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A potential role for SARS‑CoV‑2 
small viral RNAs in targeting host 
microRNAs and modulating gene 
expression
Zachary T. Neeb 1,5, Alexander J. Ritter 2,5, Lokendra V. Chauhan 3, Sol Katzman 4, 
W. Ian Lipkin 3, Nischay Mishra 3* & Jeremy R. Sanford 1*

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19) 
in humans, with symptoms ranging from mild to severe, including fatality. The molecular mechanisms 
surrounding the effects of viral infection on the host RNA machinery remain poorly characterized. We 
used a comparative transcriptomics approach to investigate the effects of SARS-CoV-2 infection on 
the host mRNA and sRNA expression machinery in a human lung epithelial cell line (Calu-3) and an 
African green monkey kidney cell line (Vero-E6). Upon infection, we observed global changes in host 
gene expression and differential expression of dozens of host miRNAs, many with known links to viral 
infection and immune response. Additionally, we discovered an expanded landscape of more than 
a hundred SARS-CoV-2-derived small viral RNAs (svRNAs) predicted to interact with differentially 
expressed host mRNAs and miRNAs. svRNAs are derived from distinct regions of the viral genome and 
sequence signatures suggest they are produced by a non-canonical biogenesis pathway. 52 of the 67 
svRNAs identified in Calu-3 cells are predicted to interact with differentially expressed miRNAs, with 
many svRNAs having multiple targets. Accordingly, we speculate that these svRNAs may play a role in 
SARS-CoV-2 propagation by modulating post-transcriptional gene regulation, and that methods for 
antagonizing them may have therapeutic value.

Small non-coding RNAs (sRNAs) play diverse roles in gene regulation and genome integrity. Ranging 
from ~ 20–30 nt, this functionally diverse class of RNAs plays important roles in the regulation of many biologi-
cal processes1,2. Short interfering RNAs and microRNAs (siRNA and miRNA, respectively) function in post-
transcriptional control of gene expression by regulating messenger RNA (mRNA) translation and stability3,4. By 
contrast, Piwi-associated RNAs (piRNAs) control transcriptional silencing of transposable elements in eukaryotic 
germlines and the elimination of entire regions of ciliate genomes5,6.

sRNAs are derived from larger precursor transcripts. Although biogenesis pathways for the different types 
of sRNAs vary widely depending on type and species, processing of precursors typically involves cleavage by 
the endonucleases Drosha and Dicer before they are loaded onto an Argonaute Family protein (either an AGO 
or a PIWI) to interact with downstream targets. However, there are a multitude of alternative mechanisms for 
sRNA biogenesis, some of which include Drosha/Dicer-independent mechanisms or even multiple Argonautes 
and Dicer-like proteins7–10. The level of complementarity of an sRNA to its target varies from as little as 8 nt in 
the 5ʹ seed region (miRNAs) up to 100% complementarity of the full sRNA sequence (siRNAs and piRNAs), 
and often is a determining factor in how an sRNA interacts with its targets. It has also been suggested for human 
miRNAs that their abundance directly affects whether they repress translation by active mRNA degradation, or 
by interaction with the 3ʹ UTR when miRNA levels are insufficient for widespread 3ʹ UTR binding11. Taken as a 
whole, small RNA biogenesis and function is complex and exceptions to rules regarding roles and mechanisms 
are quite common.
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Viruses such as SARS-CoV-2 remodel host gene expression programs. This occurs through a variety of 
mechanisms, including deregulation of post-transcriptional gene regulation. More recently, viral small non-
coding RNAs have also been identified that may play important roles in adaptation and viral propagation12–15 in 
infections with SARS-CoV-112, Influenza13, Hepatitis A14 and EV7115. During the COVID-19 pandemic, mul-
tiple groups also reported the existence of miRNA-like sRNAs derived from SARS-CoV-2, although the details 
of their biogenesis and specific function have yet to be elucidated16–18. Small viral RNAs (svRNAs) vary greatly 
in size and cellular abundance and have been implicated in a variety of different biological pathways related to 
infection and host immune evasion19.

In this study, we characterize global changes in both host cell mRNA and miRNA expression using multiple 
sequencing-based methods taking a comparative transcriptomics approach in two very well-established primate 
cell lines20–23. This approach enables identification of conserved changes in host gene regulatory reponses during 
infection. We also report the discovery of a diverse landscape of svRNAs produced by SARS-CoV-2. Sequence 
alignments, along with expression dynamics suggest the intriguing hypothesis that SARS-CoV-2 small RNAs 
may directly regulate host transcripts, including microRNAs.

