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Abstract

Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with

Counter-Rotating Vertical-Axis Wind Turbines

by

Samuel Adam Chinman Kanner

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ronald W. Yeung, Chair

The design and operation of two counter-rotating vertical-axis wind turbines on a floating,
semi-submersible platform is studied. The technology, called the Multiple Integrated and
Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind
energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-
rotating turbines, which can achieve a higher power density per planform area because of
synergistic interaction effects. The purpose of the research is to control the orientation of
the platform and rotational speeds of the turbines by modifying the energy absorbed by each
of the generators of the turbines.

To analyze the various aspects of the platform and wind turbines, the analysis is drawn
from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To
study the hydrodynamics of the floating platform in incident monochromatic waves, poten-
tial theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady,
second-order moments that are spatially dependent (i.e., dependent on the platform’s yaw
orientation relative to the incident waves) are given special attention since there are no nat-
ural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied
in collaboration with researchers at the UC Berkeley Mathematics Department using a high-
order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the
method to a domain with counter-rotating turbines and the effects from the closely-spaced
turbines is compared with existing experimental data.

Hybrid testing techniques on a model platform are utilized to prove the controllability of
the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated
and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind
turbines are simulated by spinning, controllable actuators that can be updated in real-time
of the model scale. Under certain wind and wave headings, it is possible to control the
orientation of the platform in regular waves to maximize the power output from the turbines.
A time-domain numerical simulation tool is able to confirm some of the experimental findings,
taking into account the decoupled properties of the slow-drift hydrodynamics and wind
turbine aerodynamics. Future platform designs are discussed, including the French-based,
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pre-commercial design from Nenuphar Wind, called the TwinFloat, which is closely related
to concepts examined in the thesis.
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Dedication

This work is dedicated to all of my family, friends, former coaches and teachers who instilled
in me a belief that the only things in life worth pursuing require dedication, patience and
perseverance.

“I really don’t know why it is that all of us are so committed to the sea, except I think it’s
because in addition to the fact that the sea changes, and the light changes, and ships

change, it’s because we all came from the sea. And it is an interesting biological fact that
all of us have in our veins the exact same percentage of salt in our blood that exists in the
ocean, and, therefore, we have salt in our blood, in our sweat, in our tears. We are tied to

the ocean. And when we go back to the sea - whether it is to sail or to watch it - we are
going back from whence we came.”

John F. Kennedy, September 14, 1962
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Chapter 1

Introduction

As fossil fuels supplies continue to dwindle and global warming becomes more of a pressing
issue, countries around the world are looking to renewable energy to supply their citizens
with clean, reliable, electrical power. Many political leaders, including those from the EU,
US, China and Japan have mandated that their countries or states must produce a certain
amount of electricity from these sources in the next few decades [5]. Although solar and
nuclear energy have their merits, they also exhibit certain drawbacks. Nuclear energy has
recently been spurned by governments in Germany and Japan over fears of its safety following
the 2011 Fukushima Daiichi disaster [5]. However, nuclear plants can be built on a scale
unrivaled by other renewable sources, on the order of gigawatts of power production. As
Chinese manufacturers have entered the market, the efficiency of solar panels have been
increasing while their unit costs have dropped. However, industrial-scale solar plants, using
either photo-voltaic or solar concentrating technology, have not found public acceptance as
much as residential rooftop installations. Meanwhile, the installed global capacity of wind
energy has been increasing exponentially since the mid-1990s (see, for instance Figure 17,
in [5]). Many industry experts believe that most of the ideal onshore installation sites in
industrialized countries, such as the EU and US, have been exploited. Offshore wind has
emerged as a relatively untapped sustainable resource, especially in deep water. We discuss
the plentiful offshore wind resource specifically off of California in Section 1.1.1. Thus far,
the cost of deepwater offshore wind has prohibited any commercial-scale installations to
take place. The technology introduced in this thesis is an attempt to lower the cost of this
technology per unit of installed capacity.

1.1 Motivation

The oil embargo and ensuing crisis in the 1970s led many governments to increase funding for
renewable sources, such as wind energy. At this time, the wind community was testing many
different types of wind turbines, including vertical and horizontal axis, with 2-4 blades in
upwind and downwind configurations. Considering the main design constraints at the time,
which were to maximize sub-MW, land-based turbine efficiency, vertical-axis wind turbines
were proven to be inferior. Figure 1.1 compares the power coefficient of a BONUS 37-m
horizontal-axis wind turbine with the Sandia 34-m two-speed vertical-axis wind turbine.
A turbine’s power coefficient will be defined explicitly in Chapter 3. For now, it can be
considered a measure of a turbine’s efficiency. The two-speed, vertical-axis wind turbine
exhibits lower performance over the lower wind speeds, although the authors of [6] claim
that a true variable speed turbine may reach the performance of a (mid-1990s) horizontal-
axis turbine.
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Figure 1.1: Power coefficients of Horizontal-Axis and Vertical-Axis wind turbines as a func-
tion of wind speed (VAWT data from [6]) .

Horizontal-axis wind turbine manufacturers have converged on a single design with a
fairly high capacity factor: an upwind, three-bladed horizontal-axis turbine. However, this
turbine is not necessarily the optimal design in a floating environment. A few inherent
properties of HAWTs make them unattractive to the ocean engineer, as depicted in Fig 1.2:

• High center-of-gravity (mass of nacelle)

• Difficult to perform routine maintenance on drivetrain (large displacements of nacelle)

• Increased rotor size results in enhanced fatigue (operating cyclical gravity loads)

Thus, there is momentum in the offshore wind community to ‘marinize’ these wind tur-
bines to make them more attractive to designers of floating platforms. By design, vertical-
axis wind turbines do not have the characteristics described in the above bullet points.
Researchers at Sandia National Laboratories [7], [8] as well as Cranfield University [9] have
begun to create coupled aero-hydro-elastic codes (much like FAST [10] for vertical-axis wind
turbines) to simulate floating turbines. We build upon this research, but instead focus on
innovative ways to increase the power production of floating offshore wind turbines without
a proportionate increase in the size and cost of the platform.

1.1.1 California’s Offshore Wind Resource

California has an extensive offshore wind resource, which was estimated by researchers
at Stanford University using the Penn State/National Center for Atmospheric Research
Mesoscale Model version 5 (MM5) and validated with offshore buoy data [11] from NOAA’s
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Figure 1.2: Depiction of floating horizontal-axis wind turbine (HAWT) and vertical-axis
wind turbine (VAWT), with approximate centers of pressure and gravity.

National Buoy Data Center. The wind resource in California’s state waters in water depths 0-
200m is shown in Fig. 1.3, from [11]. As shown by the colors, the wind resource is much higher
in northern California. An estimate of the total energy delivered from this resource is shown
in Table 1.1, including all areas where the average wind speed is ≥ 7.0 m/s (NREL Class
4 ). The estimate includes a 33% exclusionary factor for shipping lanes, marine sanctuaries,
etc. Further, the estimated resource has assumptions regarding the spacing of horizontal-
axis wind turbines, 4D cross-stream and 7D downstream, which may be conservative for
vertical-axis turbines (see Sec. 3.5). As shown in Table 1.1, the offshore resource in deep
water (≥ 50m) is more than 6 times that of shallow water. The deep water resource can
only be feasibly accessed using floating technology. Further, as Table 1.1 shows, the total
resource, including a 33% exclusionary factor, can meet California’s electricity needs more
than twice over.

1.2 Hybrid Testing

In order to validate numerical codes introduced in the literature, (e.g. the code introduced
in [9]), model tests should be performed, with the floating structures subject to properly
scaled wind and wave forces. As many authors note [12, 13, 14, 15, 16] , the model testing
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Figure 1.3: Map of average offshore wind speed in California in water depths 0-200 m
(Adapted from [11]). Purple circles represent buoys from which wind data was garnered,
while the onshore lines represent transmission lines, with thickness proportional to the volt-
age capacity.
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Water
Depth (m)

Northern
CA
(TWh)

Central
CA
(TWh)

Southern
CA
(TWh)

Total
(TWh)

% CA con-
sumption

0-50 40.2 19.3 23.2 92.7 31.4

50-200 195.9 204.6 167.8 568.3 192.6

Total 236.1 223.9 201.0 661.0 224.1

Table 1.1: Offshore wind resource in CA state waters based on water depth and region (Data
from [11]).

of offshore wind turbines is especially difficult due to the scaling laws governing the various
forces on such a structure. For instance, when testing a model platform, subject solely to
waves, the testing parameters should be scaled according to Froude number Fr, since inertial
forces dominate the system. The Fr number is

Fr =
U√
gL
, (1.1)

where U and L are characteristic velocities and length-scales of the model, respectively, while
g is acceleration due to gravity. A length-scale is normally used to define the scale of the
model, such as,

λm =
Lm
Lp

(1.2)

where Lp denotes the length of the full-scale prototype and Lm denotes the length of the
model. When testing the resistance of a ship, for instance, the Fr must remain constant but
the velocity of the model ship must be scaled by

√
λm due to the following equations:

Um = Fr
√
gLm =

√
gLm√
gLp

Up =
√
λmUp. (1.3)

However, when testing a model turbine, or any such structure where viscous forces dominate
the motions of the structure, the testing parameters should be scaled using the Re num-
ber, as defined in Sec. 2.8. Thus, the differences between these two scaling parameters set
up an inherent contradiction when attempting to test a model-scale offshore wind turbine.
Generally,

(Re)m 6= (Re)p when (Fr)m = (Fr)p (1.4)

In the recent literature, many researchers have decided to scale the entire model by Fr so
that a model platform in a wave tank can be subject to actual waves. In order to take into
account the change in the Re number, these researchers build a different model airfoil that
attempts to provide the same lift and drag coefficients. Or, in the case of a wind turbine,
they modify the turbine blades so that the turbine’s thrust and torque coefficients remain the
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same [17]. The lift and drag forces on these turbine blades are usually determined in wind
tunnels where the airflow is generally laminar. Such a technique can pose problems when the
actual thrust or torque of the turbine is difficult to measure in an experimental setting, such
as an open-air wave tank. Moreover, it is difficult for a testing facility to produce laminar
airflow above the free surface of a wave tank. Only a few locations exist in the world that can
claim such testing facilities. To overcome these challenges, many researchers have suggested
using hybrid simulation techniques, which combine numerical simulation and experimental
testing [16]. This type of simulation technique was recently employed using a ducted fan in
place of a horizontal-axis wind turbine in [13]. We will employ this testing technique when
studying the technology introduced in this thesis.

1.3 Overview

This thesis will investigate a novel concept for floating vertical-axis turbines. Specifically, a
triangular, semi-submersible floating platform supporting counter-rotating vertical-axis tur-
bines will be investigated.

In Chapter 2, we introduce the hydrodynamics of a single, truncated floating cylinder
in finite-depth waters undergoing slow-drift motion. The author’s code for this applica-
tion is benchmarked against the results from a well-developed in-house software [18] for a
fixed cylinder. The velocity potential, describing the motion of the inviscid fluid particles
is expanded in a double perturbation series with respect to the wave amplitude as well as
the slow-drift velocities. The slow-drift motion introduces terms, such as the double-body
added-mass as well as terms proportional to the amplitude of the response of the fast-scale
motions. Furthermore, second-order, steady wave-exciting forces and moments, which can
be represented by first-order terms are examined. We introduce how the hydrodynamic
force can be transformed from the frequency domain into the time domain so that it can be
useful for time-domain simulations. The method is then extended to multiple, interacting,
truncated cylinders for the wave-exciting force, which results from the scattering potential.
Results are shown in the frequency domain for a three-column, semi-submersible platform
that was used for model testing.

In Chapter 3 the aerodynamics of vertical-axis wind turbines are discussed. First, a well-
established blade-element momentum theory called the Double-Multiple Streamtube Method
is introduced. The drawbacks of the model, including the need for experimental airfoil lift
and drag data and dynamic stall modules motivate the discussion of higher-fidelity simula-
tions of airfoils and turbines. Another in-house fluid dynamics software, utilizing a method
known as Implicit Large Eddy Simulations (ILES), is briefly presented next. The method
is used for three different applications, all of which are in the low-Reynolds regime: first,
a single static airfoil over a wide range of angles of attack; second, a simple, two-bladed
turbine that has detailed experimental data for validation; third, a pair of counter-rotating
turbines with a variable distance between the rotors. These results are used to inform the
types of forces to be applied to the model platform.

6



Chapter 1: Introduction

In Chapter 4 we introduce the Multiple Integrated Synchronized Turbine (MIST) plat-
form. This semi-submersible, three-column platform has two, counter-rotating vertical axis
wind turbines on two of the columns. The turbines are connected in such a way that con-
strains the turbines to rotate in equal and opposite directions. We discuss the concept of
hybrid simulation and its application to the MIST platform. The experimental model plat-
form and the related components, including the drivetrain, generators, circuit and control
implementation are detailed. We briefly discuss the Wind-Input Generator (WIG) that was
used to simulate the effect of the wind turbines on the platform. The communication system,
which can send data between the microprocessors on the platform as well as to the data-
logger, has redundant wired and wireless technologies. Data from the model tests concerning
the open-loop control of the actuation system are presented.

In Chapter 5, we numerically recreate the model experiments described in Chapter 4,
implementing the theory developed in Chapter 2. We detail how the constraints imposed
by the drivetrain reduce the number of degrees of freedom in the system. In the numeri-
cal model, a non-linear control system can be used to control both the yaw position of the
platform and the rotational velocity of the turbines. A type of non-linear control, called
feedback linearization, is described and used to optimize the power from the turbines. We
present results from simulations in the time-domain using the control software SIMULINK
when the platform is subject to regular waves. The aerodynamics and hydrodynamics are
decoupled, which is shown to be a reasonable assumption due to the minimal pitch and roll
motion of the platform in operational sea states.

Chapter 6 includes some concluding remarks, including parallels with modern aerospace
industry. We describe many of the ways the research could be extended and improved
upon in the theoretical, numerical and experimental fields. Finally, we show a commercial
development that has been inspired by this research.
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Chapter 2

Hydrodynamics of Floating Body with Slow-Drift

Motion

In this chapter we study the hydrodynamics of an array of cylinders undergoing slow-drift and
wave-excited motion. This problem was studied extensively in the 1990s by the oil and gas
industry during the development of tension-leg platforms (TLPs). These engineers realized
that the motion of the platform consisted not only of high frequency motions, near the period
of the dominant wave frequency, but also much lower frequency motions, with much slower
velocities. These motions often occurred in the surge and sway directions where the restoring
forces were much smaller (than for example, heave). Hence, the term ‘slow-drift’ motion.
In fact, the interaction between the slow-drift motion and the waves, known as ‘wave-drift
damping’ was first reported for a moored vessel in [19]. These researchers found that the
logarithmic decrement of the slow-drift surge motion of the vessel, which was restrained by
springs, was proportional to the square of the incident-wave height. Many contributions
have been made since to this field, including [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In
the present study we closely follow the derivation of Emmerhoff [20], who developed the
equations of motion for the slow-drift motion and the wave-induced linear motion of an
array of cylinders. We make a similar extension, as shown in [21], where we consider the
total motion of the platform as a linear superposition of these two motions. However, unlike
other researchers, we are interested in finding the forces on axisymmetric bodies, such as
truncated cylinders, using the direct pressure integration method over the wetted surface.
Instead of using discretization panels, like popular commercial software where the solution
can depend on the discretization of the domain, we aim to find the slow-drift forces exactly
on a non-interacting, multi-column platform using a quickly convergent series. We highlight
the original contributions of this derivation with boxed equations.

2.1 Mathematical Formulation

We consider an array of floating truncated, vertical cylinders undergoing arbitrary slow-drift
motion in the horizontal-plane (i.e. surge, sway, yaw motions). In this analysis, we consider
the cylinders to be fixed rigidly to each other to form a platform and will freely interchange
the term ‘platform’ with ‘array of cylinders’. We define an inertial Cartesian coordinate
system as OXY Z, as shown in Fig. 2.1 with unit vectors (̂ı, ̂, k̂). The plane Z = 0 coincides
with the sea floor (assumed to be flat) with the Z-axis pointing upward. We introduce a
non-inertial frame Ōx̄ȳz̄ at the point Xo = [Xo(t), Yo(t), 0]T that is fixed on the slow-drift
position of the structure. Thus a coordinate point may be described as X = [X, Y, Z]T

in the inertial coordinate system or x̄ = [x̄, ȳ, z̄]T in the slow-drift system. The slow-drift
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system moves relative to the inertial system with velocities defined by

UoUoUo =


U1

U2

0

=


Ẋo(t)

Ẏo(t)

0

 , (2.1a)

Ωo =


0

0

U6

=


0

0

Θ̇o(t)

 , (2.1b)

where (·) denotes differentiation with respect to time. The transformations from the inertial
system to the slow-drift system and vice-versa are defined as,

x̄ = S(Θo)(X −Xo), (2.2a)

X = Xo + ST (Θo)x̄, (2.2b)

with the matrix operator S(θ) defined as,

S(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (2.3)

The rotation matrix S has the property that ST = S−1. Note that the since Θo is a function
of time, the rotation matrix S(Θo) is as well. We will formulate the problem in the slow-drift
system, where the slow horizontal velocities in this frame Uo = [U1, U2, 0]T are,

Uo = S(Θo)UoUoUo. (2.4)

In this frame, the slow-drift accelerations are

U̇o =
d

dt
[S(Θo)UoUoUo] = Ṡ(Θo)UoUoUo + S(Θo)U̇oU̇oU̇o. (2.5)

The rotational velocity vector Ωo remains unchanged in the slow-drift frame of reference
(U6 = U6). Thus, the slow-drift acceleration in the horizontal plane U̇b = [U̇1, U̇2, U̇6]T can
be represented by,

U̇b = Ṡ(Θo)UoUoUo + S(Θo)U̇oU̇oU̇o + Ω̇o. (2.6)

The effective velocity is s, defined by

s = Uo + Ωo × x̄, (2.7)

representing the absolute translational velocity of a point x̄ in the Ōx̄ȳz̄ frame.
The body is subject to monochromatic surface waves with height Ao, angular frequency

σo (2π/To), wave number ko (or 2π/λo) , and wave heading βo, which is defined relative to
the X− axis, as shown in Fig. 2.1. The water depth is denoted by h, as shown in Fig. 2.4.
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Xo

X
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y´
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P

Figure 2.1: Schematic for inertial, (OXY Z) slow-drift, (Ōx̄ȳz̄) and body-fixed (O′x′y′z′)
coordinate systems, with incident wave angle βo, relative to the inertial frame. All coordinate
systems are coplanar on seafloor (Z = 0).

2.2 Motivation for Theoretical Development

As mentioned in the previous section, the desire to account for slow-drift motions in the
development of the hydrodynamic forces arose from observations, such as those noticed by
Wichers [19]. Likewise, in this study, a multi-column platform was built to support wind tur-
bines and was tested in monochromatic waves. The single point mooring system, described
in more detail in Sec. 2.5.4, allowed the platform to yaw, but restricted the drift motion in
the surge and sway modes. In order to get a baseline understanding of the hydrodynamic
yaw moment on the platform, the multi-column hull was subject to monochromatic waves
of varying incident wave-heading angle βo (with no other external forces on the platform).
The experimental results from one such wave heading is shown in Fig. 2.2. The yaw motion
is shown in blue and clearly consists of a linear response to the incident wave (ξ6) and a
slow-drift response (Θo). The pitch and roll motions, shown in green and red, respectively,
exhibit simply a linear response (represented by the linear displacements ξj, to be formally
defined in Sec. 2.3.3). The platform used in this case-study is described in greater detail in
Sec. 2.7. The fast yaw oscillations of the platform match up exactly with the frequency of
the incident-wave (σo = 2π/1.1 rad/sec), while the slow oscillations occur on a scale that is
over an order of magnitude larger.

The results from the experimental tests are shown here to provide the reader with mo-
tivation to delve into the hydrodynamics of the slow-drift formulation. The question that
drives this theoretical development is the nature of the moment that is causing the platform
to undergo slow-drift yaw. The linear excitation of the platform in yaw is well-understood
and not of major interest. However, the slow-drift moment, which causes a non-zero rota-
tional velocity is clearly on a time-scale that is much slower than that of the incident wave.

11
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Figure 2.2: Typical response of model-scale (1:82.3) platform in yaw (ξ6 + Θo, blue curve),
pitch (ξ5, green curve) and roll (ξ4, red curve) motions in monochromatic waves (wave height
η, with To=1.1 sec, Ao= 1 in).

We shall prove in Appendix F.3, that without taking into account the slow-drift motion and
with our assumptions that U1 and U2 are negligible, the steady (second-order) moment on
the platform is null. Thus, we seek to describe this steady yaw moment on the platform
using potential flow theory. Furthermore, the inclusion of the effect of viscosity will largely
only effect the damping of the platform rather than the (steady) moment. Since there is
no restoring moment in yaw and the yaw moment-of-inertia is quite large, once an external
moment is applied to the platform it is quite difficult to reverse the rotational velocity of
the platform. This effect can have significant consequences when trying to optimize power
production from the wind turbines, as attempted in Chapter 5.

2.3 Boundary Value Problem for Velocity Poten-

tial

For now, we assume the fluid is ideal, such that it is inviscid and incompressible, and hence
irrotational. In the inertial frame, we can define a velocity potential Φ(X, t) that describes
the velocity of the fluid particles. In the fluid domain it must satisfy a conservation of mass

12
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statement, which is Laplace’s equation,

∇2Φ = 0. (2.8)

2.3.1 Boundary Conditions in Inertial Frame

In order to define a well-posed boundary value problem, the boundary conditions must be
specified. The domain is bounded by a free-surface Z = η(X, Y, t)+h, a flat sea-bed (Z = 0)
and floating body. Although they will not be specified explicitly here, far-field conditions
need to be enforced so that the velocity of the fluid particles decay as X, Y →∞.

Free-Surface

Two conditions relating the continuity of fluid momentum and velocity must be specified at
the boundary represented by the free-surface (Z = η + h). The unsteady, incompressible
Euler momentum equation relates the pressure of the fluid on the free-surface with the fluid
particle velocities as, {

p− pa
ρo

+
∂Φ

∂t
+ gη +

1

2
(∇Φ · ∇Φ)

} ∣∣∣∣
Z=η+h

= 0 (2.9)

where p represents the hydrodynamic pressure, pa represents the atmospheric air pressure and
g represents the acceleration due to gravity. The dynamic free-surface boundary condition
comes from the enforcement of pressure continuity across the free-surface, which means that
the pressure at the free surface must equal the atmospheric pressure. Hence, the first term
in Eq. (2.9) disappears. We take the material derivative of both sides of Eq. (2.9), which
simplifies the analysis when we write the final, combined free-surface boundary condition.
Mathematically,

D
Dt

{
∂Φ

∂t
+ gη +

1

2
(∇Φ · ∇Φ)

} ∣∣∣∣
Z=η+h

= 0. (2.10)

Here, the material derivative is represented by D/Dt, which is the time rate of change of a
quantity, taking into account the transport by the moving fluid, itself. This operator can be
represented as,

D
Dt

=
∂

∂t
+∇Φ · ∇. (2.11)

The expansion of Eq. (2.10) while utilizing Eq. (2.11), results in(
∂2Φ

∂t2
+ g

∂η

∂t
+ 2∇Φ · ∂∇Φ

∂t
+

1

2
∇Φ · ∇(∇Φ · ∇Φ) + g∇Φ · ∇η

) ∣∣∣∣
Z=η+h

= 0. (2.12)

Solving for the free-surface in Eq. (2.10) (before the application of the material derivative),
provides us the following expression for the free-surface:

η(X, Y, t) = −1

g

(
∂Φ

∂t
+

1

2
(∇Φ · ∇Φ)

) ∣∣∣∣
Z=η+h

. (2.13)

13
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The kinematic free-surface boundary condition, requiring fluid particles on the free-surface
to remain on the free-surface, can simply be written as,

D(Z − (η + h))

Dt
= 0. (2.14)

Again, we use the definition of the material derivative in Eq. (2.11), to rewrite the above
equation as, (

−∂η
∂t

+
∂Φ

∂Z
−∇Φ · ∇η

) ∣∣∣∣
Z=η+h

= 0. (2.15)

The combination of Eqs. (2.12) and (2.15), results in the combined, fully non-linear, free-
surface boundary condition, which is(

∂2Φ

∂t2
+ 2∇Φ · ∂∇Φ

∂t
+

1

2
∇Φ · ∇(∇Φ · ∇Φ) + g

∂Φ

∂Z

) ∣∣∣∣
Z=η+h

= 0 (2.16)

where all derivatives are understood to be taken with respect to the inertial frame. This
formulation of the free-surface boundary condition, which only involves the scalar quantity
Φ, can be found in [31], among others.

Body

On the body, the fluid particles cannot penetrate the body and their normal velocity must
equal that of the body. That is,

No · ∇Φ

∣∣∣∣
X=B(t)

= No · Vb, (2.17)

where No is the normal vector pointing into the body and B(t) denotes the time-varying
submerged surface of the body, and Vb is the velocity of the body boundary.

Sea-Bed

On the flat bottom, a no-penetration conditions holds such that,

∂Φ

∂Z

∣∣∣∣
Z=0

= 0, (2.18)

which holds in all frames of reference, replacing Z with z.

2.3.2 Double Perturbation Series

Let φ(x, t) = Φ(X, t) be defined as the velocity potential in the slow-drift frame. To simplify
the problem we take advantage of two independently small parameters in our study– the
wave-slope parameter ε and the slow-drift parameter τ . Here, we assume that Uo = O (U1) =
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O (U2) = O (RU6), where R is a typical distance from a cylinder to its center of rotation.
The orders of magnitude of the small parameters are,

O (ε) = O (koAo) (2.19a)

O (τ) = O

(
Uoσo
g

)
(2.19b)

The results in Fig. 2.2 validate our assumption here that the slow-drift angular velocity of the
semi-submersible platform is at least an order of magnitude smaller than the wave frequency.
We assume we can write the velocity potential φ as a perturbation series expansion as,

φ(x, t) = φ10(x, t)︸ ︷︷ ︸
O(ε)

+φ01(x, t)︸ ︷︷ ︸
O(τ)

+φ11(x, t)︸ ︷︷ ︸
O(τε)

+φ20(x, t)︸ ︷︷ ︸
O(ε2)

+ O
(
ε2τ, ετ 2

)
(2.20)

where we have neglected the interactions among the slow-drift velocities O (τ 2). The double-
body potential ϕ01 is also known as the steady disturbance potential, which represents the
velocity potential for a drifting body without the presence of waves. The linear potential
ϕ10 represents the first-order (in the wave-slope) velocity potential for a body is that not
drifting but is subject to incident waves. The potential that includes leading order terms
in both wave-slope and slow-drift, ϕ11, represents the ‘forward-speed’ correction for a body
moving in waves. This potential is well-known in the field of ship hydrodynamics, where
ships advance with a constant speed and interact with incident-waves. In this analysis, we
call this potential the interaction potential between the (linear) body and slow-drift motion.
The other second-order velocity potential φ20 represents the effect of the sum and difference
wave frequencies on the body. As mentioned previously, we are only interested in the steady,
second-order forces and moments on the platform. Thus, we only consider the difference
frequency second-order potential, which, for a monochromatic wave, is time-independent,
denoted by φ̄20 .

We can also write the free-surface in a perturbation series, except that there is no con-
tribution from O (τ), as

η(x, t) = η10(x, t)︸ ︷︷ ︸
O(ε)

+ η11(x, t)︸ ︷︷ ︸
O(τε)

+ η20(x, t)︸ ︷︷ ︸
O(ε2)

+ O
(
ε2τ, ετ 2

)
(2.21)

The expressions for the linear and higher-order free-surface representations can be obtained
once the solutions of the corresponding velocity potentials are known.

In the slowly-rotating frame of reference, the fluid undergoes a slow uniform rotation.
The time derivative of Φ in this frame of reference is

∂Φ

∂t
=

(
∂̄

∂̄t
− s · ∇

)
φ (2.22)

where we have followed the notation in [23] rather than [25]. For clarity, we henceforth drop
the ‘bar’ superscript from the partial derivatives and the spatial variables, (x̄ȳz̄) = (xyz).
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We use a Taylor expansion of the right-hand side of Eq. (2.13) about the still-water plane
z = h, and Eq. (2.22) to match orders in the perturbation series of the free surface, which
allows us to write,

η10 = −1

g

∂φ10

∂t

∣∣∣∣
z=h

, (2.23a)

η11 = −1

g

(
∂φ11

∂t
+ (∇φ01 − s) · ∇φ10

) ∣∣∣∣
z=h

. (2.23b)

We can explicitly separate the time-harmonic part of the potentials, such that

φkj(x, t) =

{
Re [ϕkj(x)e−iσet] , for k = 1

Re [ϕkj(x)] , otherwise
(2.24)

where the encounter frequency σe is defined in Eq. (2.25) and we only include the time-
independent terms of the O (ε2), thereby neglecting the double frequency terms, which have
little effect on the global motions of the platform in regular sea-states. The encounter
frequency is

σe = σo − ko (U1 cos β + U2 sin β) , (2.25)

which is the wave frequency the body encounters after taking into account its slow-drift
motions. For generality, we shall keep using the encounter frequency σe in the theoretical
development, though it is important to note here that for our case where U1 and U2 are
small, σe = σo. Here, β is the wave direction as felt by an observer in the slow-drift fame,
such that

β(t) = βo −Θo(t). (2.26)

Note that the time-derivatives of the velocity potentials of O (τ) must include the time-
dependent slow-drift velocities as,

∂φ

∂t
= Re

[
∂

∂t
(ϕ01 + [ϕ10 + ϕ11]e−iσet + O

(
ε2τ
)
)

]
= Re

[(
−iσe(ϕ10 + ϕ11) +

dΘo

dt

∂

∂Θo

(ϕ10 + ϕ11)

)
e−iσet

]

= Re


− iσoϕ10︸ ︷︷ ︸

O(ε)

− iσoϕ11 + iko(U1 cos β + U2 sin β)ϕ10 − U6
∂ϕ10

∂β︸ ︷︷ ︸
O(ετ)

 e−iσet

+ O
(
ε2τ
)

(2.27)

To simplify notation, let the operator Le[ϕ] be related to the last three terms of the final
expression in Eq. (2.27) as,

Le[ϕ] = iko(U1 cos β + U2 sin β)ϕ− U6
∂ϕ

∂β
(2.28)
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2.3.3 Body Motion

In order to simplify the non-linear body boundary condition found in Eq. (2.17), we can
make some assumptions on the types of motion the body can undergo. As shown in Fig. 2.1,
we define another Cartesian coordinate system relative to the slow-drift system that is body-
fixed, denoted by O′x′y′z′. We assume that the body experiences small-amplitude oscillatory
motion of O (ε) with respect to the slow-drift frame due to the linear excitation from the
incident waves. Let ξ denote the translational modes and α denote the rotational modes,
such that

ξ =


ξ1

ξ2

ξ3

, α =


ξ4

ξ5

ξ6

 (2.29)

We restrict our focus to motion in the horizontal plane, such that ξ3 = ξ4 = ξ5 = 0. The
small-amplitude motion can be described using complex notation as

ξj = Re
[
Aje−iσet

]
, (2.30)

where i =
√
−1, unless it is used in a summation, subscript or superscript. The amplitude

of motion Aj can be complex valued since the phase of the body motion may lead or lag the
phase of the incident wave. It follows from the perturbation series expansion described in
Sec. 2.3.2 to expand the complex motion amplitude in terms of a perturbation series as

ξj = ξ
(0)
j︸︷︷︸

O(ε)

+ ξ
(1)
j︸︷︷︸

O(τε)

+ O
(
τ 2
)
. (2.31)

Likewise, the complex motion amplitude can be decomposed as,

Aj = A(0)
j︸︷︷︸

O(ε)

+A(1)
j︸︷︷︸

O(τε)

+ O
(
τ 2
)
. (2.32)

When we consider the various velocity potentials, the radiation potential will be multiplied
by the time derivative of these small-amplitude oscillations ξj. It useful to remember that
the time derivative of these complex motions can be expressed as,

dξj
dt

= Re

[(
−iσe(A(0)

j +A(1)
j ) +

d

dt
(A(0)

j +A(1)
j )

)
e−iσet + O

(
ε2τ
)
)

]
= Re

[(
−iσe(A(0)

j +A(1)
j ) +

dΘo

dt

∂

∂Θ
(A(0)

j +A(1)
j )

)
e−iσet

]

= Re


− iσoA(0)

j︸ ︷︷ ︸
O(ε)

− iσoA(1)
j + iko(U1 cos β + U2 sin β)A(0)

j − U6

∂A(0)
j

∂β︸ ︷︷ ︸
O(ετ)

 e−iσet

+ O
(
ε2τ
)

(2.33)
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The last term in Eq. (2.33) represents another variable that should be solved for when
determining the equations of motion of the floater. Thus, we define

A(0)
j,β =

∂A(0)
j

∂β
. (2.34)

In order to solve for the total motion of the body, we have to solve for each of these motions
individually. Let Xo

b = [Xo, Yo,Θo]
T be the vector that describes the slow-drift position of

the platform in the horizontal plane. Similarly, let ξb = [ξ1, ξ2, ξ6]T describe the oscillatory
motion in the horizontal plane. In the fixed frame of reference, the total motion of a cylinder
Xb = [Xb

1, Y
b

1 , θ0]T is given as
Xb = Xo

b + ST (Θo)ξb. (2.35)

Thus, the total yaw displacement of the body, denoted by θ0, is

θ0 = Θo + ξ6. (2.36)

2.3.4 Boundary Conditions in Slow-Drift Frame

Free-Surface Condition

Utilizing a similar Taylor series expansion to Eqs. (2.16), (2.22), the wave elevations in
Eq. (2.23), and matching orders in the perturbation series of the velocity potential, we find
the first-order velocity potential boundary conditions on the linearized free surface (z = h
plane) as,

O (τ) :
∂ϕ01

∂z
= 0, (2.37a)

O (ε) : −ν0ϕ10 +
∂ϕ10

∂z
= 0, (2.37b)

since ∂φ01/∂t = 0 (there is no incident-wave for O (ε0)). We have defined the frequency
parameter νo as,

νo =
σ2
o

g
. (2.38)

We can write the second-order free-surface boundary conditions (on z = h plane) by utilizing
Eqs. (2.16), (2.27) and identities relating ∂/∂x = ∂/y∂θ, as

O (τε) : −ν0ϕ11 +
∂ϕ11

∂z
= −2iσo

g

(
U1
∂ϕ10

∂x
+ U2

∂ϕ10

∂y
+ U6

∂ϕ10

∂θ
−∇ϕ01 · ∇ϕ10

)
+

2koσo
g

(U1 cos β + U2 sin β)ϕ10 −
2iσo
g
U6
∂ϕ10

∂β
− iσo

g
ϕ10

∂2ϕ01

∂z2
.

(2.39)

This boundary condition agrees with Eq. (17) in [28] (although these authors define the
perturbation series explicitly in terms of the slow-drift velocities), Eq. (3.43) in [20] (although
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this author considers bottom-mounted cylinders, such that ∂2ϕ01/∂z
2 = 0) and Eq. (3.12)

in [26] (although these authors set U1 = U2 = 0). The free-surface boundary condition for
the second-order potential is,

O
(
ε2
)

: g
∂ϕ̄20

∂z
= − ∂

∂t
(∇φ10 · ∇φ10) +

1

g

∂φ10

∂t

[
∂3φ10

∂z∂t2
+ g

∂2φ10

∂z2

]
, (2.40)

where (◦) denotes the time average over a monochromatic wave period. Explicitly, the
time-average operator is defined as,

f(t) =
1

To

∫ t

t−To
f(t)dt. (2.41)

Grue and Palm [32] showed that the second-order free-surface boundary condition can be
simplified to,

O
(
ε2
)

:
∂ϕ̄20

∂z
= −σo

2g
Im

[
ϕ10

∂2ϕ∗10

∂z2

]
, (2.42)

where the asterisk (∗) denotes the complex conjugate. However, it will be shown that for the
steady, second-order, zero-speed potential ϕ̄20, the important quantities related to the forces
on the body (such as the slow-drift damping) can be derived from lower-order potentials as
was done in [30] and [32].

Body Condition

Akin to the previous section, we reframe the non-linear body boundary condition found in
Eq. (2.17) in the slow-drift frame. Since the terms in Eq. (2.17) are scalars, we can rewrite
the body boundary condition in the slow-drift coordinates as,

n · ∇φ
∣∣∣∣
x=xb(t)

= n · vb (2.43)

where vb(x, t) = Vb(X, t) is the body velocity and n is the normal vector pointing into
the instantaneous body position xb(t) relative to the slow-drift coordinates. Let the point
shown in Fig. 2.1 represent a point on the body. Relative to the slow-drift frame, the point’s
velocity can be represented by the vector equation,

vb = Uo + ẋ+ Ωo × x (2.44)

In terms of the body-fixed coordinates the position and normal vectors in the slow-drift
frame are

x = x′ + ξ +α× x′, (2.45a)

n = n′ +α× n′, (2.45b)
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where n′ is the normal vector pointing in to the body relative to the body-fixed coordinates.
To O (τ), we can evaluate the gradient of the velocity potential at the slow-drift position
of the body and then expand the velocity potential in terms of the first-order difference
between this position and the exact position of the body. Thus, to the leading order, the
body velocity in the slow-drift frame is the difference between the exact body surface and
the slow-drift surface, such that

vb = Uo + ξ̇ + α̇× x′ + Ωo × x+ O
(
τ 2
)

(2.46)

Therefore, we can rewrite Eq.(2.43) up to O (τ 2) as,

(n′+α×n′)·(∇φ+[(x−x′)·∇]∇φ) = (n′+α×n′)·(Uo+ξ̇+α̇×x′+Ωo×x)+O
(
τ 2
)

(2.47)

where all of the quantities are evaluated at the slow-drift position of the body x = xb. By
collecting terms of the proper orders, we can recover the boundary conditions as found by
[20] and [25]:

O (τ) : n′ · ∇φ01 = n′ · (Uo + Ωo × x) , (2.48a)

O (ε) : n′ · ∇φ10 = n′ ·
(
ξ̇

(0)
+ α̇(0) × x′

)
, (2.48b)

O (ετ) : n′ · ∇φ11 + n′ · [ξ(0) +α(0) × x · ∇]∇φ01 +α(0) × n′ · ∇φ01 =

n′ ·
(
ξ̇

(1)
+ α̇(1) × x′

)
+α(0) × n′ · (Uo + Ωo × x), (2.48c)

O
(
τ 2
)

: n′ · ∇φ̄20 + n′ · [ξ(0) +α(0) × x · ∇]∇φ10 +α(0) × n′ · ∇φ10 =

+α(0) × n′ ·
(
ξ̇

(0)
+ α̇(0) × x′

)
. (2.48d)

We remove the time-harmonicity of both sides of the equations in Eqs. (2.48d), so that the
boundary conditions become,

O (τ) :
∂ϕ01

∂n′
= Ujn

′
j, (2.49a)

O (ε) :
∂ϕ10

∂n′
= −iσoA(0)

j n′j, (2.49b)

O (ετ) :
∂ϕ11

∂n′
= −iσoA(1)

j n′j +A(0)
j m′j, (2.49c)

O
(
ε2
)

:
∂ϕ̄20

∂n′
= −A(0)

j M ′
j[ϕ
∗
10] + O

(
A(0)
j A

(0)
k

)
, (2.49d)

where summation over the j modes of motion is assumed. The last cross-product in Eq. (2.48d)
is not given explicitly in Eq. (2.49d) for brevity. For this study, we will only consider terms
proportional to A2

o when considering ϕ̄20. In other words, only the diffraction problem of ϕ̄20

is considered. Here the body normals n′j are defined as

n′j =

{
n′j for j = 1, 2, 3

(x′ × n′) · êj−3 for j = 4, 5, 6
(2.50a)
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where êj is the unit vector in the jth mode of motion. We have introduced the m′j terms
from Appendix B of [20], originally formulated in [33] and in [34], such that

m′j =

{
−M ′

j[ϕ01] for j = 1, 2, 3

−M ′
j[ϕ01] + (n′ × (Uo + Ωo × x′)) · êj−3 for j = 4, 5, 6

(2.51a)

with

M ′
j[ϕ] =

{
(n′ · ∇)∇ϕ · êj for j = 1, 2, 3

(n′ · ∇)(x′ ×∇ϕ) · êj−3 for j = 4, 5, 6
(2.52a)

This agrees with Eq. (2.37) in [35]. The m′j terms are defined explicitly in this report’s
Appendix A.

