

have provided insight into the regulatory crosstalk between different neuroendocrine master 

regulators and provide a resource for identifying candidate approaches for blocking this 

clinically challenging case of trans-differentiation.

STAR METHODS TEXT

REOURCE AVAILABILIY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Thomas Graeber 

(TGraber@mednet.ucla.edu).

Material availability—All material generated in this study including plasmids and cell 

lines is available from the lead contact upon request with appropriate material transfer 

agreements.

Date and code availability

• Bulk RNA-sequencing data, bulk ATAC-sequencing data, single cell RNA-

sequencing data and ChIP-seq (CUT&RUN) data have been deposited at 

dbGAP (phs003230.v1). In addition, the gene expression counts of Bulk RNA-

sequencing and single cell RNA-sequencing data have been deposited at GEO 

(GSE240058). Accession numbers are also listed in the key resources table.

• This paper does not report any original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

PARCB transformation temporal model—Prostate tissues from donors were provided 

in a de-identified manner and therefore exempt from Institutional Review Board (IRB) 

approval. Processing of human tissue, isolation of basal cells, organoid transformation, 

and xenograft assay were described in detail previously 6. 20,000 cells FACS-sorted cells 

per organoid were plated in 18–20ul of growth factor-reduced Matrigel (Cat# 356234, 

Corning) with PARCB lentiviruses (MOI=50/lentivirus). Organoids were cultured in the 

prostate organoid media82 for about 10–14 days. Transduced organoids were harvested by 

dissociation of Matrigel with 1mg/mL Dispase (Cat# 17105041, Thermo Fisher Scientific). 
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The organoids were washed three times with 1xPBS to remove Dispase and re-suspended 

in 10μl of growth factor reduced Matrigel and 10ul Matrigel with High Concentration 

(Cat# 354248, Corning). The organoid-Matrigel mixture was implanted subcutaneously 

in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice 83.Tumors were 

extracted in every two-week window, with the last tumor collection of the time course series 

determined by either reaching around 1cm in diameter in tumor size or ulceration, whichever 

came first. NSG mice had been transferred from the Jackson Laboratories and housed and 

bred under the care of the Division of Laboratory Animal Medicine at the University of 

California, Los Angeles (UCLA). All animal handling and subcutaneous injections were 

performed following the protocols approved by UCLA’s Animal Research Committee.

Cell lines—NCI-H1385 (Cat# CRL-5867), NCI-H1930 (Cat# CRL-5906), NCI-H1694 

(Cat# CRL-5888), NCI-H146 (Cat# HTB-173), DMS79 (Cat# CRL-2049), NCI-H526 (Cat# 

CRL-5811), and NCI-H660 (Cat# CRL-5813) were purchased from American Type Culture 

Collection (ATCC). COR-L311 was obtained from Sigma Aldrich (Cat# 96020721). All 

commercially available cell lines were cultured and maintained based on the instruction 

from the vendors. PARCB tumor derived cell lines were generated using the previous 

method 6. All the cell lines in the study are free of Mycoplasma using a MycoAlert™ PLUS 

Mycoplasma Detection Kit (Cat# LT07-703, Lonza).

METHOD DETAILS

Lentiviral vectors and lentiviruses—The myristoylated AKT1 vector (FU-myrAKT1-

CGW), exogenous expression of cMYC and BCL2 (FU-cMYC-P2A-BCL2-CRW), 

dominant TP53 mutant (R175H) and shRNA targeting RB1 vector (FU-shRB1-TP53DN-

CYW) have been described previously 6. Exogenous expression of V5 tagged ASCL1 

(pLENTI6.3-V5-ASCL1) is obtained from DNASU (Cat#: HsCD00852286) 84. For making 

exogenous expression of ASCL2 containing vector (pLENTI6.3-V5-ASCL2), Gateway 

cloning (Cat# 11791020, Thermo Fisher) was performed using pLenti6/V5-DEST Gateway 

Vector (Cat# V49610, Thermo Fisher) and the entry plasmid (pDONR221-ASCL2) was 

obtained from DNASU (Cat# HsCD00829357) 84. For making doxycycline- inducible 

sgTFAP4 (TLCv2-Cas9-BFP-sgTFAP4), TLCv2 (Cat# 87360, Addgene) was first digested 

with BamHI-HF (Cat# R3136, New England Biolabs) and Nhel-HF (Cat# 3131, New 

England Biolabs) at 37℃ for 1 hour and inserted with a synthesized fragment containing 

T2A-Hpal-BFP sequence (gBlock service provided by IDT) using Gibson Assembly (Cat# 

E5510, New England Biolabs). sgTFAP4 sequence was cloned into the previously described 

TLCv2-BFP vector using an established protocol 85. sgTFAP4-primers are listed in the key 

resources table. Lentiviruses were produced and purified by a previously established method 
86.

Tissue section, histology, and immunohistochemistry (IHC)—PARCB model 

tumor tissues were fixed in 10% buffered formaldehyde overnight at 4℃ and followed by 

70% ethanol solution. Tissue microarray construction and hematoxylin and eosin (H&E) 

staining were performed by Translation Pathology Core Laboratory (TPCL) in UCLA 

using standard protocol. TPCL is a CAP/CLIA certified research facility in the UCLA 

Department of Pathology and Laboratory Medicine and a UCLA Jonsson Comprehensive 
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Cancer Center Shared Facility. For immunohistochemistry staining, formalin-fixed, paraffin-

embedded (FFPE) sections were deparaffinized and rehydrated with a washing sequence of 

xylene and different concentration of ethanol. Citrate buffer (pH6.0) was used to retrieve 

antigens. The sections were incubated in citrate buffer and heated in a pressure cooker. 3% 

of H2O2 in methanol was used to block endogenous peroxidase activity for 10 mins at room 

temperature. The sections were blocked then incubated with primary antibodies overnight 

at 4°C. Anti-mouse/rabbit secondary antibodies were used to detect proteins of interest and 

DAB EqV substrate was used to visualize the staining. All components were included in 

the ImmPRESS Kit (MP-7801-15 and MP-7802-15, Vector Laboratories) The slides were 

then dehydrated and mounted with Xylene-based drying medium (Cat# 22-050-262, Fisher 

Scientific).