Results
SARS‑CoV‑2 infection induces global changes in host gene expression.  To investigate how 
SARS-CoV-2 infection influences host gene expression, we analyzed the transcriptomes of both a human lung 
epithelial cell line (Calu-3) and African green monkey kidney cell line (Vero-E6) during the course of SARS-
CoV-2 infection. Both cell lines were infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01. 
RNA extracts were made from harvested cell pellets of infected Calu-3 cells at 0 h, 12 h, 24 h, 48 h and 72 h post-
infection (hpi), and infected Vero-E6 cells at 4 h, 24 h, 48 h, 72 h, 120 h, 165 h and 216 hpi. RNA extracts of cell 
pellets from uninfected cells were also used as controls and processed from all time points. Similar to previous 
studies24, the majority of reads from infected cells mapped to the host genomes (60.3–100.0% for Calu-3 cells, 
88.2–95.6% for Vero-E6 cells), with the remainder mapping to the SARS-CoV-2 genome (Fig. 1A, Supplemental 
Table S1).

SARS-CoV-2 infection induces global changes in gene expression in both Calu-3 cells and Vero-E6 cells. 
DESeq225 analysis revealed 4,593 and 1,040 significantly differentially expressed genes, respectively (Fig. 1B, 
Supplemental Fig. S1). Differentially expressed genes in Calu-3 and Vero-E6 cells were used for downstream 
Gene Ontology Biological Process (GOBP) and KEGG Human Pathway enrichment analysis. Upregulated genes 
fell into enriched gene families related to innate immunity and inflammatory response pathways, while down-
regulated genes tended to be involved in metabolic and other biosynthetic pathways (Fig. 1C–F, Supplemental 
Tables S2-S4). For both Calu-3 and Vero-E6 cells, we observed significant overlap between GOBP terms for 
upregulated and downregulated genes throughout the time course. By contrast, KEGG pathway overlap was only 
observed for the upregulated gene sets (Supplemental Fig. S2). Interestingly, for both cell types, we observed gene 
expression changes to be most significant from 24 to 48 hpi, most likely reflective of the time required to elicit 
cellular response to viral infection. Overall, we found SARS-CoV-2 infection to cause global gene expression 
changes in both Calu-3 and Vero-E6 cells.

SARS‑CoV‑2 expresses a diverse landscape of small RNAs.  We analyzed the small RNA transcrip-
tome from mock and infected Calu-3 and Vero-E6 cells to uncover potential SARS-CoV-2-dependent gene 
regulatory mechanisms. Following infection, libraries from both cell lines contained reads mapping to the 
SARS-CoV-2 genome (Fig. 2A, Supplemental Fig. S3, Supplemental Table S1). We found that the distribution 
of svRNAs mapping to the SARS-CoV-2 genome was not uniform and that there were “pile-ups’’ in particular 
regions indicating the RNAs identified are not likely to be degradation products of the full-length viral genomic 
or subgenomic RNA, but may be derived from specific loci (Fig. 2A, Supplemental Fig. S3). Using Piranha26, we 
identified 67 svRNAs from Calu-3 cells with a mean length of 22 nt and 97 svRNAs from Vero-E6 cells with a 
mean length of 25 nt (Fig. 2B, Supplemental Figs. S4, S5, Supplemental Table S3). 28 svRNA loci were shared 
between the two cell lines (Fig. 2B). svRNA expression is dynamic throughout the time course with peak expres-
sion of the svRNAs between 24 and 48 hpi for both species (Fig. 2C, Supplemental Fig. S6). Calu-3 svRNAs tend 
to cluster into three distinct types of expression profiles. Two svRNA groups showed transient peak expression 
at 24 and 48 hpi respectively and then returned to base-level, while another group showed sustained expres-
sion from 24 to 48 hpi (Fig. 2C). The dynamics of svRNA expression follows similar kinetics as changes in host 
mRNA and miRNA expression (Figs.  1B, 3A, Supplemental Fig.  S1). To assess the conservation of svRNAs 
among variants of SARS-CoV-2 we intersected them with known mutations in variants of concern from the 
Uniprot Amino Acid mutations track on the UCSC Genome Browser. While 6 of the 67 Calu-3-specific svRNAs 
and 5 of the 66 conserved svRNAs overlapped with at least one mutation, only 3 and 4 of them respectively 
overlap in such a way that the seed sequence would be affected (Supplemental Table S8, Supplemental Fig. S14). 
We therefore speculate that these mutations would not significantly impact svRNA function. Further studies are 
needed to answer this question and we are highly interested in infecting Calu-3 cells with SARS-CoV-2 variants 
in the future to investigate the functional effects of these mutations.