2.3.5 Multiple Cylinders

In our analysis, we will consider multiple cylinders in our domain. It is convenient to define
these potentials relative to a coordinate system fixed on the kth cylinder as (xk, yk, zk), such
that ϕij(x, y, z) = ϕkij(xk, yk, zk), as shown in Fig. 2.3. These coordinate systems are defined
as,

xk = x− xk0 (2.53a)

yk = y − yk0 (2.53b)

zk = z (2.53c)

Let the distance from the origin with respect to the center of the cylinder be represented
by,

Rk = |[xk0, yk0 ]|2, (2.54)

and the distance between cylinders by,

Rjk = |[xj0 − xk0, y
j
0 − yk0 ]|2. (2.55)

Clearly, the derivatives with respect to the Cartesian coordinates in the local and slow-
drift frames are equivalent: that is, ∂/∂x = ∂/∂xk, etc. In later sections, we will need the
transformation of the circumferential derivative from the slow-drift frame to the local frame,
which is

∂ϕ

∂Θ
= xk0

∂ϕk

∂yk
− yk0

∂ϕk

∂xk
+
∂ϕk

∂θk
(2.56)
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Figure 2.3: Plan view of multi-column platform, consisting of jth and kth columns, subject
to incident waves with wave heading β.

2.4 Solutions for Velocity Potentials

In this section we explicitly solve the boundary value problem setup in Sec. 2.3 per Eq. (2.20)
for the first and second-order velocity potentials, ϕ01, ϕ10, ϕ11, ϕ20. We begin with ϕ10 in
Sec. 2.4.1, since it is the most common problem found in linear hydrodynamics of a truncated
cylinder: that of a cylinder with small oscillations about a mean position. Although we show
how to include the interaction effects among the cylinders in an array, we generally exclude
them in the present analysis since a << R where a is a typical cylinder radius and R is a
typical cylinder spacing. We then consider the ‘double-body’ potential ϕ01, which considers
the cylinder moving with a slow-drift velocity without the effect of waves. The most involved
potential is ϕ11, which includes the interaction between the slow-drift of the cylinder and
the incident, monochromatic waves. Finally, we briefly mention the second-order potential
ϕ20 but do not attempt to solve it since we can write the second-order forces in terms of the
lower-order potentials.

2.4.1 The zero forward-speed velocity potential ϕ10

The zero forward-speed velocity potential is the classical isolated, truncated cylinder prob-
lem in monochromatic waves, oscillating about a mean position, rotating about the point
(xk0, y

k
0 , z

k
0 ). The formulation that follows borrows heavily from the solutions of Garrett

[36] and Yeung [18], which was reformulated by Williams in [37] and [38] for multi-column
structures. One of the original contributions in this field of interacting vertical cylinders
is Okushu in 1976, which has been reprinted in [39], with follow-up work by Matsui and
Tamaki in 1981 [40]. More recently, Yilmaz has contributed a concise method to this field
[41]. Separately, and independent of the current work, a M.S. thesis on this topic was also
completed by Zhong [42].

It is convenient to decompose the potential ϕ10 into its diffracted and radiated compo-
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nents as,

φ10 =
Re

(
AoψD − iσo

∑
j=1,2,6

ψjA(0)
j

)
e−iσet, (2.57)

where the diffraction potential ψD can be decomposed into an incident potential and scat-
tering potential such that

ψD = ψ0 + ψ7. (2.58)

Thus, the free-surface and body boundary conditions for the first-zeroth order diffraction

d

h

x

z

O

x

y

O

θ
r

2a

ψ(i)

ψ(e)

Ao
η(x,t)

Figure 2.4: Plan view of an isolated, truncated cylinder with interior and exterior potentials.

and radiation potentials can be rewritten as,

−νoψ7 +
∂ψ7

∂z
= 0 on z = h, (2.59a)

∂ψ7

∂n
= −∂ψ0

∂n
on So, (2.59b)

and

−νoψj +
∂ψj
∂z

= 0 on z = h, (2.60a)

∂ψj
∂n

= n′j on So (2.60b)

where So is defined as the mean wetted surface of the cylinder in the slow-rotating frame.
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Incident Velocity Potential

In the slow-drift frame (r, θ, z), the incident-wave, unit-amplitude velocity potential can be
found to be,

ψ0 = − ig
σo

cosh k0z

cosh k0h
eik0r cos(θ−β). (2.61)

In the local coordinates coordinates of the kth cylinder, (rk, θk, z), the potential is

ψk0(rk, θk, zk) = −Pk
ig

σo

cosh k0z

cosh k0h
eik0rk cos(θk−β), (2.62)

where Pk is the well-known ‘phase-factor’ associated with the kth cylinder, defined as,

Pk = e−ik0(xk0 cosβ+yk0 sinβ). (2.63)

The incident potential can be represented by an infinite series as,

ψk0 = − g

σo

cosh koz

cosh koh
Pk

∞∑
m=0

εmi
m+1Jm(kork) cosm(θk − β). (2.64)

Here, ε0 = 1 and εm = 2 for m ≥ 1 and Jm is the Bessel function of the first kind of order m.
The incident-wave number ko is related to the angular (inertial) frequency of the incident
wave in arbitrary water depth h by the dispersion relation,

m0 tanhm0 = νoh, (2.65)

where m0 is the wavenumber, non-dimensionalized by the water-depth, m0 = koh. The
diffracted and radiated velocity potentials can be further decomposed according to the region
around the cylinder ψ(e) and under the cylinder ψ(i) (as shown in Fig. 2.4), such that

ψkj = ψ
k(i)
j + ψ

k(e)
j for j = 1, 2, 6, 7, (2.66)

where j = 0 is not included in the above equation since the incident potential only exists
in the exterior domain. From this simple fluid decomposition, it is clear only the interior
potential ψ(i) contributes to the heave force, while only the exterior potential ψ(e) contributes
to the surge, sway and yaw forces. We then formulate a set of matching conditions on the
boundaries of the interior and exterior regions so that the pressure and radial velocities are
consistent,

ψk(i) = ψk(e), on rk = a, 0 ≤ θk ≤ 2π, 0 ≤ zk ≤ d, (2.67a)

∂ψk(i)

∂rk
=
∂ψk(e)

∂rk
, on rk = a, 0 ≤ θk ≤ 2π, 0 ≤ zk ≤ d. (2.67b)

As mentioned previously, there are many authors who have contributed to the develop-
ment of the solution for the linear scattering and radiation potential, but the development
in the following sections follows the works of [37] and [43] most closely.
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Diffracted Velocity Potential

The diffraction potentials, ψ
(e)
7 and ψ

(i)
7 are required to satisfy Eqs. (2.8) and (2.18). However,

only the exterior potential ψ
(e)
7 must satisfy Eq. (2.37b), since it is exposed to the free-surface.

Further, the no-flux conditions on the body surface suggest,

∂ψ
k(i)
7

∂z
= 0, on rk ≤ a, 0 ≤ θk ≤ 2π, zk = d, (2.68a)

∂ψ
k(e)
7

∂rk
= −∂ψ

k
0

∂rk
, on rk = a, 0 ≤ θk ≤ 2π, d ≤ zk ≤ h. (2.68b)

Also, the exterior diffraction potential ψ
(i)
7 must satisfy a far-field radiation condition. Thus,

by inspection of Eq. (2.68), we can form a class of admissible solutions for the diffraction

potentials ψ
(i)
7 and ψ

(e)
7 . These potentials ought to take the following form:

ψ
k(i),(e)
7 (rk, θk, zk) = − g

σ0

Pk

∞∑
m=0

7Ψ(i),(e)
m (rk, zk) cosm(θk − β). (2.69)

First, we consider the interior region. In this region, the dimensionless spatial solution

7Ψ
(i)
m (r, z) that satisfies the boundary conditions can be expressed (from [37]) as,

7Ψ(i)
m (r, z) =

B
(m)
0

2

(r
a

)m
+
∞∑
q=1

B(m)
q

Im(βqr)

Im(βqa)
cos(βqz), (2.70)

where Im() is the modified Bessel function of the first kind of order m and B
(m)
q are the

unknown coefficients to be discussed later. The wavenumbers βq are defined as,

βq =
qπ

d
. (2.71)

Now, let us consider the exterior region. A suitable form for the exterior spatial solution
Ψ

(e)
m (r, z) can be represented (also from [37]) by,

7Ψ(e)
m (r, z) = −εmim+1 cosh k0z

cosh k0h

J ′m(k0a)

H ′m(k0a)
Hm(k0r)

+ C
(m)
0

Hm(k0r)

H ′m(k0a)
Z0(z) +

∞∑
q=1

C(m)
q

Km(kqr)

K ′m(kqa)
Zq(z),

(2.72)

in which Hm is the Hankel function of the first kind and Km is the modified Bessel function
of the second kind, both of order m and primes (′) denote derivatives with respect to the
argument. The vertical orthonormal functions Zq(z) are,

Zq(z) =

{
Q
−1/2
0 cosh k0z, if q = 0

Q
−1/2
q cos kqz, if q > 0

(2.73)
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in which

Qq =


1
2

(
1 + sinh 2k0h

2k0h

)
, if q = 0

1
2

(
1 + sin 2kqh

2kqh

)
, if q > 0

(2.74)

The nondimensional wavenumber mq = kqh are the positive real roots of

mq tanmq = −νo. (2.75)

We recognize the series in Eqs. (2.70) and (2.72) as simply Fourier series, with unknown

coefficientsB
(m)
q and C

(m)
q , respectively. We can solve for these coefficients using the matching

conditions given in Eq. (2.67). The solutions for these unknown coefficients are given in
Appendix B. Later in the analysis we will need a concise representation of the diffraction
potential with explicit functions of the spatial variables. Thus, let,

ψ
k(e)
D (r, θ, z) = − g

σo
Pk(β)

∞∑
m=0

∞∑
q=0

Žq(z)G(m)
q (r) cos(m[θ − β]), (2.76)

where the orthogonal vertical functions are

Žq(z) = Q1/2
q Zq(z), (2.77)

and

G
(n)
0 (r) =

εni
n+1

coshm0

(
Jn(k0r)−

J ′n(k0a)Hn(k0r)

H ′n(k0a)

)
+ C

(n)
0

Hn(k0r)Q
−1/2
0

H ′n(k0a)
(2.78a)

G(n)
q (r) = C(n)

q

Kn(kqr)Q
−1/2
q

K ′n(kqa)
, for q > 0. (2.78b)

We will denote derivatives with respect to the argument of these functions with a prime

(′), that is, ∂G
(n)
p (r)/∂r = G

′(n)
p (r). The horizontal forces will be related to the integrated

quantities of these functions, evaluated on the cylinder wetted surface. Thus, let

Y j
q =

1

aj

∫ h

dj

Zq(z)dz for q ≥ 0. (2.79)

Radiation Velocity Potential

The radiation wave field arises from the prescribed oscillations of the cylinder. For this
analysis we restrict the motion of the cylinder to 3 DOFs: surge, sway and yaw or in indicial
notation j=1,2,6. For an inviscid fluid, the yaw motion of a cylinder about its own axis
does not disturb the fluid. However, when considering the multi-column structure, the yaw
motion of the platform consists simply of a combination of surge and sway motion of each
column. The radiation potentials ψ

(i),(e)
j , j=1,2,6 are required to satisfy Eqs. (2.8), (2.18)
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and (2.37b), as well as the body boundary conditions in Eq. (2.49b). In polar coordinates,
the radiated potential in the jth mode on the kth cylinder can be written as,

ψ
k(i),(e)
j = aΨ

(i),(e)
j (rk, zk) cos(θk − χj) j = 1, 2, (2.80)

where

χj =

{
0 for j = 1,

π/2 for j = 2.
(2.81)

The radiated potential in the yaw mode is

ψ
k(i),(e)
6 = a

(
yk0Ψ

(i),(e)
1 (rk, zk) cos θk − xk0Ψ

(i),(e)
2 (rk, zk) sin θk

)
. (2.82)

From [43], we can write the interior and exterior solutions, which satisfy these boundary
conditions, as,

Ψ
(i)
j (r, z) =

Bj
0

2

r

a
+
∞∑
q=1

Bj
q

I1(βqr)

I1(βqa)
cos(βqz) (2.83a)

Ψ
(e)
j (r, z) = Cj

0

H1(k0r)

H ′1(k0a)
Z0(z) +

∞∑
q=1

Cj
q

K1(kqr)

K ′1(kqa)
Zq(z), (2.83b)

where Bj
q and Cj

q are the new Fourier coefficients, which are different for each mode of
motion. We refer the reader to Appendix C for explicit solutions of the Fourier coefficients.
Further, it will be helpful to concisely define the radiation potential in our analysis of the
wave-drift moment. Let the exterior radiation potential in surge and sway be described by,

ψ
(e)
j (r, θ, z) = a

∞∑
q=0

Žq(z)Hj
q (r) cos(θ − χj) for j = 1, 2, (2.84)

where

Hj
0(r) = Cj

0

H1(k0r)

H ′1(k0a)
Q−1/2
o , (2.85a)

Hj
q (r) = Cj

q

K1(kqr)

K ′1(kqa)
Q−1/2
q , for q > 0. (2.85b)

Verification of the results presented in these sections is shown in Sec. 2.6 after the hy-
drodynamic quantities, such as the wave-exciting force and hydrodynamic added-mass and
damping are explicitly defined.

Multiple, Interacting Cylinders

In this section we only take into account the effect of multiple, interacting cylinders as an
additional term in the incident-wave potential. Therefore, only the diffraction potential is
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updated with these effects. In order to simplify the analysis we assume that these waves
emanating from the jth cylinder result in plane waves at the kth cylinder. Essentially, we
assume that the distance between the cylinders is much larger than the wavelength of the
incident-wave, Rjk >> 2π/k0. We shall see that for many platforms this assumption may
not be true, but still this type of analysis can lead to greater insight on the hydrodynamic
forces on the body.

For the kth cylinder, centered at (xk0, y
k
0), the velocity potential due to a regular wave

propagating at an angle β with respect to the positive x− axis, can be written in the local
polar coordinate system by Eq. (2.62). Here, we present the main findings from [38] and
refer the reader to this resource for more details on the derivation. The total incident-wave
potential on the jth cylinder to O(k0R

−3/2
jk ) is,

ψjItot = − g

σ0

cosh k0z

 1

cosh k0h
Pj

∞∑
m=0

εmi
m+1Jm(k0rj) cosm(θj − β0)︸ ︷︷ ︸

unperturbed incident wave

+

Ncol∑
k=1
k 6=j

cjke
−ik0rj cos(αjk−θj)︸ ︷︷ ︸

scattered from kth cylinder

+

Ncol∑
k=1
k 6=j

PkDjk(rj, θj, β0)︸ ︷︷ ︸
incident wave correction

+

Ncol∑
`=1
`6=k

ck`Djk(rj, θj, α`k)︸ ︷︷ ︸
back-scattered waves


 ,

(2.86)

where the approximating plane wave complex amplitude at the jth cylinder due to the scat-
tering from the kth cylinder is,

cjk = PkSjk(Rkj, αkj, β) +

Ncol∑
`=1

ck`Sjk(Rkj, αkj, α`k). (2.87)

The amplitude of the equivalent plane wave that is scattered by cylinder k from an incident
angle β is

Skj(Rjk, αjk, β) = Skj(β) =
∞∑
m=0

{
C

(m)
0 Q

−1/2
0

H ′m(k0aj)

− εmi
m+1J ′m(k0aj)

coshm0H ′m(k0aj)

}
Hm(k0Rjk) cosm(αjk − β),

(2.88)

and the non-planar correction term is

Dkj(β) =
i

k0Rjk

{
Skj(β)

∞∑
`=0

(−i)``2J`(k0rk) cos `(αkj − θk)

− Tkj(Rjk, αjk, β)
∞∑
`=0

ε`(−i)``J`(k0rk) sin `(αkj − θk)

}
,

(2.89)
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in which

Tkj(Rjk, αjk, β) = Tkj(β) =
∞∑
m=0

{
C

(m)
0 Q

−1/2
0

H ′m(k0aj)

− εmi
m+1J ′m(k0aj)

coshm0H ′m(k0aj)

}
Hm(k0Rjk)m sinm(αjk − β).

(2.90)

Thus, we can setup a linear system of equations for cjk, for j, k = 1, 2...Ncol (where Ncol is
the number of columns of the platform) using Eq. (2.87) and use standard matrix techniques
to solve for the plane wave amplitudes cjk.

The zero-speed, first-order wave-exciting force in surge and sway (p=1,2) on the jth

column due to the interaction effect among other columns is given in Eq. (F.4). Of course,
the interacting cylinders will have an effect on the cylinder’s added-mass and damping. For
this effect, we refer the reader to Zhong [42], but include a figure in Sec. 2.6 from that work
for discussion.

2.4.2 The double-body velocity potential ϕ01

The slow-drift velocity potential describes the fluid velocity surrounding a truncated cylinder
drifting in calm water. The problem is similar to the radiation problem described in 2.4.1,
except with the body motion being described by the slow-drift velocities. Again, we use the
method of domain decomposition to represent this potential in the areas around the cylinder
and below the cylinder as,

φ01(rk, θk, zk) = Re

[ ∑
j=1,2,6

ψ̄j(rk, θk, zk)Uj

]
, (2.91)

with
ψ̄kj (rk, θk, zk) = ψ̄

k(i)
j + ψ̄

k(e)
j , (2.92)

ψ̄
k(i),(e)
j (rk, θk, zk) = −aΨ̄(i),(e)(rk, zk) cos(θk − χj) j = 1, 2 (2.93a)

ψ
k(i),(e)
6 = yk0 ψ̄

k
1(rk, zk) cos θk − xk0ψ̄k2(rk, zk) sin θk. (2.93b)

The same condition for the slow-drift yaw radiation potential holds as the zero-speed yaw
radiation potential, which is given in Eq. (2.82).

The interior and exterior potentials are well known and are reproduced in summation
form from [29] as,

Ψ̄(i)(r, z) =
Ā0

2

(r
a

)
+
∞∑
q=1

Āq
I1(βqr)

I1(βqa)
cos(βqz), (2.94a)

Ψ̄(e)(r, z) =
B̄0

2

(a
r

)
+
∞∑
q=1

B̄q
K1(βqd̄r)

K1(βqd̄a)
cos(βqd̄z). (2.94b)
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Notice that Ψ̄(i) = Ψ
(i)
1 with newly defined Fourier coefficients.

To solve for the Fourier coefficients we utilize Eqs. (2.67) and the body-boundary condi-
tion in Eq. (2.49a), which can be rewritten using the current notation as

∂Ψ̄(e)(rk, zk)

∂rk
= 1 on rk = a, d ≤ zk ≤ h (2.95)

Again, we explicitly solve for the interior and exterior slow-drift Fourier coefficients Āq and
B̄q in Appendix D.

Let the exterior slow-drift potential in surge and sway be described by,

ψ̄
(e)
j (r, θ, z) = −a

∞∑
q=0

cos(βqz)Lq(r) cos(θ − χj) for j = 1, 2 (2.96)

where Lq can be found by examination of Eq. (2.94). It turns out that the unknown coef-
ficients for this velocity potential B̄q, C̄q velocity can be ill-defined for certain values of d/h
(namely, h/d ∈ Z). Thus we solve for the double-body potential added-mass (µ̄jk, to be de-
fined explicitly in Sec. 2.5), by solving for zero-frequency limit of the first-order added-mass

µ
(0)
jk . The results are shown in Sec. 2.6.

2.4.3 The interaction potential between body and slow-drift mo-
tion ϕ11

In this section, we solve for the interaction potential (between body and slow-drift motion),
which takes into account the slow-drift velocity of the platform as well as the incident waves.
First, we reexamine the body boundary conditions in Eq. (2.49c) in light of the greater detail
of φ01. Thus, we can explicitly write the m′ terms as

m′1

m′2

m′6

 =


∂2ϕ01/∂r∂x

∂2ϕ01/∂r∂y

xo∂
2ϕ01/∂r∂y − yo∂2ϕ01/∂r∂x

 (2.97)

As we are only interested in the surge, sway and yaw modes of motion, only the exterior
potential is needed. Further, we have defined the velocity potential in separable cylindrical
coordinates in Eq. (2.96). We have explicitly defined the m′ terms in Appendix A.

Again, we decompose the potential ϕ11 into its diffracted and radiated components.
However, the radiation potential is now proportional to the zeroth and first order motions
of the kth cylinder, ξ̇

k(0)
j , ξ̇

k(1)
j as well as ∂ξ

k(0)
j /∂β as shown in Eq. (2.33) as,

φk11 = Re

[(
Aoψ̌

k
D − iσo

∑
j=1,2,6

ψ̌kjA
k(0)
j + ψ̌

k(β)
j Ak(0)

j,β + ψkjA
k(1)
j

)
e−iσet

]
(2.98)

30



Chapter 2: Hydrodynamics of Floating Body with Slow-Drift Motion

where the subscript β refers to differentiation with respect to β (as seen in Eq. (2.34)). The
superscripts (ˇ) are only used to differentiate these velocity potentials from the lower-order
potentials. Note that the last term of Eq. (2.98) represents the radiation potentials ψkj from
the lower-order potential ϕ10.

However, since the main focus of this analysis is to analyze the slow-drift motions, we
quickly recognize that the time-average of this potential and hence, the forces, are null. Thus,
this potential only contributes to the first- and second-order time-harmonic motions. In our
time-domain hydrodynamic analysis we do not include the contribution from this potential
but provide an outline of the solution to this potential in Appendix E.

2.4.4 The second-order zero-speed potential ϕ20

We can describe the time-harmonic velocity potential, as

φ20(x, y, z, t) = ϕ20(x, y, z)e−i2σot + ϕ̄20(x, y, z). (2.99)

where the potentials are due to the sum and difference frequencies of the incident monochro-
matic waves. We neglect the sum frequency contribution since it is at a much higher harmonic
than the slow-drift oscillations. Although this potential is extremely relevant for analysis of
springing and ringing phenomena, especially coupled with the higher natural frequencies of
taut mooring lines (such as those found on TLPs), which can lead to fatigue on the structure,
we will neglect it in the current analysis. It is clear for the zero-speed problem (formulated
in an inertial frame) that the contribution of ϕ̄20 to the pressure is O (ε3) (see the discussion
in [44] and subsequent papers, such as [45] and [46]). Although the second-order wave-drift
forces depend on this potential, as will be shown in Eq. (F.65), we can write these forces in
terms of the lower-order potential by means of Stokes’ and Green’s Theorems, as done in
[32]. Just as in the case of the diffraction problem of other potentials the body boundary
conditions is homogeneous, that is,

∂ϕ̄D20

∂n′
= 0, (2.100)

which was also found in [26].

2.5 Hydrodynamic Forces and Equations of Motion

In this section, we develop expressions for the surge, sway and yaw hydrodynamic forces and
describe how they can be included in the platform’s equations of motion.

2.5.1 Hydrodynamic Pressure

The hydrodynamic forces on a partially submerged body are equal to the pressure integrated
over the wetted surface area of the body. The hydrodynamic pressure at the instantaneous
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body position P can be expressed by expanding the pressure about the mean position of the
body in slow-drift frame So in a Taylor series, as

P =
Re
p
∣∣
So

+ (ξ +α× x′) · ∇p
∣∣
So

+ ... (2.101)

where p
∣∣
So

is the hydrodynamic pressure on the body, evaluated at its slow-drift position.
The total pressure in the fluid in the slow-drift frame of reference is given by Bernoulli’s
equation as,

p =
Re
−ρo

(
∂φ

∂t
− s · ∇φ+

1

2
∇φ · ∇φ+ gz

)
, (2.102)

where s is defined in Eq. (2.7). Expanding the pressure in terms of the double perturbation
series in Eq. (2.20),

p(x, t) = p00(x, t)︸ ︷︷ ︸
O(1)

+ p10(x, t)︸ ︷︷ ︸
O(ε)

+ p11(x, t)︸ ︷︷ ︸
O(τε)

+ p02(x, t)︸ ︷︷ ︸
O(τ2)

+ p20(x, t)︸ ︷︷ ︸
O(ε2)

+ p21(x, t)︸ ︷︷ ︸
O(ε2τ)

+ O
(
ετ 2
)
, (2.103)

where p00 is the hydrostatic pressure p10 is the linear pressure and p02 is the non-zero pressure
due to only the slow-drift motions (p01, which is related to only the slow-drift velocity is null).
In order of the perturbation series the pressures are,

O (1) : p00 = −ρogz, (2.104a)

O (ε) : p10 =
Re
iρoσoϕ10e

−iσet, (2.104b)

O (ετ) : p11 =
Re
ρo (iσoϕ11 + Le[ϕ10] + s · ∇ϕ10 −∇ϕ10 · ∇ϕ01) e−iσet, (2.104c)

O
(
ε2
)

: p20 =
Re
−ρo

2
∇ϕ10 · ∇ϕ10, (2.104d)

O
(
τ 2
)

: p02 =
Re
−ρo

(∑
j

U̇jψ̄j − s · ∇ϕ01 +
1

2
∇ϕ01 · ∇ϕ01

)
, (2.104e)

(2.104f)

O
(
ε2τ
)

: p21 =
Re
− ρo

[
∂φ21

∂t
− s · ∇φ20 +∇φ20 · ∇φ01 +∇φ11 · ∇φ10

]
,

=− ρo
[
−U6

∂ϕ̄20

∂β
− s · ∇ϕ̄20 +∇ϕ̄20 · ∇ϕ01 +

1

2
∇ϕ∗11 · ∇ϕ10

]
, (2.104g)

We take into account the third-order pressure term O (ε2τ) in order to find the wave-drift
damping of the structure, which is proportional to the wave-drift velocity (as well as the
square of the incident-wave amplitude).

2.5.2 Hydrodynamic Forces and Moments

As in previous sections, we only consider motions, forces, and moments in the horizontal
plane. The forces and moments in the slow-drift frame of reference can be described by the
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integrals,

F =

∫
SB

PndS, (2.105a)

M =

∫
SB

Px× n dS, (2.105b)

where SB is the instantaneous position of the body. Let the force/moment vector in the
horizontal plane be represented by Fb = (F1, F2, F6), where F6 = M3 denotes the yaw
moment on the body. Since the hydrostatic force does not contribute to Fb, we expand the
force vector into its perturbation series as,

Fj(t) = F
(10)
j (t)︸ ︷︷ ︸
O(ε)

+F
(11)
j (t)︸ ︷︷ ︸
O(τε)

+F
(02)
j (t)︸ ︷︷ ︸
O(τ2)

+F
(20)
j (t)︸ ︷︷ ︸
O(ε2)

+F
(21)
j (t)︸ ︷︷ ︸
O(ε2τ)

+ O
(
ετ 2
)
, j = 1, 2, 6. (2.106)

The instantaneous wetted surface area of the body is known from Taylor expansion of η at
z = h and consists of the body surface under the calm water line So and a surface wetted by
the wave elevation η. The contour of the intersection of the calm water line with the body
is denoted by Co. The linear forces directly follow from Eq. (2.105), such that,

F
(k`)
j =

Re

∫
So

pk`n
′
jdS for k = 1, ` = 0, 1 or k = 0, ` = 2, (2.107)

where, as defined before, n′6 = (x′ × n′) · ê3. The forces that are second-order in wave
steepness come from [20] and are given as,

F
(20)
j =

Re

∫
So

(p20 +
[
ξ(0) +α(0) × x′

]
· ∇p10)n′jdS

+

∫
So

p10

[
ξ

(0)
b × (n′1, n

′
2, 0)

]
· êjdS

+
ρog

2

∫
Co

(η10 · η10)n′jdl,

(2.108)

where the ◦ denotes the time average, as defined in Eq. (2.41). For yj = ŷje
−iσot, ŷj ∈ C1, it

is easy to show that

Re [y1] Re [y2] =
Re

ŷ1ŷ2

2
e−2iσot +

ŷ1ŷ
∗
2

2
, (2.109)

where (∗) denotes the complex conjugate, so that

Re [y1] Re [y2] =
Re

ŷ1ŷ
∗
2

2
. (2.110)
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Thus can rewrite each of the terms in Eq. (2.108) as,

F
(20)
j =

Re

∫
So

( p20︸︷︷︸
(a)

+
1

2

[
ξ(0) +α(0) × x′

]
· ∇p∗10︸ ︷︷ ︸

(b)

)n′jdS

+
1

2

∫
So

p∗10

[
ξ

(0)
b × (n′1, n

′
2, 0)

]
︸ ︷︷ ︸

(c)

·êjdS

+
ρog

4

∫
Co

(η10 · η∗10)︸ ︷︷ ︸
(d)

n′jdl.

(2.111)

Similarly for the highest order force considered in this report, the forces and moment (also
from [20]) are,

F
(21)
j =

Re

∫
So

( p21︸︷︷︸
(a)

+
1

2

[
ξ(0) +α(0) × x′

]
· ∇p∗11)︸ ︷︷ ︸

(b)

n′jdS

+
1

2

∫
So

p∗11

[
ξ

(0)
b × (n′1, n

′
2, 0)

]
︸ ︷︷ ︸

(c)

·êjdS

+
1

2

∫
So

([
ξ(1) +α(1) × x′

]
· ∇p∗10

)
︸ ︷︷ ︸

(d)

n′jdS

+
1

2

∫
So

p∗10

[
ξ

(1)
b × (n′1, n

′
2, 0)

]
︸ ︷︷ ︸

(e)

·êjdS

+
ρog

2

∫
Co

(η10 · η∗11)︸ ︷︷ ︸
(f)

n′jdl.

(2.112)

The forces are decomposed, in their usual manner, into components that are independent
from the body’s motions, as well as dependent on the body’s velocity and acceleration. We
refer to these components as the wave-exciting force, damping, and added-mass, if they are
proportional to the high-frequency oscillatory motion. If the forces are proportional to the
slow-drift motions, the terms are known as slow-drift added-mass (double-body added-mass)
and the slow-drift damping, which has been studied extensively in the hydrodynamics field
(for yaw slow-drift damping see [19, 47, 24, 32, 48, 19]). As noticed in [19], the wave-
drift damping in low-frequency motions is also strongly influenced by viscous effects, since
separation occurs for most bodies in the Reynolds number regime. As in [20], let us separate
the time-dependency of the oscillatory forces, such that

F
(k`)
j =

{
Re
[
F̄

(k`)
j e−iσet

]
, for k = 1, ` = 0, 1,

F̄
(k`)
j otherwise,

(2.113)
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since the time-independent forces are already real-valued.
The forces and moments can be written as,

O (ε) :F̄
(10)
j = AoX (0)

j +A(0)
i

(
σ2
oµ

(0)
ji + iσoλ

(0)
ji

)
, (2.114a)

O (ετ) :F̄
(11)
j =AoX (1)

j +A(0)
i,β

(
σ2
oµ

(β)
ji + iσoλ

(β)
ji

)
+

1∑
k,`=0
` 6=k

A(k)
i

(
σ2
oµ

(`)
ji + iσoλ

(`)
ji

)
, (2.114b)

O
(
ε2
)

:F̄
(20)
j = A2

oX̄
(2)
j + AoA(0)

i κ̄ji +A(0)
i

∑
k=1,2,6

A(0)∗
k

(
σ2
o µ̄

(2)
jik + iσoλ̄

(2)
jik

)
, (2.114c)

O
(
τ 2
)

:F̄
(02)
j = −µ̄jiU̇j, (2.114d)

O
(
ε2τ
)

:F̄
(21)
j = −A2

oλ̄jiUj + A2
oX̄

(3)
j + ... , (2.114e)

where we use the slow-drift velocities and accelerations as defined in the slow-drift frame
of reference. Here, we have used the conventions of [20] and [35]. The zero-speed linear

added-mass and damping are represented by µ
(0)
ij and λ

(0)
ij , respectively. The ‘interaction’

added-mass and damping are represented by µ
(1)
ij and λ

(1)
ij , respectively. The double-body

flow added-mass and wave-drift damping coefficients are µ̄ij and λ̄ij, where we have neglected
products (but not derivatives) of slow-drift velocities as done in [22]. The time-harmonic,

wave-exciting forces for each order of the perturbation series are X (k)
j , for k = 0, 1, respec-

tively. The steady hydrodynamic wave-exciting forces and moments are given by X̄ (k) for
k = 2, 3, since we have ignored the higher harmonics in this analysis. A few other interesting
terms come out, such as κ̄ij, which is a steady force/moment on the platform proportional to
the complex amplitude of the first-order oscillations. Further, terms related to the product
of these complex amplitudes of oscillations are given by the tensor µ̄

(2)
jik and λ̄

(2)
jik. These rep-

resent the forces in the jth direction, due to the product of complex amplitude oscillations of
the body in the ith and kth directions. We note that the forces O (ε2τ) will include products

such as UjAoA(0)
k . However, we only consider this order of magnitude to derive expressions

for the wave-drift damping, λ̄ji and will neglect the highest-order steady forces/moments.
All of these hydrodynamic coefficients are fully derived in Appendix F. However, we

amplify the results from this study by repeating the original findings shown in Appendix F.
To the author’s knowledge, the second-order, steady slow-drift forces and moment had not
been previously investigated using the direct pressure integration technique. Most other
derivations use some sort of momentum conservation principle over a control surface, such
as described in [20]. Thus, for a multi-column platform, whose centroid of waterplane area
is aligned with the center of rotation, we show that

Ncol∑
k=1

X̄ k(2)
6 = 0 (2.115)
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and that for the kth column,∑
i=1,2,6

A(0)
i

∑
j=1,2,6

A(0)∗
j σ2

o µ̄
(2)
6ij + iσoλ̄

(2)
6ij = 0. (2.116)

Thus the only surviving term in Eq. (2.114c) is the second one. In Appendix F we show that
this moment on the platform can be represented as,

∑
i=1,2,6

A(0)
i

κ̄6i

ρogπa2
=
Re
A(0)

1

Ncol∑
k

(
−y

k
0

a
κ̄k11 +

xk0
a
κ̄k21 +

X̄ k(0)∗
2

2

)

+A(0)
2

Ncol∑
k

(
xk0
a
κ̄k22 −

yk0
a
κ̄k12 −

X̄ k(0)∗
1

2

)

+A(0)
6

Ncol∑
k

(
−1

2

[
xk0X̄

k(0)∗
1 + yk0 X̄

k(0)∗
2

]
+ 2

xk0y
k
0

a
κ̄
k(t)
12 −

yk0y
k
0

a
κ̄
k(t)
11 −

xk0x
k
0

a
κ̄
k(t)
22

)
(2.117)

where

κ̄kj`
ρogakπ

= −iP
∗
k

2

{
∞∑
q=0

G(2)∗
q cos[2β − (χj + χ`)] Ďq︸︷︷︸

(b)

+
∞∑
p=0

H`
p(ak)

ĒD
pq +

F̄D
pq(kqak)(kpak)

2︸ ︷︷ ︸
(a)

+ (νoak)Žp(h)Žq(h)︸ ︷︷ ︸
(d)




+ G(0)∗
q cos(χj − χ`)

∞∑
p=0

H`
p(ak)

F̄D
pq(kqak)(kpak)︸ ︷︷ ︸

(a)

+ (νoak)Žp(h)Žq(h)︸ ︷︷ ︸
(d)




(2.118)

with the G
(m)
q terms related to the first-order scattering potential, defined in Eq. (2.78) and

the H`
p terms related to the radiation potential defined in Eq. (2.85). The terms related to

the integration of the vertical functions Ďq, Ē
D
pq and F̄D

pq are defined in Appendix F.3. The

term κ̄
k(t)
j` is equivalent to κ̄kj` minus the contribution from the Ďq term.

2.5.3 Conservation of Momentum

We continue with a more general formulation that is not restricted to the analysis of a
multi-column platform. As stated by [35], the conservation of linear momentum in the
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inertial frame can be written as

mb
d2

dt2
[Xo + ST (Θo)ξ] = ST (Θo)F + fm (2.119)

where mb is the mass of the body and we have formulated the hydrodynamic forces F in
the slow-drift frame. The mooring forces are represented by the vector fm and are discussed
in Sec. 2.5.4. We have assumed that the origin of the slow-drift frame and the center of
gravity of the body are coincident (i.e., the center of rotation and the center of gravity lie on
the same vertical axis). The expansion of the time derivative transforms the above equation
into,

mb

(
U̇o + S̈T (Θo)ξ + 2ṠT (Θo)ξ̇ + ST (Θo)ξ̈

)
= ST (Θo)F + fm (2.120)

where we will consider the smallness of these quantities in the next section.
The total angular velocity of the body Ωb is

Ωb = S(ξ6)Ωo + α̇ = Ωo + α̇ (2.121)

where the second equality is due to only considering horizontal plane motion, such that
ξ3 = ξ4 = ξ5 = 0.

The conservation of angular momentum is

[I]
∂Ωb

∂t
+ Ωb × [I]Ωb = S(ξ6)M +Mm, (2.122)

where [I] is the inertia matrix of body and the hydrodynamic moments areM = (F4, F5, F6).
The mooring moment is represented by the vector Mm. Again, only considering the yaw
mode of motion, the equation of motion is simply,

Ib

(
U̇6 + ξ̈6

)
= F6 + fm6 (2.123)

where Ib is the yaw moment of inertia (I66) and the yaw moment relating to the mooring
system is given by fm6 .

2.5.4 Mooring Forces

We assume that the effect of the mooring system on the platform can be represented by
uncoupled linear stiffness terms, related to the first-order motions, such that

fm = −[k]ξ(0), (2.124)

where k11 = k22 = km, which is a spring stiffness related to the material and size of the
mooring line. The mooring system consists of a inextensible single-point mooring line with a
universal joint, which allows free motion in the yaw direction . The stiffness of the lines was
not scaled properly from the full-size model due to the strict sway requirements in the towing
tank. The platform spanned nearly two-thirds of the width of the tank and a fragile viewing
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FP

Polyester Rope

Wire Rope

SWL without pretension

dp

≈ d

Figure 2.5: Diagram showing single-point mooring system with multiple touchdown points
to prevent torsion in the ropes.

window was located less than a foot from the end of the heave plate. It was determined that
the safety of the tank was of the highest priority. The system was pretensioned by pulling
on the polyester ropes before fixing it to their respective mooring points. The amount of
pretension in the ropes FP can be determined by the increase in draft of the platform dp, as
shown in Fig. 2.5, by

FP = ρogAwpdp. (2.125)

If the line is assumed to be inextensible, and neglecting terms O ((|ξj|/d)2), the stiffness is
related to the horizontal displacements by,

fmj = −FP
d
ξ

(0)
j = −

(
ρogAwpdp

d

)
ξ

(0)
j = −kmξ(0)

j , for j = 1, 2. (2.126)

We neglect any damping in the mooring line due to the pretensioning of the mooring system
after the platform was installed. Thus, we only take into account the damping of the universal
joint in both the slow-scale and fast-scale yaw motions, where we assume that the friction
in the joint is independent of the speed of rotation such that,

fm6 = −b66ξ̇6 − b66U6. (2.127)

Here, we have assumed no stiffness in the universal joint and we have disregarded the roll
and pitch motions (which are heavily influenced by the mooring design and stiffness). Since
we had no way to disassociate the viscous damping and the damping due to the universal
joint once the platform was in the water, we add the damping due to the universal joint into
the empirically determined drag coefficient, which is discussed in further detail in Sec. 2.9.2.
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2.5.5 Fast and Slow-Scale Equations of Motion

The equations of motion for the body, where only the hydrodynamic forces are considered,
can be split into fast and slow timescales, referring to the small-amplitude motions of the
body excited by the incident waves as well as the slow-drift motion, respectively.