Western blot—Cells were lysed on ice using UREA lysis buffer (8M UREA, 4% CHAPS, 

2x protease inhibitor cocktail (Cat# 11697498001, Millipore Sigma)). Genomic DNA was 

removed by ultracentrifuge (Beckman Optima MAX-XP, rotor TLA-120.1, 48,000 rpm 

for 90 min). Protein concentrations were measured using the Pierce BCA Protein Assay 

Kit (Cat#: 23227, Thermo Scientific). Samples were electrophoresed on polyacrylamide 

gels (Cat# NW04120BOX, Thermo Fisher), transferred to nitrocellulose membranes (Cat# 

88018, Thermo Fisher). Western blots were visualized using iBright CL1500 Imaging 

system (Cat#44114, Thermo Fisher).

RT-qPCR—Total RNA was isolated from cells using miRNeasy Mini Kit (Cat# 217004, 

Qiagen). cDNA was synthesized from 2 ug of total RNA using the SuperScript IV First-

Strand Synthesis System (Cat# 18091050, Thermo Fisher). RT-qPCR was performed using 

SYBR Green PCR Master Mix (Cat# 4309155, Thermo Fisher). Amplification was carried 

out using the StepOne Real-Time PCR System (Cat# 4376357, Thermo Fisher) and analysis 

was performed using the StepOne Software v2.3. with the following primers were used at a 

concentration of 250 uM: Relative quantification was determined using the Delta-Delta Ct 

Method. Primer sequences are listed in the key resources table.

In situ RNA hybridization assay and image analysis—The RNAscope Multiplex 

Fluorescent V2 kit was used to perform in situ hybridization on FFPE tissue microarray 

slides following the manufacturer’s protocol (Cat# 323270, ACDBio). The Institutional 

Review Board of the University of Washington approved this study (protocol no. 2341). 

All rapid autopsy tissues were collected from patients who signed written informed consent 

under the aegis of the Prostate Cancer Donor Program at the University of Washington. 

The establishment of the patient-derived xenografts was approved by the University of 

Washington Institutional Animal Care and Use Committee (protocol no. 3202–01). For 

multiplex hybridization, the Double Z probes targeting ASCL1 (Cat# 459721-C2, ACDBio) 

and ASCL2 (Cat# 323100, ACDBio) were hybridized to the samples for 2 hours at 

40°C. ASCL1 signal was visualized using Opal dye 520 (Cat# FP1487001KT, Akoya 

Biosciences) and ASCL2 signal was visualized using Opal dye 570 (Cat# FP1488001KT, 

Akoya Biosciences). DAPI (Cat# D3571, Thermo Fisher) was used to visualize nuclei. 

Confocal fluorescence images were acquired using an inverted Zeiss LSM 880 confocal 

microscope. All images were processed using Fiji (https://imagej.net/software/fiji/).
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Cell proliferation assay—3000 cells per cell line in five replicates were seeded on 

96-well plates on Day 0. Cell viability was measured on Day 1, 3, 4, 5 and 6. using Cell 

Titer-Glo Luminescent Cell Viability Assay (Cat# G7570, Promega). Luminescence was 

measured at an integration time of 0.5 second per well.

Bulk RNA sequencing and dataset collection—Tumors were dissociated into single 

cells, followed by cell sorting of triple colors (RFP, GFP and YFP) by flow cytometry. 

Total RNA was extracted from the cell lysates using miRNeasy mini kit (Cat# 217084, 

Qiagen). Libraries for RNA-sequencing of PARCB time course samples were prepared 

with KAPA Stranded mRNA-Seq Kit (Cat# KK8420, Roche). The workflow consists 

of mRNA enrichment and fragmentation. Sequencing was performed on Illumina Hiseq 

3000 or NovaSeq 6000 for PE 2×150 run. Data quality check was done on Illumina 

SAV. Demultiplexing was performed with Illumina Bcl2fastq v2.19.1.403 software. Raw 

sequencing reads were processed through the UCSC TOIL RNA Sequencing pipeline1 

for quality control, adapter trimming, sequence alignment, and expression quantification. 

Briefly, sequence adapters were trimmed using CutAdapt v1.9, sequences were then 

aligned to human reference genome GRCh38 using STAR v2.4.2a and gene expression 

quantification was performed using RSEM v1.2.25 with transcript annotations from 

GENCODE v23 87.

The FASTQ files of the Park dataset 6, Beltran dataset 33, George dataset 32 and Tang 

dataset 57 were all processed through the TOIL pipeline with the same parameters to get 

RSEM expected counts. The TOIL-RSEM expected counts of TCGA pan cancer samples 

were obtained directly from UCSC Xena browser (https://xenabrowser.net/datapages) and 

gene expression (log2(TPM + 1)) of pan-cancer cell lines from the Cancer Cell Line 

Encyclopedia (CCLE) were downloaded from DepMap Portal (DepMap Public 22Q1) 

(https://depmap.org/portal/download/all/). The RSEM counts of all combined datasets were 

upper quartile normalized, log2(x+1) transformed (referred to as log2(UQN+1) counts) 

and filtered down to HUGO protein coding genes (http://www.genenames.org/) for the 

downstream analyses. SCLC subtypes 46 and CRPC subtypes 57were previously defined. 

The details of the bulk RNA-sequencing of PARCB time course are described in Table S1I.

Differential gene expression analysis and hierarchical clustering—PARCB 

time course samples were grouped into 6 hierarchical clusters (HC) by performing 

Ward’s hierarchical clustering (k=6) on log2(UQN + 1) counts using the hclust function 

from the base R package, Stats (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/

00Index.html). Differential gene expression analysis was then performed on each HC 

in a “one vs. rest” fashion, i.e., between one cluster vs. the remaining five clusters, 

using DESeq2 with the following parameters: independentFiltering=F, cooksCutoff=FALSE, 

alpha=0.1 88. For each HC vs. rest comparison, genes with a log2FC > 2 and p-adjusted 

value < 0.05 were considered upregulated for that HC gene module. However, four 

genes (IL1RL1, KRT36, PIK3CG, NPY) were upregulated among multiple HC vs. rest 

comparisons. As a result, these genes were assigned to the HC gene module with the 

smaller p-adjusted value for that gene. Z-scores for upregulated genes in each cluster were 
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then plotted in a heatmap using pheatmap function. PARCB time course samples were 

subsequently categorized by this HC definition in downstream analyses.