To illuminate potential biogenesis pathways for SARS-CoV-2 svRNAs, we aligned the 5ʹ and 3ʹ ends of svR-
NAs searching for nucleotide biases. By contrast to miRNAs, the svRNAs did not possess sequence signatures 
with the typical 5ʹ-U bias, suggesting a Dicer-independent processing pathway (Fig. 2D, Supplemental Fig. S7). 
Additionally, we found that only 10 of the 67 Calu-3 cell-derived svRNAs and 12 of the 97 Vero-E6 cell-derived 
svRNAs were predicted to have an upstream or downstream complementary sequence within 44 nt that may 
form a hairpin27, often required for canonical miRNA processing. (Supplemental Table S6).
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Figure 1.   SARS-CoV-2 infection induces global changes in gene expression. (A) UCSC Genome Browser 
screenshots showing Calu-3 sample-derived mRNA sequencing reads mapped to the SARS-CoV-2 genome 
for infected and control cells. Underneath the screenshot is a schematic representation of the SARS-CoV-2 
genome depicting the regions of ORF1a/1b, the spike protein (S), the envelope protein (E), the membrane 
protein (M) and the nucleocapsid protein (N). (B) Heatmap representation of differentially expressed Calu-3 
genes over the time course of infection. 4593 differentially expressed genes are shown. Heatmaps were generated 
using hierarchical clustering. (C) Enriched Gene Ontology Biological Process (GOBP) terms are shown for 
upregulated Calu-3 genes. Only a subset of significantly enriched GOBP terms are shown. (D) Same as (C), 
but with enriched KEGG Human Pathways. (E) Enriched GOBP terms for downregulated Calu-3 genes. Only 
a subset of significantly enriched GOBP terms are shown. (F) Same as (E), but with enriched KEGG Human 
Pathways.
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SARS‑CoV‑2 alters host microRNA expression.  We hypothesized that global changes in gene expres-
sion could be mediated through changes in host sRNA expression, specifically miRNAs. We analyzed the host 
small RNA transcriptomes of infected and control Calu-3 cells (Fig. 3A, Supplemental Figs. S8–S10, Supplemen-
tal Table S1) and discovered that 28 miRNAs are differentially expressed throughout the infection time course 
(Fig. 3A, Supplemental Table S7). Consistent with our mRNA sequencing data, we observed differential expres-
sion of miRNAs at 24 hpi with the most significant changes occurring at 48 hpi (Fig. 1B).

SARS‑CoV‑2 svRNAs may hybridize with differentially expressed mRNAs and miRNAs.  To 
investigate the potential function of svRNAs we used RNAHybrid28,29 to identify targets within differentially 
expressed Calu-3 mRNAs and miRNAs. Of the svRNAs identified in Calu-3 cells, 59 of 67 have predicted mRNA 
targets within the 3’UTRs of differentially expressed (DE) genes (Tables 1 and 2, Supplemental Tables S2-3). 
RNAhybrid predictions identified svRNAs that can also form stable duplexes with miRNAs, 52 of which target 
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Figure 2.   SARS-CoV-2 expresses a diverse landscape of small RNAs. (A) UCSC Genome Browser screenshots 
showing Calu-3 sample-derived sRNA sequencing reads mapped to the SARS-CoV-2 genome for both infected 
and control cells. Reads from infected cells do not map uniformly to the genome but instead form “pile ups” 
in particular regions. Underneath the screenshot is a schematic representation of the SARS-CoV-2 genome 
depicting the regions of ORF1a/1b, the spike protein (S), the envelope protein (E), the membrane protein (M) 
and the nucleocapsid protein (N). (B) Venn Diagram showing the number of svRNAs identified in Calu-3 
and Vero-E6 cells, with conserved loci indicated. (C) Heatmap representation of Calu-3 cell-derived svRNA 
expression. Heatmaps were generated using hierarchical clustering. To the right of the heatmap is an annotation 
column indicating if the svRNA is species-specific or conserved between Calu-3 and Vero-E6 cells. (D) 
Sequence logos for the first ten and last ten nucleotides of the svRNAs identified in Calu-3 cells. svRNAs lack a 
5’-U signature typical of many canonical miRNAs.
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Figure 3.   SARS-CoV-2 svRNAs may target host miRNAs. (A) Heatmap representation of the 28 differentially 
expressed Calu-3 miRNAs over the time course of infection. Heatmaps were generated using hierarchical 
clustering. To the right of the heatmap is an annotation column indicating if the miRNA is a predicted target of 
an svRNA. (B) Circos plot representation of predicted interactions between svRNAs and DE human miRNAs 
using RNAhybrid without seed-forcing. The ribbons are colored according to the svRNA that is predicted to 
interact with the miRNA to which it connects. There are many examples of svRNAs targeting more than one 
miRNA and of miRNAs being targeted by more than one svRNA. DE miRNAs mentioned in the Discussion 
section are labeled. Shown below are two examples of RNAhybrid prediction outputs for svRNAs and DE 
miRNAs pictured above.
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Table 1.   List of the ten most abundant Calu-3-derived svRNAs with DE mRNA targets. Table listing the ten 
most abundant svRNAs with DE mRNA targets, normalized counts, number of differentially expressed mRNA 
targets and the top enriched GO term for targets. Counts were normalized to the mean read depth of all 
sample libraries.