Fast-scale Equations of Motion

We can expand the external force into its perturbation series in Eqs. (2.120) and multiply it
with ST (Θo) to obtain a time-harmonic equation of motion, given as,

O (ε, ετ) : mb

[
d2

dt2
(
ξ(0) + ξ(1)

)
+ 2U6S

T (Θo)R
T (Θo)

dξ(0)

dt
+ ...

]
= F (10) + F (11) + fm,

(2.128a)

where Ṡ(Θo) = U6R(Θo) and the terms that include products or derivatives of slow-drift
velocities are neglected. Focusing our attention on terms of O (ε) and substituting the
formulations for the wave forces given in the previous section, we find that

1,2,6∑
j

A(0)
j

[
σ2
o(µ

(0)
ij +M b

ij) + iσo(λ
(0)
ij + bij)− kij

]
= −AoX (0)

i , for i = 1, 2, 6 (2.129)

where [M b] is the 2D mass matrix with M b
11 = M b

22 = mb, M
b
33 = Ib and the off-diagonal

terms are null since there is no coupling between modes of motion in the horizontal plane.
For terms of O (τε), we can cancel the time dependency, which yields

−mb

[
σ2
oA(1) + 2σoko(U1 cos β + U2 sin β)A(0) − 2iσoU6S

T (Θo)R
T (Θo)A(0) + 2iσoU6A(β)

]
= F̄ (11)

(2.130)
Let the i, jth element of the matrix ST (Θo)R

T (Θo) = Tij. Substituting the representations
of F̄ (11), gives

A(1)
j

[
σ2
o(µ

(0)
ij +mb) + iσoλ

(0)
ij

]
= −AoX (1)

i

−A(0)
j

(
2imbσo

(
iko(U1 cos β + U2 sin β) + U6TijA(0)

i

)
+
(
σ2
oµ

(1)
ij + iσoλ

(1)
ij

))
−A(β)

(
2imbσoU6 +

[
σ2
oµ

(β)
ij + iσoλ

(β)
ij

])
for j = 1, 2,

(2.131)

which agrees with Eq. (4.23) of [35] for ξ4 = ξ5 = 0 and neglecting mooring restoring
forces rather than Eq. (4.24) of [20], who omits the Tij term. For the rotational modes, the
formulation is the same, except that the T terms does not exist. Thus, we can T by t , where
tij = Tij for j = 1, 2 and null otherwise. Rewriting Eq. (2.131) for the horizontal modes of
motion j = 1, 2, 6,

A(1)
j

[
σ2
o(µ

(0)
ij +M b

ij) + iσoλ
(0)
ij

]
= −AoX (1)

i

−A(0)
j

(
2iM b

ijσo

(
iko(U1 cos β + U2 sin β) + U6tijA(0)

i

)
+
(
σ2
oµ

(1)
ij + iσoλ

(1)
ij

))
−A(β)

(
2iM b

ijσoU6 +
[
σ2
oµ

(β)
ij + iσoλ

(β)
ij

])
for j = 1, 2, 6.

(2.132)
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In order to determine the equation of motion for A(β), we have

A(0)
j,β

[
σ2
o(µ

(0)
ij +M b

ij) + iσoλ
(0)
ij

]
= −Ao

∂X (0)
i

∂β
, for j = 1, 2, 6. (2.133)

Slow-Drift Equations of Motion

Likewise collecting higher-order terms, we can solve for the slow-drift translations and rota-
tions,

O
(
ε2, τ 2, ε2τ

)
: mb

d2

dt2
Xo = ST (Θo)

(
F (02) + F (20) + F (21)

)
, (2.134a)

O
(
ε2, τ 2, ε2τ

)
: Ib Ω̇o =

(
M (02) +M (20) +M (21)

)
, (2.134b)

Let us define a 2x2 matrix representing the upper-left of the rotational matrix ST (Θo) as
s(Θo). Then the translational slow-drift added-mass and damping, i, j = 1, 2, can be trans-
formed into the inertial frame as

Āij = sT (Θo)

 µ̄11 µ̄12

µ̄21 µ̄22

 s(Θo) (2.135a)

B̄ij = sT (Θo)

 λ̄11 λ̄12

λ̄21 λ̄22

 s(Θo) + sT (Θo)

 µ̄11 µ̄12

µ̄21 µ̄22

 [ṡ]Θ (2.135b)

K̄ij = sT (Θo)

 κ̄11 κ̄12

κ̄21 κ̄22

 for i, j = 1, 2 (2.135c)

whereas for the rotational slow-drift added-mass and damping,

Āi3 = sT (Θo)

 µ̄16

µ̄26

 , Ā3i =
[
µ̄61 µ̄62

]
s(Θo), (2.136a)

B̄i3 = sT (Θo)

 λ̄16

λ̄26

 , B̄3i =
[
λ̄61 λ̄62

]
s(Θo) +

[
µ̄61 µ̄62

]
[ṡ]Θ (2.136b)

K̄i3 = sT (Θo)

 κ̄16

κ̄26

 , for i,= 1, 2 (2.136c)

Ā33 = µ̄66, B̄33 = λ̄66, K̄33 = κ̄66. Thus we can write the slow-drift equations of motion
as

Ẍb

(
[Ā] + [M b])

)
+A2

o[B̄]Ẋb = ST (Θo)
(
A2
o(X̄ (2) + X̄ (3))

)
+Ao[K̄]Ab

(0) +σ2
oA

(0)
i [K (j)]Ab

(0)

(2.137)
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In these equations, we have not explicitly shown the transformations for the tensor [K (j)] =
L[µ̄jik], due to the variety of different possibilities, depending on the rotational or translation
velocities. However, they can be solved for in a similar manner to the K̄ij. It is important to
note that there is two-way coupling between the slow-modes and the fast modes. This has
been predicted by previous authors, (see Eq. (2.60) in [35] where the dependency is given in
~n10, which is defined in Eqs. (2.34) and (2.36) of [35]), although it seems that no previous
authors have written it explicitly. If we consider U1 = U2 = 0 and are only interested in the
yaw motion, then Eq. (2.137) becomes,

(Ib + µ̄66)Θ̈o + (A2
oλ̄66 + b66)Θ̇o = A2

o(X
(2)
6 + X (3)

6 ) +
∑
j

AoK̄3jA(0)
j +

∑
i

σ2
oK (6)

ji A
(0)
i A

∗(0)
j .

(2.138)
Equation (2.129) provides the solution to the response-amplitude operator (RAO) of the com-

plex amplitude of the first-order motion A
(0)
j /Ao, for a given wave heading βo and wave fre-

quency σo. In Appendix F.5, it will be shown that the terms in the summation of Eq. (2.138)
are related to the first-order hydrodynamic terms, which are also dependent on the relative,
unsteady wave heading β and incident-wave frequency σo. Thus, we can calculate the RAO’s
a-priori to create a database to solve for the instantaneous slow-drift position and velocity
in time-domain simulations.

2.6 Verification of Frequency Domain Results

We verify the numerical procedure described in the previous sections against published data
for truncated cylinders.

2.6.1 Verification for a Single, Isolated Cylinder

A verification of the numerical code used in this work for an isolated cylinder is shown
in Figure 2.6 by comparing the results with those from an in-house numerical software,
documented in [18]. The real and imaginary parts of the heave wave-exciting force are
plotted as a function of the nondimensional wavenumber k0a for a cylinder with dimensions
a/h = 0.1, d/h = 0.3. Over a wide range of cylinder dimensions, the two codes agree to 4
decimal places.

2.6.2 Verification for Multiple, Interacting Cylinders

A simple verification of the author’s code is shown in Figure 2.7 for the ISSC-TLP platform.
The modeled platform simply has 4 columns with dimensions a/h = .042, d/h = .825,
R/h = .431. The yaw wave-exciting moment (β0 = 22.5◦), is verified against the similar
formulation of Williams in [38] and the 3D panel method of [49] in Fig. 2.7. There are
two explanations for the discrepancies for the hydrodynamic coefficients between the present
method and the previous published results: first, we do not make approximations for the
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Figure 2.6: Verification of present code using results from [18] for heave wave-exciting force
of an isolated, truncated cylinder with a/h = 0.1, d/h = 0.3.

Hankel functions as in the previous literature; second, we found a few critical typos in the
derivations published and are unsure if the previous authors coded those mistakes. Zhong
employs a similar method in [42], but exploits the fast decay of the evanescent modes, which
was done for a truncated cylinder interacting with a channel’s walls in [50]. Related to this
work, she studied the effect of cylinder spacing distance R on the zero-speed, first-order
added-mass and damping on an array of three cylinders in a configuration of an equilateral
triangle. Their dependency on the nondimensional frequency of oscillation of the cylinders
are shown in Figs. 2.8 and 2.9. The added-mass and damping of other configurations are
included in [42].

2.6.3 Verification of Double-Body Added Mass

We solve for the double-body added mass of the truncated cylinder by letting the incident-
wave frequency approach zero for the first-order problem. As Yeung points out in [18], the
limit as a� h is

lim
a/h→∞

µ̄11 =
1− d/h
1 + d/h

. (2.139)

For other values of a/h, we compare the low-frequency results from [18] with the results
from the code developed in the present study in Fig. 2.10. Indeed, the results approach the
asymptotic values (shown with the dashed lines) for a � h. Interestingly, for a � h, the
results approach the limit for a bottom-seated cylinder (d/h = 0). The results shown are
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Figure 2.7: Verification of yaw wave-exciting moment for the ISSC TLP platform for
βo=22.5◦ with results from a similar formulation in [38] and the panel method in [49].

for koa = 0.0025, however, the results showed good convergence for values approaching this
frequency.

2.7 Case Study: Isosceles-shaped Semi-Submersible

Platform

In this section, we show the results for the hydrodynamic model developed in the frequency
domain. These results are necessary so that we can simulate the model in the time-domain.
The specifications of the platform are shown in Table 2.1 and their definitions are in plan
view in Fig. 2.11.

The surge and sway hydrodynamic coefficients are identical due to circumferential sym-
metry. The surge added-mass and damping are shown in Fig. 2.12 and the surge response
amplitude operator (RAO), which can be found in Eq. (2.129), is plotted in Fig. 2.13. The
large peak at koa = 0.021 corresponds to the surge resonant frequency of the platform,
which is highly dependent on the stiffness of the mooring cables. Around this frequency, the
response amplitude operators are non-physical since this analysis assumes that the fluid is
inviscid. It can be shown that resonance occurs when the term inside the square brackets
in Eq. (2.129) approaches null. In a real fluid the drag forces will dampen out these large
oscillations (see Sec. 2.8). The other dashed line in Fig. 2.13 corresponds to half of the
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Figure 2.8: Zero-speed, first-order, surge-surge hydrodynamic added-mass of a cylinder in
a three-cylinder array including interaction effects, courtesy of Zhong [42]. The spacing
between the cylinders in an equilateral triangle is varied and the results compared to the
case of an isolated cylinder.

Parameter Value

Nc 3

ā = a/h 0.047

d̄ = d/h 0.729

R̄12 = R12/h 0.904

R̄23, R̄31 0.769

dp/d 0.068

(koa)res,surge 0.021

Table 2.1: Geometry and mass properties of the tri-column semi-submersible built and
simulated in this study.
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Figure 2.9: Zero-speed, first-order, surge-surge hydrodynamic damping of a cylinder in a
three-cylinder array including interaction effects, courtesy of Zhong [42]. The spacing be-
tween the cylinders in an equilateral triangle is varied and compared to the case of an isolated
cylinder.

nondimensional distance of one of the sides of the platform. When β = 54◦, the wave is
heading perpendicular to the vector described by R23 in Fig. 2.11. Thus, the surge RAO is
a local minimum when the wavelength of the incident is exactly one half of h2, which is also
defined in Fig. 2.11.

The yaw radiation and damping and wave-exciting moment are shown in Figs. 2.14 and
2.15, respectively. As shown in Fig. 2.16, the yaw RAO depends on the relative incident-
wave angle β. Although not shown in the figure, the limit for RAO6 as koa→ 0 is finite. In
this long-wave limit, the yaw response of the platform is proportional to the wave slope.

2.7.1 Second-Order Steady Moment

As mentioned previously, it will be shown that the steady, second-order wave exciting mo-
ment due to the summation of the drift forces in surge and sway on each column is null.
This result comes from the fact that the drift forces are temporally and spatially indepen-
dent. Thus, irrespective of the incident wave angle, the moment due to these forces is null.
It will also be shown in Appendix F that the moment related to the product of the linear
motion amplitudes (the last term in Eq. (2.114c)) is also null. Thus the only term that
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Figure 2.10: Low-frequency approximation of surge, double-body added-mass coefficients µ̄11

of a truncated cylinder.

remains in Eq. (2.114c) is linearly proportional to the motion amplitudes and the incident
wave amplitude. This moment is given explicitly in Eq. (F.57), which depends on the newly
derived surge and sway forces, given in Eq. (F.29). The moment depends on the first-order
response amplitude operators in surge, sway and yaw, which are all dependent on the fluid
damping on the system. Thus, we show results from the RAO’s shown in Figures 2.13 and
2.16, which are determined using only inviscid assumptions.

The steady, second-order moments on the MIST platform are shown in Figures 2.17 and
2.18 as functions of incident wave frequency and platform heading, respectively. The stable
equilibrium positions occur when the platform exhibits symmetry (Θo = 0◦, 60◦, 120◦, etc),
when the moment crosses the x-axis with a downward slope.

2.8 Effect of Viscosity

The platform considered in this study has moving in a Reynolds regime where the effect of
viscosity on the motion of the platform may be important. Generally, the Reynolds number,
denoted by Re is a non-dimensional ratio indicating the effect of viscosity over inertial effects.
It is defined as,

Re =
UL

ν
, (2.140)

where U and L are the characteristic velocity and length of the object and ν is the kinematic
viscosity of the fluid. Thus, for a column of the platform that is undergoing pure yaw,
Rej = 2aj θ̇0Rj/ν. For the vertical cylinders considered in this study at model-scale the
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maximum Rej ≈ 2.1 · 103. The other important parameter when considering viscosity and
drag forces in oscillatory flow is the Keulegan-Carpenter number, which relates the drag
force to the inertial forces.

KC =
U

fL
. (2.141)

As shown by the frequency of oscillations in Fig. 2.2, the KC number for the fast-scale motion
is an order of magnitude smaller than for the slow-scale motions. The KC number on the
jth column for the fast-scale motion is is KCj = πθ̇|rj|/σ0aj ≈ 0.075. At such a low Kc
number, many authors have shown that the drag on cylinders can increase drastically [51],
[52]. A frequency parameter is often used to relate the Kc and Re as,

Γ =
Re

Kc
. (2.142)

We reproduce the experimental data performed by Troesch and Kim in 1991, since it is
very close to the Re and Kc used in this study. From this experimental data, it is clear
that is prudent to separate the drag coefficients for the fast and slow motions, Kf

D and Ks
D,

respectively since the forces can differ by nearly an order of magnitude depending on the Kc
number. The authors of [22] also mention the necessity of separating the slow and fast-scale
velocities when computing the sectional viscous force on a cylinder (see Eq. (8) in [22]).

Normally, the effect of viscosity on submerged or partially submerged bodies is taken
into account by using a quadratic drag or Morison-type equation (sometimes referred to as
MOJS equation) [53]. This force takes into account the flow separation on the bodies due to
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Figure 2.17: Steady, second-order moment on the MIST platform as function of the incident
wave frequency and incident wave angles.

effect of the adverse pressure gradient causing the flow about the bluff body to separate. In
the linear hydrodynamic analysis we assume that all streamlines about the body follow the
body contours. Empirically it was determined that this drag force is generally proportional
to the square of the velocity of the body. For our linear response analysis in the frequency
domain, it is helpful to convert the quadratic damping into a linear damping, such as in [54]
and [55]. As done by [56], we estimate this linear damping due to the viscous effects on the
fast-scale motions by matching the experimental RAOs (in yaw) with the numerical results.
In [55], the author makes an energy conservation argument, equating the energy dissipated
by the quadratic and linear dampers. Thus, the linear damping coefficient is a function of the
quadratic damping coefficient along with other parameters, such as the motion amplitude
and frequency. However, the conversion of a quadratic damping term into a linear damping
term for the slow-scale motions is more difficult since we cannot assume a time-harmonic
response. We were never able to run the experiments long enough to see a cyclic response in
the slow-drift motion of the platform (only 35 s are shown in Fig. 2.2, but is representative
of the length of time before back-scattered waves interfere with the experiment). Thus,
estimating the viscous moment on the slow-drift motion remains an open question and is
discussed further in Sec. 5.7.

For now, we separate the viscous forces on the slow-drift motions and the higher-frequency
motions, since they are operating in different fluid regimes. On the platform, the drag forces

51



Chapter 2: Hydrodynamics of Floating Body with Slow-Drift Motion

Θo

F
(
2
0
)

6
/
ρ
g
π
a
2
A

2 o

 

 

0 60 120 180 240 300 360
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1
βo = 0◦, k oa = 0.23

Figure 2.18: Steady, second-order moment on the MIST platform as function of the slow-drift
position of the platform.

are

f v = −
Ncol∑
j


1 0 −yj0 0

0 1 xj0 0

−yj0 xj0 R2
j 0

0 0 0 R2
j




Kf
Dξ̇1

Kf
Dξ̇2

Kf
Dξ̇6

Ks
DU6

 (2.143)

where Kf
D and Ks

D are the linear drag coefficients for the fast and slow motions, respectively.
For a rotating platform whose center of rotation is aligned with the geometric centroid of
the waterplane area (here, only the main columns are considered in this analysis while the
truss structure is ignored), the off-diagonal terms will sum to 0.

2.9 Time-Domain Study

In order to validate the analysis in Secs. 2.4.2-2.8, we can use experimental data in the time-
domain from model tests. If we assume that the mooring system keeps the center of rotation
relatively fixed while having little effect on the platform in the yaw direction, the only forces
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Figure 2.19: Drag and Added-Mass coefficients for oscillating cylinder with Γ = 23, 200
(Adapted from [52])

on the platform will be due to the incident-wave and other hydrodynamic forces. We consider
only four degrees of freedom in the time-domain, since we are considering horizontal plane
motion only where U1 = U2 = 0. Upon examination of Eqs. (2.129) and (2.138), which detail
the equations of motion for the fast-scale and slow-scale motions of the body, respectively, we
first focus on the fast-scale motions, which have been developed previously in the literature
[57, 58].

2.9.1 Fast-Scale Motions in Time-Domain

The total equations of motion for the fast-scale motions are

Mbξ̈b(t) = f e(t) + f r(t) + f v(t) + fm(t) , (2.144)

where fe are the wave-exciting forces/moment and fr are the wave radiation forces/moment,
fv are the non-linear viscous forces/moment and fm are the forces/moment due to the moor-
ing system. For the analysis in the current section, we neglect the influence of the gen-
erators/wind turbines and only consider hydrodynamic forces. We will consider the entire
system in Chapter 5.

The hydrodynamic forces in the jth direction can be described in the time domain using
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integrals to describe the memory-effects of the fluid,

f ej (t) =

∫ ∞
−∞

Ke
j (t− τ)ηo (0, τ) dτ , (2.145)

f rij(t) = −µij(∞)ξ̈j(t)− λij(∞)ξ̇j(t)−

K̃ij(t)︷ ︸︸ ︷∫ t

−∞
Kr
ij(t− τ)ξ̇j(τ)dτ , (2.146)

where Kr
ij is the radiation impulse response function and can be solved for by applying an

inverse-Fourier transform to the frequency-domain hydrodynamic coefficients:

Kr
ij(t) =

2

π

∫ ∞
0

[λij(σ)− λij(∞)] cosσtdσ . (2.147)

We only use the first-order representation of the free-surface η10 in this analysis. The wave-
exciting moment kernel can be expressed as,

Ke(t) =
1

π

∫ ∞
0

[Re [X6(σ)] cosσt− Im [X6(σ)] sinσt]dσ . (2.148)

However, the integrals in Eqs. (2.145) and (2.146) are time-consuming to compute in the
time-domain. Thus, we represent it as a set of ordinary differential equations that can be
represented by a state-space model, as was formulated first by [59]. In general,

χ̇ij = Arijχij +Br
ij ξ̇j, (2.149)

K̃ij = Cr
ijχij +Dr

ij ξ̇j. (2.150)

This transformation was state-space represented in [57], and adapted by Tom and Yeung
in [56], where a balanced reduction formulation was used to reduce the number of states in
the vector χjj, (balmr in MATLAB), without sacrificing the accuracy of the solution. We
assume that the wave-exciting moment kernel is causal such that,

f ej (t) = Ao|Xj(β, σ)|Re
[
ei(ϕj−σt)

]
. (2.151)

In this way we have represented all of the forces on the right-hand side of Eq. (2.144) and
can solve for the instantaneous position of the fast-scale motions about the slowly-varying
drift position using well-proven time integration techniques such as those found in built-in
MATLAB libraries.

2.9.2 Slow-Drift Motions in Time-Domain

We only consider a single degree of freedom of the slow-drift motions (yaw) in this analysis.
Like the previous subsection, the second-order equation of motion is,

(Ib + µ̄66)Θ̈o = fe − A2
oλ̄66Θ̇o + fv(t) + fm(t), (2.152)
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where the wave-exciting force does not have an explicit dependence on time. This steady
wave-exciting force can be found from Eq. (2.138) as

fe = A2
o(X

(2)
6 + X (3)

6 ) +
∑
j

AoK̄3jA(0)
j +

∑
i

σ2
oK (6)

ji A
∗(0)
i A

(0)
j . (2.153)

Note that all terms in Eq. (2.153) are dependent on the instantaneous yaw orientation of the
platform Θo(t). It will be shown in Appendix F that for a platform that is rotating about

the centroid of its waterplane area, X (2)
6 is null. Furthermore, it will also be shown that

K (6)
ji is null. We will neglect X (3)

6 since it is of higher order than we are considering. When
we solve this equation in the time-domain in Chapter 5, we assume that the yaw velocity is
small, such that we can use the previous instantaneous position of the platform to calculate
the forces on body at each time step.

In the previous subsection we described how we treat the first-order motions ξj(t) as
unknowns and solve for them with a time-stepping algorithm. We expect the motion to
be time-harmonic with a frequency related to the incident wave frequency, as described in
Eq. (2.30). However, it is clear that the amplitude |Aj(t)| and phasing ∠Aj(t) of the motion
is changing with respect to time. Thus, our assumption in the frequency domain analysis,
where we consider the complex amplitude of motion as a constant, does not hold in the
time-domain. Utilizing Eq. (2.108) as a guide we rewrite Eq. (2.153) reflecting the above
information as,

fe(t) =
Ao
T

t∫
t−T

∑
j

Re
[
K̄3je

−iστ] ξ̇(0)
j (τ)dτ. (2.154)

The other forces, including the mooring and viscous forces are dealt with in the same manner
as the fast-scale motions (albeit with a different drag coefficient due the change in KC
number).

In later chapters we refer to the total hydrodynamic yaw moment on the platform Qe, as

IbΘ̈o = Qe = −µ̄66Θ̈o − B66Θ̇o + fe(t) (2.155)

where B66 is the total slow-drift drag coefficient on the platform, which is the sum of the
wave-drift damping, linear viscous drag and friction from the mooring system, which can be
represented as from Eq. (2.143) as,

B̄66 =
B66

ρogA2
0a

2/σo
=

λ̄66

ρoga2/σo︸ ︷︷ ︸
wave−drift

+
b̄66

ρogA2
0a

2/σo︸ ︷︷ ︸
mooring

+
Ks
D

ρogA2
0/σo

Ncol∑
j

(
Rj

aj

)2

︸ ︷︷ ︸
viscous

. (2.156)

We will discuss this coefficient in further detail when discussing the results of the hydrody-
namic simulations in Sec. 5.7.1.
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Chapter 3

Aerodynamics of Vertical-Axis Wind Turbines

In this chapter, the aerodynamics of vertical-axis wind turbines are investigated. We surmise
that one of the reasons there are widespread failures in the structural integrity of vertical-axis
wind turbines is a misunderstanding or mischaracterization of the magnitude and frequency
of the forces on the turbines as they circumnavigate the central column. For example, one
of the few public investigations of commercial vertical-axis turbines is documented in [60],
which resulted in failures of the welding and strut attachments. We hope to elucidate some
of these features by using a state-of-the-art Large-Eddy Simulation (LES) technique, known
as high-order, discontinuous-Galerkin Implicit LES (ILES). Before introducing this method
we discuss general considerations of simulating vertical-axis wind turbines and then discuss
a blade element momentum theory, which is widely used in the industry today. Thus, we
include simulations using a low-fidelity (low computational cost) method as well as a high-
fidelity CFD method. The examination would be more complete if we had re-performed the
analysis using a middle-fidelity method such as the Unsteady Reynolds-Averaged Numerical
Simulations (URANS), using open-source software such as OpenFOAM1. The same argument
could be made, however, for using even higher-fidelity methods such as Detached Eddy
Simulation (DES) or Direct Numerical Simulation (DNS) techniques. Since great effort had
already been put into writing the LES code used in the current analysis by [61], we analyzed
the turbines using only this technique.

3.1 General Considerations

A plan view of a straight-bladed vertical-axis wind turbine is shown in Fig. 3.1. The reader is
referred to Fig. 4.1 for an isometric view of a straight-bladed turbine. However, the diagram
can be used to illuminate the aerodynamics of the turbine with a two-dimensional slice. For a
straight-bladed turbine, with uniform incident wind, the problem reduces to two-dimensions.
We implemented three-dimensional analysis to include blade curvature as well as wind shear
in the blade element momentum theory, which is discussed in Sec. 3.2. From the analysis in
Sec. 3.3, it is clear that three-dimensional analysis must be used in some circumstances when
simulating turbines. Thus, we include a small spanwise extrusion in Sec. 3.4 with periodic
boundary conditions on the top and bottom to simulate the three-dimensional effects. In
the diagram in Fig. 3.1, the incident wind U∞ is blowing from right to left. The azimuthal
angle of the blade θ varies from 0 to 2π, although in many plots, we show the variation from
−π/2 to 3π/2. The radius of the turbine is R, the chord of the airfoil c, the blade mount
position c0, and the blade pitch angle α0. As the turbine rotates, the relative wind velocity
(to an observer on the airfoil) UR varies as well as the instantaneous angle of attack α. The

1www.openfoam.com/
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Figure 3.1: Plan view of two-bladed vertical-axis turbine with various parameters.

variation in the angle of attack and the local Re number of the upwind zone is shown in
Fig. 3.2. The angle of attack is negated in the downwind zone.

The efficiency of the turbine is highly dependent on its tip-speed ratio, which is the ratio
of the speed of the airfoil to that of the wind, that is

λ =
ω1R

U∞
(3.1)

As depicted in Fig. 3.1, once blade enters the ‘upwind’ zone, the incident wind is unaltered.
However, in the ‘downwind zone’ the incident wind has been retarded by airfoils passing
through the ‘upwind’ zone. This effect will be easier to see in the flow visualizations of the
CFD method in Sec. 3.4.
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Figure 3.2: Variation of angle of attack and chord Re of a straight-bladed VAWT as it
completes one half rotation.
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3.2 Double-Multiple Streamtube Method

The first aerodynamic model considered is a blade element momentum model (BEM) known
as the Double-Multiple Streamtube Method (DMST). BEM methods consider the transfer of
momentum from the incident wind particles to the rotating airfoils. In order to estimate the
instantaneous aerodynamic torque at a specific rotor position, the Double-Multiple Stream-
tube Method (DMST) was implemented. This methodology breaks down the problem into an
upwind and downwind zone (hence, ‘double’), and each of these zones into many azimuthal
sections denoted by θ1 (hence, ‘multiple streamtubes’). The flow within a single streamtube
is retarded by the blade by a factor of u and u′, in each of these zones, respectively. The
amount of momentum transfer for the blades in the upwind and the downwind zones must be
solved iteratively. However, this model assumes that the fluid pressure completely recovers
in the equilibrium zone in the middle turbine, as shown in Fig. 3.3. This specific formulation
comes from pages 158-162 of [3], where we assume that the rotor speed, ω1 = θ̇1 is constant.
For a more detailed description of this method see [3].
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Figure 3.3: Elevation and plan views of the Double-Multiple Streamtube Method.
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Upwind Aerodynamics

In order to find the induction factor u in the upwind zone, the following iterative algorithm
was used until ||u(k+1) − u(k)|| < utol:

U = u(k)U∞ (3.2a)

W 2 = U2
(
(X − sin θ1)2 + cos2 θ1 cos2 δ

)
(3.2b)

where X = Rω1/U (3.2c)

α = arcsin

(
cos θ1√

(X − sin θ1)2 + cos2 θ1 cos2 δ

)
(3.2d)

[CL, CD] = f (α,Re[W ]) lookup table (3.2e)

CN = CL cosα + CD sinα (3.2f)

CT = CL sinα− CD cosα (3.2g)

fup =
Nc

8πR

∫ π/2

−π/2

(
CN

cos θ

| cos θ|
− CT

sin θ

| cos θ| cos δ

)(
W

U

)2

dθ (3.2h)

fupu
(k+1) = π(1− u(k+1)) (3.2i)

Downwind Aerodynamics

In order to find u′ in the downwind zone, which leads to the calculation of α′ and W ′ in the
downwind zone the following iterative algorithm was used until ||u′(k+1) − u′(k)|| < u′tol:

U ′ = u′(k)(2u− 1)U∞ (3.3a)

W ′2 = U ′2
(
(X ′ − sin θ1)2 + cos2 θ1 cos2 δ

)
(3.3b)

where X ′ = Rω1/U
′ (3.3c)

α′ = arcsin

(
cos θ1√

(X ′ − sin θ1)2 + cos2 θ1 cos2 δ

)
(3.3d)

[C ′L, C
′
D] = f (α′, Re[W ′]) lookup table (3.3e)

C ′N = C ′L cosα′ + C ′D sinα′ (3.3f)

C ′T = C ′L sinα′ − C ′D cosα′ (3.3g)

fdown =
Nc

8πR

∫ 3π/2

π/2

(
CN

cos θ

| cos θ|
− CT

sin θ

| cos θ cos δ|

)(
W ′

U ′

)2

dθ (3.3h)

fdownu
′(k+1) = π(1− u′(k+1)) (3.3i)

3.2.1 Verification for a Single Turbine

The DMST code was verified by comparing the results of the current study with published
results. Figure 3.4 shows the tangential force coefficients CT for the Sandia 5m turbine
described in [62] by using the DMST in the present study (lines, various λ) as well as
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the DMST coded by [3] (circles). The discrepancies in the two codes may be caused by
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Figure 3.4: Tangential force coefficient for the Sandia 5m turbine described in [62]. Circles
represent published DMST data in Fig. 6.16 in [3].

the choice in the number of streamtubes, CL, CD data, interpolation methods, convergence
criteria, among other things.

3.3 LES of Static Airfoil at Low-Re and Large AOA

The airflow over streamlined bodies at low to moderately low Re (i.e., 103 ≤ Re ≤ 105) has
been examined thoroughly by means of experimental, analytical and computational tech-
niques by many researchers in the modern era (see review papers, for instance, [63, 64, 65,
66]). This Re range presents unique challenges to researchers who have to deal with sepa-
rated, highly unsteady transitional flow. Though early wind tunnel tests of the NACA0012
were plagued by inaccuracies [67], many recent experimental studies have used state-of-
the-art pressure and force measurements as well as flow visualization techniques (see, for
instance, [68, 69, 70, 71, 72] ).

However, experimental studies will always be limited by the amount and type of data
that can possibly be collected from such tests. Recent growth in computational power and
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parallel computing techniques has led to increasingly higher-fidelity computational anal-
yses, such as large-eddy simulation (LES) and direct numerical simulation (DNS), (see
[73, 74, 75, 76, 77, 78, 79, 80, 81, 82]). While DNS can solve for the flow field at Kolmogorov
scales, it requires prohibitively fine meshes for the Reynolds numbers considered, even for
high-performance computers. Thus, researchers are actively seeking numerical schemes that
could model the flow structures at a wide range of spatial and temporal scales and could
accurately predict the magnitude and frequency of forces on the airfoil with lower computa-
tional cost. In LES simulations, element sizes are significantly larger than the Kolmogorov
scale. This reduces the computational cost drastically, and the effect of the unresolved scales
are incorporated through subgrid models. In our work, we use the so-called implicit LES
model which assumes that this subgrid model is the inherent dissipation of the numerical
scheme. In most cases these flow structures are inherently three-dimensional and require
full 3D simulation techniques, although in this work we will compare the 3D results with
corresponding 2D simulations to highlight the differences.

3.3.1 Governing Equations and Computational Domain

We shall briefly introduce the governing equations and the computational domain in this
section, although more details can be found in [83].

Governing Equations

The in-house software used in the current analysis was first described in [84]. This numerical
code solves the compressible Navier-Stokes equations using a higher order, discontinuous
Galerkin discretization. For the current analysis, the Mach number (Ma) is set, such that the
flow is essentially incompressible. In indicial form, the compressible Navier-Stokes equations
are

∂ρa
∂t

+
∂

∂xj
(ρauj) = 0, (3.4a)

∂

∂t
(ρaui) +

∂

∂xj
(ρauiuj + pδij) =

∂

∂xj
τij for i = 1, 2, 3, (3.4b)

where ρauj is the fluid momentum in the jth direction, p is the pressure, and the viscous
stress tensor is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
. (3.5)

To reduce the number of unknowns in the system, we assume all processes happen isentrop-
ically (i.e., entropy is constant). Hence,

p = sργa. (3.6)

where γ = Cp/Cv, the adiabatic gas constant s is a constant. We can use the isentropic model
of the Navier-Stokes equations, since it converges to the solution of the incompressible Navier-
Stokes equations as the Mach number goes to 0, (so long as suitable assumptions about the
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domain, boundary conditions, initial conditions, etc, are made) [61]. Thus, for a 3D domain,
we have four equations and four unknowns ρa, uj given in the non-linear system of equations
in Eqs. (3.4), (3.5), (3.6) and can use a time-stepping algorithm once a discretized domain
is defined.

High-Order Discontinuous Galerkin Discretization

The domain is discretized into structured and unstructured elements, which can be repre-
sented by basis functions of arbitrary order. A first-order basis function, p = 1 uses a linear
basis function to represent the solution on the nodes of the element. Higher-order basis
functions use higher-order polynomials (quadratic: p = 2, cubic: p = 3, etc) to define these
basis functions, which are defined between the nodes of the element. The convective operator
(left hand side of Eq. (3.4b)) is discretized using a discontinuous Galerkin method, which
produces a stable discretization irrespective of the polynomial order. The viscous terms are
discretized using a compact discontinuous Galerkin representation, described in [84], which
leads to optimal order accuracy and generates sparser matrices than the alternative existing
methods.

Computational Domain

The computational domains for static NACA0012 airfoils at arbitrary angle of attack is
shown in Figs. 3.5. Mesh 1 represents the coarsest mesh, while Mesh 2 represents a much
finer mesh. After some initial simulations, it was determined that the solution was fairly
independent of these mesh sizes and a mesh size in between these two was created for the
3D simulations. The airfoil is a standard NACA0012 section and, for the 2-D simulations,
we use an outer square size of 25 chord lengths. The 2D meshes have 1,613 and 7,482 high-
order elements, respectively, corresponding to 16,130 and 74,820 high-order nodes, or about
48,000 and 224,000 degrees of freedom. We measure the resolution length of the first layer of
elements around the airfoil by dividing the element height by the polynomial degree, hmin/p,
which is a natural choice for high-order methods. For our two meshes this quantity is 5 ·10−4

and 5 · 10−5, respectively.
For the 3D domain, we extrude the 2D airfoil section to a span length of 0.4 chord

lengths, and use periodic conditions between the two ends. The 3-D domain has an outer
box of three chord lengths above, below, and upstream from the airfoil; and it has five chord
lengths in the wake. This leads to a mesh with 151,392 high-order tetrahedral elements, or
about 3 million high-order nodes, which correspond to above 12 million degrees of freedom.
The first layer of elements has hmin/p = 2.5 · 10−4. In Fig. 3.5(a), the stretched elements
in the boundary layer can be seen. After a small distance, this structured mesh transitions
to an unstructured mesh of triangles or tetrahedrals (in the case of the 3D mesh). The
3D meshes are obtained by prismatic extrusion of the triangular elements. All triangular
and tetrahedral meshes are produced using the DistMesh mesh generator [85]. In addition,
high-order methods require meshes with curved elements, which are particularly difficult to
generate for meshes with boundary layers. We use the elasticity-based approach proposed
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(a) Mesh 1, 2D (b) Mesh 2, 2D (c) 3D Mesh

Figure 3.5: Computational domain in 2D and 3D for the static NACA0012 airfoil at a wide
range of angles of attack.

in [86], which tends to produce well-shaped meshes with globally curved elements.

3.3.2 Lift and Drag Forces

In this section, we present the average magnitude and frequency content for NACA0012
airfoils over a range of angle of attacks.

Magnitude of Forces

The forces on a stationary NACA0012 airfoil over a range of angles of attack (0◦ ≤ α ≤ 55◦)
were obtained and decomposed into the stream-wise and cross-stream directions (FD and FL,
respectively). These results were compared to experimental and computational data from a
variety of previous studies at similar Re.

The lift coefficients from a variety of experiments and numerical simulations at low Re
(5,300 ≤ Re ≤ 20,700) are shown in Fig. 3.6. Similar to experimental procedures, these
results are calculated by time-averaging the solution after a short transient period (usually
t∗ = tU∞/c = 5). The simulations ran for t∗ = 40 − 80. The rectangular box is amplified
and shown in Fig. 3.6(b). The 2D results from the present simulation are displayed with
open and filled circles for Mesh 1 and Mesh 2, respectively (no appreciable difference at this
level). Experimental data from [70], [72], and [87] are shown. Many different high-quality
experimental tests are shown in these figures due to the difficult nature of obtaining reliable
results at such Re. Results from the inviscid linear-vorticity panel method code XFoil [88]
are also plotted for comparison. At this Reynolds number, the 2D ILES predicts the lift
coefficient of the NACA0012 fairly well up to about α=8◦. Above this α the 2D ILES
drastically overpredicts the lift force. As the flow becomes detached, cross-stream structures
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have a significant impact on the lift and drag forces on the airfoil. At The XFoil code,
however, captures the relatively linear behavior of this airfoil over a larger range, though
underpredicts the lift from 3◦ ≤ α ≤ 12◦ as shown in Fig. 3.6(b). The 3D ILES simulations
at α= 10◦, 12◦, 15◦ and 30◦ are close to the experimental data. Interestingly, the value at
α= 10◦ is close to the values obtained by XFoil, though the computational cost of obtaining
such a datum are orders of magnitude higher for the CFD software compared to the potential
flow solver.