GO enrichment analysis—Enrichment analysis was performed using the 

“GO_Biological_Process_2021” database and the enrichr function from the R package, 

enrichR, using upregulated genes for each HC 89. Pathways were selected based on their 

adjusted p-value for each HC. The results were plotted using ggplot().

Bulk ATAC sequencing and dataset collection—Tumors were dissociated into 

single cells, followed by cell sorting of triple colors (RFP, GFP and YFP) by flow 

cytometry. ATAC-sequencing samples were prepared following the previously published 

protocol38. Bulk ATAC sequencing was performed in the Technology Center for Genomics 

& Bioinformatics Core in UCLA. Sequencing was performed on Illumina NovaSeq 6000 for 

PE 2×50 run. Data quality check was done on Illumina SAV. Demultiplexing was performed 

with Illumina Bcl2fastq v2.19.1.403 software. The raw FASTQ files were processed using 

the published ENCODE ATAC-Seq Pipeline (https://github.com/ENCODE-DCC/atac-seq-

pipeline). The reads were trimmed and aligned to hg38 using bowtie2. Picard was used to 

de-duplicate reads, which were then filtered for high-quality paired reads using SAMtools. 

All peak calling was performed using MACS2. The optimal irreproducible discovery rate 

(IDR) thresholded peak output was used for all downstream analyses, with a threshold P 

value of 0.05. Other ENCODE3 parameters were enforced with the flag-encode3. Reads that 

mapped to mitochondrial genes or blacklisted regions, as defined by the ENCODE pipeline, 

were removed. The peak files were merged using bedtools merge to create a consensus set 

of peaks across all samples, and the number of reads in each peak was determined using 

bedtools multicov 90. A variance stabilizing transformation was performed on peak counts 

using DESeq2 88 and batch effects were removed using removeBatchEffect() from limma 
91. All downstream ATAC-sequencing analysis was performed using this matrix (referred 

to as VST peak counts), unless otherwise specified. P1-TP1 was not collected for ATAC-

sequencing due to insufficient cell number for sequencing. P7-TP2 was not included for the 

processing due to low read counts (total of 1536). P1-TP5, P2-TP6 and P10-TP2 were not 

included in PCA due to reaching within 95th percentile of calculated Shannon entropy for all 

ATAC-sequencing samples. The details of the bulk ATAC-sequencing processing of PARCB 

temporal samples are described in Table S1J

Raw FASTQ files of Tang ATAC-sequencing dataset were downloaded from GSE193917 57. 

The raw FASTQ files were processed using the same ENCODE pipeline described above 

with the same parameters.

Differential chromatin accessibility and Transcription start site (TSS) analysis
—Differential peak analysis was performed on each HC in a one vs. rest fashion, as 

described above in the bulk RNA-sequencing analysis. Peaks were called hyper- or hypo-

accessible if the log2 fold change was greater than 2 or less than 2, respectively, and had an 

adjusted p-value of less than 0.05. The z-scores of the union of all differentially accessible 

peaks were used to plot the heatmap using VST peak counts, with the rows ordered by 

chromosomal location.
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For mapping peaks near TSS sites, the bigwig files containing ATAC-sequencing readings 

were first converted into wig files. Wig files from samples within the same HC were 

then merged by calculating the mean across peak regions using wiggleTools 92. The 

TSS analysis was performed using deepTools and computeMatrix in reference-point mode 

with parameters referencePoint=TSS, a=2000, b=2000 to compute the scores from merged 

bigwigs in regions 2 kbp flanking the region of interest. plotHeatmap was used with 

parameters zMin=0, zMax=5, binSize=10 was to plot the TSS figure from the score matrix 
93.

PCA and projection analyses—Unsupervised PCA of the PARCB time course samples 

using log2(UQN +1) counts was performed using the prcomp function from the stats 

package available on R (described above). PC2 and PC3 sample scores were then multiplied 

by a 30-degree clockwise rotation matrix. Ellipses were drawn around samples with 95% 

confidence based on real time labels using stat_ellipse() from ggplot2. The PCA projection 

of PARCB time course samples onto the framework using pan small cell cancer combined 

gene expression datasets have been discussed previously 4. In brief, the input matrix for 

this PCA was centered but not scaled. PARCB time course samples were then projected by 

multiplying the data matrix by the PCA loadings. For projection of PARCB time course 

samples onto the framework using gene expression data of CRPC subtypes 57 or SCLC 

subtypes 46, the same methodology was applied.

For projection of PARCB time course samples onto the framework using ATAC-sequencing 

data of CRPC subtypes 57, peak coverage of the Tang dataset was determined using the 

consensus set of peaks from the PARCB time course data with function bedtools multicov 
90. Tang dataset peak read counts were then variance stabilized transformed using DESeq2 
88. PCA was performed on VST peak read counts of the Tang dataset using the prcomp 

function with the parameters center = T, scale = F. PARCB time course samples were then 

projected onto the framework by multiplying PARCB time course VST peak read counts by 

PCA loadings.

For projection of PARCB time course single cells onto the framework defined by the bulk 

RNA-sequencing data, the single cell data after integration by batch was down-sampled for 

1000 cells within each patient series or cluster. The single cell and bulk RNA-sequencing 

data were centered separately prior to projection. The projection was carried out by 

multiplying the single cell data matrix by PCA loadings of PARCB bulk samples.

Transcription factor analysis—Top ranked transcription factors (TF) were selected 

using the gene loading scores derived from the unsupervised PCA of gene expression 

described above. PC2 and PC3 loading scores were rotated 30 degrees clockwise by 

multiplying a 30-degree clockwise rotation matrix to the gene loading scores (resulting 

components called PC2’ and PC3’, respectively). The loading scores were then filtered to 

include only transcription factors 37. The center of the TF loading scores was determined 

by taking the average of PC1, PC2’, and PC3’. The Euclidean distance from the center was 

calculated for each TF, and the top 60 TFs furthest from center were selected. Hierarchical 

clustering (k = 5) was performed on the log2(UQN +1) counts of the top 60 TFs. The 
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z-scores for each TF were plotted using pheatmap. Average z-score of HOXC genes was 

calculated from HOXC 4–13 (except for HOXC7) in each PARCB time course sample.