svRNA Counts # mRNA targets Top enriched GO term for targets

svRNA2875-2897 165 39 Negative regulation of CD4-positive, alpha–beta T cell proliferation (GO:2000562)

svRNA26927-26947 134 18 Negative regulation of CD4-positive, alpha–beta T Cell proliferation (GO:2000562)

svRNA28260-28289 89 1 Gamma-aminobutyric acid metabolic process (GO:0009448)

svRNA27059-27089 88 16 Regulation of protein import into nucleus (GO:0042306)

svRNA27107-27128 80 11 Heart field specification (GO:0003128)

svRNA26820-26840 77 2 Mesoderm morphogenesis (GO:0048332)

svRNA5572-5597 64 4 Regulation of oxidoreductase activity (GO:0051341)

svRNA37-63 57 2 Ribosomal Large Subunit Assembly (GO:0000027)

svRNA18943-18965 47 1 N/A

svRNA29039-29064 45 5 Extracellular structure organization (GO:0043062)

Table 2.   List of the top enriched GO terms for DE mRNA targets of Calu-3-derived svRNAs. Table listing the 
top ten significantly enriched GO terms for all upregulated and all downregulated mRNA targets of Calu-3-
derived svRNAs in our data set.

Top enriched GO terms for downregulated mRNA targets of 
svRNAs Top enriched GO terms for upregulated mRNA targets of svRNAs

Quinone catabolic process (GO:1901662) Cellular response to cytokine stimulus (GO:0071345)

Leukotriene B4 metabolic process (GO:0036102) Cytokine-mediated signaling pathway (GO:0019221)

Menaquinone metabolic process (GO:0009233) Regulation of interferon-gamma production (GO:0032649)

Vitamin K metabolic process (GO:0042373) Cellular response to interferon-gamma (GO:0071346)

Fat-soluble vitamin metabolic process (GO:0006775) Negative regulation of natural killer cell mediated cytotoxicity 
(GO:0045953)

Organic hydroxy compound catabolic process (GO:1901616) Regulation of apoptotic cell clearance (GO:2000425)

Fat-soluble vitamin catabolic process (GO:0042363) Positive regulation of apoptotic cell clearance (GO:2000427)

Axoneme assembly (GO:0035082) interferon-gamma-mediated Signaling Pathway (GO:0060333)

Diterpenoid metabolic process (GO:0016101) Regulation of immune response (GO:0050776)

Phosphate ion transport (GO:0006817) Negative regulation of natural killer cell mediated immunity 
(GO:0002716)

Table 3.   List of the ten most abundant Calu-3-derived svRNAs with DE miRNA targets. Table listing the 
ten most abundant svRNAs with DE miRNA targets, normalized counts, number of differentially expressed 
miRNA targets and miRNA target names. miRNAs in bold are downregulated in our data set. Counts were 
normalized to the mean read depth of all sample libraries.