The lift coefficients for the NACA0012 at higher Re (40.0 · 103 ≤ Re ≤ 360 · 103) are
shown in Fig. 3.7 up to α=55◦ and up to α=12◦ in Fig. 3.7(b). The results show similar
trends to the ones described in Fig. 3.6, with the 2D ILES simulations overpredicting the
lift values at α > 10◦. Experimental data from [89] and the data from Sheldahl and Klimas’
seminal airfoil testing [90] at large angle of attacks are plotted as well. The LES simulations
performed by Lehmkuhl, documented in [76] are shown in Fig. 3.7(b). Again, the XFoil
code, captures the behavior of this airfoil fairly well. The 3D ILES simulations at 30◦ and
50◦ are close to the experimental data.

The drag coefficients for NACA0012 at 5·103 ≤ Re ≤ 360·103 are shown in Fig. 3.8(a) for
α ≤ 55◦ and for α ≤ 12◦ in Fig. 3.8(b). The trend of increasing Re coinciding with decreasing
CD(α = 0) was shown experimentally in [90]. Both XFoil and the ILES simulations follow
the experimental data well for α ≤ 12◦. A similar LES simulation was run for NACA0012
by Pagnutti [91] for α = 0 and is shown in Fig. 3.8(b). The 3D simulations also provide
accurate results under post-stall conditions.

Frequency Content of Forces

In order to analyze the frequency content of the ILES simulations, a Fourier transform could
be used to analyze the time history of the lift and drag forces. However, since the total
simulation time was never greater than 80 s due to time and storage constraints, a desired
frequency resolution of 0.01 Hz could not be obtained. Thus, the peaks of the signals were
obtained by finding the zero-slope and the dominant frequency of the lift force was obtained
through the averaging of these periods. The data obtained from this procedure are shown
in Fig. 3.9. These results are compared to the dominant frequencies in the lift signal experi-
mentally determined by Alam in [70]. They are also compared to dominant vortex shedding
frequencies found in the DNS simulations of a NACA0012 at α = 9.25◦, 12◦ by Rodriguez in
[82] as well as the dominant vortex shedding frequencies found in the experiments performed
by Huang and reported in [69]. In the literature, when the frequency of the vortex-shedding
is discussed, the length scale is generally related to the width of the wake. However, these
aforementioned authors use slightly different length scales for the length parameter of the
Strouhal number. To simplify, we re-normalized all of the results by the same length scale
(c), so that the results from our study can be compared to the previous studies. From
the agreement in Fig. 3.9 over the large range of angles of attack, it is evident that the
oscillations in the force signal are due to the shedding vortices. Interestingly, our results
showed that the shedding frequencies at α = 12◦ and 15◦ are quite similar. However, the
standard deviations of the periods for the lift and drag forces are on the order of 10% of the
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Figure 3.6: Lift coefficient of NACA 0012 at 5,300 ≤ Re ≤ 20,700.

period. The dominant frequencies in the drag force were similar to those of the lift force as
experimentally determined in [70] and are not reproduced here.
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Figure 3.7: Lift coefficient of NACA 0012 at Re 40,000 and above.

3.3.3 Flow Visualization

To analyze the fidelity of the unsteady flow structures in the 3D ILES simulation, two
comparisons with experimental data were performed: the first was with a dye injection the
second was with interpolated PIV data.
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Figure 3.8: Drag coefficient of NACA 0012 at 5 · 103 ≤ Re ≤ 360 · 103.

Dye-Injection

In the experiments reported in [70], flow visualization was performed using a dye-injection
technique. The dye was injected with a 1 mm nozzle at three different sites along the
midspan of the airfoil: the nose of the airfoil and 0.1 chord lengths from the nose on the
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Figure 3.9: Comparison of dominant non-dimensional frequencies, fc/U∞, of lift force or
vortex shedding over a large range of angle of attack at low Re.

suction and pressure sides of the airfoil. To compare with the images from this study,
a particle-tracing algorithm in the ParaView visualization open-source software [92] was
employed. The particle-tracer algorithm is quite computationally expensive since the velocity
of each particle is interpolated from the entire 3D solution at each time-step. In the particle-
tracer simulation, only the nose and suction side injection sites were chosen to minimize
computational cost, since many of the particles originating at the nose ended up on the
pressure side of the airfoil. This post-processing algorithm took approximately 24 hours on
a desktop computer. One instant of this simulation (t∗ = 4.05) is shown for α = 10◦ and
Re = 5.3 · 103 in side view in Fig. 3.10 and compared to the image shown in [70] for the
same flow parameters. Although the particle-tracer technique neither includes the effect of
the input velocity of the dye nor its diffusion properties, the images show relatively good
agreement.

Vortical Structures

Though it is not possible to see the time evolution of the vortical structures in this particle
tracer simulation, the time evolution of the vorticity at α = 10◦ is shown in Fig. 3.11. The
images on the right are cross-sectional instances of the streamwise vorticity from the 3D
ILES simulations at midspan. These snapshots are compared to the sketches of ‘Regime
C’ that Huang describes in [68]. Although the time-evolution of streamlines are sketched
in Fig. 3.11a), it is clear that the seeds of these streamlines change in time for purposes
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T.E. Vortices
Separation Point Separation Vortices

Figure 3.10: Comparison of dye-injection visualization experiment at α = 10◦ and Re =
5.3 · 103 (top image from [70]) and particle-tracer post-processing from 3D ILES simulation.

of clarity. Thus, in order to visually compare the present simulations the vorticity was
plotted instead. As the authors of [68] describe, once the separation point moves upstream,
a surface vortex is formed in the separated boundary layer around the mid-chord (middle
panel of Fig. 3.11). As the counter-clockwise rotating vortex rolls down the suction side of
the airfoil and is shed into the surrounding fluid, a trailing-edge vortex (clockwise-rotating)
rolls up from the pressure side to the suction side. Huang attributes this effect to the low
pressure region immediately behind the counter-clockwise rotating vortex. The vortices are
shed in an alternating fashion, with a counter-clockwise rotating one generated from the
trailing-edge and clockwise-rotating generated in the separated boundary region and rolling
down the suction side of the airfoil.

Vorticity PIV Data

In [68], Huang and colleagues impulsively started a NACA0012 airfoil at various angles
of attack in a water tank. The PIV images were obtained from a CCD camera that was
mounted on a small moving carriage below the tank (see Fig. 1 in [68] for experimental
setup). The water was seeded with polyamide particles to reflect the laser light and the
airfoil was towed such that Re = 1.2·103. Once the original velocity field was calculated from
the PIV data, the data were enhanced by interpolating at points with a weighting distance
of 1/r2. The vorticity was calculated from a central difference scheme from this interpolated
data. These contours lines with labels showing the magnitude of the vorticity are shown
in Fig. 3.12. This data is superimposed with the filled contour data from the midspan of
the 3D ILES simulations at Re = 5.3 · 103. The results show remarkably good agreement
for the spatial and temporal evolution of the vortical structures despite the different flow
parameters (Re = 1.2 · 103 versus Re = 5.3 · 103). From this comparison, we can conclude
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Figure 3.11: a) Streamline sketches of ‘Regime C’ defined in [68] compared with b) time-
evolution of vorticity for ILES simulation at α = 10◦ and Re = 5.3 · 103.

that at such high angles of attack the flow is relatively insensitive to small changes in Re in
this regime. As Huang describes in [68], at this large angle of attack, a starting vortex is
generated from the leading-edge (t∗ < 1.0). As this vortex rolls down the suction side of the
airfoil (1 < t∗ < 2.67), it induces a trailing-edge vortex in its stead (much like the evolution
shown in Fig. 3.11 at lower α). Eventually this leads to alternative shedding of a surface
vortex and trailing-edge vortex.

After obtaining results simulating a single static NACA0012 airfoil in 2D and 3D at
Re ≤ 50 · 103, under a range of α that matched a wide array of experimental data, we
surmised that this methodology could be applied to a straight-bladed, low-Re VAWT.

3.4 LES of a Vertical-Axis Wind Turbine

The VAWT chosen for this study was the one built and tested by Strickland and reported
in [93] as well as in [94]. Since the model VAWT was actually tested in a tow-tank, the
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Figure 3.12: Comparison of vorticity at various normalized time instances, at α = 30◦ from
interpolated PIV data (Fig. 14 from [68]) at Re = 1.2 · 103 in black contours and labels with
the 3D ILES simulations from this study at Re = 5.3 · 103 in a jet colormap.

average chord Reynolds number for turbine blades is approximately 40 · 103. A schematic of
the experimental test setup is shown in Fig. 3.13. The width of the tow tank was 5 m, so
the effect of the side walls on the turbine blades is negligible. However, the bottom of the
blades were only approximately 35 cm away from the bottom of the tank, so the proximity
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of this boundary on the blades could have a significant effect on the flow around the blades.
The physical parameters of the VAWT are shown in Table 3.1. The definitions of these
parameters are shown in Fig. 3.1 where the 2-bladed VAWT is shown in plan view. A plot
of the variation of the angle of attack as well as the chord Reynolds number for various
tip-speed ratios λ is shown in Fig. 3.2.

In [93], the authors do not explicitly report the blade offset distance c0, which is the
distance from the leading edge of the airfoil to the blade mounting point, along the chord
line of the airfoil. However, from the discussion on pages 57 and 59 of [93] on the measurement
of the moment about the quarter-chord, we infer that c0 = c/4. From this section, we also
infer that the intended blade offset pitch angle α0, as shown in Fig. 3.1, to be 0◦. Yet, the
authors report uncertainty in the measurement of the azimuthal angle on the order of 1◦.
The determination of the actual α0 used in the experiments is discussed in Sec. 3.4.3. The
authors also do not report the temperature of the fluid T when performing the experiments,
which we explore in further detail in Sec. 3.4.4. In the tow tank experiments, the forces
were averaged over a particular time step, which corresponded to a change of azimuthal
angle θ ≈ 15◦. Thus, maximum errors for the azimuthal angle could be ±15◦. In [94], when
the authors compared their experimental data to the results from their vortex code, they
also encountered a phase shift between the numerical and experimental data, especially for
λ = 7.5 (see Fig. 17 in [94]). In the present study, we found that if we shifted θ of the
experimental results by -15◦ only for λ of 2.5 and 7.5 then we found the best agreement
with our numerical results. All of the following plots include this offset in the azimuthal
angle for λ of 2.5, 7.5. Unless otherwise noted, the data from the ILES simulations are the
averages over all of the passes of the simulations (usually 2 passes for the 3D simulations
and 3-4 passes for the 2D simulations) for Blades 1 and 2 at each of the azimuthal positions.
Considering the turbine is started impulsively at t∗ = 0, the results from the first rotation
are discarded since the simulation has not yet reached a near-periodic solution.

Parameter Value Unit

c 9.14 cm

R 0.61 m

ω1 1.56 rad/s

H 0.85 m

α0 -2 deg

c0 0.25c m

Table 3.1: Geometry and turbine parameters for the VAWT simulated in this study.

In the following sections the sectional tangential force coefficient, CT is displayed as a
function of azimuthal angle θ as defined in 3.1. The sectional tangential force coefficient on
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Figure 3.13: Schematic of tow tank experiment of low Re VAWT performed by Strickland
in [93] and [94].

the jth blade is usually defined as,

CTj =
FTj

1/2ρaU2
∞c

(3.7)

where FTj is the sectional tangential force on the jth blade. In the 3D simulations, CTj is the
average tangential force coefficient over the entire section of the blade so it is normalized by
the spanwise length of the blade (0.65c). For a straight-bladed VAWT, the power coefficient
is a function of the sum over the number of blades Nb of the averages of CTj over one
revolution, C̄Tj and other parameters, such that

CP =

Nb∑
j

ω1

2π

∫ 2π

0
FTj(θ)Rdθ

1/2ρaU3
∞2R

= Nb
λC̄T

2

c

R
(3.8)

where C̄T is representative of the average tangential force of all blades.
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3.4.1 Deforming Computational Domain

The method described in Sec. 3.3.1 is extended to a spinning turbine by using an Arbitrary
Lagrangian Eulerian (ALE) formulation. With this methodology, we define a fixed, ‘refer-
ence’ domain as well as a moving ‘physical’ domain and use a smooth mapping to transform
between the two domains. In our case, we can simply use a rotating framework to model
the spinning turbine. Thus, we are performing decoupled Fluid-Structure Interaction (FSI)
simulations, since we prescribe the motion of the physical bodies (in this case, airfoils) and
then measure the fluid properties around them, much like in the forced motion of the exper-
iments described in [94]. In future work, we can implement a coupled FSI simulation where
the displacement of the airfoils at each time step depends on the forces on the airfoil.

Arbitrary Lagrangian Eulerian Formulation

For the turbine simulations, we account for the moving and deforming domains by the Ar-
bitrary Lagrangian-Eulerian (ALE) formulation proposed in [95]. It is accurate to arbitrary
orders in both space and time. The so-called Geometric Conservation Law (GCL) is satisfied
using an additional equation that is used to compensate for numerical integration errors. We
analytically compute the deformation gradient and the grid velocity and formulate the ALE
equations directly in the reference domain. For details on this procedure, see [95].

Computational Domain

The computational domain for the VAWT is shown in Fig. 3.14. We use a boundary layer
similar to the one in the static simulations, and we use a finer-mesh resolution in the near
wake of the airfoils. The 3-D mesh is again generated by extruding the 2-D mesh, with a
span of 0.65 chord lengths. The resulting size of the 2-D mesh is 11,630 elements, or 116,300
high-order nodes and about 350,000 degrees of freedom. The size of the 3-D mesh is 139,560
elements, or about 2.8 million high-order nodes and about 11 million degrees of freedom.
The time step chosen for this study is ∆t∗ = 5 · 103.

3.4.2 Comparison of 2D and 3D ILES

Most of the parameterization study for the ILES simulations were performed in 2D due to
the high computational cost of the 3D simulations. In this section, however, we show that the
3D simulations generally follow their 2D counterparts, especially for high TSR. In Fig. 3.15,
the 2D and 3D simulations are compared for α0 = −2◦ and λ = 5.0. Generally, the results
of the 2D simulations exhibit the same behavior as the results from 3D cases, albeit with
some higher frequency harmonics. In Fig. 3.16, the results from the 2D and 3D simulations
for λ = 2.5, T = 25◦C are shown for different α0. Here, there are discrepancies between
the 2D and 3D simulations, especially for 0◦ ≤ θ ≤ 45◦ Thus, we can safely infer that the
dominant features that appear in the upwind and downwind zones in the 2D simulations will
also appear in the 3D simulations. However, for low TSR, when α is in a post-stall region,
the 2D simulations will generally not closely follow their 3D counterparts.
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(a) 2D Mesh (b) 3D Mesh

Figure 3.14: The two high-order computational meshes used for 2D and the 3D simulations
of the VAWT considered in this study.

3.4.3 Parameterization Study: Pitch Angle Offset

In order to recreate the experiments performed in [94], parameterization studies were per-
formed for the experimental parameters that were not reported or reported with a certain
degree of uncertainty. The authors report that discrepancies in the experimental data, ”may
be due to misalignment errors in the blade mounting... on the order of 1◦ in the blade angle
of attack”. In order to determine the pitch angle offset of the experimental turbine, relatively
low-cost 2D ILES simulations were performed for −5◦ ≤ α0 ≤ +5◦, in increments of 1◦ for
λ = 5.0 and T = 20◦C. As mentioned previously, the mounting point of the airfoil was taken
to be a distance of c/4 from the leading edge. The blades were then rotated about this point
by an angle of α0. In these simulations, we found that any toe-in angle (α0 > 0◦) of the
airfoil decreased the efficiency of the turbine and led to a high variability in blade forces.
Thus, in Fig. 3.17, we only show the tangential force coefficient of the VAWT as a function
of the azimuthal angle for α0 ≤ 0◦ to improve readability. From Fig. 3.17, it is clear that
α0 = −3◦, denoted by ‘+’ markers, has the largest maximum value of any of the simulations.
However, α0 = −2◦, shown with open squares, has the largest power coefficient of the sim-
ulations (Cp = 0.27). This finding follows the trend observed by Klimas and colleagues for
their 5 m experimental VAWT [96]. In these experimental tests, which were performed at
various λ for a Darrieus turbine with curved blades, the overall maximum power coefficient
was achieved for α0 = −2◦, (Cp = 0.32). Further, this pitch angle offset had the largest
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Figure 3.15: Tangential force coefficient of a VAWT blade as a function of azimuthal position
for simulations in 2D and 3D α0 = −2◦ at λ = 5.0 for various temperatures.
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Figure 3.16: Tangential force coefficient of a VAWT blade as a function of azimuthal position
for simulations in 2D and 3D α0 = 0,−2◦ at λ = 2.5.
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Figure 3.17: Tangential force coefficient of a VAWT blade as a function of azimuthal position
for various α0 at T = 20◦C, λ = 5.0.

Cp for 3.5 ≤ λ ≤ 6.0. Although the parameterization study for the pitch angle offset was
only performed in 2D, it is encouraging that the results follow the trend found by previous
experimental studies.

3.4.4 Parameterization Study: Temperature of Fluid

After analyzing the ILES simulations of the single NACA airfoil, it became clear that the
dynamic fluid structures around the airfoil at high angle of attack were sensitive to the local
Re number of the airfoil. Further, the experiments were undertaken at a tow tank at Texas
Tech University in Lubbock, Texas, where the temperature of the fluid could realistically
vary by 5-10◦ depending on the building, insulation, season, etc. We varied the temperature
on the order of 5◦C, to slightly change the Re of the flow and examined the numerical
results. Though the simulations matched most closely for higher Re (corresponding to higher
temperatures), we only thought it was reasonable to assume water temperature of at most
T = 25◦C. The data for the kinematic viscosity of water as function of the temperature was
found in [97]. Figure 3.15 shows the tangential force coefficient as a function of azimuthal
angle at λ = 5.0 and α0 = −2◦ for various fluid temperatures (20, 25, 30◦C). Clearly, there
is not a large change in the trend of the force as the temperature changes by 5◦ or 10◦.
However, for these small temperature changes, we were not expecting such a large change in
the turbine power coefficient, Cp. Figure 3.15 shows that a 5◦ increase in the temperature,
which corresponds to a 10% increase in the Re number (due to the change in the kinematic
viscosity of water), yields a 5% increase in power production. However, this increase is within
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the margin of variation of the torque variation from various passes of the turbine of blade.
The 2D results, also plotted in Fig. 3.15, show a similar trend but to even a higher degree.

For a wind turbine exposed to environmental conditions the temperature of the fluid can-
not be modified. However, this analysis shows that it is critical for researchers to report the
temperature of the working fluid in controlled model tests (especially if they are performed
in water) so that the conditions can be recreated in such numerical simulations.

3.4.5 Validation for a Single Turbine

Besides simulating the VAWT with ILES methods, two analytical codes were used to esti-
mate the aerodynamic torque on the blades for comparison. A blade-element methodology
called the Double Multiple Streamtube Method described in [3] was used along with a dy-
namic stall model of Berg [98]. This formulation uses a momentum method to model the
streamwise wake deficit both in the ‘upwind zone’ and ‘downwind zone’ of the rotor (see
Fig. 3.1 for depiction of zones) by iteratively solving for an induction factor. Once this
factor is known in the upwind zone for all azimuthal angles, the force on the blades in the
downwind zone can be determined. Also, a vortex method developed at Sandia National
Laboratories called Code for Axial and Cross-flow TUrbine Simulation (CACTUS) [2] was
used to simulate the aerodynamic torque. As of 2013, this numerical method was made
available to public as an open-source software. In this model, the data from the twentieth
revolution of the turbine was used in order to allow the code to reach a steady-state solu-
tion. After corresponding with the authors of the code, the number of blade elements was
increased to 10, which slightly improved the accuracy of the code. The sectional lift and
drag coefficients for both of the codes came from the experimental data of [70] and [72]. For
these codes, the angle of attack was calculated at the mid-chord, as recommended in [94].

The experimental data of the tangential force coefficient shown as triangles in Figs. 3.18,
3.19 and 3.20 was taken as a blade swept over the first half of its fourth revolution (the
only tabular data provided in [94]). Due to the computational intensity of the ILES, the
data from the ILES 2D and 3D simulations were taken from the forces on ‘Blade 2’ as it
made its first pass from −90◦ ≤ θ ≤ 270◦ after starting from θ(t = 0) = −270◦. However,
subsequent revolutions exhibited similar behavior, which was in agreement with the experi-
mental data. The data from CACTUS was taken at 32 instances on the twentieth revolution
of the simulation. The DMST only estimates the torque on the blades as an average for a
single revolution (no unsteady effects) but the resolution can be increased by increasing the
number of streamtubes.

Figures 3.18, 3.19 and 3.20 show that the ILES simulation can approximate the ex-
perimental data very well at high TSR, especially in the downwind section. At λ=2.5, the
CACTUS model utilizing the Leishman-Beddos dynamic stall model (described in [99]) recre-
ates the experimental data the best. However, at higher TSR the accuracy of the analytical
models drops drastically resulting in highly inaccurate predictions for the power coefficients.
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Figure 3.18: Tangential force coefficient of a VAWT blade from ILES simulation as a function
of azimuthal position for λ=2.5, compared with vortex code ‘CACTUS’ [2] and BEM model,
‘DMST’ described in [3].

3.4.6 Flow Visualization

Iso-surfaces of the q-criterion are frequently used to visualize the unsteady 3D flow structures
in the fluid domain. The q-criterion physically represents areas where rotation dominates
the strain of the flow. In the core of a columnar vortex, q > 0 since vorticity increases as the
radial distance to the core decreases [75]. In Fig. 3.21, iso-surfaces of the q-criterion, where
q = 100, are shown in 3D for various azimuthal angles of Blade 1 when λ = 2.5. As shown
in the top row of Fig. 3.21, the azimuthal angle θ is 0◦ and columnar vortices are present in
the downwind zone of the turbine. These vortices were shed in the wake of Blade 2 from its
previous pass and then convected downstream due to the incident wind. The image to the
right is a more detailed depiction of the iso-surfaces formed around Blade 1. At this instant
in time, the angle of attack α is greater than 20◦, excluding dynamic effects (see Fig. 3.2).
Clearly, there are instantaneous vortical structures forming on the suction side of the airfoil.
At θ = 60◦ these disturbances have formed into a more coherent structure, labeled ‘Vortex
A’. The location of Vortex A moves from the upwind zone into the downwind zone due to
the influence of the incident wind throughout the time instances in Fig. 3.21. As the vortex
continues to be convected downstream, the vortex core coalesces, while the other vortical
structures on the periphery are dissipated. Interestingly, the vortex cores are convected too
slowly to directly interfere with the flow field around Blade 1 when 120◦ ≤ θ ≤ 180◦.
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Figure 3.19: Tangential force coefficient of a VAWT blade on a straight-bladed turbine from
ILES simulation as a function of azimuthal position for λ=5.0, compared with vortex code
‘CACTUS’ [2] and BEM model, ‘DMST’ described in [3].

3.5 LES of Counter-Rotating Vertical-Axis Wind

Turbines

The ILES method described in Secs. 3.3 and 3.4 was extended to capture the complex
aerodynamics of two, closely-spaced, counter-rotating vertical-axis wind turbines. A novel
technique had to be developed for this application since the domain includes moving inter-
faces. That is, there are three domains that must be spliced together using complex moving
meshing techniques: the outer static boundary that includes the area around and in between
the spinning turbines (labeled region (III) in Fig. 3.22); two, rotating domains that include
the spinning turbines, each spinning the opposite direction as the other (labeled regions (I)
and (II), respectively). The dashed lines in Fig. 3.22 signify the interfaces that must be dealt
with specially. The turbine-to-turbine spacing is denoted by D̄, which is nondimensionalized
by the VAWT diameter.

3.5.1 Computational Domain and Element Flipping Technique

A novel technique for element flipping on high-order domains was developed by L. Wang as
part of a collaboration on this research. His technique is described in greater detail in [100].
For now, we introduce some of the basic concepts to get an idea for how the technique works.
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Figure 3.20: Tangential force coefficient of a VAWT blade from ILES simulation as a function
of azimuthal position for λ=7.5, compared with vortex code ‘CACTUS’ [2] and BEM model,
‘DMST’ described in [3].

Element Flipping Technique

Figure 3.23 shows the computational domain for the LES simulations of the counter-rotating
vertical-axis wind turbines. We use the same turbine as in Sec. 3.4 to ensure that the results
are consistent under various simulation techniques. For instance, if we freeze one of the
turbines and rotate the other, we generally recover the results found in Sec. 3.4. There is a
higher density of elements in between the two turbines, since we are interested in the fluid
behavior between the turbines. The yellow box is shown in greater detail in three figures,
each at a different time step in the simulation. The figures show how the orientation of the
band of elements that represent the ‘sliding interface’ between the rotating meshes and the
static mesh, shaded in red in Fig. 3.23, can vary depending on the time step. In order to
determine when an element should be flipped, the algorithm approximates the quality of
each element at each time step. For all elements under a certain threshold, the algorithm
performs an element flipping operation between elements that share an edge, as shown in
Fig. 3.24.

This topological change requires a projection of the solution from the polynomials on
the old elements, to polynomials on the new element. However, the old and new elements
can be partitioned such that the solution can be projected without introducing errors that
sacrifice the order of the solution. For more detail, the reader is referred to the L. Wang’s
thesis [100].
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Figure 3.21: Iso-surfaces of the q-criterion for q = 100 at various azimuthal angles of Blade
1 at λ = 2.5. Images on right are magnified views of Blade 1. The time evolution of ‘Vortex
A’ is discussed in the text. The isosurfaces are colored according to the magnitude of the
velocity, as indicated by the colorbar at the bottom of the figure.
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Figure 3.22: Plan view of counter-rotating, two-bladed vertical-axis wind turbines with non-
dimensional spacing D̄, static offset azimuthal angle θ̄1 and incident wind direction β1.

3.5.2 Parameter Study: Distance Between Turbines

In the following section we define an average power coefficient for the turbine pair as

C∗p =
C

(1)
p + C

(2)
p

2C̄p
(3.9)

where C̄p is the average power coefficient of an isolated turbine. To calculate this baseline
value, we freeze one of the turbines, such that θ̇2 = 0 and ran the same simulations. Varying
which turbine was frozen and the incident wind direction resulted in less than 5% variation
of the power coefficient of the isolated turbine.

In order to study the synergistic effect between the counter-rotating turbines, the distance
between the centers of rotation of the turbines was varied to determine the optimal distance
between the turbines. The results from these simulations for various incident wind directions
β1 are shown in the polar plot in Fig. 3.25. These plots were created to mimic the polar plot
created by J. O. Dabiri in Figure 4a in [4] from data taken from his experimental wind farm,
which is reproduced in Fig. 3.26. It must be stated that the computational domain studied
here is not equivalent to the experimental study performed in [4]. The turbines in [4] were
purchased from Windspire EnergyTM, with a proprietary airfoil shape. Furthermore, the Re
number used in the computational study is orders of magnitude lower than the experimental
conditions. Thus, a direct comparison of the results presented in the section and the results
in [4] is not possible from the current study.

The circumferential direction represents the direction the incident wind originates from.
The radial direction represents the normalized power coefficient C∗p . For β1 = 90◦, 270◦,
C∗p < 0 due to the shadowing effect from the upwind turbine, which can be seen in Sec. 3.5.4.
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Computational domain used for counter-rotating simulations.

Figure 3.23: Unstructured mesh for counter-rotating VAWTs. The region where all the edge
flipping operations occur is colored in red. The area outlined by the yellow box is shown
in greater detail in the three figures below at various time steps in order to show the mesh
motion. (All figures courtesy of L. Wang [100].)

This effect was not seen in the experimental study reported in [4], who even saw a slight
jump in the efficiency around β1 = 105◦ (which is 195◦ in their figure since their orientation
of β1 is offset by 90◦). The figure from the experimental data in [4] is reproduced in Fig. 3.26
for comparison.

The differences between the reported effects of counter-rotating turbines at close distance
studied using an experimental wind farm, reported in [4], and the present results, shown in
Fig. 3.25, deserve further discussion. There are many reasons that may explain these dis-
crepancies. Namely, the turbine simulated is a two-bladed turbine with NACA0012 airfoils,
while the WindspireTMrotor, used in [4] is a three-bladed rotor with a proprietary airfoil
shape. Furthermore, the simulation is only in 2D and does not take into account vertical
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Figure 3.24: Element flipping technique showing local topology change between two trian-
gular elements. (Courtesy of L. Wang [100].)
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Figure 3.25: Normalized power coefficient C∗p of 2D simulations of counter-rotating turbines
as a function of wind-speed direction and turbine spacing D̄.

momentum fluxes, which may be where the additional kinetic energy flux originates from, as
reported in [101]. Since the simulations occur in 2D, we neither take into account the vertical
variation of the incident wind field nor any turbulence. In fact, the simulation of a real wind
field is quite an open question in the computational fluid dynamics community. Finally, the
results shown in Fig. 3.25 are shown for λ = 5.0, which is larger than the tip-speed ratios
reported for the experimental turbines. For all of these reasons, we may see discrepancies
between the data shown here and previously published work.

Independent of this work, a discrete vortex-code was written for the study of vertical-axis
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Figure 3.26: Normalized power coefficient C∗p of experimental counter-rotating turbines as a
function of wind-speed direction for D̄ = 1.6 (Adapted from [4]).

wind turbines [102] as an M.S. thesis. Using the method of images, Leclercq was able to
extend this vortex method to study three-bladed counter-rotating turbines, with the wind
originating from the ‘North’ as shown in Fig. 3.25. He noted a 13% in the total power
production at a best separation-to-distance ratio D̄ of 2.0. To our knowledge, this is one of
the few lower fidelity studies of counter-rotating turbines that somewhat substantiate these
computational results.

We use the vocabulary developed for counter-rotating cylinders studied in [103], such
that when the wind comes from the ‘North’ (β1 = 0◦) the configuration is ‘doublet-like’,
while when the wind comes from the ‘South’ (β1 = 180◦), it is ‘reverse doublet-like’. From
Fig. 3.25, it is clear that the turbines are most efficient in the ‘doublet-like’ configuration,
gaining nearly 30% total power from their isolated counterparts. This synergistic effect is
almost as large in the ‘reverse doublet-like’ configuration.

3.5.3 Parameter Study: Turbine Angular Offset

In Chapter 4, the MIST platform is described, which uses a timing belt to force the turbines
to counter-rotate at the same speed, in order to control the platform orientation. Thus, the
angular offset of the turbines, denoted as θ̄1 and portrayed in Fig. 3.22, is fixed for a given
platform configuration. Figure 3.27 shows the variation of the average power coefficient when
the angular offset of the turbines is changed to 30◦ and 90◦. The plot shows that the power
coefficient is fairly insensitive to this variation.
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Figure 3.27: Normalized power coefficient of 2D simulations of counter-rotating wind turbines
as a function of wind direction and turbine offset angle θ̄1.

3.5.4 Flow Visualization

To further explore the results, we can visualize the fluid velocity at certain time instants
u = [u, v ]. Figure 3.28 shows time instances of the domain with the color representing the
magnitude of the fluid velocity in the direction of the incident wind speed.

u∗(x, t) =
u(x, t) · β1

|U∞|
(3.10)

Clearly, in the ‘doublet-like’ configuration, the flow is accelerated between the turbines by
over 50%. However, when β1 is orthogonal to the orientation of the platforms, the upstream
turbine retards the incident flow to such a degree that the power produced by the downstream
turbine is actually negative, which means that the turbine needs power to spin. Hence, the
polar plots in Figs. 3.25 and 3.27 show negative total power produced by the turbine pair.
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(a) D̄=1.2, β1 = 0◦, θ̄1 = 0◦

(b) D̄=1.5, β1 = 90◦, θ̄1 = 0◦

1.0
u*

0.70.4 1.3 1.6

Figure 3.28: Snapshots of the normalized fluid speed, u∗ in the direction of the incident wind
with α0 = −2◦, λ = 5.0.
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Chapter 4

Hybrid Testing of MIST Platform in Model Scale

The Multiple Integrated and Synchronized Turbines (MIST) Platform is a technology that
has potential to reduce the cost of offshore wind by using unconventional turbines on a
floating platform. Conventional turbines, also known as Horizontal-Axis Wind Turbines
(HAWTs), must be spaced far apart so that the wakes of the turbines do not interfere with
each other. Typically, the turbines are placed around 5 turbine diameters away from each
other in the cross-stream direction and at least 7 turbine diameters away in the down-stream
direction [104]. Most offshore turbines have diameters of at least 100m. This spacing makes
placing more than one HAWT on a platform prohibitively expensive because of size of the
platform. Still, some companies are trying to develop these types of platforms because
of the inherent cost-savings per turbine, from shared moorings, electrical connections and
other sources. Recent research on unconventional turbines, also known as Vertical-Axis
Wind Turbines (VAWTs), shows that the aforementioned spacing requirement need not
apply to these types of turbines. In fact, there may even be a synergistic effect between
the counter-rotating VAWTs (see Sec. 3.5). For these reasons, the MIST platform was
designed to support two, counter-rotating VAWTs to optimize the power extracted from the
wind. In Sec. 4.1, we detail how the turbines are connected to the platform and each other.
In Sec. 4.2, we discuss the construction of the platform and all materials that were used.
Section 4.3 introduces the simulation technique, known as hybrid simulation, or hardware-
in-the-loop simulation, that was implemented to prove the concept experimentally. The
technique requires a network of interconnected sensors and actuators that can estimate
the state of the model and respond appropriately. Using these sensors, we implemented a
control algorithm that can optimize the power produced from the combined turbine system
by controlling the relative incident wind heading on the platform, as discussed in Sec. 4.4.
Section 4.5 describes the onboard communication systems that enable the control system
to operate robustly. Finally, experimental results are shown in Sec. 4.6, which illustrate a
successful reorientation of the platform.

4.1 Description of MIST Platform

The main components of the technology are the floating platform itself, the counter-rotating
turbines, a connecting mechanism and electrical generators housed within the platform, all
of which are shown in Fig. 4.1. Not depicted in the rendering is the mooring system with a
universal joint which was described in Sec. 2.5.4 and shown in Fig. 2.5.

The MIST platform is designed very similarly to the WindFloat floating platform that
supports a single HAWT [105]. This platform is a semi-submersible with three columns in
order to increase the hydrostatic stability of the platform. Unlike the WindFloat, however,
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the platform is shaped is like an isosceles triangle, instead of an equilateral triangle. We
postulated that the length of the side between the turbines had to be a certain distance
apart (depending on the radius of the VAWT), but that the other lengths could be shorter
to save on material costs. The merits of the design choice are discussed in Sec. 6. Like
the WindFloat, the platform has diagonal trusses to increase the stiffness of the platform in
torsion and heave plates to suppress the heave and pitch motions of the platform. Unlike
the MIST platform, however, the WindFloat uses an active ballast system to move weight
(in the form of ballast water) around the platform in order to keep the platform at even keel
when the wind direction and thrust force from the turbine changes direction. As described
in Sec. 2.5.4 the MIST platform is implemented with a Single Point Mooring (SPM) system
in order to allow free yaw motion so that the proper yaw orientation can be obtained.

The wind turbines depicted in Fig. 4.1 are known as straight-bladed Darrieus (or H-type)
VAWT. The blades on the red turbine are oriented such that it will spin clockwise, while
they are reversed on the green turbine so that it will spin counter-clockwise, as shown in
Fig. 4.2. The main advantage of straight blades are the ease of manufacturing and simplicity
of design. Recently, the rise of computer-aided manufacturing has led to an increase in the
complexity and size of HAWT blades. The straight-bladed VAWTs have horizontal struts
in order to support the weight of the blades. The design of these struts is critical because
they can decrease the efficiency of the turbine when the blades are in the downwind section.
Other designs attach the blades to the central column in different ways and may use guy
wires to support the column.

The ‘connecting mechanism’ mechanically connects the turbines so that they are forced
to rotate in equal and opposite directions. That is, the angular displacement of one turbine
is equal and opposite the displacement of the other. This feature is achieved through the use
of gears, pulleys and a timing belt. Essentially, the turbines are both connected to the main
timing belt. A timing belt is simply a chain or elastic band (like in many automotive drive
trains) that connect a driving element to its driven counterpart. Here, however, one turbine
is connected to this timing belt through a gear system, while the other is connected through
a simple pulley system. Depending on the instantaneous aerodynamic torque one turbine
may be ‘driven’ while the other is ‘driving’ or vice-versa. Since the single gear pair reverses
the direction of rotation, the turbines rotate opposite to each other. Many other ideas were
considered for connecting the turbines in such a way, but we believe this method is a simple,
reliable way. The belts and gears increase the frictional force between the turbines and
platform, which reduces the power available in the generators. The generators are also shown
in Fig. 4.1 and are connected to the turbines through gearboxes. The planetary gearboxes
used in the experimental model were used to increase the rotational speed of the shafts
so that the generators could operate near their optimal efficiency. In the prototype-scale
platform, the gearboxes may not be necessary and instead, a ‘direct-drive’ power generation
system may be possible. In Chapter 5, we show how the choice of gear ratio has a huge
impact on the control of the platform orientation.

The mooring system for this platform is relatively simple: three wire ropes connect each
column of the platform to a universal joint. The universal joint allows the platform to rotate
without effecting the main anchor line. For the prototype-scale platform, where electrical
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Figure 4.1: Computer-aided drawing of MIST platform, with details of the connecting mech-
anism shown in greater detail in the inset figures.
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Figure 4.2: Computer-aided drawing of MIST platform, in plan view with the incident wind,
turbine rotation speed and platform orientation.

power will be exported, the electrical umbilical will also need to be connected to the platform
in such a way that can allow free rotation of the platform, probably through the use of slip
rings. However, these types of connections are quite common now, especially in the turret
systems of FPSOs, which can rotate in order to position themselves above the drilling well
or to prevent large loads on the structure. The turret system can be designed for the harsh,
offshore environment since all bearings and electrical connections can be housed above the
sea level in watertight compartments.

The goals of the testing were as follows:

1. Under various relative wave-heading and wave-amplitude conditions, demonstrate that
the yaw orientation of the platform can be controlled simply by changing the power
absorbed in the generators.

2. Demonstrate that hybrid testing can be used to simulate the periodicity and magnitude
of the aerodynamic torque on a vertical-axis wind turbine.

3. Determine the effect of the vertical center of gravity of the turbines on the platform
motion.

The achievement of these goals is discussed in Sec. 4.6. Sections 4.2-4.5 are dedicated to
describing the components of the model platform.
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4.2 Physical Model

A physical model of the MIST platform was built in order to test the hypothesis that simply
by modifying the parameters of the electrical generators, we can control the platform orien-
tation as well as the turbine rotation rate to maximize the power absorbed by the turbines.
In order to prove this concept, the control system needs to perform adequately in a variety
of realistic environmental conditions, such as different sea states and wind conditions. In
this section, we describe the physical model that was built and tested at λm = 1/82.3 so that
other researchers can use the lessons learned from this testing campaign when designing their
own experimental tests. Though clearly not exhaustive, we seek to highlight the interesting
products used in this study to help future researchers with their own applications by using
bullet points for quick reference.

It should be noted that a lot of the decisions regarding the manufacturer, model and
material choices were made with cost and turnaround time as the main priorities. Thus,
many parts were machined with the help of undergraduate researchers (namely, S. Paiva).
The decisions made herein can be debated, but the total cost of the platform and all related
components was around $3,000. For more details on the cost of the wind-input generators,
see [1].

The main components of the MIST platform that was constructed for this study are
shown and labeled accordingly in Fig. 4.3.