Shannon Entropy analysis—Shannon entropy for each PARCB time course sample 

was calculated on variance stabilized transformed (VST) ATAC-sequencing peak counts 

using the Entropy() function from the R package DescTools (https://cran.r-project.org/web/

packages/DescTools/index.html). PARCB samples falling within the 95th percentile of 

calculated Shannon entropy scores were included in the following PCA. PCA was performed 

on VST peak counts and was plotted using ggplot2 with samples colored by their Entropy 

scores and ellipses with 95% confidence were drawn around each time point group using 

stat_ellipse().

Prostate cancer gene regulatory network analysis—The RNA-sequencing data of 

PARCB time course study, Park dataset 6, Beltran dataset 33, and TCGA PRAD/PRAD-norm 

dataset were included in this analysis. TCGA PRAD/PRAD-norm data was down sampled 

to match the sample size of other cohorts. Gene network was built on the combined datasets 

using ARACNe-AP 81.

Signature scores (adult stem cell, adenocarcinoma and SCNPC)—SCNPC 

signature was derived using Beltran dataset 33, following the methods described previously 
6. The adult stem cell (ASC) signature in our analysis is defined in literature 42. For 

prostate adenocarcinoma signature, differential gene expression analysis was performed on 

TCGA PRAD samples vs CRPC-PRAD and SCNPC samples from the Beltran dataset 
10,33 using DESeq2. The adenocarcinoma signature was defined by all the upregulated 

genes (log2FoldChange >2 and padj < 0.05) from the differential gene expression analysis. 

Adenocarcinoma and SCNPC signature scores of our PARCB time course samples were 

calculated using gsva with method=”ssgsea”.

Motif analysis—Hyper-accessible peaks in each HC from the differential peak analysis 

described previously were used for motif enrichment analysis using GimmeMotifs 41,90. 

Differential motif analysis was performed on hyper-accessible peaks for each HC against a 

hg38 whole-genome background using the maelstrom function with default parameters. The 

top 5 enriched motifs and their aggregated z-scores for each HC are shown in the heatmap 

(each individual HC vs all others). Additionally, we performed differential peak analysis on 

HC5 vs HC1-HC4 and HC6 vs HC1-HC4 with the same parameters as described previously 

using DESeq2. Likewise, hyper-accessible peaks for HC5 and HC6 in these comparisons 

were defined by a threshold of log2FoldChange > 2 and padj < 0.05. Differential motif 

analysis was performed on the set of hyper-accessible peaks from HC5 vs HC1-4 and HC6 

vs HC1-4 using the maelstrom function as described above. Note that in the GimmeMotif 

enrichment analysis, transcription factors are culled to minimize redundancy, and this step is 

impacted by the exact input data and sample group comparison indicated. Thus, each motif 

suite may contain slightly different enriched transcription factors. However the transcription 

factor sets remain highly consistent between each case.

For identifying transcription factors that recognize ASCL1 and ASCL2 regulatory 

sequences, ASCL1 and ASCL2 promoter and enhancer regions were mapped using UCSC 
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Genome Browser Gateway (https://genome.ucsc.edu/cgi-bin/hgGateway). Motif analysis 

was then performed on each ASCL1 and ASCL2 promoter and enhancer region using 

the findMotifGenome function from HOMER with the parameters -size 200 and - mask 
58. Resulting motifs were then ranked by their p-value. Additionally, ASCL1 and ASCL2 

enhancer and promoter regions were mapped to accessible peaks from ATAC-sequencing 

data of the PARCB time course to identify chromatin changes of ASCL1 and ASCL2 

cis-regulatory sequences. Peak regions from the PARCB consensus peak set overlapping 

with the ASCL1 and ASCL2 enhancer and promoter regions were then plotted in a heatmap 

using VST peak counts and scaled per sample.

Single-cell RNA sequencing—PARCB time course samples were sequenced in two 

batches: P2/P5 and P6/P7 series. Single cell gene expression libraries were created using 

Chromium Next GEM Single Cell 3’ (v3.1 Chemistry) (Cat# PN1000123, 10x Genomics), 

Chromium Next GEM Chip G Single Cell Kit (Cat# PN1000120, 10x Genomics), and 

Single Index Kit T Set A (Cat# PN1000213, 10x Genomics) according to the manufacturer’s 

instructions. Briefly, cells were loaded to target 10,000 cells to form GEMs and barcode 

individual cells. GEMs were then cleaned cDNA and libraries were also created according 

to manufacturer’s instructions. Library quality was assessed using 4200 TapeStation System 

(Cat# G2991BA, Agilent) and D1000 ScreenTape (Cat# 5067–5582, Agilent) and Qubit 2.0 

(Cat# Q32866, Invitrogen) for concentration and size distribution. Samples were sequenced 

using Novaseq 6000 sequencer (Catl# A00454, Illumina) using 100 cycles (28+8+91). 

The illumina base calling files were converted to FASTQ using the mkfastq function in 

Cell Ranger suite (https://support.10xgenomics.com/single-cell-gene-expression/). The reads 

were then aligned to GRCh38 for UMI counting with cellranger count function. The details 

of the single cell-seq of PARCB time course are described in Table S1K.

UMAP analysis—The downstream quality control, statistics and visualization of PARCB 

single cell RNAseq data were performed mainly using the Seurat (v3.2.3) R package 94. 

Briefly, the data from all four patient series was first filtered for cells with total number 

of unique features above 500 and below 10000 as well as mitochondria feature counts 

below 10%. The mitochondrial genes and ribosomal genes were then removed from the 

count matrix for the downstream analysis. To overcome batch effect, we performed Seurat 

integration between batch 1 (Series P2 and P5) and 2 (Series P6 and P7). Briefly, for each 

batch, the two corresponding matrices were combined first, and log transformation and 

library size normalization were performed with NormalizeData function. Then the 2500 

most variable genes were selected as anchor features to integrate for all coding genes. After 

integration, the top 30 principal components were used to perform UMAP analysis.