svRNA Counts # miRNA targets miRNA

svRNA26741-26761 165 4 MIR128_3p, MIR1298_5p, MIR1307_5p, MIR2277_5p

svRNA28573-28595 134 1 MIR2277_5p

svRNA2868-2897 88 3 MIR106A_5p, MIR2277_5p, MIR381_3p

svRNA28704-28725 80 2 MIR138_5p, MIR2277_5p

svRNA28553-28573 77 4 MIR132_3p, MIR2277_5p, MIR23B_3p, MIR299_5p

svRNA18943-18965 57 1 MIR149_5p

svRNA27578-27602 47 2 MIR26A2_5p, MIR381_3p

svRNA524-546 45 1 MIR2277_5p

svRNA5423-5445 45 3 MIR1298_5p, MIR181B2_5p, MIR3909_3p

svRNA28068-28088 41 1 MIR132_3p
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differentially expressed miRNAs in our data set (Fig. 3B, Table 3, Supplemental Fig. S11, Supplemental Table S7). 
A larger portion of svRNA-target interactions were predicted to occur with downregulated miRNAs than with 
downregulated mRNA targets throughout the time course (Supplemental Fig.  S10). Interestingly, we found 
numerous examples of host miRNAs that can pair with multiple svRNAs (Figs. 3B, 4, Supplemental Fig. S11). 
In addition, we also observed examples of svRNAs that can potentially hybridize to a broad array of miRNAs 
(Figs. 3B, 4, Table 3, Supplemental Fig. S11). Because the Vero-E6 genome has not been extensively annotated 
to include miRNA sequences, we were unable to perform RNAhybrid predictions against Vero-E6 miRNAs, 
but found that of the 61 Calu-3-derived svRNAs capable of targeting host miRNAs, 27 had conserved loci with 
Vero-E6-derived svRNAs.

Discussion
We analyzed the transcriptomes of two primate cell lines during SARS-CoV-2 infection and observed global 
changes in gene expression. Consistent with previous work, we found enrichment for upregulated genes involved 
in the RIG-I pathway, Toll-like Receptor (TLR) signaling pathways, NF-kappa Beta pathway, and type 1 interferon 
(IFN) signaling16,30–34 (Supplemental Fig. S12). Downregulated genes tended to fall into enriched gene families 
involved with metabolic and other biosynthetic pathways, consistent with SARS-CoV-2-mediated metabolic dys-
regulation observed in human patients35–37. Metabolic dysregulation may lead to an increase in the inflammatory 
and auto-immune responses as observed in severe Covid-19 patients. We also identified more than a hundred 
svRNAs capable of interacting with host transcripts, including miRNAs. svRNAs are expressed from specific 
loci, within ORF7a, and the spike (S) and nucleocapsid (N) genes. In addition to having predicted target sites 
in differentially expressed host transcript 3’-UTRs like canonical miRNAs, 52 of the 67 Calu-3 sample-derived 
svRNAs are also predicted to form stable duplexes with differentially expressed miRNAs, many of which have 
been implicated in other types of viral respiratory infections (VRIs)38. For example, miR-128, miR-2277 and 
miR-155 are known to be associated with rhinovirus infection, Middle Eastern Respiratory Syndrome (MERS) 
and SARS-CoV-2, respectively. We see many examples of svRNAs with predicted target sites in more than one 
differentially expressed miRNA, with 38 of the 67 having two or more predicted targets. svRNAs are most highly 
expressed at 24 h and 48 hpi, which corresponds to the time points at which we see the most significant changes 
in host gene and miRNA expression. This expression dynamic suggests an interplay between svRNAs and host 
miRNAs, in which svRNAs have the capability to interact with host miRNAs, therefore affecting downstream 
target mRNA expression.

Figure 4.   Proposed svRNA-miRNA interactions upon SARS-CoV-2 infection. The illustrated model is briefly 
described in the Discussion section. svRNAs may interact with miRNAs in multiple ways, none of which are 
mutually exclusive. (A) A RISC-miRNA complex targets complementary sequences in the viral genomic RNA. 
svRNAs are produced by cleavage and go on to perform downstream functions, such as interacting with host 
mRNAs and miRNAs. (B) There is direct hybridization of svRNAs and miRNAs without association with RISC, 
leading to sequestration of miRNAs, preventing them from interacting with endogenous targets. (C) A RISC-
svRNA complex targets miRNAs and prevents them from interacting with endogenous targets. (D) A RISC-
miRNA complex targets svRNAs, preventing the complex from interacting with endogenous targets. Created 
with BioRender.com.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21694  | https://doi.org/10.1038/s41598-022-26135-9

www.nature.com/scientificreports/

Here we describe an expanded landscape of SARS-CoV-2-derived small RNAs including all four svRNAs 
previously reported by the Cheng, Meng and Pawlica groups16–18 (Supplemental Fig. S13). In agreement with 
what the Meng and Cheng groups observed, we identified dozens of svRNAs derived from the nucleocapsid (N) 
gene, many that overlap the sequences reported in those studies, albeit with varying starting coordinates and 
lengths16,17 (Supplemental Fig. S13). In addition to recapitulating the existence of svRNAs derived from the N 
gene, we identified an svRNA (svRNA27406-27428) derived from ORF7a that almost perfectly overlaps with 
the sequence reported by Pawlica and colleagues18 (Supplemental Fig. S13). We reason that our experiment 
has increased sensitivity because we use a lower MOI (0.01) than previous studies (0.05–5), and performed an 
extended time course experiment16,18. In contrast to previous studies, we have shown SARS-CoV-2 infection to 
cause significant changes in global host miRNA expression and have additionally predicted the svRNAs identi-
fied here to interact with differentially expressed host miRNAs.