The components in Fig. 4.3 are:

1. Heave plates to reduce heave, pitch and roll motions

2. LiPo Batteries to power microprocessors, sensors and wireless modules

3. Microprocessor to control generators and send signals to and from other microproces-
sors

4. MIST Platform

5. Generator circuits including LEDs to indicate power production of generators

6. Generators with planetary gearbox (located inside columns 1 and 2)

7. Wind Input Generators (acting as Vertical-Axis Wind Turbines)

8. Motor/Propeller units to actuate the ‘turbines’

The particulars of the full-scale platform are shown in Table 4.1. Clearly the column-to-
column distance is much larger than the current semi-submersible platforms considered for
single HAWTs. For instance, the newest generation of the WindFloat platform that can
support at least a 6 MW turbine has a column spacing of around 50m1. However, the
column spacing on the MIST platform is largely driven by the minimum VAWT turbine

1Personal communication with Dr. D. Roddier
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Figure 4.3: Main components of hybrid testing MIST platform, at 1:82.3 scale, labeled by
number, in the UC Berkeley Physical-Model Testing Facility.

spacing that will still produce a large synergistic effect. In [4] the turbine spacing D/2R is
1.6. We showed in the CFD simulations in Chapter 3, however, that this spacing can be
reduced without reducing the synergistic effect of the turbines. The distance may be able
to reduced down to 1.2, though experimental data would be needed to verify this claim.
Perhaps the planform area of the platform could be drastically reduced, especially using
connected turbines that are overlapping, (much like a Chinook tandem rotor helicopter, see
discussion in Chapter 6 and Fig. 6.1).

The particulars of the full-scale turbine considered in this study are shown in Table 4.2.
The centers of gravity and draft are defined relative to the final waterline position (after
pretension of the mooring lines), and the mass moments of inertia Ij are defined relative to
the axis of rotation of the body. The mass properties of the turbine tower were informed
by the 5 MW NREL offshore HAWT turbine described in [106]. The yaw mass moment of
inertia of the platform includes the effect of the mass of the drivetrain system. Most of the
values for this 5 MW rotor are within 10-20% of the 5MW conceptual VAWT designed in
[107], except for the rotor inertia (about 50% too low). However, the inertia in the drivetrain
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Parameter Value Unit

λm 1/82.3 -

2a 11.5 m

R12 111.5 m

R23, R13 89.2 (0.8 ·R12) m

h 123 m

h− d 30 m

COGz -13.5 m

Ib 34.7 t-km2

mb 12.9E3 t

Table 4.1: Geometry and particulars of
the full-scale platform (including embed-
ded drivetrain system and ballast) con-
sidered in this study. See Figures 2.4 and
2.11 for definitions of geometric variables.

Parameter Value Unit

c 6.0 m

R 42.9 m

D̄ 1.3 -

λ 3.5-5.0 -

Nb 2 -

H 146 m

mvawt 1.08E3 t

COGz 74.6 m

Ir 0.46 t-km2

Urated 11.4 m/s

Cp 0.36 -

Prated 5.0 MW

Table 4.2: Geometry of the full-scale
VAWT considered in this study. See Fig-
ures 3.1, 3.22, and 1.2 for definitions of ge-
ometric variables for counter-rotating tur-
bines.

was not taken into account (planetary gearboxes, spur gears, etc), which drastically increases
the inertia of the spinning turbines.

4.2.1 Construction of Platform

The platform was constructed of PVC and clear acrylic pipe:

• Acrylic pipe: 5.5” OD, 1/4” thickness, (McMaster-Carr)

• PVC Pipe: Schedule 40, Sizes 2 and 3, (McMaster-Carr)

• PVC Plate, 3x 12”x12”x1/2”, (McMaster-Carr)

The clear acrylic pipe was chosen so that the drivetrain inside the sealed platform could be
monitored and troubleshooted if necessary. The 5.5” acrylic pipe was machined into 3 equal
sections of length 20”. The Schedule 40 PVC pipes formed the trusses of the platform. The
bottom horizontal members were of size pipe 3 (2-3/8” OD). The rest of the trusses were size
pipe 2 (1-2/3” OD), except for the horizontal member housing the timing belt, which was
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size pipe 3. The ends of the trusses were cut using a circle saw whose diameter was equivalent
to the mating PVC pipe diameter. Due to the brittle nature of PVC, the diagonal trusses
were the most difficult to form. Nearly 6 attempts to machine the trusses on a mill resulted
in fractured or chipped pipes that were discarded. The heave plates were 1/2” PVC plates
cut in an octagonal shape with diagonal connecting rods of 3/8”. All joints were chemically
welded together with JB-Weld (an epoxy that chemically bonds the mating materials), and
were allowed to set for over 24 hours before sealing and painting. The joints were then sealed
with 3M Marine Sealant and then painted with a marine paint. The chemical weld and the
sealant worked extremely well and no leaks were ever detected for the 4 months the platform
was in the water.

4.2.2 Mooring System

A schematic of the mooring system is shown in Fig. 2.5. The most critical portion of
the mooring system is the universal joint that allows the platform to spin freely. This
joint consists of two shackles that spin independently. A stainless steel universal joint was
purchased from a local marine supply store. Wire rope was used to attach each heave plate
to the universal joint. The wire rope was bent around a thimble and clamped down with
wire rope clips as suggested in Ref. [108]. The other components of the mooring system are
listed below.

• Wire Rope: 7x7 strand core, 1/8” diameter (McMaster-Carr)

• Wire Rope Clip: Type 304 stainless steel for 1/8” rope diameter (McMaster-Carr)

• Wire Rope Thimble: Type 304 stainless steel for 1/8” rope diameter (McMaster-Carr)

• Rope Pulley: Stainless steel (Local marine supply shop)

• Universal joint: Stainless steel (Local marine supply shop)

• Polypropylene rope: 3/8” thick (Home Depot)

4.2.3 Drivetrain and Generators

The drivetrain consists of a nearly identical pair of generators and gearboxes connected by
a timing belt and is shown in the bottom of Fig. 4.1. On the left column the generator
and gearbox are connected to the main timing belt through a gear pair, while on the left
column it is through a secondary timing belt. In this way, the generators and the turbines
are forced to rotate in opposite directions, while keeping the setup of the system relatively
symmetric. Thus, even if the turbines have an asymmetric applied torque, both turbines and
generators will spin at the same speed. After much consideration, a high-quality brush DC
Motor from Portescap was chosen to act as a generator. Communicating with engineers at
this company confirmed that it was suitable for power generation (< 5W). Furthermore, it
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Figure 4.4: Pictures of generator and planetary gearbox that was used for drivetrain system.

was readily available from the supplier DigiKey2 for a reasonable price. However, a gearbox
was purchased separately in order to step up the speed of the motor/generator closer to
its optimal operating conditions. A custom built adapter (machined from PVC) shown in
Fig. 4.4 was used to link the motor and the gearbox. It was evident that the gearbox was
extremely more efficient when used on its side (as shown in Fig. 4.4) than upright (as oriented
once inside the column). Gravity caused the stages to bump against the bottom of the frame,
resulting in increased friction. We attempted to change the length of the adapter to reduce
the friction, but it was not successful. In retrospect, it may have been better to go with
the motor/gearboxes we were considering at first from Maxon Motors3. After placing the
order, the company installs the gearbox directly on to the motor at the factory. In the end,
we did not go with this option due to cost and turnaround time (delivery approximately
2 months after the initial order). Other options were pursued in the initial design phase
including slip-clutches and magnetic particle brakes from Stock-Drive Products4. However,
we decided a visual cue of the damping provided by the dampers was important and also
allowed for more realistic simulation. Furthermore these types of control strategies have
been proposed for parking VAWTs [109]. Pictures of the actual generator and gearbox used
are shown in Fig. 4.4. The components of this sub-assembly are:

• Athlonix Portescap Motor, 6V, 0.64V/1000 rpm, 16N78212P1001

• VEX Robotics VersaPlanetary Gearbox, 2x1:10 stages

2www.digikey.com
3www.maxonmotorusa.com
4www.sdp-si.com
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The 1:100 gearbox was chosen since the target rotational speed of the turbines was around
100 rpm. Thus, the generators would produce a voltage near its nominal voltage during the
operational conditions. The sensors, including the optical encoder and current sensors will
be discussed in Sec. 4.3.1.

Dry Testing of Drivetrain

The dry testing of the frictional loss of the drivetrain system consisted of four stages, each
depicted in a different panel in Fig. 4.5. The stages of the testing were:

1. Motor-Generator Set (M → G) to determine the coil losses in the generators

2. Motor-Gearbox-Gearbox-Generator Set (M → Gb→ Gb→ G) to determine the losses
in the planetary gearboxes

3. Motor-Gearbox-Gearbox-Generator Set with a solid-state relay to determine the resis-
tive nature of the relay

4. Motor-Gearbox-Timing Belt-Gearbox-Generator Set (M → Gb → Dt → Gb → G) to
determine the frictional losses in the belts and gears.

The losses for each additional element in the drivetrain system are shown in Table 4.3. The

Source %

Pcoil 15

Pgb 10

Pdt 10

Table 4.3: Summary table of power losses in drivetrain

solid-state relay will be discussed further in Sec. 4.4.

4.3 Implementation of Hybrid Simulation Technique

The hybrid simulation technique combines experimental and computational techniques to
maximize the accuracy of the tests given the physical constraints of model testing. Histor-
ically, this technique has been used in earthquake engineering, as described in [110]. The
linear motion of the earthquake is easier to model using theory and actuators, while the
nonlinear response of the structure can be studied experimentally. At first, this type of
technique was only used in open-control scenarios where the displacements (of the ground,
for instance) were known a-priori and the response of the model was studied. More recently,
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Figure 4.5: Four stages of ‘dry testing’ for drivetrain, with downward white arrows showing
power losses.
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Figure 4.6: First two stages of drivetrain ‘dry testing’ setup.

however, these experiments have been extended to ‘real-time’ hybrid simulations where the
response of the model is (nearly) instantaneously analyzed and fed back into the actuator
controller. In the field of ocean engineering, Hall et al. [16] showed that for a floating
platform with a wind turbine, large displacements can occur on many different time scales
on account of the fluid and structural dynamics. These phenomena make it challenging for
an actuator to be flexible enough to comply with large displacements but rigid enough to
respond over short time-scales. Thus, for the hybrid simulation of the MIST platform, these
challenges are circumvented by actuating only the critical forces with respect to operation
of the platform.

In the experimental setup used for hybrid testing of the MIST platform, the physical
model is the floating platform, which is tested in a wave tank. The effect of the wind turbines
on the platform are simulated by actuators, known as Wind-Input Generators (WIGs), which
are described in further detail in Sec. 4.3.3. Thus, part of the simulation is done in the
‘physical world’, while another part of the simulation is performed computationally (either
a-priori or in real-time), as depicted in Fig. 4.7.

The goal of the hybrid simulations is to seamlessly the missing piece of the physical
model with actuators that can accurately mimic the necessary physics of the system. When
implementing this type of technique, the choice of the type of the actuator is critical so that
it can respond in the necessary amount of time (known as the latency of the system) with
adequate force without negatively altering the dynamics of the system. This challenge was
described in detail in [16], who showed that, without sacrificing accuracy, it appeared nearly
impossible to mimic the entire turbine with current technology. This strict requirement was
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Figure 4.7: Schematic of hybrid simulation testing technique for MIST platform, with ex-
perimental model in the ‘physical world’ and aerodynamic simulations performed in ‘com-
putational world’.

partly due to the fact that actuator frame has to be mounted to the earth frame while the
actuator, itself, needs to be connected to the platform. Here, however, we can mount the
actuator, which is a remote-controlled plane motor/propeller, directly to the model. When
powered, the motor applies a torque to the model, which causes the model to pitch and
roll. However, the pitch and roll moment from the incident waves is generally orders of
magnitude higher than this artificially applied moment. Thus, unlike the actuator proposed
in [16], which must be able to traverse a relatively large distance (equivalent to the global
motions of the platform in waves), but still have an extremely accurate position sensor, the
motor simply needs to respond to a control signal based on the circumferential position of
the turbine. In this way, we relax the requirements of the actuator but we restrict our hybrid
simulation to only actuating in one degree-of-freedom (DOF). The motor/propeller actuator
only applies a force in the tangential direction of the ‘blade’ as depicted by the vectors F1

and F2 in Fig. 4.8. Therefore, we neglect the aerodynamic force in the normal direction,
which is significant for the structural design of the turbine, but not for the power production.
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Figure 4.8: Schematic of sensors and actuators on the MIST platform.

4.3.1 Sensors and Actuators

The MIST platform employed a host of sensors and actuators as well as microprocessors in
order to implement the hybrid simulation technique. The main components of the system
are shown in Fig. 4.8. Two rotary encoders were used:

• US Digital Hubwheel, attached rigidly to the rotating shaft, HUBDISK-2-500-500-NE

• US Digital Optical Encoder Module, fixed to the platform, EM-2-500-N

They were rigidly attached to the columns of the ‘turbines’ inside the sealed columns. The-
oretically, by attaching two rotary encoders with outputs ENj to the system, the position
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of the platform and the ‘turbines’ could be found by the following equations,

EN1 = θ1 − θ0 (4.1a)

EN2 = θ2 − θ0, (4.1b)

where θ0 is the total yaw displacement of the platform, taking into account the slow-drift
motions and the wave-induced oscillatory motions. Since θ1 = −θ2 because of the drivetrain,
the angular displacement of the platform and the turbines are

θ1 =
EN1 − EN2

2
(4.2a)

θ0 = −EN1 + EN2

2
(4.2b)

In practice, however, the encoders had too high a resolution (500 counts per revolution for
the rotor that was operating near 100 rpm) for the microprocessor to capture every single
on/off signal. Thus, small inaccuracies in the angular measurement of the rotor compounded
and resulted in large errors in the position of the platform. The measurement of the speed
of the turbines was relatively unaffected by these smaller errors in position, especially after
taking a running average of the speed over a second. An inertial measurement unit (IMU),
which uses an accelerometer, a gyrometer and a magnetometer was installed on third column
to measure the absolute yaw angle of the platform (as well as pitch and roll motions).

4.3.2 Angular Position Measurement

A ‘9DOF’ sensor stick (SEN-10724) was purchased from SparkFun Electronics5 in order to
measure the yaw, pitch and roll of the platform. This IMU, shown in Fig. 4.9 had three
different sensors embedded in the small chip:

• Accelerometer: Analog Devices 3-axis digital accelerometer (up to 16g), ADXL345

• Gyrometer: InvenSense 3-axis angular rate sensor (14.375 LSBs per ◦/sec), ITG-3200

• Magnetometer: Honeywell 3-axis magnetoresitive sensor (1-2◦ accuracy), HMC5883L

The IMU was located underneath the cap of column 3, as shown in Fig. 4.9. An open-
source code6, known as an altitude, heading and reference system (AHRS) was written by
Peter Bartz, from TU Berlin using the formulation of [111] for an Arduino microprocessor in
order to calibrate the sensors as well as obtain an accurate measurement of the yaw, pitch,
and roll from the sensors. The code is based on the directional cosine matrix theory that
was described in [112]. Essentially, the code uses the gyrometer data to detect the pitch
and roll velocity of the sensor. When errors begin to accumulate on account of gyrometer
drift as well as time integration, data from the accelerometer (for the pitch and roll) and

5www.sparkfun.com
6https://github.com/ptrbrtz/razor-9dof-ahrs
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Figure 4.9: Picture of IMU located below the cap of column 3 on MIST platform along with
detailed view of sensor stick.
the magnetometer (for yaw) can dissipate the errors by utilizing a PI controller. Because
of the recent exponential growth in the interest of recreational and commercial unmanned
aerial vehicles (UAVs), the cost of these types of sensors has dropped while the accuracy has
increased.

4.3.3 Actuation: Wind-Input Generators [1]

The first of the two Wind-Input Generators (WIGs) were built by Elena Koukina for her
M.S. project, which concerned the closed-loop control of these actuators. The WIG consisted
of two 1/2” aluminum rods connected in a ‘T’ with block that allowed the vertical height of
the horizontal member to be changed. At one of the end of the horizontal members was a
motor that was rigidly attached. The necessary components for this assembly:

• Motor: Turnigy Aerodrive SK3 - 3530, 1150 rpm/V, 28T Brushless Outrunner

• Propeller: 9” Diameter x 4.7” Pitch

• Electronic Speed Controller, Afro ESC, 30 Amp

• Lithium-Polymer Battery, 20C, 3S, 11.1V 6400mAh
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In her work, Koukina [113] details the load cell and the seventh-order filtering technique
used to obtain reliable measurements for the thrust force from the motor/propeller unit.
The load cell was simply extracted from a kitchen scale with 0.01g precision. Further, in
her M.S. Thesis [1], she details how to upload open-source software to the ESC so that the
motor can be controlled by a pulse-width modulated signal from an Arduino using built-in
(Servo motor) libraries. The reader is referred to this document for further information.

The instantaneous force applied by the WIG should follow the tangential force curves
developed in Chapter 3 (and shown in Figs 3.15-3.20, for an isolated turbine). Obviously,
these simulations were performed at much lower Reynolds number than a full-scale turbine,
due to limitations of the present numerical method described in Chapter 3. However, publicly
released data from large-scale VAWTs, such as the Sandia 34m turbine in [6] show a similar
variation of the thrust force and Cp. In fact, the maximum Cp can be found at λ = 6.0 and
is around 0.40, which is promising for the commercialization of VAWTs. In the experiments
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Figure 4.10: Instantaneous tangential force the actuators should apply depending on the
desired resolution for one revolution (λ = 3.5). CFD simulations (ILES) are for λ =5.0,
α0 = −2◦.

we attempted to meet the ‘Medium’ resolution curve in Fig. 4.10, which was near the limits
of the hardware used in the study. In order to get the major effect of the turbines on the
platform, the torque should exhibit a number of peaks per revolution equal to the number
of blades (which was 2 in this case). This frequency is achieved in the implemented control
algorithm shown in Algorithm 2.
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4.3.4 Microprocessors

Microprocessors are widely used in control settings to analyze the output of various sensors,
perform certain calculations and send signals or data to actuators or other microprocessors.
In modern microprocessors, communication among the sensors, actuators and user(s) can
occur with different analog and digital protocols, including analog voltages, two-wire in-
terfaces (TWI), such as Serial Peripheral Interface (SPI) or Inter-integrated Circuit (I2C),
or even wireless protocols such as the IEEE 802.15.4. The recent ‘Maker’ movement has
led to a proliferation of inexpensive, easy-to-use microprocessors, such as the Arduino and
Raspberry Pi products. Generally, an algorithm is written in a computer language, such as
C++, uploaded to the microprocessor. Once the microprocessor is provided with adequate
power, it will continually loop through the algorithm until the power is removed. Since the
authors had prior experience using Arduino microprocessors for data acquisition, control and
communication operations, it was decided to continue using this line of products.

The microprocessors used in this study were the Arduino Dues because of the large
number of analog inputs that was required of the ‘Master’. However, many libraries were
not updated for the ARM-based flash microcontroller (MCU) since the Due was released
in 2012. The Xbee wireless modules required multiple Serial ports, which were available on
this board. Once we decided to go with the Due for the ‘Master’ controller, we decided it
was apt to make all of four of our MCUs identical.

• Arduino Due: ATMEL SAM3X MCU, 2x256 kbFlash-based memory, 84 MHz

In this report, we interchange ‘Arduino’, ‘Microprocessor’ and Due freely. The circuits
connected to the ‘Master’ MCU are shown in Fig. 4.11. A picture of the actual breadboard
on top of the Arduino, inside of the waterproof container, which is affixed to the top of
column 3, is shown in Fig. 4.12.

4.4 Control Implementation

Two main control schemes were implemented on the MIST platform. The first concerns
the application of the thrust force by the WIGs, while the second concerns the strategies to
regulate the ‘turbine’ speed as well as the platform yaw orientation. Both of these control
algorithms are shown in Fig. 4.13.

4.4.1 Wind-Input Generator Control

The control strategy that concerns the application of a desired thrust force (and hence,
torque) by the WIGs is discussed in greater detail in [1] but we will highlight some of the
challenges and successes in this section. It is well known that the thrust force supplied by
a motor and propeller not only depends on the particulars of the motor and propeller and
the power supplied to the motor, but also the advance ratio of the propeller. In the current
study, the advance ratio of the propeller is proportional to the rotational speed of the WIGs.
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Figure 4.11: Schematic showing wiring of ‘Master’ MCU, including inputs and outputs, I2C,
relays and generators.

Figure 4.12: Breadboard on top of ‘Master’ MCU, both of which are housed inside of a
waterproof casing on top of Column 3.

That is, the faster the WIGs spin, the less thrust force produced by the motor/propeller
for a given motor setting. Ideally, the control algorithm for the WIGs would be the one
shown in Algorithm 1. In practice, however the latency of the system made it such that the
last step was not possible. Furthermore, the effect of the orientation of the turbines relative
to the ‘incident wind’ was not taken into account. This effect was not taken into account
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Algorithm 1 Ideal Desired Thrust Force Control from WIGs

while Simulation is occurring do
Obtain the yaw heading of the platform, Θo

Obtain the rotational speed of the turbines, ω1

Use a lookup table (i.e., Fig. 4.10) to determine desired force, F ∗T
Based on calibration, determine the proper motor setting
Measure the actual load applied, FT
if sufficient time exists then

Run PID loop to reduce F ∗T − FT
end if

end while

partially because at the time of the experiments, the simulations of the counter-rotating
turbines presented in Chapter 3 had not been completed. The only data for counter-rotating
turbines based on wind direction was found in [4], but the asymmetry of the data seemed
non-physical.

Practically, the large variations in the desired thrust force made it impossible to start
the turbine spinning (much like a non self-starting turbine). Thus, when the turbine was
first turned on a constant desired force was sent to the controller. Once the WIG reached its
operating speed, the simulation was initiated (by the sending of waves down the wave tank)
and the controller would receive a signal to start the oscillatory thrust.

Another issue that arose was the difference in voltages of the batteries supplying each
of the motors. Unfortunately, E. Koukina only had time to build one WIG with a load
cell that could measure the applied force before she graduated. Since all parts of the WIGs
were identical, we hypothesized that if the settings of the two motors were the same, then
they should produce the same force. In practice, we believe the LiPo batteries drained at
slightly different rates, which caused the voltages of the batteries to vary. Future iterations
of this technique should utilize a voltage regulator so that each of the motors receive the
same power. Such an addition would simplify the control effort significantly. To get around
this issue in these experiments, the motors were calibrated before each run by setting them
to an equal value (with the generators turned off) and then slightly varying them until the
yaw velocity of the platform settled to 0. In this way, there were three different states of the
WIGs for startup, calibration and operation, respectively. The ‘Master’ Arduino received
commands from the human operator at the base station, who then relayed the commands
to the ‘Slaves’. The algorithm for control of the thrust force that was implemented in the
Arduino Due on the ‘Slaves’ is shown in Algorithm 2. In this way, the speed of the turbines
was not controlled instantaneously, but the motor controls signal MTR was pre-determined
after initial tests to a level that caused the turbines to rotate near the desired rotation rate.

4.4.2 Desired Heading Control

To control the platform yaw orientation, the power taken off from the generators can be
varied to provide a differential torque on the platform. That is, the torque provided by the
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Algorithm 2 Implemented Desired Thrust Force Control on ‘Slave’ Microprocessors

if TurbineState==Constant then
Set motor to achieve desired force, with value MTR

else if TurbineState==Calibrate then
if ‘+’ signal received then

MTR=MTR+1
else if ‘-’ signal received then

MTR=MTR-1
end if

else if TurbineState==Oscillatory then
Obtain period of revolution Trev from ‘Master’
if mod (t, Trev/2) < Trev/4 then

Set motor to 2·MTR
else

Set motor to OFF
end if

end if

generator can be varied by changing the power-take-off resistance Rj in the circuit. For
instance, if Rj → ∞, no current will be produced in the circuit and hence no mechanical
power will be converted into electrical power. On the other hand, if Rj = 0, the generator
is shorted and the maximum current will be developed in circuit. The voltage developed
in the circuit is directly proportional to the speed of rotation of the generator rotor. Thus
the generator was chosen to operate at a speed near its operating voltage to ensure efficient
electrical power generation. The resistance in the circuit was varied by using a solid-state
relay that can open and close the circuit with a switch frequency up to 500 Hz as shown in
Fig. 4.14.

The actual circuit employed in the tests is shown in the bottom of Fig. 4.14, as well as
an approximation of the DC generator in the gray box. Here the voltage induced in the
circuit is denoted as Vg, the terminal inductance is Lg and terminal resistance is Rg. Thus,
the entire generator circuit is simply a voltage source with two resistors in series. From the
specification sheet of the motor the rotor inductance is small (0.10 mH) and is ignored for
this discussion. In order to relate the generator damping with the resistance of the circuit,
the mechanical power is equated with the electrical power dissipated by the generator as,

P
(mech)
j = Bj(γθ̇j − θ̇0)2 (4.3a)

P
(elec)
j =

V 2
j

Rg +Rj

=
k2
e(γθ̇j − θ̇0)2

Rg +Rj

for j = 1, 2 (4.3b)

where ke is the motor constant, which is dependent on the type of magnets, number of
windings, number of poles, etc. Thus, from Eq. (4.3), the controllable rotary damping, Bj(t)
can easily be found as,

Bj(t) =
k2
e

Rg +Rj(t)
(4.4)

112



Chapter 4: Hybrid Testing of MIST Platform in Model Scale

Current 
Sensor

+ _
Gj

“Bj”

P

ij
Rj(t) Pj (t)= R2

j(t)ij

Idealized Power Take-Off Circuit

Vj

Actual Power Take-Off Circuit

Current 
Sensor ij

“Rj(t)”

Vj

Vg j Rg

Lg

Relay 
Control

Pj (t)= Vj(t)ij

γθj

Gj

Figure 4.14: Diagram showing the idealized circuit of the jth generator and the actual circuit
implemented to control platform orientation by varying Rj.

For Rj = 0, we reach the maximum damping that can be provided by the generator. In
this case, the duty cycle is set to 100%, the circuit is shorted and the maximum current is
produced. Likewise, if the duty cycle is set to 0%, the circuit is open, Rj → ∞ and the
minimum damping is provided only due to the friction in the drivetrain system and generator
bearings. In this way the damping provided by the generator is controlled by a PWM signal
sent from the ‘Master’ MCU. The solid-state relay used is:

• Crydom CN024D05 3.5 A, 24VDC, Maximum 500 Hz PWM (DigiKey)

Before the experimental campaign, a robust controller using a Linearization Feedback tech-
nique was devised in SIMULINK. The controller will be discussed in greater detail in Chap-
ter 5. This type of control was implemented in the ‘Master’ Arduino. Like any control effort,
the technique requires a suitable approximation of the external forces on the platform. At
the time of the experimental campaign the slow-drift formulation introduced in Chapter 2
had not been formalized yet. Thus, the motion of the platform due simply to waves could not
be accurately predicted. For this reason and on account of the noisy sensor data, a simpler
algorithm was implemented on the ‘Master’ MCU and is shown in Algorithm 3. This algo-
rithm uses information about the positional error and how fast the platform is approaching
the desired heading to calculate the difference in the settings of the generator. Thus, it is
essentially a P-D controller with saturation and a non-constant derivative gain.
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Algorithm 3 Control of Platform Orientation with ‘Master’

Require: Instantaneous yaw position measurement θb(t) from IMU
Require: Running average yaw speed θ̇0(t)
Require: Desired yaw position θ∗0

Calculate position error eθ(t) = θ0(t)− θ∗0
Estimate difference in generator settings ∆g based on desired speed of turbines, ω∗1
if eθ(t) > 0◦ then

if eθ(t) < 15◦ then
Estimate an approach speed factor εθ based on θ̇0(t),
Generator 1 = HIGH/2 + εθ∆g

Generator 2 = HIGH/2 - εθ∆g

else
Generator 1=HIGH, generator 2=OFF

end if
else if eθ(t) < 0◦ then

if eθ(t) > −15◦ then
Estimate a speed factor εθ based on θ̇0(t)
Generator 1 = HIGH/2 - εθ∆g

Generator 2 = HIGH/2 + εθ∆g

else
Generator 1=OFF, generator 2=HIGH

end if
end if

4.5 Communication Systems

The communication systems that were implemented on the platform ended up being some
of the most time consuming facets of the project. In order to have reliable and repeatable
testing outcomes, the communication systems must be designed and implemented to be as
robust as possible. At first the communication system consisted entirely of wired connections
between microprocessor. It became quickly evident that the cable transferring data from
the onboard processor to the ‘base station’ for data storage was having a large effect on the
motion (especially yaw displacement) of the platform (as found in [114] as well). After initial
testing, it was determined that wireless modules should be installed between the ‘Master’
microprocessor (see Fig. 4.15) and the ‘base station’ so that this data cable could be removed.
After the wireless modules were installed on these microprocessors, it was evident that the
system could be made more robust by installing them on all the microprocessors used in the
study, including ‘Slave 1’ and ‘Slave 2’.

4.5.1 I2C Protocol

In order to communicate between Arduinos the simplest serial two-wire interface communi-
cation system, known as I2C, or Inter-Integrated Circuit was implemented. This protocol
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was created by Philips Semiconductor in 1982 and is still used widely today. The inter-
face uses two bidirectional open-drain lines: a serial clock line (SCL) and a serial data line
(SDA). The I2C protocol is most suitable for communication systems with relatively short
transmission distances (<10 m) that are not subject to noise. The I2C protocol was first
implemented between the ‘Master’ and ‘Slave’ microprocessors as shown in Fig. 4.15. In

‘Slave 1’ ‘Slave 2’

‘Master’

Slip-Rings

‘Base’

Figure 4.15: Schematic showing wired connections between microprocessors using I2C.

between these microprocessors, a slip ring allows WIGs to freely rotate, while maintaining
electrical connection. The slip rings chosen for the model were:

• MOFLON Slip Ring, 6 conductor 10 A, through bore-1/2”

The slip rings were guaranteed to produce variations < 5mΩ per revolution. However, even
these small variations in the resistance resulted in voltage changes in the SCL lines that
caused transmission errors to occur. We utilized the built-in two-wire interface library that
comes pre-installed with the Arduino software, which has features including designating mul-
tiple ‘slaves’ on the same has a I2C network as well as automatically creating the transmission
packet that uses the appropriate checksums. However, if a data transmission error occurs,
the software hangs and can only be reset by cycling the power to the Arduino board. Thus,
building a resilient communication network was of the utmost importance. To do so, we
utilized a bus buffer and raised the voltage of the high voltage line to increase the network’s
noise immunity. The bus buffer purchased from DigiKey was:
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• Philips Semiconductor P82B96 IC Dual, Bi-directional Bus Buffer

The most unclear aspect of implementing the I2C system was the selection of the pull-up
resistors. Even though multiple application notes were written (see, e.g., [115]), we never
found a clear way to calculate the necessary resistance in the circuit based on the rise time
and the estimated capacitance of the circuit. The normal operation of the I2C protocol
operates at 100 kHz, so that too much added resistance can cause the rise time of the signal
to increase beyond the limits of the built-in logic. Too little resistance does not damp the
noise in the system. The final circuit that was implemented with Arduino Due’s is shown in
Fig. 4.16.

Although the system was tested successfully for long periods of time (> 5 min) before the
platform was deployed in the wave tank, it proved difficult to obtain reliable results once two
‘slaves’ were operating on the same I2C network. During the initial stages of the testing it
became clear that the communication link between the ‘Master’ MCU and the ‘Base’ MCU
shown in Fig. 4.15 was having an undue effect on the system dynamics. This link was a
Serial line that was used to record data from the ‘Master’ MCU as well as send commands
to initiate testing. This issue is a well known problem with wave-tank testing where data
recorded by an MCU located on a floating body must be transferred off the floating body.
Researchers participating in the DeepCWind consortium that performed extensive model
testing of horizontal-axis wind turbines with various floater designs noted this issue in [114].
In Figure 1 of [114], the reader can notice a large amount of cabling that is connected to
the turbine. Especially in the case of testing the MIST platform, where the yaw motion was
the most critical to simulate, the cable prevented free rotation of the platform. Thus, the
decision was made to transition to a wireless data communication system, at first between
‘Master’ and ‘Base’ and later as redundant link between ‘Master’ and ‘Slaves’.

4.5.2 Wireless Communication

A wireless communication system was setup between the four MCU’s used in these experi-
ments. Each MCU was located on a different body: the two turbines, the floating platform
and the Earth. Five Xbee wireless units were installed, with one on each of the MCU’s and
two on the ‘Master’ as shown in Fig. 4.18.

Four of the Xbee units are shown in Fig. 4.17, along with the ‘Xbee Explorer’ (red unit),
which allows the modification of the Xbees using open-source software. The rationale for
utilizing two units on a single MCU is explained herein. The wireless communication units
were:

• Xbee Series 1, 1 mW chip antenna (Amazon)

• Xbee Explorer USB Stick (Sparkfun)

The Xbee can either be programmed to be used in ‘Transparent’ mode (AT) or application
programming interface mode (API). In ‘Transparent’ mode, the unit is continuously trans-
mitting and listening for wireless packages on the designated frequency. In the API mode,
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Figure 4.16: Schematic showing wiring diagram for I2C circuit.

one unit is designated as a ‘master,’ while others are designated ‘slaves’. These ‘slave’ units
only transmit information over the network when requested to do so by the ‘master.’ After
initial testing with the Arduino Due and multiple Xbee units using the built-in library, it
became clear that the AT mode was able to send and receive data faster. Since the priority

Figure 4.17: Picture of Xbee units deployed on MIST platform, with Xbee Explorer (for
programming the units) in red. See Fig. 4.18 for location of units on model.

of the link between the ‘Master’ and ‘Slave’ MCUs was to record data as fast possible, this
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link (shown by the blue wifi symbols in Fig. 4.18) was set to ‘transparent’. However, since
the ‘Master’ MCU needed to be able to address each slave MCU individually, these link
were set to the API mode. Since an Xbee can only be configured to either API mode or
AT mode at one time, five Xbees were needed to create this system. An excellent resource

Xbee 
T1

‘Base Station’

Xbee 
T2

‘Master’
Xbee 

M

Xbee 
S1

Xbee 
S2

‘Slave 1’ ‘Slave 2’

Figure 4.18: Schematic showing Xbee wireless modules used to communicate between mi-
croprocessors used in study.

on explaining the fundamentals of designing wireless networks, including using Xbees with
Arduinos, is [116].

It became apparent during the tests that the size of the payload interfered with Xbee’s
ability to two-way communicate in ‘Transparent’ mode. That is, since the ‘Master’ Xbee was
sending data to the ‘Base’ Xbee as quickly as possible (≈ 50ms), it was only able to receive
commands if the payload it was sending was small (around 20 32-bit floats). However, during
the tests, around 40 32-bit floats were sent to the ‘Base Station’ for recording. Thus, during
calibration and start-up only a small payload was sent for data recording. After the yaw
heading was sent and the platform was acting autonomously, a command was sent to the
‘Master’ to send the full payload. Thus, in the data recording there is no data for the first
few seconds after the platform started behaving autonomously.
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4.6 Experimental Results

A number of experiments were undertaken in early March 2015 at the UC Berkeley Physical-
Model Testing Facility, which is described in other publications, such as [58]. The tank is
only 2.5 m wide, so the mooring system was pretensioned such that the model would not
impact the side walls of the tank. A test matrix of desired model-scale wind and wave
conditions is shown in Table 4.4. However, due to limitations of the wave-maker used in the
study, wave testing under extreme and shutdown conditions was not possible. Thus, we only
considered operational conditions, but increased the wave amplitude to test the limits of our
ability to control the yaw orientation.

Condition Operational
(Normal)

Operational
(Extreme)

Shutdown

Variable Unit Wind/Turbine

maxF ∗T (t) kgf 0.20 0-2.5 3.75

ω1 rpm 75.1-125.2 177 0

Ocean/Platform

A0 in 2.2 12.2 12.2

T0 s 1.1 1.9 1.9

β deg 0 0 0

θ0(0) deg [0:30:180] 90 90

Table 4.4: Model-scale test matrix.

4.6.1 Successful Control Tests

Many tests were undertaken at various initial yaw angles θ0(t = 0) = θ0(0). The success of
the control scheme largely depended on the initial and desired yaw headings relative to the
incident-wave direction. The time history of one such successful test is shown in Fig. 4.19.
Due to limitations such as the length of the tank (and hence reflection of waves from the
beach back to the floating platform) and battery capacity, the duration of tests were limited
to 1-2 minutes. Thus, only a 45 sec period is shown in Fig. 4.19. Once the WIGs were
powered and calibrated and the platform was oriented at the proper θ0(0), a train of regular
waves were sent down the tank and the desired yaw orientation was set to θ∗0 = θ0(0)± 30◦.
As described at the end of Sec. 4.5, there was a time delay from the setting of the desired
heading to the beginning of the data collection. This delay can be seen in Fig. 4.19, since
eθ(0) = θ0 − θ∗0 at the beginning of the data collection is only −20◦ (rather than its original
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Figure 4.19: Yaw error and power generated during successful control of yaw heading of the
MIST platform in regular waves.

value of −30◦). Although the error is approaching 0◦ (albeit, with a small overshoot), it
is unclear whether the main contribution is steady, hydrodynamic moment, or the moment
generated by the imbalanced power conversion in the generators. This uncertainty will be
addressed in greater detail in Sec. 5.8.

4.6.2 Applied Aerodynamic Torque

The force applied by a vertical-axis wind turbine at model scale is shown in Fig. 4.10, along
with three different resolutions. As described in Sec. 4.4.1 and Algorithm 2, the goal was to
apply a cyclic torque with a frequency twice that of the rotating turbine. This represents
the torque from a two-bladed vertical-axis wind turbine. The actual applied thrust force
is shown by the blue curve with circle markers in Fig. 4.20. The fastest achieved tip-speed
ratio at model scale was λ = 3.5. The motor/propeller inertia was too large to try turn
the motor on/off faster than 400 ms. From these curves it is clear we achieved a period
for the applied force of about 450 ms. This frequency corresponds to a tip-speed ratio of
λ = 3.5 at the rated wind speed and operating conditions given in Table 4.2. The figure
also shows how data was only recorded by the ‘Base’ MCU every 50-60 ms. However, the
‘Slave’ MCUs were controlling and sensing the applied force at a much higher rate, probably
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Figure 4.20: Comparison of applied thrust force FT from the Wind-Input Generator (WIG)
against the desired thrust force F ∗T at medium resolution with λ = 3.5 as a function of time.

on the order of 10-20 ms. The discrepancy is due to the fact that the Xbees on the ‘Slave’
MCUs were in ‘API’ mode, which has a much slower maximum speed than the Xbee’s in
‘Transparent’ mode. Although the MCUs were sensing and modifying the thrust force much
more frequently, the Xbees could only send data every 50 ms in ‘API’ mode.

Another interesting feature of Fig. 4.20 is the time lag between the motor setting (in
green) and the applied force. We surmise that this time delay is due to the inertia of the
motor/propeller unit. After the motor is energized at (for instance, at t = 500 msec in
Fig. 4.20), the applied force does not begin increasing for about 100 ms. The propeller
dominates the rotational inertia of the system as the motor, itself, was quite light and
compact (5.5kg-mm2) while the propeller’s moment of inertia is 130 kg-mm2. The phase
lag between the desired and actual force curves is not an issue for these simulations because
physically it only represents a different starting position of the turbine. If future researchers
want to follow a specific time history of forces that is not simply oscillatory, they would have
to take this effect into account.

Interestingly, as shown in Fig. 4.20, the applied force never reaches 0 or negative values.
During the ‘off’ periods the motor was set to 0% of its duty cycle. However, the inertia
in the rotor kept the propeller spinning. Although the electronic speed controller (ESC)
was reprogrammed in such a way that allowed for bi-directional control of the propeller
(i.e., forward and reverse depending on the motor setting), we never set the motor to a
negative value for fear of damaging the controller or motor. However, for higher fidelity
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hybrid simulations the motor/propeller must be able to operate in reverse. For more details
about reprogramming ESCs, see [1].