Processed single cell RNA-sequencing data of advanced prostate cancers 

were downloaded from the Single Cell Portal hosted by Broad Institute 

(https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-

treatment-resistance-in-lethal-prostate-cancer)49. For this dataset, UMAP analysis was 

performed on TPM values of prostate cancer cells only as defined in the paper using 

the umap function in base R. For UMAP visualization of this dataset, TPM values were 

log2 transformed with a pseudo count of +1. Single cell RNA-sequencing data of N-myc 
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GEMM tumors 31, and human biopsy and GEMM tumors 50 were downloaded from the 

Gene Expression Omnibus (GEO) database with the accession numbers GSE151426 and 

GSE21035, respectively, and processed with cellranger count.

In the Brady et al paper, single-cell data were first filtered for cells with total number of 

unique features > 200 and < 10000 as well as mitochondrial feature counts < 10%. We 

then performed Seurat SCTransform integration on each sample. Briefly, for each sample, 

the matrices were first combined and normalized using SCTransform function. Then the 

top 3000 most variable genes were selected as anchor features to integrate all genes. After 

integration, the top 15 principal components were used to perform UMAP analysis. In 

the Chan et al paper, GEMM single-cell data were filtered with the following thresholds 

nFeature_RNA >200 & nFeature_RNA < 8000 & percent.mt < 5 and human biopsy tissues 

single-cell data were filtered with nFeature_RNA > 200 & nFeature_RNA < 10000 & 

percent.mt < 5. Seurat integration of filtered cells for both datasets were then performed as 

described above. After integration, the top 50 principal components were used to perform 

UMAP analysis.

In the Dong et al analysis, the human biopsy scRNA-sequencing data was downloaded from 

GSE137829. We used the filtration parameters of the manuscript, total number of unique 

features > 500 and <7000, and mitochondrial feature counts < 10%. We filtered cells to 

only include epithelial (cancer) cells, as described by the CellType column in the annotation. 

Seurat NormalizeData was used with the LogNormalize method and a scale factor of 10000. 

The top 30 principal components were used to perform UMAP analysis.

Inferred cell type and cellular lineages analysis—The cell type inferences of 

PARCB single cells were implemented using the singleR R package 48. For scoring each 

cell for each general cell type, the Human Primary Cell Atlas data from LTLA/celldex 

package that contains normalized expression values was used as the reference.

Single cell trajectory analysis of PARCB samples was performed using two different 

methods, expression-based method Monocle2 52 and RNA Velocity based method scVelo 53. 

For Monocle2, the integrated Seurat object was used as the input for the program. DDRtree 

was used as the reduction method. Cells were ordered by the most variable 3000 genes in 

Seurat. For calculating pseudotime, the KRT5 population was selected as the root state. For 

RNA velocity, the spliced and unspliced counts were quantified by velocyto accounting for 

repeat masking. The spliced counts were then normalized using Seurat sctransform method 

followed by integration by batch. The integrated data was used for UMAP visualization. In 

scVelo, the data was filtered for genes with a minimum of 5 shared counts. The top 3000 

highly variable genes were extracted based on the dispersion. Velocities were estimated by 

dynamical model and then projected onto the UMAP embedding.

Differential gene expression analysis in single cells—FindMarkers function in 

Seurat R package (described above) was used to identify differential expressed genes 

between ASCL1+ and ASCL2+ single cell populations. Patient series was regressed out 

by including it as the covariate. ASCL1+ cells and ASCL2+ cells are defined as cells 

with log normalized expression counts > 0 for ASCL1 or ASCL2, respectively. Genes that 
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are differentially expressed in ASCL1+ population were defined by the difference of gene 

expression in ASCL1+ cells minus the one in ASCL2 expression (log and library size 

normalized) above 3. Genes that are differentially expressed in ASCL2+ cells were defined 

by such a difference below −1.

CUT&RUN sequencing—The CUT&RUN experiment was performed using previously 

established method 61 (Skene et al., 2018) and the manufacturer’s protocol (Cat# 86652, 

Cell Signaling). 100k live cells were used per reaction. 50pg of Spike-In DNA (Cat# 12931, 

Cell Signaling) was added per reaction for downstream normalization. DNA was purified 

using MinElute PCR Purification Kit (Cat# 28004, Qiagen), followed by fragmentation 

by using sonicator (Cat# M202, Covaris). Dual size selection was applied using KAPA 

Pure beads (Cat# KR1245, Roche). DNA Libraries were prepared with the KAPA DNA 

HyperPrep kit (Cat# KK8504, Roche).

Sequencing was performed on Illumina HiSeq3000 for a SE 1×50 run. Data quality 

check was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq 

v2.19.1.403 software. Raw FASTQ files were processed using the published ENCODE-

TF CHIP Seq pipeline. Batch 1 samples (P3-TP5 and P7-TP6) were processed with the 

parameter “chip.paired_end” : false while Batch 2 sample (P2-TP6) were processed with the 

parameter “chip.paired_end” : true. (https://github.com/ENCODE-DCC/chip-seq-pipeline2). 

For all samples, the reads were trimmed and aligned to hg38 (target) and S. cerevisiae strain 

S288C (spike-in) reference genomes using bowtie2. After alignment, Picard was used to 

remove PCR duplicates reads and SAMtools was used to further filter high-quality paired 

reads (i.e., remove reads that were unmapped, not primary alignment, reads failing platform, 

and/or multi-mapped). Peak calling was performed using MACS2. Peaks overlapping with 

blacklisted regions were removed (https://www.encodeproject.org/files/ENCFF356LFX/). 

Lastly, spike-in normalization factors were calculated following established protocol 95. The 

details of the CUT&RUN sequencing of PARCB time course are described in Table S1L.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed and processed using R v4.1.2, Python v3.11.5 and Excel. Error 

bars show mean ± SD unless otherwise specified. Significance was determined by Student’s 

two-tailed unpaired t tests or Wald test with 95% confidence intervals. P values <0.05 

is considered statistically significant. P values were adjusted based on various methods 

dependent on the analysis including Benjamin-Hochberg method (Figure 1D and Figure 1F) 

and Bonferroni correction (Figure 4D). No statistical methods were used to predetermine 

sample sizes. Other details such as sequencing processing can be found in Table S1. All 

statistical methods for the bioinformatic analyses are described in detail in the method 

section.