miRNAs are typically processed via a Dicer-mediated biogenesis pathway. Our data suggest that many of the 
svRNAs are generated instead via a Dicer-independent processing mechanism. Lack of a 5ʹ-U bias in the sequence 
analyses for svRNAs indicates that biogenesis may occur in a non-canonical Dicer-independent manner. Other 
groups have also reported svRNAs derived from SARS viruses lacking a 5ʹ-U sequence signature and it has been 
suggested that these small RNAs may utilize the slicer activity of Ago2 for biogenesis rather than the traditional 
miRNA/siRNA processing machinery, similar to what has been observed for the well-studied human miR-
45110,12,17. Morales and colleagues observed svRNA expression following knockdown of the RNase III nucleases 
Drosha and Dicer12, suggesting these canonical enzymes are not necessary for svRNA biogenesis. We also identi-
fied svRNAs derived from ORF7a and the N gene that overlap with svRNAs reported by the Meng, Cheng and 
Pawlica groups, but with varied starting coordinates and/or sizes. This may suggest that isomiRs exist for svRNAs, 
potentially caused by alternative processing events such as 5ʹ/3ʹ trimming variants due to imprecise cleavage of 
precursors39. Further studies on svRNAs derived from SARS-CoV-2 are necessary to elucidate key players in 
their biogenesis and to validate their potential to interact with host transcripts to affect host gene expression.

Based on our observations, we propose a functional role for svRNAs in which deregulation of the host mRNA 
expression program may be a direct effect of svRNAs sequestering or “sponging” host miRNAs (Fig. 4). There 
are many examples of known miRNA sponges in the literature, such as HSUR 1 and HSUR 2 from Herpesvirus 
saimiri 40, and it is entirely possible that the svRNAs presented here may function similarly41–43. An efficient way 
to post-transcriptionally alter a gene network or biological system would be to sequester/act on regulators of 
the network itself, rather than individual genes separately. As canonical human miRNAs often have hundreds of 
predicted target genes each, production of svRNAs that interfere with this regulation may confer an evolutionary 
advantage for SARS-CoV-2 and other viruses by modulating host gene expression on a global scale, increasing the 
likelihood of viral propagation. It has been previously suggested that viral RNA derived from SARS-CoV-2 may 
act as a host miRNA sponge to aid in evading the host immune response and our findings add more credence to 
this hypothesis44. Based on RNAhybrid seed-target predictions, 22 of 33 differentially expressed host miRNAs 
are capable of targeting svRNAs, 11 of which are upregulated during the time course. It is possible that in addi-
tion to svRNAs sponging host miRNAs, they also directly target miRNAs with or without RISC, preventing the 
host miRNAs from interacting with endogenous targets (Fig. 4). These potential svRNA-miRNA interactions are 
not mutually exclusive and may occur simultaneously, ultimately leading to the same outcome: global changes 
in host gene expression. Direct interactions between svRNAs and their predicted targets must still be validated 
experimentally to assess the full extent to which these interactions occur during viral infection and also to tease 
apart the actual targeting mechanism itself. In the future, these interactions could be easily antagonized or 
blocked using locked nucleic acids (LNAs) or other methods and potentially used as targets for the therapeutic 
treatment of patients infected with the virus.

STAR methods
Cell culture and viruses.  African green monkey kidney (Vero-E6) cells and human lung epithelial (Calu-
3) cells were obtained from the ATCC (Manassas, VA). The cells were cultured in Dulbecco’s modified Eagle’s 
medium (ThermoFisher Scientific, Waltham, MA, USA) containing 1% heat inactivated fetal bovine serum 
(ThermoFisher Scientific), 100 U/mL penicillin, and 100 μg/mL streptomycin. The cells were incubated in 95% 
air and 5% CO2 at 37 °C.

Virus infection and total RNA extraction.  Vero-E6 and Calu-3 cells (2 × 105 cells/well in 6-well plates) 
were cultured in DMEM containing 1% FBS at 37 °C in a CO2 incubator overnight. The cells were washed once 
with phosphate-buffered saline (PBS), prototypic SARS-CoV-2 Washington strain (USA/WA1/2020) in growth 
media at MOI 0.01 was added into each desired well, and the plates were incubated for 1.5 h at 37 °C in a CO2 
incubator. After incubation, 3 mL of DMEM containing 1% FBS was added to each well and the plates were 
incubated at 37 °C in a CO2 incubator. Infected Calu-3 cells were harvested at 0 h, 12 h, 24 h, 48 h and 72 hpi 
(in triplicate) and Vero-E6 cells were harvested at 4 h, 24 h, 48 h, 72 h, 120 h, 168 h and 216 hpi (in duplicate).