The measurement of the applied force by a load cell on a spinning WIG assumes that the
rotor is spinning at a constant speed. If the rotor is accelerating the force measured by the
load cell will be larger than the actual applied force, since the motor/propeller’s acceleration
is in the same direction as the applied force. Likewise, if the rotor is decelerating, the force
measured by the load cell will be smaller than the actual applied force. Again, this will not
have a large effect on the absolute minimum or maximum values achieved by the WIGs; it
will only introduce a phase lag in the actual force. Furthermore, the inertia of the rotor
is quite large (compared to the thrust force), around 0.25 kg-m2, so the rotor does not
experience drastic changes in acceleration, once it is rotating near its operating speed.

4.6.3 Effect of Vertical Center of Gravity

As depicted in the photograph in Fig. 4.3, the cross-beam of the WIG is located near the
top of the ‘tower’ or central column (shown as component # 7 in Fig. 4.3). However, for
the start of the experiments, the horizontal cross-beams were lowered to a height halfway up
the central columns, to ensure the WIGs were not deflecting too much and causing undue
stress on the slip rings. By lowering the vertical center of gravity of the WIGs, however,
we can examine the effect of changing the vertical center of gravity of the turbines on the
pitch/roll motion floating body. Figure 4.21 shows a time series of the pitch motion motion

Pitch RMSD = 0.11◦
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Time (sec)

P
it
c
h
(◦
)

 

 

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
COGZ=74.6 m

COGZ=59.6 m

Figure 4.21: Pitch motion of platform with standard COGz (black) and 20% reduction (red).

of the platform for two different vertical centers of gravity for the turbines. The black curve
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represents the standard center of gravity (35.7 in model-scale corresponds to 74.6m full-scale,
as shown in Table 4.2). The vertical center of gravity is measured from the still waterline.
The red curve represents the time series of the platform subject to similar wind and wave
conditions (with a similar starting yaw position) with a center of gravity that is lowered by
20%. As shown, the root-mean-square deviation is reduced by 40% for the platform with
lowered center of gravity. The black curve exhibits a low frequency behavior (approximately
5x that of the incident-wave frequency), which may be due to non-linear effects, such as in
the pretensioned mooring lines.
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Chapter 5

Numerical Study of Floating Platform in Time Do-

main

In this chapter we describe the equations of motion in the time-domain for the main com-
ponents of the MIST platform: the floating platform, the drivetrain and the turbines. First,
we describe the components of the MIST platform which have not been examined mathe-
matically thus far, including the drivetrain. We introduce a global overview of the Simulink
model, which links the external forces, the controller, and the plant (platform and turbines).
After the state vector is introduced, we describe the kinetics and the kinematics of each
subsystem in greater detail. A brief discussion on the non-linear control implemented in
the numerical model is presented. Next, the hydrodynamics are detailed using the theories
developed in Chapter 2 and finally the implementation of the aerodynamics module using
a simple lookup table is briefly described. The results of the simulations are reported and
compared to the experimental data, which was obtained using the procedures detailed in
Chapter 4.

5.1 Drivetrain Subsystem

In Fig. 5.1, a drivetrain system is shown that functions the same way the actual drivetrain
on the MIST platform performs, such as the one detailed in Fig. 4.1. We have removed
extraneous parts and only focus on the functionality of the drivetrain, which is to connect
the rotors of the two turbines so they are forced to rotate in equal and opposite directions.
Here, we assume the gearbox (’GBj’ with gear ratio, γj > 1) is frictionless and has no other
losses. The summation of moments on the five different bodies (rotors 1 and 2, gearboxes 1
and 2 and platform) are shown in Eq. (5.1).

Igb1θ̈1 = T ∗1 + rp1F21 − rgb11Fg1 (5.1a)

Ig1θ̈g1 = +rgb12Fg1 − Tg1 (5.1b)

Igb2θ̈2 = T ∗2 + rp2F12 − rgb21Fg2 (5.1c)

Ig2θ̈g2 = +rg22Fg2 − Tg2 (5.1d)

Ibθ̈0 = +Tg1 + Tg2 +Qe (5.1e)

where Qe denotes the external moment on the platform, namely from the hydrodynamic
yaw moment and the mooring system, as given in Eq. (2.155). The aerodynamic torques
T ∗1 and T ∗2 are denoted with superscripts ∗ to convey the fact they are the ideal torques
that would be applied to the system if they were vertical-axis turbines. The actual torques
provided by the WIGs to the drivetrain are denoted without the superscripts. If the gears
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Figure 5.1: Simplified schematic of MIST platform drivetrain, where T ∗j are the aerodynamic
VAWT torques and the flat plate represents the platform. The gearboxes Gj with gear ratio
γj > 0 are shown as well as the electrical generators with linear damping coefficients Bj.

do not slip and we ignore the effects of backlash and other nonlinearities, then the following
kinematic constraints hold (as well as their time derivatives)

rp1θ1 = −rp2θ2, (5.2a)

rgbj1
rgbj2

=
θg1
θ1

= γ (5.2b)

where θg1 and θ1 rotate the same direction in Eq. (5.2b) due to the nature of the planetary
gearset. The generators are modeled as linear dampers, such that,

Tg1 = +B1

(
θ̇g1 − θ̇0

)
(5.3a)

Tg2 = +B2

(
θ̇g2 − θ̇0

)
(5.3b)

Isolating the generator forces Fg1 in Eq. (5.1b) and Fg2 in Eq. (5.1d), we find that,

Fg1 =
1

rgb12

(
Ig1γθ̈1 +B1(γθ̇1 − θ̇0)

)
(5.4a)

Fg2 =
1

rgb22

(
Ig2γθ̈2 +B2(γθ̇2 − θ̇0)

)
(5.4b)
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Substituting these into Eqs. (5.1a) and (5.1c), we obtain,

Igb1θ̈1 = T ∗1 + rp1F21 −
rgb11

rgb12

(
Ig1γθ̈1 +B1(γθ̇1 − θ̇0)

)
(5.5a)

Igb2θ̈2 = T ∗2 + rp2F12 −
rgb21

rgb22

(
Ig2γθ̈2 +B2(γθ̇2 − θ̇0)

)
(5.5b)

From Newton’s Third Law, the magnitudes of the internal forces between the two gears
are equal, i.e., F21=F12, (we have already assumed they are in opposing directions in Fig. 5.1
and Eq. (5.1a) and (5.1c)). Further we assume that the gear ratio between the rotors is unity,
rp1 = rp2. Thus, we can combine Eqs. (5.5a) and (5.5b), using the kinematic constraints in
Eq. (5.2), as(

Igb1 + Igb2 + (Ig1 + Ig2)γ2
)
θ̈1 = T ∗1 − T ∗2 − γ2(B1 +B2)θ̇1 + γ(B1 −B2)θ̇0 (5.6)

Equation (5.1e) can be rewritten as,

Ibθ̈0 = +γ(B1 −B2)θ̇1 − (B1 +B2)θ̇0 +Qe (5.7)

In vectorized form Eqs. (5.6) and (5.7) become,Ib 0

0 Ig

 d
dt

 θ̇0

θ̇1

=

−(B1 +B2) γ(B1 −B2)

γ(B1 −B2) −γ2(B1 +B2)

 θ̇0

θ̇1

+

 Qe

T ∗1 − T ∗2

 (5.8)

where Ig = Igb1 + Igb2 + (Ig1 + Ig2)γ2. Thus, if B1 = B2, this system is decoupled and the
rotors will not exert any net moment on the platform. That is, as long as θ̇0(0) = 0, then
θ̇0(t) = 0. However, in some instances we want to couple the system so that θ̇0(t) 6= 0. In
this case, we can set B1 > B2, if we want θ̇0(t) > 0 (assuming θ̇1(t) > 0) or B1 < B2, if we
want θ̇0(t) < 0. The control of Bj in the experimental setup is described in Sec. 4.4.

5.1.1 Frictional Losses

During the dry testing of the model, described in Sec. 4.2.3, it became evident that there
were major frictional losses between the drivetrain and the platform. That is, on top of
the torque transferred from the rotors to the platform that is mediated by the generators,
there is torque transferred through frictional contact with bearings, gearbox housings, etc.
In order to recreate the experimental results, we model these frictional forces as function
of the relative velocities of the rotor and platform without the influence of the gearbox.
The frictional forces on the needle bearings, which allow the rotor to rotate relative to the
platform, are not influenced by the gearbox. Thus, we model the frictional torque between
the rotors and platforms, as

TLj = BLj

(
θ̇j − θ̇0

)
for j = 1, 2. (5.9)
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We can rewrite Eq. (5.8) including these frictional forces as,Ib 0

0 Ig

 d
dt

 θ̇0

θ̇1

=

B00 B01

B10 B11

 θ̇0

θ̇1

+

T ∗1 − T ∗2
Qe

 (5.10)

B00 = −(B1 +B2 +BL1 +BL2) (5.11)

B01 = B10 = γ(B1 −B2) + (BL1 −BL2) (5.12)

B11 = −γ2(B1 +B2)− (BL1 +BL2) (5.13)

Moreover, it became clear that these frictional loss coefficients were directly related to the
damping in the generators. That is,

BLj = f(Bj) for j = 1, 2. (5.14)

Essentially, the frictional losses are modeled as a damper between the rotor and the platform
that is independent of the gearbox speed but depends on the back-torque generated in the
drivetrain. For simplicity we write the loss coefficient as a linear function of the generator
coefficient, as

BLj = cbBj + db for j = 1, 2, (5.15)

where the parameters cb and db are experimentally determined.

5.2 Aerodynamic Forces on Platform

In this section, we describe how the aerodynamic forces on the turbines are transferred
as (additional) moments to the platform. For now, we include the effect of the normal and

tangential forces on each turbine’s blade (labeled (F
(i)
Tj and F

(i)
Nj for the tangential and normal

forces on rotor i, blade j, respectively) to describe how these forces influence yaw motion
of the platform. These aerodynamic forces from each blade not only result in a moment on
the turbine itself, which is described in the previous section, but also a linear acceleration of
the rotors, which is transferred to the platform through the bearings that allow the rotors
to yaw relative to the platform. The tangential force on rotor i blade j can be described as,

FTj
∗(i)(θi) = |F ∗(i)Tj (β1 − θi)|

(
− sin

[
θ̄i + θi +

(j − 1)Nb

2π

]
ı̂+ cos

[
θ̄i + θi +

(j − 1)Nb

2π

]
̂

)
(5.16)

where we have defined θ̄i relative to the inertial frame, as done in Chapter 3. Likewise, the
normal forces can be represented as,

FNj
∗(i)(θi) = |F ∗(i)Nj (β1 − θi)|

(
− cos

[
θ̄i + θi +

(j − 1)Nb

2π

]
ı̂− sin

[
θ̄i + θi +

(j − 1)Nb

2π

]
̂

)
(5.17)
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Although the line of action of these aerodynamic forces act through the blades, themselves,
the moment on the platform is developed through the linear bearings between the plat-
form and the rotor (which should align with rotor’s center of gravity for fatigue purposes).
Therefore, the moment arm for the forces on the ith rotor can be expressed as,

Ri = |Ri| (cos [θ0 + αi] ı̂+ sin [θ0 + αi] ̂) (5.18)

The total moment on the platform is developed from summing all the individual moments

Figure 5.2: Schematic of MIST platform in plan view to describe how tangential and normal
aerodynamic forces on rotor i, blade j, (F

∗(i)
Tj and F

∗(i)
Nj , respectively) are transferred to a

moment on the platform. Here, the turbines are depicted as three-bladed (Nb=3).

developed from each of the blades and their rotors as,

F T∗
6 (t)=

2∑
i

(
Ri ×

Nb∑
j

F
∗(i)
Tj (θi)

)
· ê3

=
2∑
i

Nb∑
j

|Ri||F ∗(i)Tj (t)| cos

[
(θ0 + αi)−

(
θ̄i + ωit+

(j − 1)Nb

2π

)]
,

(5.19)
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where we have assumed the rotor velocity is constant (θi = ωit, for i = 1, 2). The reader
is reminded that due to the constraints described in the previous section, ω2 = −ω1 and
θ̄2 = π, as shown in Fig. 3.22. Likewise, the moment on the platform developed from the
normal forces can be expressed as,

FN∗
6 (t)=

2∑
i

(
Ri ×

Nb∑
j

F
∗(i)
Nj (θi)

)
· ê3

=−
2∑
i

Nb∑
j

|Ri||F ∗(i)Nj (t)| sin
[
(θ0 + αi) +

(
θ̄i + ωit+

(j − 1)Nb

2π

)]
.

(5.20)

For θ̄1 = 0, and θ̄2 = π, the turbines are mere images of each other. If the turbines’ power
coefficients are equivalent, the net moments from each of the turbines will cancel (over one
revolution of the turbines, 2π/ω1), and only a cyclic surge/sway force on the platform will be
applied. For the case of misaligned wind, we saw in the extreme case of Fig. 3.28(b), that the
power coefficients will be different depending on the flow conditions. During the hybrid tests
of the MIST platform, single actuators on each rotor were used to represent the thrust from
two blades. In order to prevent unnecessary moments on the platform, we set their thrust
forces to be equivalent and θ̄1 = 0◦. Thus, this moment F T∗

6 was null for the experiments and
will not be considered in the follow numerical analysis for this reason. However, in future
studies it will be important to take these forces into account as they can have a large effect
during start-up of the turbine, before the turbine has reached its rated speed (when, for
instance, ω1 << σo). Furthermore, these forces will contribute to a time-varying surge and
sway force on the platform, which must be considered when considering the fatigue life of
the platform. Care must be taken to avoid large yaw excursions during the start-up period
to prevent excessive loads on the mooring system.

5.3 Global SIMULINK Model

A depiction of the global Simulink model is shown in Fig. 5.3. In this model, there are
subsystems such as the reference signal, controller and plant that make up a classical control
problem. The signals include the output y, reference ydes, error e, control signal u and
external forces d̂. The external forces subsystems are shown explicitly since they are the main
focus of the analysis and will be discussed in greater depth in the following sections. The
user inputs to the system include the reference signals, which are the desired yaw heading
θ∗0 and desired turbine speed ω∗1. The controller for this numerical model is discussed in
Sec. 5.4.

5.3.1 State Vector and Equations

In this section we develop the basic equations of motion for the platform and the spinning
turbines. As mentioned in Chapter 2, we restrict our focus to simply three degrees of freedom
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Figure 5.3: Global Simulink model, including controller, plant and external forces.

(DOFs) for the platform: surge, sway and yaw as well as two DOFs for the spinning turbine.
These two DOFs have collapsed into one due to the constraint imposed by the ‘connecting
mechanism’ as described in Sec. 5.1. We also consider the slow-drift yaw motion of the
platform. For our system let us define the state vector as,

q =



q1

...

q10



=



ξ1

ξ2

ξ6

Θo

θ1

ξ̇1

ξ̇2

ξ̇6

U6

ω1



, q ∈ R10x1 (5.21)

The horizontal line is only for visual purposes and will be used in the forthcoming equations
to denote the sub-matrices and sub-vectors, separating the displacements from the velocities.
The plant, itself, is a relatively simple first-order plant. We use a discrete time-integrator
because we are simulating the experimental model, whose controller can only be updated
at discrete time instances defined by the sampling frequency of the MCU. The only non-
standard term is the non-linear damping, which arises from the viscous terms, as shown
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in Fig. 5.4. Thus, in continuous time, the dynamics can be state-space represented by the
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Figure 5.4: Simulink plant, including discrete time integrator and linear and non-linear
damping terms.

multiple-input, multiple-output (MIMO) system, as

q̇ = M−1
(
Aq + d(q, t) + δd(t) + Crχ+ fv(|qT |)q + g(q)u

)
(5.22a)

y = Cq, u ∈ R2x1, g ∈ R10x2,y ∈ R2x1, C ∈ R2x10 (5.22b)

The radiation state vector χ is found from Eqs. (2.150) and is determined from the state
vector q. The non-linear function fv(|qT |)q represents the viscous forces and can be inferred
from Eq. (2.143). Here, the linear matrix A can be represented by,

A =



0 . . . 0 1 . . . 0
. . . . . .

0 . . . 0 0 . . . 1

k11 . . . k15 b11 . . . b15

. . . . . .

k51 . . . k55 b51 . . . b55


,d(x, t) =



0
...

0

AoX (0)
1

AoX (0)
2

AoX (0)
6

fe

R(F
∗(1)
T − F ∗(2)

T )



(5.23)

where kij and bij are the linear spring and damping coefficients of the bodies. The steady
second-order wave-exciting force is given in Eq. (2.153). As mentioned in Sec. 2.9, this wave-
exciting force has no explicit dependence on time, but rather the relative wave incident-wave
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heading β and hence, instantaneous position Θo(t) of the platform. For these simulations,
we pre-calculate a database of fe at various βo − θ0 and then use a lookup table to find the
instantaneous forces based on the position of the platform at the previous time step. The
theoretical aerodynamic torques on the ith rotor RF

∗(j)
T are simply the summation of the

tangential forces on each blade as,

F
∗(i)
T =

Nb∑
j

F
∗(i)
Tj . (5.24)

The mass matrix M is

M = diag
(

1 . . . 1 mb mb Ib Ib Ig + Ir

)
, (5.25)

where Ib, Ir, Ig are the moments of inertia about their centers of rotation of the platform,
turbine and drivetrain, respectively.

5.4 Control of Platform Orientation and Turbine

Speed

In this section we describe the control algorithms that were implemented numerically to
optimize the power production. In the first part we describe a non-linear control technique
described in [117]. Due to the complexity of this control scheme, we do not implement it in
the microprocessor on the experimental platform.

5.4.1 Theoretical Control

In general we aim to control the system whose dynamics are governed by the following
non-linear, ‘square’ MIMO system:

ζ̇ = f(ζ) +
n∑
j=1

gj(ζ)uj (5.26a)

y = h(ζ) (5.26b)

where ζ ∈ Rrx1 is the state vector we wish to control, and y ∈ Rnx1 is the measured output
of the system, and uj are the control variables. For our system n = 2. The plant can be
described by

f(ζ, t) = M−1
r

[
Arζ + d̂(ζ, t) + δd(t)

]
(5.27)

where Mr contains the mass matrix that corresponds with the new state ζ, the linear plant
dynamics are contained in the matrix Ar is Rrxr, d̂(ζ, t) is the modeled external disturbances
to the system (such as aerodynamic and hydrodynamic loads) and δd is the error in the
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modeling of the external loads. For simplicity, we have neglected the non-linear forces found
in Eq. (5.22) in deriving the controller.

For the MIST platform, we consider the state space equations, shown in Eq. (5.8), such
that ζ ∈ R4x1,

ζ =


q4

q5

q9

q10

 . (5.28)

Hence we are only seeking to control the slow-drift orientation of the platform and filter out
the higher-frequency oscillations from the absolute yaw position of the platform. Then, the
mass matrix Mr becomes

M−1
r =


1 0 0 0

0 1 0 0

0 0 I−1
b 0

0 0 0 (Ig + Ir)
−1

 (5.29)

For clarity, let us define the lower right-hand corner of this matrix as M ′
r ∈ R2x2. The vectors

gj , u are chosen to represent the dynamics of the generators, which are modeled as linear
dampers, as shown in Eqs. (5.3), such that gj ∈ Rrx1, u ∈ Rnx1,u1

u2

 =

B1

B2

 (5.30)

g1 = M ′
r

−(1 + cb) (γ + cb)

(1 + cb) −(γ2 + cb)

 q9

q10

 =

g11

g12

 , (5.31a)

g2 = M ′
r

−(1 + cb) −(γ + cb)

−(γ + cb) −(γ2 + cb)

 q9

q10

 =

g21

g22

 , (5.31b)

where we have not shown the full vectors that are padded with 0 ∈ R2x1 for clarity. We
assume that we have full knowledge of the state vector and so the output of the system is
simply the state variables we are seeking to optimize. Thus,

h(ζ) =

c1
c2

 ζ =

 q4

q10

 =

e1T
e4

T

 ζ, (5.32)
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where cj ∈ R1xr are the output vectors, which are equal to unit vectors with er being the
unit vector in the r direction. In this technique we attempt to find a transformation to
transform the original nonlinear system into a linear system that can be controlled using
state feedback. We follow the formulations found in [117] and [118]. In order to do so we
define a new vector v such that,

v =

y(r1)
1

y
(r2)
2

 (5.33)

where r1 and r2 are the relative degrees of the MIMO system. In order to find the relative
degrees r1, r2 we continue taking time derivatives of the output y until the control u explicitly
shows up. Here we make use of the Lie derivatives, such that

y
(n)
k = L

(n)
f (hk) +

m∑
i=1

L(n)
gi

(L
(n−1)
f (hk))ui (5.34)

where the first-order Lie derivative is defined as,

L
(1)
f (h(x)) = ∇h(x) · f(x) =

N∑
i=1

∂h

∂xi
fi. (5.35)

An nth-order Lie derivative is defined recursively as

L
(n)
f (h(x)) =

∂

∂x

[
L

(n−1)
f (h(x))

]
· f (5.36)

with L
(0)
f (h(x)) = h(x). Since c1 · gi = 0 for i = 1, 2, we find that the relative degree of y1 is

2, while r2 = 1. Thus, the output of this system is

v =

y(2)
1

y
(1)
2

= F (q) + E(q)

u1

u2


v =

L(2)
f (h1)

L
(1)
f (h2)

+

Lg1(L(1)
f (h1(x))) Lg2(L

(1)
f (h1(x)))

Lg1(L
(0)
f (h2(x))) Lg2(L

(0)
f (h2(x)))

u1

u2

 (5.37)

where we have assumed we have perfect knowledge of the external forces such that the error
on the modeled loads δd is null. The matrix E(q) can be found as

E(q) =

 −I−1
b [(1 + cb)q9 − (γ + cb)q10] −I−1

b [(1 + cb)q9 + (γ + cb)q10]

(Ig + Ir)
−1 [(γ + cb)q9 − (γ2 + cb)q10] −(Ig + Ir)

−1 [(γ + cb)q9 + (γ2 + cb)q10]

 .
(5.38)

The vector F (q) is,

F (q) =

I−1
b 0

0 (Ig + Ir)
−1

−b44 −b45

−b54 −b55

 q9

q10

+

 fe

RF ∗T1 −RF ∗T2

 , (5.39)
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where b55 is the linear damping coefficient between the spinning rotors and the earth fixed
frame and b45 is the linear damping coefficient between the spinning rotors and the platform
(such as friction in the bearings).

We isolate the terms in the matrix E(q) that depend on the state, such that

E(q) =

e11 −e12

e21 −e22

·
q9 0

0 q10

+

 e11 e12

−e21 −e22

·
 0 q9

q10 0

 (5.40)

where e11 e12

e21 e22

 =

 −I−1
b (1 + cb) I−1

b (γ + cb)

(Ig + Ir)
−1(γ + cb) (Ig + Ir)

−1(γ2 + cb)

 . (5.41)

Here, we have set the partial derivative of the external forces vector with respect to the
state vector as null. This assumption can be justified by the fact that the external forces are
changing rather slowly with respect to these variables. To find the conditions when E−1 is
ill-defined (for cb = 0) we set det(E) = 0 and obtain,

q9 = ±γq10. (5.42)

Or, in other variables related to the speeds of the turbine and platform, the condition becomes

γθ̇1 = ±θ̇0 (5.43)

which is nearly impossible to achieve since θ̇1 >> |θ̇0|. By definition, we have that

v =

 q̈4

q̇10

 =

 q̇9

q̇10

 . (5.44)

To drive the error e to 0 we set
v = −Kee, (5.45)

where we have used the MATLAB function place to find the state-feedback gain Ke that sets
the closed-loop poles of the system in the left-half plane. Thus, we can drive the state-space
system

ė = Aee+Bev (5.46)

to the origin. The control variable u can be found from Eq. (5.37) and is,

u = E−1 (v − F ) . (5.47)

From u we can back-calculate the required damping of the generators Bj and can set the
actuators (solid-state relays) to the appropriate setting.
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5.4.2 SIMULINK Control Module

Feedback Linearization Implementation

The implementation of aforementioned control technique is shown in Fig. 5.5. Since there
are no constraints on u in the feedback linearization technique, the algorithm can find the
optimal damping coefficients B1 or B2 to be negative. Physically, this corresponds to energy
being an input into the system, or running the generators as motors. This type of reactive
control is well-known in the wave energy industry where the phase control of the device is
extremely important. In this setting, however, a negative damping coefficient only serves to
speed up the platform rotation. Thus we have inserted a saturation block that limits the
values of Bj to physical limitations set by the generators, as described in Eq. (4.4). The E
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Figure 5.5: Simulink control module implementing Feedback Linearization technique.

block is determined by Eq. (5.40) and the F block is found in Eq. (5.39). We have also added
a subsystem to estimate the velocity error of the platform, that is θ̇0− θ̇∗0, which is essentially
a time derivative of the position error of the platform over a predetermined time-horizon.

PD Controller Implementation

In the Simulink control module we also implemented the PD controller as described in
Algorithm 3. Essentially, we estimate the total damping necessary on the turbines’ rotors a
priori to ensure that their rotational speed is near the target tip-speed ratio. Then, we divide
up the damping between the two generators depending on the platform position. First, we
check to see if the platform positional error is under a certain threshold. If it is not, then we
turn one generator on at full strength, while turning the other generator off. If the platform
is relatively close to the desired position, then we adjust the generator settings depending
on the instantaneous platform speed. Taking into account the approach velocity prevents
large overshoots in the platform position. This algorithm was implemented with ‘If-Then’
statements in Simulink, just as in the Arduino C++ code.
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5.5 SIMULINK Hydrodynamics Model

The hydrodynamics module closely follows the potential-flow development in Chapter 2. We
first discuss the external forces and then the terms proportional to the time-varying velocity
and acceleration.

5.5.1 Hydrodynamic External Forces

The time-domain representation first-order wave exciting forces and the slow-drift moment
constitute an external force vector, which can be applied to the state vector. The first-order
time-domain forces were shown in Eq. (2.151) and the second-order forces in Eq. (2.154).
Therefore the external force vector becomes,

F ext,hydro = A0



0
...

0

|X1(β, σo)| cos(ϕ1 − σot)

|X2(β, σo)| cos(ϕ2 − σot)

|X6(β, σo)| cos(ϕ6 − σot)∑
Re
[
K̄3j(β)e−iσot

]
ξ̇

(0)
j (t)


,F ext ∈ R10x1. (5.48)

In Simulink, we can use a two-dimensional interpolation look-up table (shown as green

boxes in Fig. 5.6) in order to find the instantaneous values of |X (0)
j (β, σo)| and K̄3j, as Θo(t)

changes throughout the simulation. The time-averaging of the slow-drift moment occurs
over one wave period. As shown in Fig. 5.6, the running time-averaging is performed by a
discrete filter, whose window is defined as 1 wave period. In the simulations we ramp up the
incident wave amplitude (over the first 15 periods), just as is done in the experimental wave
tank. Thus, there are no issues simulating Eq. (2.154) in the time-domain, even though it is
essentially undefined for t < T .

5.5.2 Hydrodynamic Damping

The time-domain representation of the first-order radiation damping is shown in Eqs. (2.150).
For each coupled mode of motion of the platform, we must define separate state-space matri-
ces. Each of the nonzero, coupled radiation state-space representations are shown in Fig. 5.7.
The instantaneous velocity of the platform is taken from the state of the vector and used as an
input to each of the state-space representations. These matrices are pre-calculated using the
technique described in Sec. 2.9, before the simulation starts. The infinite-frequency added-
mass and damping for each coupled mode of motion are added to the mass and damping
matrices appropriately.
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of motion.

5.6 SIMULINK Aerodynamics Model

For fixed, counter-rotating vertical-axis wind turbines (i.e., the rotors only undergoes yaw
motion) the instantaneous force on an airfoil is dependent on its azimuthal position, as well
as the wind direction. In the simulations, we only take into account the effect of the platform
yaw motion by using the relative wind direction in the lookup table for the torque on the
turbines. We do not take into effect the added velocity of the blades due to the surging or
swaying motion of the platform and turbines. However, these velocities are small compared
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to the speed of the airfoils, especially at higher λ. Figure 5.8 shows the Simulink subsystem

1
Taero1

2

num3

1

num2

0

num

x7

blade_num
Tw

blade3

x7

blade_num
Tw

blade2

dth1

blade_num
Tw

blade1

Product

u2

Math
Function

-K-

Gain

Ctboost

From
-K-

Ct

2
Vinf

1
th1

Figure 5.8: Aerodynamics module in Simulink used for emulating a vertical-axis wind turbine
with variable incident wind speed and direction.

for calculating the instantaneous aerodynamic loads T ∗j for a three-bladed rotor. In the pre-
processing script, the user can choose the number of equally-spaced blades of the turbine.
Essentially, the blades instantaneous position is determined and then a torque coefficient is
found from a lookup table, based on its position and the relative wind angle. The torque
coefficient is then dimensionalized using the instantaneous wind speed. A more complex
model would include the full effect of the turbine motion when calculating the aerodynamic
loads.

5.7 Simulation Results

In this section, we compare the time-domain results from the model-scale experiments with
the numerical model developed in the time domain.

5.7.1 Hydrodynamic-Induced Motion Comparison

The theory for transforming the potential-flow frequency domain results into the time domain
was detailed in Sec. 2.9. We found a few experimental data sets that we could accurately
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mimic after determining the proper value for the linear damping coefficient B̄66. We nondi-
mensionalize this linear damping coefficient as in [22], which was also shown in Eq. (2.156),
where the authors report wave drift damping values for a 4-column barge. The determina-
tion of the ‘best-fit’ B̄66 and its impact on the slow-drift motion of the platform are shown
in Figs. 5.9, and 5.10, where we show time histories from experimental and numerical data.
For instance, after iterating to find the damping value which led to the best agreement, it
was determined that a value of 8200 for B̄66 given the conditions depicted in Fig. 5.9 led to
the best match. Another value for B̄66, which is nearly 25% of the ‘best-fit’, is also used and
the results from that simulation is shown simply to highlight the contribution of the linear
damping coefficient.
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Figure 5.9: Time history of experimental platform motion (red curve) compared with two
time histories of numerical simulations, each with different values of B̄66 (koa = 0.23).

A similar methodology was used to come up with the values for the linear damping
coefficient shown in Fig. 5.10. The values for B̄66 that match most closely with both of
the experiments are an order of magnitude higher than the highest wave-drift damping for
a 4-column platform as reported in [22]. Thus, it seems like the flow separation and the
effect of the universal joint have the largest influence on the damping of the slowly rotating
platform. Further, it is clear from the best-fit B̄66 values, shown in Figs. 5.9, and 5.10 that this
coefficient depends on the incident-wave frequency and relative wave direction. From these
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Figure 5.10: Time history of experimental platform motion (red curve) compared with two
time histories of numerical simulations, each with different values of B̄66 (koa = 0.14).

time-domain results, we conclude that the viscous forces dominate the slow-drift yaw motion
of the platform, but it is difficult to estimate a quadratic drag coefficient from these tests. In
general, it was difficult to find agreement between the experimental data and the numerical
model for a few reasons. Namely, the universal joint had a large effect on the platform yaw
motion. During some tests it was observed to ‘seize’ when the heave/pitch/roll motion was
relatively large. At these moments, the joint is in tension and is no longer able to glide
smoothly. Furthermore, it is difficult to estimate the linear damping coefficient B̄66, which
depends on this joint, the viscous effects and the wave-drift damping. The repeatability of
the experimental data was also hard to achieve as well. Even if the water was quiescent, the
platform tended to drift, since there is essentially no restoring moment in the yaw direction.
Thus, it was difficult to position the platform in the correct position before each run. Some
sort of magnetic locking device positioned above the water should be utilized in future tests
to release the platform from a fixed position at the desired time.
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5.7.2 Aerodynamic-Induced Motion Comparison

In order to prove that the control algorithm worked properly, we ran tests without the
presence of waves. Essentially we used the water column as a medium that allowed us to
freely rotate the platform relative to the Earth-fixed frame. The results of one of such tests
are shown in Fig. 5.11 (red curve). The data are compared with that of the simulations
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Figure 5.11: Time history of experimental platform motion (red curve) compared with two
time histories of numerical simulations, each with a different type of control, without the
presence of waves. In this simulation B66 is set to 1 N/rad/s (unable to nondimensionalize
since Ao=0 in this simulation)

using two different control algorithms, as described in Sec. 5.4.2. The goal of the control
effort is to reorient the platform such that its yaw orientation matches θ∗0, as shown by the
black dash-dot line in Fig. 5.11. A theoretical non-linear control technique, called Feedback
Linearization (‘Feedback’, blue curve) assumes no foreknowledge of system, but was not used
in the experiments while the Proportional-Derivative controller implemented (‘PD’, green
curve) requires the total generator damping that is necessary to keep the rotors spinning
at constant speed. As in the previous simulation, we varied the value of B66 until the
time-constant of the simulations matched that of the experiments. For reference, B66 = 1
N/(rad/s) corresponds to 2% and 7% of the damping used in the simulations shown in
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Fig. 5.9. Once the linear drag of the platform is determined the simulation results agree well
with the experimental results.

5.7.3 Aerodynamic and Hydrodynamic-Induced Motion Compar-
ison

The aerodynamic, hydrodynamic and generator control modules were all used simultaneously
to solve for the position of the platform in incident and regular waves. The results of these
simulations are shown in Figs. 5.12 and 5.13.
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Figure 5.12: Time history of experimental platform motion (light blue curve) compared with
time histories of numerical simulations, in the presence of waves. The gearbox ratio γ of the
generators is varied.

In these figures the time series of the platform yaw motion θ0(t) is shown (light blue
curve), along with time series simulated by the SIMULINK model. The dark blue lines
represent the best attempt to numerically recreate the experimental data. As the diverging
light blue and dark blue curves in Fig. 5.13 show, the numerical model is not able to recreate
the platform motion in all scenarios. However, if the gearbox ratio is changed to unity,
which occurs in a direct-drive generator, then the control strategies are able to redirect the
platform to the appropriate heading, θ∗0, as shown by the red and green lines in Figs. 5.12
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Figure 5.13: Time history of experimental platform motion (light blue curve) compared with
time histories of numerical simulations, in the presence of waves. The gearbox ratio γ of the
generators is varied.

and 5.13. A discussion on the relative importance of the gearbox ratio on controlling the
platform yaw orientation is given in Sec. 5.8.

5.8 Effect of Gearbox on Platform Yaw Control

In this section, we estimate the possibility of controlling the yaw orientation of the platform
simply using the aerodynamic torque from the counter-rotating turbines, as described in
Chapter 4. In order to have any chance to control the platform we must have that,

O (Maero
6 ) & O

(
Mhydro

6

)
, (5.49)

where Maero
6 , Mhydro

6 represent the yaw moment on the platform from the aerodynamics
and hydrodynamics, respectively. First, we consider the order-of-magnitude of the steady
moment on the platform from Fig. 2.18. From the potential flow calculations derived in
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Chapter 2, we estimate that,

Mhydro
6 = O

(
ρogNcolπa

2A2
o

)
. (5.50)

From Chapter 3 and the discussion on the drivetrain system in Sec 5.1, we estimate that the
order of magnitude for the aerodynamic torque is,

Maero
6 = O

(
ρaU

2
∞cNbRH

γ

)
. (5.51)

To obtain this order of magnitude for the aerodynamic torque on the platform, we set
θ̈1 = ω̇1 = 0 and B1 = Bmax, B2 = 0 in Eq. (5.8) to represent the case of a constant rotor
speed and maximum applied differential torque to the platform. Then, the equation of mo-
tion for the platform becomes independent of the rotational speeds of the platform and rotor
and the above expression comes from the fact that O (RF ∗T1 −RF ∗T2) = O (R · ρaU2

∞cNbH).
The gearbox ratio is in the denominator (with γ > 1) since the gearbox increases the rota-
tional speed (so that the generator can operate at optimal efficiency) but reduces the torque
applied on the platform.

To examine the relative size of these hydrodynamic, aerodynamic and geometric quan-
tities, we make a few order-of-magnitude assumptions about the environmental conditions.
In many locations,

O

(
U2
∞

gAo

)
= O

(
101
)
. (5.52)

Comparing the remaining quantities, the controllability condition becomes

O

(
NbcRH

γ

)
> 102 O

(
Ncolπa

2Ao
)
, (5.53)

where we have inserted the orders of magnitude of the ratio of densities of air and water.
Let us compare the order of magnitude of the surface areas of the of the turbine’s blades
and the platform, as

NbcH

Ncolπa2
≈ 5 for the MIST platform. (5.54)

Thus, one of the necessary conditions for control of the MIST platform is that

R & 20Aoγ (5.55)

Since the MIST platform has γ = 100, this condition is generally not achievable. However, for
a direct-drive system where γ = 1, it is generally possible, depending on the exact geometric
dimensions of the turbines. As Figs. 5.12 and 5.13 show, the choice of gearbox ratio can
determine whether the platform can achieve its desired orientation or not.
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Conclusions

This work has examined the concept of installing two, counter-rotating vertical-axis wind tur-
bines on a single, floating platform. Current state-of-the-art floating offshore wind platforms
use commercially-available, horizontal-axis wind turbines. However, these turbines inher-
ently present challenges to ocean engineers who must design the platform to withstand large
storms, such as those with 500-year return periods. Generally, these platforms are large
and expensive per MW of installed capacity. Other researchers have begun to reconsider
vertical-axis wind turbines to reduce the capital costs associated with these technologies. It
has become evident, however, that in order for these turbines to gain traction in the offshore
wind industry, a large gain in efficiency and reliability must be observed. Thus, building
off of current onshore research, using closely-spaced, counter-rotating turbines may achieve
a much greater power density per planform area of platform than would be possible using
horizontal-axis turbines. The main determinants in the efficiency of the counter-rotating tur-
bines are their rotational speeds (relative to the incident wind speed) and their orientation
(relative to the incident wind direction). A strategy to control the platform’s orientation
and the turbine’s rotational speed in the presence of regular waves is created for model tests.

In order to simulate the hydrodynamics of the floating platform, potential theory was
utilized, taking into account the slow-drift yaw motion of the platform. The velocity po-
tential takes the form of a double perturbation series– one with increasing orders related to
the wave amplitude, the other related to the slow-drift velocities of the platform. Although
this analysis had already been performed in many instances in the literature, no researcher
had ever tried to compare the simulation of a body undergoing slow-drift yaw rotation to
model tests in the time domain. Particular attention was paid to steady, second-order terms
that are spatially dependent. For instance, the steady, second-order potential does not con-
tribute to the total yaw moment on the platform because the platform is rotating about its
geometric center. However, other terms arise due to the Taylor expansion of the pressure
about the mean position of the platform. These terms depend on the orientation of the plat-
form and the relative wave heading. Standard techniques, such as the decomposition of the
convolution integral into a state-space representation, allowed the hydrodynamics problem,
formulated in the frequency domain, to be simulated in the time-domain.

The accurate simulation of the aerodynamics of vertical-axis wind turbines is difficult
to perform due to the varying conditions the airfoil faces as it circumnavigates the central
rotor. This field is ripe with techniques to estimate the forces on the airfoil using analyti-
cal methodologies such as blade element momentum theory and vortex methods, as well as
computational fluid dynamics techniques such as unsteady Reynolds-averaged numerical sim-
ulations and large-eddy simulations. An in-house software, 3DG, developed by researchers at
the UC Berkeley Mathematics Department was employed for simulations with increasingly
complex domains. At first, a single, static NACA0012 airfoil was simulated under a wide
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variety of angles of attack in order to compare the results with published lift and drag data.
Following validation of the code under a low-Reynolds regime, the method was extended to a
constant spinning vertical-axis wind turbine. The results compared favorably to a model test
performed by Sandia National Labs under similar circumstances. Finally, the method was
used to simulate counter-rotating vertical-axis wind turbines using a novel element flipping
technique, developed by a PhD student in the Mathematics Department. The magnitude
of the results compare favorably to field tests performed by researchers at the California
Institute of Technology, although the directional dependence is quite different.