ADDITIONAL RESOURCES

PARCB Multi-omics Explorer provides an interactive platform for visualization of gene 

expression using bulk RNA-sequencing and single cell RNA-sequencing of this time course 

study (https://systems.crump.ucla.edu/transdiff/).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PARCB temporal model profiling informs key aspects of SCNPC trans-

differentiation

• Trans-differentiation trajectory resembles a common developmental arc-like 

pattern

• ASCL1 and ASCL2 mark distinct bifurcating SCNPC trans-differentiation 

trajectories

• TFAP4 as a common regulator of ASCL1/2 implicated in SCNPC trans-

differentiation
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Figure 1. Temporal gene expression programs of the PARCB transformation model reveal 
SCNPC trans-differentiation pathways.
(A) Schematic summary of PARCB time course study and representative Hematoxylin and 

eosin (H&E) staining and immunohistochemistry (IHC) staining of neuroendocrine markers 

(SYP and NCAM1) on sequential tumors from the tissue microarray. Time point (TP1-6) 

samples were sequenced using bulk RNA sequencing (green circle), bulk ATAC-sequencing 

(red circle) and/or single cell RNA sequencing (blue circle, tumors only). (B) Projection of 

the PARCB time course samples onto the PCA framework defined by pan-cancer clinical 

tumor datasets 4,10,32–36. LUAD: Lung adenocarcinoma. LUAD norm: lung adenocarcinoma 

adjacent normal tissue. SCLC: small cell lung cancer. PRAD: prostate adenocarcinoma. 

PRAD norm: prostate adenocarcinoma adjacent normal tissue. CRPC: castration resistant 

prostate cancer. SCNPC: small cell neuroendocrine prostate cancer. (C) Arage gene 

expression of selected SCNPC-associated proteins and markers. (D) Heatmap of hierarchical 

clusters (HC) of samples (columns) and corresponding differentially upregulated gene 
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modules (rows). Differential expression defined by one HC vs all other HCs). (E) PCA 

of the PARCB time course samples and trans-differentiation trajectories including primary 

arc and secondary bifurcation. A 3-dimensional rotatable version of this figure is available 

on the PARCB Multi-omics Explorer website. [For review, a 3D rotatable version is included 

as Data S1.] (F) Selected enriched GO terms across HC. See also Figure S1.
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Figure 2. Sequential transcription regulators modulate reprogramming and neuroendocrine 
programs through a highly entropic and accessible chromatin state.
(A) Overall differential chromatin accessibility across HC. (B) PCA of chromatin 

accessibility of PARCB time course samples with entropy analysis using ATAC sequencing. 

(C) Overall mean accessible peaks near TSS of each HC in PARCB time course 

study. (D) Enriched motifs from suites of transcription factors in each HC using ATAC-

sequencing. Top 5 motif suites for each comparison are shown, with additional analysis 

in Figure S2B, and full results in Table S1D. (E) Top ranked transcription factors and 

known neuroendocrine transcription factors across PARCB time course using bulk RNA 

sequencing. HOXC TFs avg: Average expression of HOXC4, HOXC5, HOXC6, HOXC8, 

HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13. (F) Expression of ASCL1, ASCL2, 

NEURDO1 and POU2F3 in each HC. See also Figure S2.
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Figure 3. Transcription factor-defined cell populations contribute to lineage divergence and 
tumor heterogeneity.
(A) Dimension reduction UMAP analysis of four patient series (P2, P5, P6 and P7) over 

time (TP3-6) using single cell RNA sequencing. (B) Temporal UMAP analysis of all the 

samples. (C) Expression of selected markers and transcription factors. KRT5 marks basal 

cells. KRT15 marks luminal cells. The expression is presented in log normalized counts. 

(D) Top enriched inferred cell types from the Human Cell Type Database using SingleR 
48. (E) Projection of single cell RNA-sequencing samples on PCA framework by bulk RNA-

sequencing samples (top panel) and the expression of selected markers and transcription 

factors (bottom panel). Each data point is a single cell colored by their corresponding HC. 

(F) Expression of ASCL1 (top) and ASCL2 (middle) and percentage of ASCL1/2 positive 

cells (cells with expression value >0) (bottom) in human biopsy and GEMM model tumors 

from five single cell RNA-sequencing datasets 31,49–51. Other: prostatic intraepithelial 
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neoplasia. NMYC_RB_M: Ptenf/f; Rb1f/f;MYCN + (PRN) and RB_M: Ptenf/f; Rb1f/f (PR) 

mouse model in Brady et al31. See also Figure S3.
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Figure 4. ASCL1 and ASCL2 specify independent transcriptional programs and sub-lineages in 
SCNPC.
(A) Inferred clonal tracing analysis of the PARCB time course samples using Monocle 2 
52. (B) Relative expression of KRT5, ASCL1 and ASCL2 in the inferred clonal tracing 

analysis (pseudo-time). (C) Percentages of ASCL1 or ASCL2 positive, double positive and 

double negative cell populations over time. (D) Volcano plot of differential gene expression 

in high ASCL1+ vs high ASCL2+ cell populations. (E) Representative genes from the 

predicted transcriptional programs of ASCL1 and ASCL2 trained on data from patient and 

model prostate cancer tumors (6,10,33 including TCGA), as determined by the ARACNE 

algorithm 81. (F) Western blot of panel of genes in the PARCB tumor derived cell lines from 

different tissue of origin (prostate, bladder and lung) 6,7. (G) Representative images of in 
situ hybridization of ASCL1 and ASCL2 mRNA analysis on transitional tumors (P7-TP5 

and P9-TP4). See also Figure S4.
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Figure 5. ASCL1 and ASCL2 as pan-cancer classifiers.
See also Figure S5. (A) Projection of the PARCB time course samples on the PCA 

framework defined by the CRPC subtypes using RNA sequencing (left) and ATAC-

sequencing (right) 57. SCL: stem-cell like. NEPC: Neuroendocrine prostate cancer. 3-

dimensional rotatable versions of these figures are available on the PARCB Multi-omics 

Explorer website. [For review, 3D rotatable versions are included as Data S2 and Data S3.] 