For harvesting, cell culture supernatants were collected and mixed with Trizol (Fisher Scientific) at a ratio of 
1:1. Cells were detached using Trypsin–EDTA 0.25% (ThermoFIsher Scientific), followed by centrifugation at 
1000 rpm for 5 min at 4 °C to form a cell pellet which in turn was dissolved in 250 μl of Trizol. Both cell superna-
tant in Trizol and cell pellet in Trizol were stored at – 80 °C until further processing. SARS-CoV-2 amplification 
and cell culture procedures were performed according to biosafety level 3 (BSL-3) conditions.

Total RNA was extracted using the TRI Reagent protocol for isolation of RNA with the following modifica-
tion: one additional RNA ethanol wash step was included. After the total RNA was solubilized in ddH20, one 
overnight ethanol precipitation step was included for further purification of the total RNA.
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Illumina sequencing of sRNA libraries.  Total RNA was isolated from cell culture pellets as described 
above. Total RNA from infected Calu-3 cells, infected Vero-E6 cells and uninfected controls were used for sRNA 
library preparation. 1 μg of total RNA for each sample was used for sRNA library preparation using the NEXT-
FLEX small RNA-Seq Kit v3 following the manufacturer’s protocol (Perkin Elmer Applied Genomics). Adapter 
dilution was not performed and 17 cycles of PCR amplification were used before using the gel-free size selection 
and cleanup protocol. Pooled sRNA sequencing libraries were sequenced on an Illumina HiSeq 4000 at the UC 
Davis Sequencing Core Facility, generating 100 bp single-end reads.

Illumina sequencing of mRNA libraries.  Total RNA was isolated for cell culture pellets as described 
above. Total RNA from infected Calu-3 cells, infected Vero-E6 cells and uninfected controls were used for mRNA 
library preparation. 2 μg of total RNA for each sample was used for mRNA library preparation using the NEXT-
FLEX Rapid Directional RNA-Seq Kit 2.0 following the manufacturer’s protocol (Perkin Elmer Applied Genom-
ics). Before library preparation, total RNA samples were subjected to Poly(A) selection and purification using 
the NEXTFLEX Poly(A) Beads Kit 2.0 following the manufacturer’s protocol (Perkin Elmer Applied Genomics). 
Based on sample RNA integrity numbers (RINS) and total RNA input, 9 min fragmentation time was used, 
adapter concentration was diluted by half and 9 cycles of PCR amplification were used before bead clean up and 
elution. For Calu-3 cell samples, pooled mRNA sequencing libraries were sequenced on an Illumina NovaSeq 
S4 at the UC Davis Sequencing Core Facility, generating 150 bp paired-end reads. For Vero-E6 samples, pooled 
mRNA sequencing libraries were sequenced on an Illumina HiSeq 4000, generating 100 bp single-end reads.

Analyses of Calu‑3 mRNA sequencing data.  The full-length paired-end reads were mapped with Bow-
tie 245 against the set of human repeat-masker elements in the hg38 assembly, as well as a constant poly-A 
sequence. Reads that were mapped to these elements were removed from further processing. The repeat-filtered 
full-length reads were mapped with STAR 2.5.3a46, using the "–alignEndsType EndToEnd" option, to a single 
joint target consisting of the hg38 genome assembly plus the wuhCor1 genome. In cases of multiply-mapped 
reads, only the best mapping was retained. The STAR mapped bam files were divided into separate hg38 and 
wuhCor1 files for further analysis.

Gene-by-gene coverage was extracted from the hg38 mappings that overlapped any potential exon for each 
gene in a gene model of hg38. The total coverage for each gene was divided by the total paired-end read length 
of each mapping to extract read counts as input to DESeq225. DESeq2 was run to compare all replicates of con-
ditions as follows:

1.	 At each time point, the control vs the infected samples
2.	 For the controls, comparisons between the time points
3.	 For the infected samples, comparisons between the time points.

Analyses of Vero‑E6 mRNA sequencing data.  The single-end reads were trimmed at the 3ʹ end to 
leave 50 bp for mapping. The trimmed reads were mapped with Bowtie 245 against a set of repeat elements in the 
Vero-E6 genome. The trimmed, repeat-filtered and wuhCor1-filtered, single-end reads were mapped with STAR 
2.5.3a, using the "–alignEndsType EndToEnd" option, to chlSab2 genome assembly. In cases of multiply-mapped 
reads, only the best mapping was retained. Potential PCR duplicates (single-end reads mapped to the identical 
coordinates) were removed from the chlSab2 mappings.