A platform, called the Multiple, Integrated and Synchronized Turbines (MIST) plat-
form was designed and built to prove the concept of controllability of a floating platform
with counter-rotating turbines. The model was tested at the UC Berkeley Physical-Model
Testing Facility, where it is difficult to provide laminar wind above the tow tank. Thus,
a hybrid simulation technique was employed to emulate the effect of the vertical-axis wind
turbines. The turbines were d with actuators called the Wind-Input Generators (WIGs).
The actuators were controllable motor/propeller units that are used for remote controlled
model airplanes. Using sensors and microcontrollers, the thrust force generated by these
actuators could be controlled to mimic the tangential force developed by the airfoils on a
vertical-axis wind turbine. The WIGs were attached to a transmission system that linked
the counter-rotating turbines so that they had equal and opposite rotation speeds. The
drivetrain system included gearboxes and generators that transformed the mechanical power
to electrical power, much like in an actual wind turbine. The goal of the model tests was
to control the orientation of the platform simply by modifying the electrical circuits of the
generators. Thus, without using any additional power, the yaw orientation of the platform
could be controlled to optimize the power produced by the counter-rotating turbines. Due
to the hydrodynamic yaw moment, it was not possible to control the yaw orientation under
all circumstances. However, there were a variety of tests in regular waves where the desired
heading was achieved. In irregular waves with a directional spreading function the hydro-
dynamic yaw moment should be reduced and the control of the yaw orientation should be
easier.

A numerical simulation tool was developed using hydrodynamic potential theory as well
as a simplified aerodynamics module. A non-linear control strategy, called Feedback Lin-
earization technique was implemented, along with a simpler proportional-derivative con-
troller. These modules were coupled together in the time-domain using MATLAB’s control
software, Simulink. The simulations were compared to the experimental time series when
the platform and turbine is subject to solely aerodynamics or hydrodynamics in order to find
obtain the frictional and damping coefficients. When the system is subject to aerodynamics
and hydrodynamics, the numerical model does not properly recreate the experimental time
series. This discrepancy is most likely due to the non-linear nature of the universal joint
and other simplifications made in the model, including ignoring the non-horizontal motion.
However, the simulations prove that if the generator is direct-drive (no gearbox), then a
controller can easily reorient the platform under normal circumstances. From the discus-
sion in Sec. 5.2, it is clear that determining the stable equilibria positions of the platform
in a variety of environmental conditions is critical to the successful power optimization of
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the platform. Only a model test in a true wind-wave tank would prove it, but we expect
that one or both of the ‘doublet-like’ and ‘reverse-doublet-like’ configurations to be stable
equilibria positions for the platform. If this were true, the generator control could only be
used sparingly, in order to reduce misalignment of the platform relative to the incident wind
direction.

6.1 Synopsis of Key Findings

The main accomplishments of this work are categorized by chapter and are summarized in
the following points:

• Hydrodynamics of Multi-Column Platform

– Developed new expressions for the steady yaw moment on a multi-column plat-
form using direct pressure integration technique

• Aerodynamics of Vertical-Axis Wind Turbines

– Validated Implicit Large-Eddy Simulation model for static airfoils and single tur-
bines with existing data at low Re

– Utilized novel element flipping technique to extend numerical method to counter-
rotating turbines

– Confirmed existence of synergistic effect between counter-rotating turbines

• Time-Domain Simulations

– Implemented non-linear control model to achieve position and velocity tracking
of platform and rotors

– Showed how direct-drive system can increase platform re-orientation capabilities

6.2 Parallels in Modern Industry

It was only after the design of the MIST platform that E. Koukina suggested a parallel
in the model helicopter industry: the development of the tandem rotor helicopter. Figure
6.1 shows a picture of a standard single-rotor helicopter as well as a Boeing-Vertol CH-46
Chinook tandem rotor helicopter. In order to control the yaw orientation of the helicopter
the tail rotor provides a thrust force. Otherwise, the reaction torque from the main rotor
would cause the helicopter to spin out of control (this occurs when the tail rotor is damaged).
In order to increase the payload of helicopters, aerospace engineers designed helicopters with
dual rotors to increase the maximum lift. Rather than increasing the size of the tail rotor,
engineers realized they could make it unnecessary by making the rotors counter-rotate. By
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using swashplates on both of the rotors, the pilot is able to tilt the rotors in opposite
directions. In this way, the net roll moment cancels out between the rotors, but a yaw
moment is produced [119]. Clearly, the rotors must be synchronized through a single drive

Figure 6.1: Single rotor with tail rotor and tandem rotor helicopters with counter-rotating
rotors.

system or else the spinning helicopter blades would collide. Newer helicopter designs (not
pictured) have counter-rotating rotors on a single rotor. A future design of the MIST platform
would include many of the lessons learned from the development of this technology, if such
information is publicly available.

6.3 Future Work

We discuss the many extensions of this work chapter by chapter, since the topics are quite
widely varying.

• Chapter 2

1. Include effect of interacting cylinders in slow-drift analysis
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2. Extend method to bichromatic and fully irregular seas

3. Explicitly calculate wave-drift damping terms using direct pressure integration

• Chapter 3

1. Use URANS (or other middle fidelity method) to simulate VAWTs at a range of
Re

2. Implement Detached-Eddy Simulation to increase Re range of implicit LES

3. Develop a coupled fluid-structure interaction algorithm to more accurately model
the spinning turbine

4. Expand element flipping technique to 3D to model counter-rotating turbines with
spanwise effects

5. Explore synergistic mechanism of counter-rotating turbines using spinning (or
stationary) cylinders, instead of turbines

• Chapter 4

1. Change power take-off to a direct-drive system

2. Create new control strategy without use of timing belt

3. Explore other methods of wireless data transfer to increase latency

4. Install voltage regulator on motor controllers to ensure uniformity across models

5. Install load cells on every actuator

6. Implement a motion tracking system above tank to accurately capture slow-drift
surge, sway and yaw motions

7. Change actuator to reduce inertia, such as a ducted fan

• Chapter 5

1. Estimate moment on platform from aerodynamic forces during misaligned wind
conditions

2. Implement more robust control strategy, such as Sliding Mode Control

3. Incorporate one-way or two-way coupling between aerodynamics and hydrody-
namics

4. Add irregular seas and directional spreading functions capabilities to the hydro-
dynamics module

We look forward to future researchers adding to the techniques and body of research regard-
ing floating wind turbines.
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6.4 Path to Commercialization

At the time of publication, a French company, Nenuphar, is attempting to commercialize
this technology, which they call the Twinfloat1. Although the author was in communication
with Nenuphar employees regarding a joint patent, the talks fell through and Nenuphar has
continued independently. Their platform appears to be a multi-column semi-submersible
with counter-rotating turbines, perhaps with a turret system to allow yaw rotation, as shown
in Fig. 6.2. However, their freedom to operate is already limited due to a patent issued to

Rendering courtesy of nenuphar-wind.com/fr

Counter-rotating, straight-bladed, 
vertical-axis wind turbines

Figure 6.2: Rendering of Nenuphar Wind’s La Twinfloat.

Technip in 2014 [120]. In this patent, the authors write that,
‘(The platform is) characterized by a first wind turbine of the pair having a clockwise

rotation and a second wind turbine of the pair having a counter clockwise rotation..., wherein
the first wind turbine is capable of operating at a different speed than the second wind turbine
to create a gyroscopic torque differential in the system around a centroid of the system,
wherein said gyroscopic torque differential is allowed to twist the floating module to a new
orientation.’

The optimization of energy from this platform is very much still an open topic and more
research and development is needed in order to prove various control strategies. We are
excited and humbled that the ideas contained in this thesis have spread around the world
and may contribute to a cleaner energy future.

1www.nenuphar-wind.com
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Appendix A

Definition of Non-Linear, Free-Surface Boundary Con-

ditions in Eq. (2.49c)

The non-linear, free-surface boundary conditions of O (ετ), represented by Eq. (2.49c) with
m′j terms, were first found by Ogilvie in [33] when developing the high-order strip theory
for a ship advancing in waves. Also, Wehausen develops these boundary conditions when
developing the problem of a ship with a forward speed in [34] (updated in [121]). We
reproduce the results here, since we were not able to find the explicit definition of these
terms in the literature for a truncated cylinder. Let the exterior potential of φ01, which
is shown in Eq. (2.91) be given by a separable function as ψ̄

(e)
j = Rj(r)Zj(z)Θj(θ), where

R (r)Z(z) =Ψ̄(e). We utilize the vector identities shown in Appendix B of [20], so that the
mj terms are,

m′1 =
∂2φ01

∂r∂x
= Uj

∂2[Rj(r)Zj(z)Θj(θ)]

∂r∂x
(A.1a)

m′2 =
∂2φ01

∂r∂y
= Uj

∂2[Rj(r)Zj(z)Θj(θ)]

∂r∂y
(A.1b)

m′6 = x0m
′
2 − y0m

′
1 (A.1c)

where summation over the j modes of motion is assumed. Trigonometric identities allow us
to rewrite the x− and y− derivatives as,

∂

∂x
[Rj(r)Zj(z) cos(θ)] =

Z(z)

2

[(
R ′j (r) +

Rj(r)
r

)
+

(
R ′j (r)−

Rj(r)
r

)
cos 2θ

]
(A.2a)

∂

∂y
[Rj(r)Zj(z) cos(θ)] =

Z(z)

2

[(
R ′j (r)−

Rj(r)
r

)
sin 2θ

]
(A.2b)

∂

∂x
[Rj(r)Zj(z) sin(θ)] =

Z(z)

2

[(
R ′j (r)−

Rj(r)
r

)
sin 2θ

]
(A.2c)

∂

∂y
[Rj(r)Zj(z) sin(θ)] =

Z(z)

2

[(
R ′j (r) +

Rj(r)
r

)
+

(
−R ′j (r) +

Rj(r)
r

)
cos 2θ

]
(A.2d)
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We take the r− derivatives of these functions, which yields,

∂2

∂r∂x
[· cos(θ)] =

Z(z)

2

[(
R ′′j (r) +

R ′j (r)
r
− Rj(r)

r2

)
+

(
R ′′j (r)−

R ′j (r)
r

+
Rj(r)
r2

)
cos 2θ

]
(A.3a)

∂2

∂r∂y
[· cos(θ)] =

Z(z)

2

[(
R ′′j (r)−

R ′j (r)
r

+
Rj(r)
r2

)
sin 2θ

]
(A.3b)

∂2

∂r∂x
[· sin(θ)] =

Z(z)

2

[(
R ′′j (r)−

R ′j (r)
r

+
Rj(r)
r2

)
sin 2θ

]
(A.3c)

∂2

∂r∂y
[· sin(θ)] =

Z(z)

2

[(
R ′′j (r) +

R ′j (r)
r
− Rj(r)

r2

)
+

(
−R ′′j (r) +

R ′j (r)
r
− Rj(r)

r2

)
cos 2θ

]
(A.3d)

that collapse to the m′ terms given in [20] for a bottom-fixed cylinder.
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Fourier Coefficients in Linear Scattering Potential

ψ7

In this appendix, we solve for the coefficients, B
(m)
q , C

(m)
q for m, q = 0, 1, ...∞ introduced

when the scattering potential ψ7 of the zero-speed, first-order potential ϕ10 on the interior
and exterior regions was defined in Eqs. (2.70) and (2.72) when providing the definitions

of 7Ψ
(i),(e)
m (r, z) in. This solution was first obtained by Garrett [36], but more closely follows

the formulation of [37]. On the body sides, r = a, the interior dimensionless spatial solution

7Ψ
(i)
m becomes a Fourier cosine series with coefficients B

(m)
q given by,

B(m)
q =

2

d

∫ d

0
7Ψ(i)

m (a, z) cos(βqz)dz m, q = 0, 1, 2... (B.1)

Application of the matching condition, found in Eq. (2.68b), allows us to represent the B
(m)
p

as a linear combination of C
(m)
p , as

B(m)
p +

∞∑
q=0

G(m)
pq Cq(m) = S(m)

p m, p = 0, 1, 2... (B.2)

Likewise, the Fourier coefficients in the exterior solution (C
(m)
p ) can be solved by differenti-

ating Eq. (2.72) with respect to r, setting r = a, multiplying by Zp(z) and integrating over
[0,h]. These computations yield,

C(m)
p =

1

kph

∫ h

0

∂7Ψ
(e)
m (a, z)

∂r
Zp(z)dz m, p = 0, 1, 2... (B.3)

We utilize the matching condition, shown in Eq. (2.67) and the structural boundary condi-
tion, given in Eq. (2.68b), to rewrite the series shown above as a linear combination of the

B
(m)
p , as

C(m)
p =

∞∑
q=0

H(m)
pq Bq(m) m, p = 0, 1, 2... (B.4)

For completeness, the coefficients are given as,

S(m)
p = 2

εmi
m+1

cosh k0h

(
Jm(k0a)− J ′m(k0a)

H ′m(k0a)
Hm(k0a)

)
k0d(−1)p sinh(k0d)

(k0d)2 + (pπ)2
(B.5)

with

G(m)
pq =


−2

Hm(k0a)

H ′m(k0a)
Q
−1/2
0

k0d(−1)p sinh(k0d)

(k0d)2 + (pπ)2
, for q = 0, p ≥ 0

−2
Km(kqa)

K ′m(kqa)
Q−1/2
q

kqd(−1)p sin(kqd)

(kqd)2 − (pπ)2
, for q > 0, p ≥ 0

(B.6)
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The terms H
(m)
pq are

H(m)
pq =



m

2

Q
−1/2
0

k0h

sinh k0d

k0a
, for q = 0, p = 0

m

2

Q
−1/2
p

kph

sin kpd

kpa
, for q = 0, p > 0

qπd

h

I ′m(βqa)

Im(βqa)

Q
−1/2
0 (−1)q sinh(k0d)

(k0d)2 + (πq)2
, for q > 0, p = 0

qπd

h

I ′m(βqa)

Im(βqa)

Q
−1/2
p (−1)q sin(kpd)

(kpd)2 + (πq)2
, for q > 0, p > 0

(B.7)

Thus, we can truncate the infinite series at q = p = Nt for each m we have to solve a
(Nt+1×Nt+1) set of equations for C

(m)
p or B

(m)
p using standard matrix inversion techniques.

To compare with results from [18] for an isolated cylinder, Nt was set to 40 and the results
for the heave wave-exciting force (not explicitly derived here) are shown in Fig. 2.6.
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Appendix C

Fourier Coefficients in Linear Radiation Potentials

ψ1, ψ2

In this appendix, we explicitly solve for the radiation potential coefficients Bj
q , C

j
q for q =

0, 1, ...,∞, j = 1, 2 corresponding to the surge and sway modes, respectively. These coeffi-
cients were introduced when defining the zero-speed, first-order radiation potential ψ

(i),(e)
j in

Eqs. (2.83a) and (2.83b). The solution to the radiation potential of a truncated cylinder in
finite-depth waters was first obtained by [18], but the formulation repeated here more closely
follows that of Williams and Abul-Azm, in [43]. When r = a, the Fourier coefficients Bj

p are

Bj
p =

2

d

∫ d

0

Ψ
(i)
j (a, z) cos(βpz)dz. (C.1)

Applying the matching condition, given in Eq. (2.67), we find that

Bj
p +

∞∑
q=0

Gj
pqC

j
q = Sjp, p = 0, 1, 2, ..., (C.2)

where Gj
pq = G

(m=1)
pq as defined previously for j = 1, 2. However Sjp for j = 1, 2 is null, since

the surge and sway modes do not affect the wave field in the interior portion of the domain.
We can differentiate Eq. (2.83b) with respect to r, set r = a and then integrate over [0, h],
which yields,

Cj
p =

1

kph

∫ h

0

∂Ψ
(e)
j

∂r
(a, z)Zp(z)dz, p = 0, 1, 2... (C.3)

Again, using the matching conditions, Eq. (2.67) and the structural boundary conditions,
Eq. (2.49b), we find one expression for the Fourier coefficients as

Cj
p =

∞∑
q=0

Hj
pqB

j
q + Ep, (C.4)

where Hj
pq = H

(m=1)
pq as defined previously and the last term is defined as,

Ep =
Yp
mp

for p ≥ 0. (C.5)

Again, we can truncate the infinite series at q = p = Nt, and since surge motion is identical
to sway motion the radiation potential will be identical for j = 1, 2. Thus, we have to solve
a (Nt + 1×Nt + 1) set of equations for Cj

p or Bj
p using standard matrix inversion techniques.
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Appendix D

Solution of Slow-Drift Potential ϕ01

In this section, we explicitly define the interior and exterior slow-drift Fourier coefficients
Āq and B̄q. These coefficients were introduced to define the interior and exterior slow-drift

potentials, ψ̄
(i)
j for j = 1, 2, 6 in Eqs. (2.94). The slow-drift potential of a truncated cylinder

in finite-depth waters can be found in [29]. We rewrite the interior and exterior potentials
so that we can easily see the dependence of the spatial variables r, θ, z as

ψ̄
(i)
j (r, θ, z) =

∞∑
q=0

R̄q(r)Ā
j
q cos (βqz) cos(θ − χj) (D.1a)

ψ̄
(e)
j (r, θ, z) =

∞∑
p=0

S̄q(r)B̄
j
p cos (βpd̄z) cos(θ − χj) (D.1b)

where S̄q(r) and R̄q(r) can be inferred from Eqs. (2.94). From these equations, we find that

∂

∂r
ψ̄

(i)
j (r = a, θ, z) =

∞∑
q=0

āqĀ
j
q cos (βqz) cos(θ − χj) (D.2a)

∂

∂r
ψ̄

(e)
j (r = a, θ, z) =

∞∑
p=0

b̄pB̄
j
p cos (βpd̄z) cos(θ − χj) (D.2b)

where

ā0 =
1

2
, (D.3a)

āq = aβq
I ′1(βqa)

I1(βqa)
for q > 0, (D.3b)

b̄0 = −1

2
, (D.3c)

b̄p = aβpd̄
K ′1(βpd̄a)

K1(βpd̄a)
for p > 0. (D.3d)

Let the operator Ljq[φ]h0 be defined as

Ljq[φ]h0 =
1

πh

∫ h

0

∫ 2π

0

φ(θ, z) cos (βqz) cos(θ − χj)dθdz. (D.4)

Using this operator on the function matching condition in Eq. (2.67), over the valid range
z ∈ [0, d], we obtain

1

2d

∫ d

0

∞∑
m=0

εmĀ
j
m cos (βmz) cos (βqz)dz =

1

2d

∫ d

0

∞∑
p=0

εpB̄
j
p cos (βpd̄z) cos (βqz)dz (D.5)
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On account of the orthogonality of periodic functions, Eq. (D.5) simplifies to,

1

4

∑
m=0

εmĀ
j
mδmq =

1

2

∞∑
p=0

εpḡpqB̄
j
p, for q = 0, 1, 2, ... (D.6)

with

ḡpq =
1

d

∫ d

0

cos (βpd̄z) cos (βqz)dz. (D.7)

Thus, we can rewrite the equation to solve for the unknown coefficients Āj as,

Ājq =
∞∑
p=0

ḠpqB̄
j
p. (D.8)

Equation (D.8) can be represented as a vector-matrix equation as,

Ā = [Ḡ]B̄, (D.9)

with the entries in the matrix [Ḡ] given by,

Ḡpq = 2
εqḡpq
εp

. (D.10)

Utilizing the body boundary in Eq. (2.95), we have that

∞∑
q=0

b̄qB̄
j
q cos (βqd̄z) = n′j for d < z ≤ h, (D.11)

where n′ = −[cos θ, sin θ]T for j = 1, 2. We simplify the flux condition in Eq. (2.67) with our
current definitions, which yields,∑

m=0

āmĀ
j
m cos βmz cos(θ − χj) =

∑
n=0

b̄nB̄
j
n cos βnd̄z cos(θ − χj), for 0 ≤ z ≤ d. (D.12)

When Eqs. (D.12) and (D.11) are added together they represent a function defined from
0 ≤ z ≤ h. Using the operator Ljq[φ]h0 on Eqs. (D.12) and (D.11) we find that (for given q),

d̄

2

∑
p=0

āpĀpδpq − s̄q =
1

2

∞∑
p=0

b̄pB̄ph̄pq, (D.13)

where δij is the Kronecker delta, h̄pq is

h̄pq =
2

h

∫ h

0

cos (βpd̄z) cos (βqz)dz, (D.14)
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and s̄q is

s̄q =
2

h

∫ h

d

cos (βqz)dz. (D.15)

We can represent Eq. (D.13) as a matrix equation as,

[F̄ ]Ā− S̄ = [H]B̄, (D.16)

where

F̄pp = d̄āp (D.17a)

F̄pq = 0 for p 6= q (D.17b)

H̄pq = b̄ph̄pq (D.17c)

Thus, utilizing standard matrix solvers the unknown Fourier coefficients can be solved for by
using Eqs. (D.9) and (D.16) where only a (Q+1×Q+1) matrix must be inverted. However,
for certain d/h values, namely h/d ∈ Z, this matrix becomes singular and care must be taken
to correctly solve for the unknown coefficients.
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Appendix E

Analysis of Interaction Potential ϕ11

In the following section, we seek a solution to the potential of O (ετ) that includes effects of
the slow-drift motion as well as the incident wave. The k sub- and super-scripts denoting
the kth cylinder in a multi-cylinder array have been dropped for clarity. The solution to
the potential ϕ11 closely follows that from [29] as well as in [20]. The decomposition of the
potential ϕ11 is given in Eq. (2.98), but is repeated here for reference as,

ϕ11 =
Re
Aoψ̌D − iσo

∑
j=1,2,6

ψ̌jA(0)
j + ψ̌

(β)
j A

(0)
j,β + ψjA(1)

j . (E.1)

The last potential in Eq. (E.1) represents the linear radiation potential and was given in
Appendix C. Thus, in the following sections we seek to setup the boundary value problem
for the potentials ψ̌j, (j = 1, 2, 6, D) and ψ̌

(β)
` (` = 1, 2, 6) and then outline a solution for

these potentials. We remind the reader that the superscript (ˇ) is simply used to differentiate
these potentials from their lower-order counterparts.

E.1 Boundary Conditions in Local Coordinates

The free-surface and body boundary conditions for the potentials introduced in Eq. (E.1)
can be rewritten from Eqs. (2.39), (2.49c), (2.53), for the diffraction potential as,

−νoψ̌D +
∂ψ̌D
∂z

= L(1)
D [ψD] + L(2)

D [ψD], on z = h, (E.2a)

∂ψ̌D
∂n

= 0 on So, (E.2b)

and the radiation potentials as (for j = 1, 2, 6 only)

−νoψ̌j +
∂ψ̌j
∂z

= L(1)
j [ψj] + L(2)

j [ψj] on z = h, (E.3a)

∂ψ̌j
∂n

= −
m′j
iσo

, on So (E.3b)

−νoψ̌(β)
j +

∂ψ̌
(β)
j

∂z
= L(β)

j [ψj], on z = h, (E.4a)

∂ψ̌
(β)
j

∂n
= 0, on So. (E.4b)
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Like previous authors (for instance, [20], [29]), we have found it convenient to split the
inhomogeneous (free-surface) forcing terms in Eq. (2.39) by those that involve only ϕ10,

(L(1)
j [ψj]) and those that also involve ϕ01, (L(2)

j [ψj]) , as

L(1)
j [ψj] = f̌j[ψj] + ǧj[ψj], for j = 1, 2, 6, D, (E.5a)

L(2)
j [ψj] =

[
iσo
g

(
2∇ϕ01 · ∇ −

∂2ϕ01

∂z2

)]
ψj, for j = 1, 2, 6, D, (E.5b)

L(β)
j [ψj] =

[
−2i

σ0

g
U6

]
ψj, for j = 1, 2, 6. (E.5c)

where, (for j = 1, 2, 6, D),

f̌j =

[
−2iσo

g

(
(U1 − y0U6)

∂

∂x
+ (U2 + x0U6)

∂

∂y
+ U6

∂

∂θ
+ iko (U1 cos β + U2 sin β)

)]
(E.6)

and

ǧj

{
0, for j = 1, 2, 6,[
−2iσo

g
U6

∂
∂β

]
, for j = D.

(E.7)

E.2 General Solution

We follow the derivations for the potentials by using a combination of techniques found
in [21], [20] and [25] and in [29]. We seek particular solutions to the problems posed in
Eqs. (E.2)-(E.4) and then a general solution.

Let the velocity potentials ψ̌j, ψ̌
(β)
` , for j = 1, 2, 6, D, and ` = 1, 2, 6, be represented by a

representative function Ψ̌j, such that,

−νoΨ̌j +
∂Ψ̌j

∂z
= F [ψj] on z = h,

∂Ψ̌j

∂n
= ȟj(z) on So, (E.8a)

where the functions F and ȟj(z) could be represented by the functions in Eq. (E.2)-(E.4).
As in [20] and [29], we can write the representative potential as a sum of three different
potentials, such that

Ψ̌j =
3∑
`=1

Ψ̌
(`)
j . (E.9)

where the first two potentials solve for the inhomogeneous problem as

−νoΨ̌(1)
j +

∂Ψ̌
(1)
j

∂z
= L(1)

j [ψj], on z = h, (E.10a)

∂Ψ̌
(1)
j

∂r
= h

(1)
j (z), on So, (E.10b)
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and

−νoΨ̌(2)
j +

∂Ψ̌
(2)
j

∂z
= L(2)

j [ψj], on z = h, (E.11a)

∂Ψ̌
(2)
j

∂r
= h

(2)
j (z), on So, (E.11b)

while the homogeneous solution is given by

−νoΨ̌(3)
j +

∂Ψ̌
(3)
j

∂z
= 0, on z = h, (E.12a)

∂Ψ̌
(3)
j

∂r
= ȟj(z)− h(1)

j (z)− h(2)
j (z), on So, (E.12b)

where h
(`)
j are the normal velocities induced by Ψ̌

(`)
j , for ` = 1, 2, j = 1, 2, 6, D.

E.3 Solution to Ψ̌(1)

By comparing Eq. (E.10) with the free-surface boundary condition of ϕ10 in Eq. (2.37b), we
realize that if we take the derivative of Eq. (E.10) with respect to νo and then apply the

linear operator L(1)
j [ ], we arrive at the free-surface boundary condition in Eq. (E.10), such

that

−νoL(1)
j

[
∂ψj
∂νo

]
+ L(1)

j

[
∂2ψj
∂νo∂z

]
= L(1)

j [ψj]. (E.13)

Thus, it follows that,

Ψ̌(1) = L(1)
j

[
∂ψj
∂νo

]
. (E.14)

The normal velocity induced on the body by this potential is

h
(1)
j =

∂

∂r

(
L(1)
j

[
∂ψj
∂νo

])
on So. (E.15)

E.4 Analysis of Ψ̌(2)

The solution to Ψ̌2 follows the work of [29] and [30]. Kinoshita and Bao suggest representing

the inhomogeneous term L(2)
j as a moving pressure distribution on the free-surface and then

solving for the potential by using Green’s Theorem following the work of [122], which is
currently available from [123] (see also [124]). Thus, we seek a Green function G, that is
defined in a volume of fluid V bounded by ∂V , which represents a cylinder with large radius
R. That is, the volume of fluid is a cylinder that surrounds that physical cylinder with
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R >> a. In the limit we take R→∞. For simplicity let us represent the potential we seek
in this section by ϕ. A form of the divergence theorem states,∫∫

V

∫
G∇2ϕ− ϕ∇2GdV =

∫∫
∂V

G
∂ϕ

∂n
− ϕ∂G

∂n
dS (E.16)

Let P (r, θ, z) be a field point and Q(r′, θ′, z′) be a source point. Thus the Green function
can be written as G(r, θ, z; , r′, θ′, z′). The boundary of V can be defined by the surfaces on
the seabed, free surface, body and outer control surface, such that ∂V = Sb ∪ Sf ∪ So ∪ Sr.
The left-hand side of Eq. (E.16) can readily be integrated leaving,

ϕ(P ) ·


4π

0

2π

=

∫∫
∂V

G(P,Q)
∂ϕ(Q)

∂n
− ϕ(Q)

∂G(P,Q)

∂n
dS, for P


∈ V
/∈ V
∈ So

(E.17)

The governing equations and boundary conditions for G are,

∇2G(P,Q) =4πδ(P −Q) for Q ∈ V (E.18a)

∂G

∂z′
− νoG =0 for Q ∈ Sf (E.18b)

∂G

∂z′
=0 for Q ∈ Sb (E.18c)

lim
kor′→∞

√
kor′

(
∂G

∂r′
− ikoG

)
=0 for Q ∈ Sr (E.18d)

In 1950, John [125] obtained a Green function for a fluid layer, satisfying Laplace’s equation,
bounded below by a horizontal seabed and above by a free surface, on which waves were
propagating. The equations are first written in an Appendix, in Eqs. [A10] and [A12] as
well as surrounding equations. For a truncated body with a vertical-axis of symmetry in
finite-depth waters, a method of obtaining a Green function was first outlined in Chapter
7 of [126] , more succinctly in [122] (who also cites John’s work), updated (with errors) by
[127] and then given in Eq. (2.3) of [128]. Most previous authors simply cite the work of
[122], however, it is clear from the literature that other authors had a significant contribution
to the work. The function is,

G(r, θ, z; r′, θ′, z′) =
∞∑
n=0

gn(r, z; r′, z′) cosn(θ − θ′) (E.19)

with

gn(r, z; r′, z′) = εn

∞∑
m=0

ČmŽm(z)Žm(z′)

{
Rn(kmr)Řn(kmr

′)

Řn(kmr
′)Rn(kmr)

for

{
r ≥ r′

r < r′
(E.20)
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where

Řn(z) =

{
Jn(z) for m = 0

In(z) for m > 0
(E.21a)

Rn(z) =

{
Hn(z) for m = 0

Kn(z) for m > 0
(E.21b)

Čm =

{
2iπk2o

(k2o−ν2o )h+νo
for m = 0

4k2m
(k2o+ν2o )h−νo for m > 0

(E.22)

and

Žm(z) =

{
cosh koz
cosh koh

for m = 0
cos kmz
cos kmh

for m > 0
(E.23)

We refer the reader to [25] for the complete radiation and diffraction solution for this problem.

E.5 Solution to Ψ̌(3)

The solution to Ψ̌(3) is very similar to the solution of the linear radiation problem ψj, de-
veloped in Sec. 2.4.1. Here, however, the body boundary condition is complicated by terms
involving the lower-order potentials, ϕ01 and ϕ10. If these potentials are known, then the
potential Ψ̌k

3 can be found in a similar manner to the radiation potential ψj (j = 1, 2, 6),
developed in Sec. 2.4.1.
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Appendix F

Explicit Expressions for Hydrodynamic Forces

In this appendix, we seek to find exact solutions of the hydrodynamic forces on a truncated
cylinder in finite-depth waters using the technique of direct pressure integration over the
mean wetted surface area of the body. This technique has been studied extensively for the
linear problem. That is, the first-order wave exciting forces, added-mass and damping for
an isolated truncated cylinder can be found in references such as [36] and [18]. The linear
forces on a multi-column platform were given in [38]. The second-order steady drift forces
(not taking into account slow-drift motion) for an axisymmetric body were given in [45].
We show (rather trivially) that for a multi-column platform rotating about the centroid of
its waterplane area, there is no contribution from these terms for the steady yaw moment.
To our knowledge, we believe we are the first to consider the other terms in the steady
yaw moment, arising from the slow-drift motion of the platform using a direct pressure
integration technique. Finally, we consider the direct pressure integration technique to solve
for the wave-drift damping, although do not give the final results explicitly.

F.1 Linear Wave-Exciting Forces, Hydrodynamic Added-

Mass and Damping

In this section we explicitly solve for the hydrodynamic coefficients, including the wave-
exciting force as well as the added-mass and damping coefficients. Substituting the zero-
speed, first-order potential ϕ10 into the pressure term of the same order and integrating over
the wetted surface area of the body, we find the wave-exciting forces and the radiation forces
in the frequency domain, as

X (0)
j = iρoσoAo

∫
So

∫
ψDn

′
jdS (F.1a)

µ
(0)
jk + i

λ
(0)
jk

σo
= ρo

∫
So

∫
ψkn

′
jdS. (F.1b)

By examination, only the exterior solution will contribute to the surge and sway forces
on the body. Thus,

X k(0)
p = iρoσ0a

∫ h

d

∫ 2π

0

ψ
k(e)
D

∣∣∣∣
r=a

n′pdθdz, for p = 1, 2, (F.2)

with n′ = [− cos θ,− sin θ, 0]T on the cylinder side walls. By inserting Eqs. (2.62) and 2.76
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into Eq. (2.107), we obtain the surge and sway wave-exciting forces on the kth cylinder is,

X k(0)
p

ρogπa2
= iPk

{
−2

Y0

cosh k0h

[
J1(k0a)− H1(k0a)

H ′1(k0a)

(
J ′1(k0a) + C

(1)
0

cosh k0h

2Q
1/2
0

)]

+
∞∑
q=1

C(1)
q

K1(kqa)

K ′1(kqa)
Q−1/2
q Yq

}
cos(β − χp) for p = 1, 2

(F.3)

where the coefficients C
(m)
q are given in Appendix B. Taking into account the interaction

effects, we have

X j(0)
p,int

ρogπa2
j

=
X j(0)
p

ρogπa2
− iY j

0


Ncol∑
k=1
k 6=j

[
cjk
π

∫ 2π

0

e−ik0aj cos(αjk−θj) cos(θk − χp)

+
Pk

k0Rkj

(Sjk(β) cos(αjk − χp)− Tjk(β) sin(αjk − χp))

+

Ncol∑
`=1
6̀=k

c`k
k0Rjk

(Sjk(α`k) cos(αjk − χp)− Tjk(α`k) sin(αjk − χp))


 .

(F.4)

For completeness, the heave force is

X k(0)
3

ρogπa2
= −iPk

[
B(0)

2
+

2d

a

∞∑
q=1

B
(0)
q cos(βqd)

I0(βqa)

I1(βqa)

πq

]
(F.5)

By inserting Eq. (2.80) into Eq. (2.107), we obtain the well-known result for the zero-speed,
first-order radiation and damping, which is

µ
(0)
jk + iλ

(0)
jk /σ0

ρoπa3
= −δjk

{
Cj

0

H1(k0a)

H ′1(k0a)
Y0 +

∞∑
q=1

Cj
q

K1(kqa)

K ′1(kqa)
Yq

}
, j, k = 1, 2 (F.6)

where the coefficients Cj
q given in Appendix C.

F.2 Interaction Wave-Exciting Forces, Added-Mass

and Damping

The solutions for the forward-speed, first-order wave-exciting, damping and added-mass will
not be solved for explicitly, since they appear neither in the equations of motion for slow-
drift motions nor the zero-speed, first-order motion. However, they can easily be found by
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using the solution given in Appendix E. These hydrodynamic quantities as a function of the
potentials ψ̌ and other lower-order potentials are,

X (1)
j = iρoσoAo

∫
So

∫ [
ψ̌D −

i

σo
(s · ∇ψD −∇ϕ01 · ∇ψD)

]
n′jdS

+
ko
σo

(U1 cos β + U2 sin β)X (0)
j +

iU6

σo

∂X (0)
j

∂β
(F.7a)

µ
(1)
ij + i

λ
(1)
ij

σo
= ρo

∫
So

∫ [
ψ̌i −

i

σo
(s · ∇ψj −∇ϕ01 · ∇ψj)

]
n′jdS

+
ko
σo

(U1 cos β + U2 sin β)

(
µ

(0)
ij + i

λ
(0)
ij

σo

)
(F.7b)

µ
(β)
ij + i

λ
(β)
ij

σo
= ρo

∫
So

∫
ψ̌

(β)
i n′jdS + i

ρo
σo
U6

(
µ

(0)
ij + i

λ
(0)
ij

σo

)
(F.8)

F.3 Slow-Drift Forces

To our knowledge, this is the first attempt at describing the second-order, slow-drift forces
using the direct pressure integration technique. We begin with considering a representation
of the slow-drift forces, as solved by [20] and shown in Eq. (2.111) as,

F
(20)
j =

Re
−ρo

4

∫
So

∇ϕ10 · ∇ϕ∗10n
′
jdS︸ ︷︷ ︸

(a)

−iρoσo
2

∫
So

[
ξ(0) +α(0) × x′

]
· ∇ϕ∗10︸ ︷︷ ︸

(b)

n′jdS

−iρoσo
2

∫
So

ϕ∗10

[
ξ

(0)
b × (n′1, n

′
2, 0)

]
︸ ︷︷ ︸

(c)

·êjdS

+
ρoν

2
o

4

∫
Co

(ϕ10 · ϕ∗10)︸ ︷︷ ︸
(d)

n′jd`.

(F.9)

We will proceed by considering each of these terms, (labeled (a), (b), (c), (d), in Eq. (F.9),

as F
(20.a)
j , F

(20.b)
j , F

(20.c)
j , F

(20.d)
j , respectively) in order of their occurrence.
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F.3.1 Term F
(20.a)
j

We consider the entire first-order potential (diffraction and radiation potentials), as given in
Eq. (2.57). If we insert this potential into the (a) term from Eq. (F.9), we find that

F
(20.a)
j =

Re
−1

4
ρo

A2
o

∫∫
S0

|∇ψ(e)
D |

2︸ ︷︷ ︸
(i)

njdS

+ iσoAo
∑
i=1,2,6

∫∫
S0

(
A(0)∗
i ∇ψ

(e)∗
i · ∇ψ(e)

D −A
(0)
i ∇ψ

(e)
i · ∇ψ

(e)∗
D

)
︸ ︷︷ ︸

(ii)

njdS

+ σ2
o

∑
i=1,2,6

∑
k=1,2,6

A(0)
i A

(0)∗
k

∫∫
S0

∇ψ(e)
i ∇ψ

(e)∗
k︸ ︷︷ ︸

(iii)

njdS

 ,

(F.10)

where the three terms, which are later referred to as ‘Diffraction-Diffraction’, ‘Diffraction-
Radiation’ and ‘Radiation-Radiation’ terms, or (i), (ii), (iii), respectively.

In a similar let us define κ̄ij as terms that are proportional to the product of the wave
amplitude and linear body motion (’Diffraction-Radiation’) as,

κ̄ij = κ̄
(a)
ij + κ̄

(b)
ij + κ̄

(c)
ij + κ̄

(d)
ij . (F.11)

Likewise, for the ‘Radiation-Radiation’ terms,

µ̄
(2)
jik =µ̄

(2)b
jik + µ̄

(2)c
jik , (F.12a)

λ̄
(2)
jik =λ̄

(2)b
jik + λ̄

(2)c
jik , (F.12b)

since we will show that the (a) and (d) related to this tensor are null.