(B) Projection of the PARCB time course samples on the PCA framework defined by the 

SCLC subtypes 32,46. (C) mRNA expression of ASCL1 and ASCL2 in the PARCB time 

course samples and multiple sets of clinical CRPC-PRAD and SCNPC samples including 

TCGA and different research groups 10,33–36. (D) Representative images of in situ RNA 

hybridization of ASCL1 and ASCL2 in clinical SCNPC tissues. (E) mRNA expression of 

ASCL1 and ASCL2 in pan cancer cell lines (CCLE). (F) mRNA expression of ASCL1 and 

ASCL2 in pan cancer tumors from TCGA.
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Figure 6. Alternating ASCL1 and ASCL2 expression through reciprocal interaction and TFAP4 
epigenetic regulation.
See also Figure S6. (A) Western blot analysis of exogenously expressing either V5 tagged 

ASCL2 in ASCL1+ cell lines 6 (left) or V5-tagged ASCL1 in ASCL2+ cell lines (right). 

(B) Schematic of putative cis regulatory elements (CREs) of ASCL1 and ASCL2 (top) 

and the heatmap of open chromatin accessibility across CREs of ASCL1 and ASCL2 

using the PARCB time course ATAC-sequencing (bottom). Red box: CREs containing 

predicted TFAP4 binding sites by HOMER motif enrichment analysis 58. (C) Top 8 ranked 

transcription factor motifs in ASCL1 promoter and ASCL2 enhancer regions, ranked by p-

values. (D) Western blot analysis of doxycycline-inducible knockout of TFAP4 and proteins 

of interest in P7-TP6 (ASCL1+) and P3-TP5 (ASCL2+) cell lines. DOX: doxycycline. (E) 

Cell proliferation analysis of P7-TP6 (ASCL1+) and P3-TP5 (ASCL2+) cell lines with 
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doxycycline-inducible knockout of TFAP4. Ctrl: no addition of doxycycline. TFAP4: with 

addition of doxycycline. (G) Schematic summary of the PARCB time course study.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Antibodies

CD49f-PECy7 Invitrogen Cat# 25-0495-82

CD45-APC Invitrogen Cat# 47-0459-42

TROP2-APC R&D Systems Cat# FAB650A

ASCL1 Abcam Cat# ab21327

ASCL2 R&D Systems Cat# AF6539

GAPDH-HRP GeneTex Cat# GT239

SOX9 Abcam Cat# ab185230

POU2F3 Cell Signaling Cat# 92579

ANXA1 Cell Signaling Cat# 3299

SOX2 Cell Signaling Cat# 3579

FOXA1 Abcam Cat# ab170933

SYP Cell Signaling Cat# 5461

NEUROD1 Abcam Cat# ab109224

ONECUT2 Proteintech Cat# 21916-1-AP

NCAM1/CD56 Abcam Cat# ab133345

V5 Invitrogen Cat# 46-0705

Biological Samples

prostatectomy tissue UCLA TPCL N/A

Chemicals, Peptides, and Recombinant Proteins

Matrigel Corning Cat# 356234

Matrigel (HC) Corning Cat# 354248

dispase Thermo Fisher Cat# 17105041

Gateway LR Clonase II Thermo Fisher Cat# 11791020

BamHI-HF New England Biolabs Cat# R3136

Epredia™ Cytoseal™ 

Mountant
Fisher Scientific Cat# 22-050-262

cOmplete™ Protease 
Inhibitor Cocktail

Millipore Sigma Cat# 11697498001

Opal dye 520 Akoya Biosciences Cat# FP1487001KT

Opal dye 570 Akoya Biosciences Cat# FP1488001KT

DAPI Thermo Fisher Cat# D3571

Critical Commercial Assays

RNAscope Multiplex 
Fluorescent V2 kit

ACDBio Cat# 323270

ASCL1 Double Z Probe ACDBio Cat# 459721-C2

ASCL2 Double Z Probe ACDBio Cat# 323100
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Cell Titer-Glo Luminescent 
Cell Viability Assay

Promega Cat# G7570

CUT&RUN Assay kit Cell Signaling Cat# 86652

Gibson Assembly New England Biolabs Cat# E5510

miRNeasy Mini Kit Qiagen Cat# 217004

SuperScript IV First-Strand 
Synthesis System

Thermo Fisher Cat# 18091050

SYBR Green PCR Master 
Mix

Thermo Fisher Cat# 4309155

KAPA Stranded mRNA-Seq 
Kit

Roche Cat# KK8420

MycoAlert™ PLUS 
Mycoplasma Detection Kit

Lonza Cat# LT07-703

Deposited Data

PARCB temporal data (bulk 
RNA-seq, ATAC-seq, single 
cell RNA-seq and ChIP-
seq)

This paper phs003230.v1.p1

PARCB temporal gene 
expression (bulk and single 
cell RNA-seq)

This paper GSE240058

gene expression data: small-
cell neuroendocrine cancers

Balanis et al, 2019 https://www.cell.com/cancer-cell/fulltext/S1535-6108(19)30296-X

bulk RNA-seq FASTQs: 
CRPC/NEPC tumors 
(Beltran)

Beltran et al, 2016
Beltran et al, 2019

phs000909.v.p1
phs001666.v1.p1

bulk RNA-seq FASTQs: 
CRPC/NEPC tumors 
(SU2C)

Abida et al, 2019 phs000915.v2.p2

bulk RNA-seq FASTQs: 
CRPC tumors (Sharp)

Sharp et al, 2019 GSE118435

bulk RNA-seq FASTQs: 
CRPC tumors (Labrecque)

Labrecque et al, 2019
Labrecque et al, 2021

GSE126078

bulk RNA-seq and ATAC-
seq FASTQs:

Tang et al, 2022 GSE199190

bulk RNA-seq FASTQs: 
SCLC tumors (George)

George et al, 2015 EGAD00001001244

SCLC subtype annotations Rudin et al, 2019 https://www.nature.com/articles/s41568-019-0133-9

gene expression data: 
TCGA Pan-Cancer

Hoadley et al, 2018 https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-
Cancer%20(PANCAN)&removeHub=http%3A%2F%2F127.0.0.1%3A7222

gene expression data: pan-
cancer CCLE

Ghandi et al, 2019 https://depmap.org/portal/download/all/

single-cell gene expresion 
data: advanced prostate 
cancers human biopsies

He et al, 2021 https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-
mediators-of-treatment-resistance-in-lethal-prostate-cancer

single-cell RNA-seq 
FASTQs: Brady GEMM 
model of advanced prostate 
cancers

Brady et al, 2021 GSE151426

single-cell RNA-seq 
FASTQs: Chan GEMM 

Chan et al, 2022 GSE210358
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

and Human CRPC tumor 
biopsies

single-cell RNA-seq 
FASTQs: Dong et al Human 
biopsy

Dong et al 2020 GSE137829

Experimental Models: Cell Lines

NCI-H1385 American Type 
Culture Collection 
(ATCC)