Gene-by-gene coverage was extracted from the chlSab2 mappings that overlapped any potential exon for each 
gene in a gene model of chlSab2. The total coverage for each gene was divided by the single-end read length of 
each mapping to extract read counts as input to DESeq2.

DESeq2 was run to compare all replicates of conditions:

1.	 At each time point, the control vs the infected samples
2.	 For the controls, comparisons between the time points
3.	 For the infected samples, comparisons between the time points.

Gene ontology (GO) and KEGG human pathway analyses.  GO process annotations and KEGG 
human pathway annotations were retrieved using the web tool Enrichr47–50. The p-values of enrichment of GO 
process and KEGG pathways were determined using Enrichr on differentially expressed upregulated and down-
regulated genes from both Calu-3 and Vero-E6 data sets.

svRNA discovery from sRNA‑seq data.  Potential svRNAs were identified from sRNA-seq reads using a 
stepwise bioinformatic approach which incorporates established tools and bespoke analysis methods. Prerequi-
site packages include: STAR v2.7.8a46, BEDOPS v2.4.4051, bedtools v2.28.052, Piranha v1.2.126, Bowtie 2 v2.4.445 
and RNAhybrid v2.1.229. The svRNA-discovery pipeline entails the following steps:

1.	 sRNA-seq libraries were first mapped against their respective host genomes (GRCh38 for human, chlSab2 
for African Green Monkey) and against the SARS-CoV-2 genome (wuhCor1) using STAR​53.

2.	 Mapping files from the infected samples from Calu-3 and Vero-E6 were subsetted for sequences between 20 
and 30 nt in length that mapped to the SARS-CoV-2 genome. Piranha peaks were called for pooled reads 
from infected samples for each time point in each of the two cell types using bins of size 50 and a background 
threshold of 0.95.
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3.	 Piranha peaks were pooled for each cell type, and unique reads mapping to them were aligned to their 
respective host genomes using Bowtie 2 to remove any potential multi-mapping or host-mapped reads from 
downstream analysis.

4.	 Of the remaining sequences, those that met our count-based cutoffs were filtered for sequences whose counts 
across infected replicates and time points were the highest among overlapping sequences. Some overlapping 
sequences whose counts were especially relatively high were retained. The count-based cutoffs for a given 
sequence were as follows:

a.	 It must be present in at least 5 infected samples for Calu-3 and at least 4 for Vero-E6 (due to the differ-
ence in replicates).

b.	 Its total raw counts from infected samples must be at least 20.
c.	 If present in any control samples, it must not be present in all control samples.
d.	 If present in any control samples, its total raw counts from control samples must be less than or equal 

to 10% of the total raw counts from infected samples.

5.	 Duplexes between host transcripts (all expressed mRNAs and miRNAs) and SARS-CoV-2-derived sequences 
from Step 4 were then predicted using RNAhybrid28,29, which is a tool that is typically used to predict the 
hybridization, with the smallest minimum free energy, of a short RNA molecule with a longer one. SARS-
CoV-2-derived sequences with at least 1 statistically significant (p-value < 0.05) predicted duplex with a 
host transcript were then considered potential SARS-CoV-2-derived svRNAs. The resultant target predic-
tions were then subsetted for those involving host targets that were significantly differentially expressed 
(p-value < 0.05, log2 fold change ≥ 1.0).

6.	 Potential svRNAs from both cell types with overlaps to each other (across cell types) greater than or equal 
to 60% were categorized as svRNAs derived from “conserved loci”. We define conserved loci as loci in the 
SARS-CoV-2 genome from which potential svRNAs were detected in both the Calu-3 and Vero-E6 experi-
ments. Additionally, overlapping svRNAs within cell type (i.e. shifted 1-2nt down the SARS-CoV-2 genome 
sequence) that were retained due to their high relative counts were denoted as potential viral isomiRs—in 
this case being svRNAs from the same approximate locus but with slightly different ends owed to imprecise 
precursor cleavage.

7.	 Lastly, to investigate the potential of identified svRNAs to be products of hairpin precursors, we used 
RNAfold27 to predict the structure of each svRNA with the addition of 30–45 nt upstream and downstream 
separately. In order to call potential hairpin precursors for svRNAs, the structure predictions needed to have: 
only a single loop—with no shared nucleotides with the mature svRNA sequence, at least 14 base pairings 
in the stem, and a maximum minimum free energy (MFE) of − 4.3 kcal/mol54. Hairpins that passed these 
filters were visualized using Forna55.

Data availability
All RNA-sequencing data can be accessed at the National Center for Biotechnology Institute (NCBI) Gene 
Expression Omnibus (GEO) database: GSE197521.

Code availability
No new code was developed for this study.
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