Cat# CRL-5867

NCI-H1930 American Type 
Culture Collection 
(ATCC)

Cat# CRL-5906

NCI-H1694 American Type 
Culture Collection 
(ATCC)

Cat# CRL-5888

NCI-H146 American Type 
Culture Collection 
(ATCC)

Cat# HTB-173

DMS79 American Type 
Culture Collection 
(ATCC)

Cat# CRL-2049

NCI-H526 American Type 
Culture Collection 
(ATCC)

Cat# CRL-5811

NCI-H660 American Type 
Culture Collection 
(ATCC)

Cat# CRL-5813

COR-L311 Sigma Aldrich Cat# 96020721

Lung-NHBE4-PARCB1 Park et al, 2018 N/A

Lung-NHBE-PARCB2 Park et al, 2018 N/A

Bladder-PARCB1 Liang et al., 2020 N/A

Lung-NHBE5-PARCB1 Park et al., 2018 N/A

Prostate-PARCB2 Park et al., 2018 N/A

PARCB-P2-TP6 This paper N/A

PARCB-P3-TP5 This paper N/A

PARCB-P7-TP6 This paper N/A

PARCB-P8-TP6 This paper N/A

Prostate-PARCB9 Park et al, 2018 N/A

Prostate-PARCB1 Park et al., 2018 N/A

Experimental Models: Organisms/Strains

NOD.Cg-Prkdcscid 
Il2rgtm1Wjl/SzJ (NSG) 
mice

Jackson Laboratories RRID:IMSR_JAX:005557

Oligonucleotides

PUM1 F IDT 5’-ATGGACGGCGGCACAC-3’

PUM1 R IDT 5’-TCTCATTCTGCTGGTCTGAAGG-3’

ASCL1 F IDT 5’-CAAGCAAGTCAAGCGACAGC-3’

ASCL1 R IDT 5’-CTCATCTTCTTGTTGGCCGC-3’
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

ASCL2 F IDT 5’-ATGGACGGCGGCACAC-3’

ASCL2 R IDT 5’-CAAGTTCACCAGCTTCACGC-3’

Recombinant DNA

pLENTI6.3-V5-ASCL1 DNASU Cat#: HsCD00852286

pLenti6/V5-DEST Gateway 
Vector

Thermo Fisher Cat# V496100

pDONR221-ASCL2 DNASU Cat# HsCD00829357

TLCv2 Addgene Cat# 87360

Software and Algorithms

DESeq2 (v1.34.0) Love, Huber, and 
Anders, 2014

https://bioconductor.org/packages/release/bioc/html/DESeq2.html

HOMER (v4.11) Heinz, Benner, Spann, 
Bertolino et al, 2010

http://homer.ucsd.edu/homer/download.html

GimmeMotifs (v0.17.0) Bruse and van 
Heeringen, 2018
van Heeringen and 
Veenstra, 2011

https://gimmemotifs.readthedocs.io/en/master/index.html#

EnrichR (v3.1) Chen et al, 2013
Kuleshov et al, 2016
Xie et al, 2021

https://cran.r-project.org/web/packages/enrichR/index.html

WiggleTools (v1.2) Zerbino et al, 2014 https://github.com/Ensembl/WiggleTools

deepTools (v3.5.1) Ramirez et al, 2014 https://deeptools.readthedocs.io/en/develop/index.html

DescTools (v0.99.47) https://cran.r-project.org/web/packages/DescTools/index.html

Seurat (v3.2.3) Hao and Hao et al, 
2021
Stuart and Butler et al, 
2019
Butler et al, 2018
Satija and Farrell et al, 
2015

https://satijalab.org/seurat/

singleR (v1.8.1) Aran et al, 2019 https://bioconductor.org/packages/release/bioc/html/SingleR.html

Monocle 2 (v3.12) Trapnell and 
Cacchiarelli et al, 
2014
Qiu, Hill, Trapnell et 
al, 2017
Qiu and Trapnell et al, 
2017

http://cole-trapnell-lab.github.io/monocle-release/

scVelo (v0.2.3) La Manno et al, 2018
Bergen et al, 2020
Bergen et al, 2021

https://scvelo.readthedocs.io/en/stable/

ARACNe-AP Lachmann et al, 2016
Margolin et al, 2006

https://github.com/califano-lab/ARACNe-AP

fgsea (1.20.0) Korotkevich, Sukhov, 
and Sergushichev, 
2019

https://bioconductor.org/packages/release/bioc/html/fgsea.html

TOIL (v3.12.0) Vivian et al, 2017 https://toil.ucsc-cgl.org/

ENCODE ATAC-seq 
pipeline

Hitz et al, 2023 https://github.com/ENCODE-DCC/atac-seq-pipeline

ENCODE Transcription 
Factor and Histone ChIP-
Seq processing pipeline

Hitz et al, 2023 https://github.com/ENCODE-DCC/chip-seq-pipeline2
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

CellRanger (v4.0.0) 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/
latest/using/tutorial_ct

ggplot2 (v3.3.6) Wickham 2016 https://cran.r-project.org/web/packages/ggplot2/index.html

GSVA (v1.42.0) Hänzelmann, Castelo, 
and Guinney, 2013

https://bioconductor.org/packages/release/bioc/html/
GSVA.html#:~:text=Gene%20Set%20Variation%20Analysis%20(GSVA,of%20a%2
0expression%20data%20set.

Stats (v3.6.2) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

pheatmap (v1.0.12) https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf

limma (v3.50.3) Ritchie et al, 2015 https://bioconductor.org/packages/release/bioc/html/limma.html

bedtools (v2.26.0) Quinlan and Hall, 
2010

https://bedtools.readthedocs.io/en/latest/

Fiji (v2.14.0) Schindelin, Arganda-
Carreras and Frise et 
al., 2019

https://imagej.net/software/fiji/

StepOne Software (v2.3) Thermo Fisher https://www.thermofisher.com/us/en/home/technical-resources/software-downloads/
StepOne-and-StepOnePlus-Real-Time-PCR-System.html
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