Term F
(20.a.i)
j : Diffraction-Diffraction

Our analysis of these expressions begins with term (i) shown in Eq. (F.10), where we are
considering the components proportional to the diffraction potential. We find that the
second-order, steady slow drift forces in surge and sway due to term (a) on cylinder k are,

X̄ k(a)
j = −1

4
ρo

∫∫
S0

|∇ψk(e)
D |

2njdS, for j = 1, 2. (F.13)

The expansion of the gradient operator leads to the second-order drift forces, which are,

X̄ k(a)
j =

1

4
ρoa

∫ 2π

0

∫ h

d

(∣∣∣∣∂ψk(e)
D

∂z

∣∣∣∣2
rk=a

+
1

a2

∣∣∣∣∂ψk(e)
D

∂θk

∣∣∣∣2
rk=a

)
cos(θk − χj)dzdθk for j = 1, 2. (F.14)

The solution for the incident and first-order diffraction potentials can be found in Eqs. (2.64),
(2.69) and (2.72), where we do not consider the interaction effects on the cylinders in calcu-
lation of the drift force. We shall write the full expression in Sec. F.4.
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Term F
(20.a.ii)
j : Diffraction-Radiation

We rewrite the relevant term from Eq. (F.10), under consideration in this section as,

F
(20.a.ii)
j =

Re
−iσoρoAo

4

∑
i=1,2,6

∫∫
S0

(
A(0)∗
i ∇ψ

(e)∗
i · ∇ψ(e)

D −A
(0)
i ∇ψ

(e)
i · ∇ψ

(e)∗
D

) ∣∣∣∣
r=a

njdS. (F.15)

It is clear that the real part of the integrand is null, so we can rewrite the above expression
as,

F
(20.a.ii)
j =

σoρoAo
2

∑
i=1,2,6

∫∫
S0

Im
[
A(0)
i ∇ψ

(e)
i · ∇ψ

(e)∗
D

] ∣∣∣∣
r=a

njdS. (F.16)

Simply by using properties of complex numbers we find that,

F
(20.a.ii)
j =

Re
−iσoρoAo

2

∑
i=1,2,6

A(0)
i

∫∫
S0

(
∇ψ(e)

i · ∇ψ
(e)∗
D

) ∣∣∣∣
r=a

njdS. (F.17)

We note here that in order to get a representation of the force in terms of the expression
provided in Eq. (2.114c), we can define,

F
(20.a.ii)
j =

Re
Ao

∑
i=1,2,6

κ̄
(a)
ji

ρogπa
A(0)
i , (F.18)

where κ̄
(a)
ji is defined as,

κ̄
(a)
ji

ρogπa
= − iσo

2πga

∫∫
S0

(
∇ψ(e)

i · ∇ψ
(e)∗
D

) ∣∣∣∣
r=a

njdS. (F.19)

Again, we expand the gradient operator and note that due to the no penetration condition,
the gradient of the diffraction potential in the radial direction on the cylinder, evaluated on
the surface of the cylinder is null. Thus,

κ̄
k(a)
j`

ρogakπ
=

iσo
2πg

h∫
d

2π∫
0

(
∂ψ

(e)
i

∂z

∂ψ
(e)∗
D

∂z
+

1

r2

∂ψ
(e)
i

∂θ

∂ψ
(e)∗
D

∂θ

)∣∣∣∣
r=a

cos(θ − χj)dθdz (F.20)

On the kth cylinder, the substitution of the gradients of the first-order potentials yields the
following equation for κ̄

(a)
ji ,

κ̄
k(a)
j`

ρogakπ
= −iP

∗
k

2

∞∑
p=0

∞∑
q=0

F̄D
pqH

`
p(ak)(kqak)(kpak)G

(0)∗
q (ak) cos[χj − χ`]

+

(
ĒD
pq +

F̄D
pq

2
(kqak)(kpak)

)
H`
p(ak)G

(2)∗
q (a) cos[2β − (χj + χ`)], for j, ` = 1, 2,

(F.21)
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The coefficients ĒD
pq are

ĒD
pq =

1

a



∫ h

d

cosh2 kozdz, for p = 0, q = 0,∫ h

d

cosh koz cos kqzdz, for p = 0, q > 0,∫ h

d

cosh koz cos kpzdz, for q = 0, p > 0,∫ h

d

cos kpz cos kqzdz, for q = 0, p > 0,

(F.22)

and F̄D
pq are

F̄D
pq =

1

a



∫ h

d

sinh2 kozdz, for p = 0, q = 0,

−
∫ h

d

sinh koz sin kqzdz, for p = 0, q > 0,

−
∫ h

d

sinh koz sin kpzdz, for q = 0, p > 0,∫ h

d

sin kpz sin kqzdz, for q = 0, p > 0,

(F.23)

For the rotational modes,

κ̄
k(a)
j` =



yk0 κ̄
k(a)
11 − xk0κ̄

k(a)
12 for j = 1, ` = 6

−xk0κ̄
k(a)
22 + yk0 κ̄

k(a)
21 for j = 2, ` = 6

−yk0 κ̄
k(a)
11 + xk0κ̄

k(a)
21 for j = 6, ` = 1

xk0κ̄
k(a)
22 − yk0 κ̄

k(a)
12 for j = 6, ` = 2

xk0κ̄
k(a)
26 − yk0 κ̄

k(a)
16 for j = 6, ` = 6.

(F.24)

Term F
(20.a.iii)
j

We claim that we can disregard term F
(20.a.iii)
j since we can argue it is null using simple

trigonometric arguments. Upon the examination of F
(20.a.iii)
j , we realize that the integration

over the azimuthal direction occurs over an odd number (3) of sine or cosine terms, since

ψ
(e)∗
k , ψ

(e)
i and nj terms all contain a single sine or cosine. Due to the orthogonality of these

functions, F
(20.a.iii)
j = 0.
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F.3.2 Term F
(20.b)
j

We shift our analysis to the next term in Eq. (F.9), which is labeled (b). This term only

is broken down into two parts, for the diffraction and radiation potentials (F
(20.b.ii)
j and

F
(20.b.iii)
j , respectively)

F
(20.b)
j =

Re
−iρoσo

2

Ao
∫∫
S0

∂ψ(e)∗
D

∂r

(
A(0)

1 cos θ +A(0)
2 sin θ

)
︸ ︷︷ ︸

(ii)

+
1

r

∂ψ
(e)∗
D

∂θ

(
−A(0)

1 sin θ +A(0)
2 cos θ +A(0)

6 r
)

︸ ︷︷ ︸
(ii)


r=a

njdS

+ iσo
∑

k=1,2,6

∫∫
S0

∂ψ(e)∗
k

∂r

(
A(0)

1 cos θ +A(0)
2 sin θ

)
︸ ︷︷ ︸

(iii)

+
1

r

∂ψ
(e)∗
k

∂θ

(
−A(0)

1 sin θ +A(0)
2 cos θ +A(0)

6 r
)

︸ ︷︷ ︸
(iii)


r=a

njdS

 .

(F.25)

We can use the no penetration condition on the cylinder wall to simplify the analysis, by
applying the complex conjugate on both sides of Eq. (2.59), such that

F
(20.b)
j =

Re
−iρoσo

2

Ao
∫∫
S0

1

r

∂ψ
(e)∗
D

∂θ

(
−A(0)

1 sin θ +A(0)
2 cos θ +A(0)

6 r
)

︸ ︷︷ ︸
(ii)

∣∣∣∣
r=a

njdS

+ iσo
∑

k=1,2,6

∫∫
S0

1

r

∂ψ
(e)∗
k

∂θ

(
−A(0)

1 sin θ +A(0)
2 cos θ +A(0)

6 r
)

︸ ︷︷ ︸
(iii)

∣∣∣∣
r=a

njdS.


(F.26)

Term F
(20.b.i)
j

As previously noted, there is no term proportional to the square of the wave amplitude for
F

(20.b)
j .
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Term F
(20.b.ii)
j : Diffraction-Radiation

By inserting the pressure term p10 from Eq. (2.104b) into the (b) term in Eq. (2.111), and
only condsidering the components proportional to the diffraction potential, we obtain,

F
(20.b)
j =

Re
−iρoσoaAo

2

∫ h

d

∫ 2π

0

[
−1

r

∂ψ∗D
∂θ

sin θ
(
A(0)

1 −A
(0)
6 r sin θ

)
+

1

r

∂ψ∗D
∂θ

cos θ
(
A(0)

2 +A(0)
6 r cos θ

)] ∣∣∣∣
r=a

njdθdz.

(F.27)

Considering the kth cylinder, we substitute the zero-speed diffraction potential, given in
Eqs. (2.64), (2.69) and (2.72) and find that,

F
k(20.b)
j =

Re

iρogaAoP
∗
k

2

∞∑
m=0

∞∑
p=0

∫ h

d

∫ 2π

0

Žq(z)G(m)∗
q (a)m sinm(θ − β)(

−A(0)
1 sin θ +A(0)

2 cos θ + aA(0)
6

)
cos (θ − χj)dθdz.

(F.28)

Using the definition of κ̄
k(b)
ij in Eq. (2.114c) and canceling terms due to the orthogonality of

the Žq(z) functions, we obtain for the translational modes,

κ̄
k(b)
j`

ρogaπ
= −iP

∗
k

2

∞∑
q=0

ĎqG
(2)∗
q (a) cos[2β − (χj + χ`)], for j, ` = 1, 2, (F.29)

where

Ďq =
1

a

∫ h

d

Žq(z)dz. (F.30)

For the rotational modes,

κ̄
k(b)
j` =



1
2
X ∗k(0)

2 for j = 1, ` = 6

−1
2
X ∗k(0)

1 for j = 2, ` = 6

−yk0 κ̄
k(b)
11 + xk0κ̄

k(b)
21 for j = 6, ` = 1

−yk0 κ̄
k(b)
12 + xk0κ̄

k(b)
22 for j = 6, ` = 2

xk0κ̄
k(b)
26 − yk0 κ̄

k(b)
16 for j = 6, ` = 6

(F.31)

Term F
(20.b.iii)
j : Radiation-Radiation

The terms proportional to the square of the complex motion amplitudes are found by insert-
ing the radiation potentials into Eq. (F.9). Due to the orthogonality of the sine functions,
the first term of the integrand in Eq. (F.27) is null. The only surviving term from (b) for
the force in the jth direction to the kth mode of motion is,

F
(20.b)
jk = −iρoσoa

2

2
(iσoA(0)∗

k )A(0)
6

∫ h

d

∫ 2π

0

∂ψ∗k
∂θ

cos(θ − χj)dθdz, for j, k = 1, 2. (F.32)
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The substitution of the radiation potential into the above equation yields,

F
(20.b)
jk =

ρoσ
2
oa

2A∗(0)
k A

(0)
6

2

∞∑
q=0

∫ h

d

∫ 2π

0

Žq(z)H∗kq (a) sin(θ − χk) cos(θ − χj)dθdz, (F.33)

which simplifies to

F
(20.b)
jk = −ρoσ

2
oa

3πA∗(0)
k A

(0)
6

2

∞∑
q=0

ĎqH
∗k
q (a)(1− δjk)(−1)k (F.34)

We recognize that this terms holds the complex conjugate of the radiation added-mass and
damping, which is

ρoσ
2
o

∫
So

∫
ψ∗kn

′
jdS =− ρoπa3σ2

o

∞∑
q=0

ĎqH
∗k
q (a)

=
(
σ2
oµ

(0)
jk − iσλ

(0)
jk

)
,

(F.35)

where the last equality comes from the facts that,

µ
(0)
jk = ρo Re

∫
So

∫
ψ∗kn

′
jdS

 (F.36a)

λ
(0)
jk = −ρo

σo
Im

∫
So

∫
ψ∗kn

′
jdS

 (F.36b)

Since µ
(0)
11 =µ

(0)
22 , due to circumferential symmetry (and since the same holds for λ

(0)
jj , for

j = 1, 2), we can write,

F
(20.b)
jk =

1

2
A∗(0)
k A

(0)
6

(
σ2
oµ

(0)
11 − iσoλ

(0)
11

)
(1− δjk)(−1)k for j, k = 1, 2. (F.37)

In terms of the µ̄
(2)b
j6k , defined in Eq. (2.114c), we obtain for the translational cases

σ2
o µ̄

(2)b
j6k + iσoλ̄

(2)b
j6k =

1

2

(
σ2
oµ

(0)
11 − iσoλ

(0)
11

){1 for j = 1, k = 2

−1 for j = 2, k = 1
(F.38)

and for the rotational cases

σ2
o µ̄

(2)b
j6k + iσoλ̄

(2)b
j6k = −1

2

(
σ2
oµ

(0)
11 − iσoλ

(0)
11

)


x0 for j = 1, k = 6

y0 for j = 2, k = 6,

x0 for j = 6, k = 1

y0 for j = 6, k = 2,

0 otherwise.

(F.39)
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F.3.3 Term F
(20.c)
j

The analysis of the (c) term proceeds much in a similar manner as that found in Sec. F.3.2.
A major simplification can be made by noting that the first-order hydrodynamic forces can
be recovered from this term.

F
(20.c)
j = −iσoρo

2

∫∫
So

ψ∗D (ξb × [n′1, n
′
2, 0]T

)
· êj︸ ︷︷ ︸

(ii)

dS

+ iσo
∑

k=1,2,6

∫∫
So

ψ∗k
(
ξb × [n′1, n

′
2, 0]T

)
· êj︸ ︷︷ ︸

(iii)

dS

 for j = 1, 2, 6.

(F.40)

Term F
(20.c.i)
j

Again, there is no term related to the square of the wave amplitude for term (c).

Term F
(20.c.ii)
j : Diffraction-Radiation

The force in the jth direction due to the diffraction of the incident wave involves inserting
ψD into term (c) of Eq. (F.9), which is

F
(20.c.ii)
j = −iσoρoAo

2

∫∫
So

ψ∗D
(
ξb × [n′1, n

′
2, 0]T

)
· êjdS (F.41)

We notice that this is simply one-half of the complex conjugates of the first-order wave-
exciting forces. If we neglect the roll and pitch moment, we have,

κ̄
k(c)
ij =

1

2



−X (0)∗
2 for i = 1, j = 6,

X (0)∗
1 for i = 2, j = 6,

X (0)∗
2 for i = 6, j = 1,

−X (0)∗
1 for i = 6, j = 2,

0 otherwise .

(F.42)
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Term F
(20.c.iii)
j : Radiation-Radiation

The force proportional to the added-mass and damping terms can be found by inserting the
radiation potential into term (c) of Eq. (F.9). By inspection,

σ2
o µ̄

(2)c
jik + iσoλ̄

(2)c
jik =

1

2

(
σ2
oµ

(0)
11 − iσoλ

(0)
11

)



−1 for j = 1, i = 6, k = 2

−x0 for j = 1, i = 6, k = 6

1 for j = 2, i = 6, k = 1

−y0 for j = 2, i = 6, k = 6

1 for j = 6, i = 1, k = 2

−1 for j = 6, i = 2, k = 1

x0 for j = 6, i = 1, k = 6

y0 for j = 6, i = 2, k = 6

0 otherwise.

(F.43)

F.3.4 Term F
(20.d)
j

The analysis for this term proceeds much like that found in Sec. F.3.1. The term F
(20.d)
j can

be rewritten as,

F
(20.d)
j =

Re

ρoσ
2
o

4g

A2
o

∫
C0
|ψ(e)
D |

2︸ ︷︷ ︸
(i)

njd`

+ iσoAo
∑
i=1,2,6

∫
C0

(
A(0)∗
i ψ

(e)∗
i ψ

(e)
D −A

(0)
i ψ

(e)
i ψ

(e)∗
D

)
︸ ︷︷ ︸

(ii)

njd`

+ σ2
o

∑
i=1,2,6

∑
k=1,2,6

A(0)
i A

(0)∗
k

∫
C0
ψ

(e)
i ψ

(e)∗
k︸ ︷︷ ︸

(iii)

njd`

 .

(F.44)

Term F
(20.d.i)
j : Diffraction-Diffraction

We shall expand on the expression of the steady, wave-exciting moment in Sec. F.4. For
now, we simply write the expression for the steady moment from Eq. (F.44) as,

X̄ k(d)
j =

ρoσ
2
o

4g

∫
C0
|ψk(e)
D |

2njd`, for j = 1, 2. (F.45)
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Term F
(20.d.ii)
j : Diffraction-Radiation

In a similar manner as done in Sec. F.3.1, we can rewrite the term F
(20.d.ii)
j , as,

F
(20.d.ii)
j =

Re
−iσoρoAo

4

∑
i=1,2,6

∫
C0

(
A(0)∗
i ψ

(e)∗
i ψ

(e)
D −A

(0)
i ψ

(e)
i ψ

(e)∗
D

) ∣∣∣∣
r=a

njd`. (F.46)

Using the same argument to obtain Eq. (F.17)), we find,

F
(20.d.ii)
j =

Re
−iσoρoAo

2

∑
i=1,2,6

A(0)
i

∫
C0

(
ψ

(e)
i ψ

(e)∗
D

) ∣∣∣∣
r=a

njd`. (F.47)

Using as similar (albeit, simpler) procedure as described in the section concerning the (a)

terms, we arrive at the follow expression for κ̄
k(d)
j` :

κ̄
k(d)
j`

ρogaπ
= −iνoakP

∗
k

2

∞∑
p=0

∞∑
q=0

Žp(h)Žq(h)H`
p(a)[

G(0)∗
q (a) cos[χj − χ`] +

G
(2)∗
q (a)

2
cos[2β − (χj + χ`)]

]
, for j, ` = 1, 2.

(F.48)

The rotational modes can be written in a similar manner as in Eq. (F.24).

Term F
(20.d.iii)
j

Using a similar argument found in the section concerning the (a) terms, we find the radiation
tensor to be null for all modes of motion. In the following section, we combine the analysis
of the previous sections to represent three hydrodynamic forces: the steady, slow-drift mo-
ment, a moment proportional to the wave amplitude and the body motion and a moment
proportional to the products of body motions.

F.4 Slow-Drift Moment Proportional to Square of

Wave Amplitude

The combination of Eqs. (F.14) and (F.14), yield the following second-order drift forces for
a vertical, truncated cylinder:

X̄ k(2)
j =

1

4
ρoa

{∫ 2π

0

∫ h

d

(∣∣∣∣∂ψk(e)
D

∂z

∣∣∣∣2
rk=a

+
1

2a

∣∣∣∣∂ψk(e)
D

∂θk

∣∣∣∣2
rk=a

)
cos(θk − χj)dzdθk

−σ
2
0

g

∫ 2π

0

∣∣∣∣ψk(e)
D

∣∣∣∣2
rk=a

cos(θk − χj)dθk

}
for j = 1, 2.

(F.49)
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Integrating the expression in Eq. (F.49), we find the drift-force to be,

X̄ (2)
j

ρogπa2
=
koAo cos(β − χj)

8 tanhm0

∞∑
n=0

(
G

(n+1)n∗
0 (a) +G

n(n+1)∗
0

)
C̄n+1,n

0

+
∞∑
q=1

(
G(n+1)
q Gn∗

0 +G
(n+1)
0 Gn∗

q +Gn
qG

(n+1)∗
0 +Gn

0G
(n+1)∗
jq

)
C̄n+1,n
q

+
∞∑
p=1

(
G(n+1)
q Gn∗

pj +Gn
qG

(n+1)∗
pj

)
C̄n+1,n
pq

(F.50)

where we have only indicated the fact that the G
(n)
p (r) functions are evaluated at r = a once

for clarity. The other coefficients C̄
(m,n)
q are

C̄(m,n)
q =


ε̄nF

D
00 +

mn

(k0a)2
ED

00 −
ε̄n tanhm0

k0a
cosh2m0, for q = 0,

+
ε̄nkq
k0

FD
0q +

mn

(k0a)2
ED

0q −
ε̄n tanhm0

k0a
coshm0 cosmq, for q > 0,

(F.51)

with

C̄(m,n)
pq =

ε̄nkqkq
k2

0

FD
pq +

mn

(k0a)2
ĒD
pq −

ε̄n tanhm0

k0a
cosmp cosmq, (F.52)

where ε̄n = 2/εn with εn as defined in Sec. 2.4.1. The most important property to note about
these forces is that they are temporally (by definition) and spatially independent, due to the
phase-factors canceling out, that is, PkP

∗
k = 1. Thus, for a multi-column platform, whose

center of rotation coincides with its geometric center, these drift forces will never produce a
moment. The summation of the moments on the cylinders allows us to obtain the moment
on the platform, which is,

X̄ (2)
6 =

Ncol∑
k=1

xk0X̄
k(2)
2 − yk0 X̄

k(2)
1 = X̄ (2)

2

Ncol∑
k=1

xk0 − X̄
(2)
1

Ncol∑
k=1

yk0 = 0 (F.53)

where the last equality is due to the fact the platform’s geometric center is the origin of the
inertial system (about which the platform is rotating) and we assume that U1 = U2 = 0.

F.5 Slow-Drift Moment Proportional to Wave and

Body Oscillation Amplitude

We solve for the slow-drift force proportional to the body oscillation amplitude A(0)
j by

recognizing that all terms in Eq. (2.111) have components that are proportional to both
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Ao and A(0)
j . We bring together the results from the previous sections and find that for

j, ` = 1, 2,

κ̄kj`
ρogakπ

= −iP
∗
k

2

{
∞∑
q=0

G(2)∗
q cos[2β − (χj + χ`)] Ďq︸︷︷︸

(b)

+
∞∑
p=0

H`
p(ak)

ĒD
pq +

F̄D
pq(kqak)(kpak)

2︸ ︷︷ ︸
(a)

+ (νoak)Žp(h)Žq(h)︸ ︷︷ ︸
(d)




+ G(0)∗
q cos(χj − χ`)

∞∑
p=0

H`
p(ak)

F̄D
pq(kqak)(kpak)︸ ︷︷ ︸

(a)

+ (νoak)Žp(h)Žq(h)︸ ︷︷ ︸
(d)


 ,

(F.54)

where we have highlighted the contributions from each of the terms described in the previous
sections. The term κ̄

k(t)
j` is identical to the expression in Eq. (F.54), with the Ďq term

removed, as it is the sole contribution from the (b) term. In sum, we have for κ̄6,

κ̄k6
ρogπa2
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−yk0

a
κ̄k11 +

xk0
a
κ̄k21 +

X̄ (0)∗
2
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yk0
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κ̄k12 −

X̄ (0)∗
1

2

2
xk0y

k
0

a2
κ̄
k(t)
12 −

(
yk0
a

)2

κ̄
k(t)
11 −

(
xk0
a

)2

κ̄
k(t)
22 −

xk0
a

X̄ (0)∗
1

2
− yk0

a

X̄ (0)∗
2

2

 (F.55)

where we have used the that κ̄k12=κ̄k21. The total moment on the kth cylinder requires multi-
plying these terms by the respective RAOs, which is

F
k(20)
6,κ

ρogπa2A2
o

=
Re

A(0)
1

Ao
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−y

k
0

a
κ̄k11 +
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yk0
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κ̄k12 −

X̄ k(0)∗
1

2

)

+
A(0)

6

koAo

(
2kox

k
0

yk0
a
κ̄
k(t)
12 − koyk0

yk0
a
κ̄
k(t)
11 − koxk0

xk0
a
κ̄
k(t)
22

)
− koa

2

A(0)
6

koAo

(
xk0
a
X̄ k(0)∗

1 +
yk0
a
X̄ k(0)∗

2

)
.

(F.56)
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The total moment on the platform then becomes,

F
(20)
6,κ

ρogπa2A2
o

=
Re

A(0)
1

Ao
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−y

k
0

a
κ̄k11 +
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κ̄k21 +

X̄ k(0)∗
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koAo

Ncol∑
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2kox
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yk0
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k(t)
12 − koyk0

yk0
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κ̄
k(t)
11 − koxk0

xk0
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[
xk0
a
X̄ k(0)∗

1 +
yk0
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X̄ k(0)∗

2
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(F.57)

F.6 Slow-Drift Moment Proportional to Products

of Body Oscillation Amplitudes

For terms related to the steady yaw moment µ̄
(2)
6ik, λ̄

(2)
6ik, which are coefficients of the products

of body oscillation amplitudes, we have,

σ2
o µ̄

(2)
6ik + iσoλ̄

(2)
6ik =

1

2


0 1 x0

−1 0 y0

−x0 −y0 0

(σ2
oµ

(0)
11 − iσoλ

(0)
11

)
(F.58)

As depicted in Eq. (2.114c), we sum over the i and k directions. The summation over all
the directions allows us to write the nondimensional radiation slow-drift yaw moment as

F
(20)
6,µ

ρogπa2A2
o

=
Re

1

2
νoa(µ

(0)
11 − iλ

(0)
11 )

{[
A1

Ao

A∗2
Ao
− A2

Ao

A∗1
Ao

]
+

koa

(
xo
a

[
A1

Ao

A∗6
koAo

− A6

koAo

A∗1
Ao

]
+
yo
a

[
A2

Ao

A∗6
koAo

− A6

koAo

A∗2
Ao

])}
= 0,

(F.59)

where the last equality comes from the fact that the real parts of each of the square bracket
terms cancel each other.

F.7 Wave-Drift Added-Mass and Damping

The wave-drift added-mass stems from the time-derivative of the double-body pressure term
p01, while the wave-drift damping comes from the terms proportional to the slow-drift velocity
in F

(21)
j . We first describe the wave-drift added-mass briefly and then include a longer

discussion on the wave-drift damping.
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F.7.1 Wave-Drift Added-Mass

The wave-drift added-mass comes from the potential φ01 given in Sec. 2.4.2. The force from
this potential is found in Eq. (2.114d), and is represented by,

F
(02)
j =

∫
So
−ρo

(∑
k

U̇kψ̄k − s · ∇ϕ01 +
1

2
∇ϕ01 · ∇ϕ01

)
n′jdS. (F.60)

If we neglect O (UjUk), but keep O
(
U̇j

)
we are only left with the first term, which is related

to the double-body added-mass. Thus,

µ̄jk = ρo

∫
So
ψ̄knjdS. (F.61)

Since we only are interested in the horizontal motion, we use the exterior potential defined
in Eqs. (2.93) and (2.94), to express the double-body added-mass as,

µ̄jk = aρo

∫ 2π

0

∫ h

d

(
B̄0

2
+
∞∑
q=1

B̄q cos(βqz)

)
cos(θ − χk)njadθdz. (F.62)

The integration of the above equation yields,

µ̄jk
ρoπa3

=
δjk
2

∞∑
q=0

εqB̄qĒq, for j, k = 1, 2 (F.63)

where

Ēq =
1

a

∫ h

d

cos(βqz)dz. (F.64)

F.7.2 Wave-Drift Damping

The wave-drift damping stems from the forces described in Eq. (2.112). Thus we will go
through them, labeled (a)-(f) in order of occurrence. Again, we note that only the diffraction
potential of ϕ̄20 will lead to wave-drift damping terms, as noted in [26].

Term F 21a
j

From Eq. (2.112), we define the term F 21a
j as,

F 21a
j = Re

[∫
So
p21n

′
jdS

]

=− ρo
∫
So

Re

−U6
∂ϕ̄D20

∂β︸ ︷︷ ︸
(i)

− s · ∇ϕ̄D20︸ ︷︷ ︸
(ii)

+∇ϕ̄D20 · ∇ϕ01︸ ︷︷ ︸
(iii)

+
1

2
∇ϕ∗11 · ∇ϕ10︸ ︷︷ ︸

(iv)

n′jdS.
(F.65)
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To our knowledge, the steady, second-order potential has not been found explicitly in the
literature. Most authors, such as [45] and [129], only consider the unsteady potential because
in the zero-speed problem the steady potential does not contribute to the first or second-
order forces. Thus, we seek to transform the terms related to ϕ̄D20 into forms related to lower
order potentials. This procedure was performed in [32] for the (a.iii) term using Stokes’
Theorem and will be shown in greater detail in the forthcoming section. Similar analysis is
used for the terms (a.i), (a.ii) and (a.iv).

The strategy to convert these terms into lower order potentials is to use Green’s Theorem
on an imaginary boundary surrounding the body. This boundary takes the form of a cylinder
with radius R, where R >> a. We apply Green’s Theorem using two potentials: ϕ̄D20 and ϕ̄01.
We attempt to write the terms in the integrand of Green’s Theorem as normal derivatives
so that we can insert the boundary conditions for ϕD20 on the body surface and the surface
z = h. We note that due to the Sommerfield radiation condition |∇ϕ̄20| → 0, r → ∞. We
apply Green’s Theorem to ϕ̄20 and ϕ̄01, which yields∫ ∫

Sb∪Sf∪So∪Sr

ϕ̄D20

∂ϕ01

∂n
− ϕ01

∂ϕ̄D20

∂n
dS = 0, (F.66)

where the boundary can be defined by the surfaces on the seabed, free surface, body and
outer control surface, Sb ∪ Sf ∪ So ∪ Sr. Due to the no penetration condition on the sea-
bed, the terms integrated over Sb will be null. Using the boundary condition in 2.49a and
Eq. (2.37b), we have,∫∫

So

Ujϕ̄
D
20n
′
jdS =

∫∫
Sf∪So∪Sr

ϕ01
∂ϕ̄D20

∂n
dS −

∫∫
Sr

ϕ̄D20

∂ϕ01

∂n
dS. (F.67)

We note that the flux of the second-order diffraction potential as well as the first-order
potential out of the far-field boundary must decay to 0 as R→∞. Thus,

Uj

∫∫
So

ϕ̄D20n
′
jdS =

∫∫
Sf

ϕ01
∂ϕ̄D20

∂n
dS (F.68)

To transform F 21a.i
j , we note that ϕ01 is independent of β (since there is no incident wave

taken into account for this potential). Clearly,

Uj

∫∫
So

∂ϕ̄20

∂β
n′jdS =

∫∫
Sf

ϕ01
∂

∂β

∂ϕ̄20

∂n
dS. (F.69)

Thus, we can insert the boundary conditions in Eqs. (2.49d) and (2.42) and solve for F 21a.i
j .

Let f (20) represent the linearized free surface such that,

f (20) = −σo
2g

Im

[
ϕ10

∂2ϕ∗10

∂z2

]
. (F.70)
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Setting j = 6, we can rewrite the previous equation as,∫∫
So

∂ϕ̄20

∂β
n′6dS = −σoA

2
o

2g

∫∫
Sf

ψ̄6 Im

[
∂ψD
∂β

∂2ψ∗D
∂z2

]
+ ψ̄6 Im

[
ψD

∂3ψ∗D
∂z2∂β

]
dS (F.71)

We discuss how this integration can be performed over the entire free-surface in Appendix G.
To solve for F 21a.ii

j we only consider the case for U1 = U2 = 0. Thus, s · ∇ = U6∂/∂θ.
We will follow the same logic as done for F 21a.i

j , with the addition of one more piece of
information. We note that many authors who have solved the unsteady potential explicitly,
as in [45] and [129], take advantage of the circumferential symmetry of the problem and
decompose the incident and scattering potentials into the form,

ϕ̄D20 =
∞∑
n=0

ϕ̄D(20)
n (r, z) cos [n(θ − β)] (F.72)

Further,
∂ϕ̄D20

∂θ
= −

∞∑
n=0

ϕ̄D(20)
n (r, z)n sin [n(θ − β)] (F.73)

Thus, we follow the Green function decomposition replacing ϕ̄D20 with ∂ϕ̄D20/∂θ in Eq. (F.66),
and reorder the derivatives, such that

U6

∫∫
So

∂ϕ̄D20

∂θ
n′6dS = −U6

σoA
2
o

2g

∫∫
Sf

ψ̄6 Im

[
∂ψD
∂θ

∂2ψ∗D
∂z2

]
+ ψ̄6 Im

[
ψD

∂3ψ∗D
∂z2∂θ

]
dS (F.74)

These integrals are very similar to the ones in Appendix G, since θ and β appear similarly
in the trigonometric functions.

The next term considered in this section is (a.iii), which has appeared in other analyses
involving a body subject to waves and a constant current. We follow the derivation of [32].
However, we re-derive the equations because although our analysis agrees with the final
result, there are some differences in the intermediary steps, such as in their Eq. (53). The
conclusion also agrees with Eq. (60) in [130].

We start with a vectorized form of Green’s Theorem, using the potential ϕ̄D(20) and the
gradient of the double-body potential ϕ01,∫ ∫

Sb∪Sf∪So∪Sr

ϕ̄D20

∂∇ϕ01

∂n
−∇ϕ01

∂ϕ̄D20

∂n
dS = 0. (F.75)

We utilize the no-penetration condition on the bottom boundary, the far-field conditions and
the free-surface condition for ϕ̄01, and the body boundary condition for ϕ̄D20, such that∫∫

So

ϕ̄D20(n · ∇)∇ϕ01dS =

∫∫
Sf

∇ϕ01
∂ϕ̄D20

∂n
dS, (F.76)
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where we have used the definition n · ∇ = ∂/∂n. We now take a digression into a discussion
involving a variant of Stokes’ Theorem so that we may transform the left-hand side of the
equation.

A variant of Stokes’ Theorem is,∫∫
S

∇(F · n)− (∇ · F )ndS =

∫
C

r̂ × F dl (F.77)

where C is a boundary of the surface S, and r is a unit vector along that boundary, following
the right-hand rule. We substitute F = ϕ̄D20∇ϕ01, such that∫∫

S

∇(ϕ̄D20∇ϕ01 · n)− (∇ϕ̄D20 · ∇ϕ01)ndS =

∫
C

ϕ̄D20(r̂ ×∇ϕ01)dl (F.78)

The first term can be rewritten using vector identities as,

∇(ϕ̄D20∇ϕ01 · n) = (ϕ̄D20∇ϕ01 · ∇)n+ (n · ∇ϕ̄D20)∇ϕ01

+ ϕ̄D20(n · ∇)∇ϕ01 + ϕ̄D20∇ϕ01 × (∇× n) + ϕ̄D20n× (∇×∇ϕ01).
(F.79)

The last term is null due to vector identities. For a vertical cylinder, ∇ × n = 0 on the
wall boundary, canceling the fourth term, which also renders the first term null. We use the
body boundary condition for ϕ̄D20 to render the second term null. Thus only the third term
non-zero. Therefore, we have∫∫

S

ϕ̄D20(n · ∇)∇ϕ01dS =

∫∫
S

(∇ϕ̄D20 · ∇ϕ01)ndS, (F.80)

where we have used the fact that for a cylinder moving in the horizontal plane r̂ = [0êθ, 1êr, 0k̂]T

in cylindrical coordinates. The insertion of this term into Eq. (F.76), yields,∫∫
So

(∇ϕ̄D20 · ∇ϕ01)ndS =

∫∫
Sf

∇ϕ01
∂ϕ̄D20

∂n
dS, (F.81)

which is Eq. (57) in [32] and Eq. (60) in [130]. Since U1 = U2 = 0 and n6 = −x0n2 + y0n1∫∫
So

∇ϕ̄D20 · ∇ϕ01n6dS = −x0U6

∫∫
Sf

f (20)∂ψ̄D
∂y′

dS + y0U6

∫∫
Sf

f (20)∂ψ̄D
∂x′

dS (F.82)

This integration is very similar to the one done for the previous terms and the reader is
referred to Appendix G for further discussion on the integration over the free-surface.

The term in (a.iv) can be dealt with in exactly the same way, since we are disregarding
terms O (AkUj) and thus only considering ψ̌D. The term F (a.iv) can be represented by,∫∫

So

(∇ϕ11 · ∇ϕ10)ndS =

∫∫
Sf

∇ϕ10
∂ψ̌D
∂n

dS,+ O
(
A(0)
k Uj

)
+ ... (F.83)
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where the inhomogeneous free-surface boundary condition for ϕ11 given in the right-hand
side of Eq. (2.39) can be utilized. With U1 = U2 = 0, the inhomogeneous term is,

FD[ψD]

∣∣∣∣∣
U1=U2=0

= −U6
2iσoAo
g

(
−y0

∂ψD
∂x

+ x0
∂ψD
∂y

+
∂ψD
∂θ
−∇ψ̄6 · ∇ψD

)
−U6

2iσoAo
g

(
∂ψD
∂β

+
1

2
ψD

∂2ψ̄6

∂z2

)
,

(F.84)

Let,

f (11) =
1

U6

FD[ψD]

∣∣∣∣∣
U1=U2=0

. (F.85)

Thus,∫∫
So

(∇ϕ11 · ∇ϕ01)n6dS = −x0U6Ao

∫∫
Sf

f (11)∂ψD
∂y′

dS + y0U6Ao

∫∫
Sf

f (11)∂ψD
∂x′

dS. (F.86)

The integrand consists of terms that are either products of the diffraction potential, alone,
or multiplied by the yaw slow-drift potential. The integration of the terms can be solved
using the algorithm described in Appendix G, by setting the arbitrary function f(r) = r.
For compactness, these terms will not be solved for explicitly.

Terms F 21b−d
j

All terms in F 21b−d
j are at least O

(
A(0)
j Uk

)
and will not be considered for the wave-drift

damping.

Term F 21e
j

F 21e
j =

1

2
Re
[
α(1) × F (10)∗ + ξ(1) ×M (10)∗] . (F.87)

Thus F 21e
j = O

(
(Ao +A(0)

j )A(1)
k

)
and is not relevant to this section.
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Term F 21f
j

We substitute the linearized free-surface conditions found in Eqs. (2.23a) and (2.23b), into
Eq. (2.112) and obtain

F 21f
j =

Re

ρo
2g

∫
Co

σ2
oϕ10ϕ

∗
11︸ ︷︷ ︸

(i)

+ iσoϕ10s · ∇ϕ∗10︸ ︷︷ ︸
(ii)

− iσo∇ϕ01 · ∇ϕ∗10︸ ︷︷ ︸
(iii)

−σoko(U1 cos β + U2 sin β)(ϕ∗10 · ϕ10)︸ ︷︷ ︸
(iv)

− iσoU6

(
∂ϕ∗10

∂β
· ϕ10

)
︸ ︷︷ ︸

(v)

n′jdl

(F.88)

Only terms F 21f.ii−v
j will contribute to the slow-drift wave damping. Further if U1 = U2 = 0,

then term F 21f.iv
j is null and s · ∇ = U6∂/∂θ. Therefore,

F 21f
j =

Re
−iσoρoaA

2
o

2g
U6

∫ 2π

0

(
ψD

∂ψ∗D
∂θ
−∇ψ̄6 · ∇ψ∗D −

∂ψ∗D
∂β

ψD

)
(xo sin θ−yo cos θ)dθ. (F.89)

The integration here is only over the azimuthal angle and is similar to the integration per-
formed for X̄ (2)

j , shown in Eq. (F.50).
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Appendix G

Methods for Integration of Bessel Functions over

Infinite, Free Surface

In this section, we consider the integration of the terms that arose in the calculation of the
wave-drift damping in Appendix F.7.2, in such equations as Eq. (F.71). Using our definitions
of the diffraction potentials in Eq. (2.76), we can write the first integral in Eq. (F.71) as,

− gA
2
o

2aσo

2π∫
0

∞∫
a

ψ̄6 Im

[
∂ψD
∂β

∂2ψ∗D
∂z2

]
=

(
−y0

∞∑
`=0

cos(β`)L`(r) cos θ + x0

∞∑
`=0

cos(β`)L`(r) sin θ

)

Im

[
∞∑
m=0

∞∑
p=0

Zp(h)G(m)
p (r)m sin(m(θ − β))

∞∑
n=0

∞∑
q=0

Z ′′q (h)G(n)∗
q (r) cos(n(θ − β))rdrdθ

]
(G.1)

Much like when solving for the steady, second-order forces, F 20
j the summations can be

simplified by noting that the integration over the azimuthal angle θ will only be non-zero
when m = n + 1, n = m + 1 or n + m = 1. Since performing this integration is trivial, we
restrict our attention to the integration in the radial direction. In order to explicitly see how
the Bessel and Hankel functions come in, we write

G
(n)
0 (r) = g

(n)
J Jn(kor) + g

(n)
H Hn(kor) (G.2a)

G(n)
q (r) = g(n)

q Kn(kqr) (G.2b)

L0(r) = `0
1

r
(G.2c)

L`(r) = ``K1(kor) (G.2d)

where g
(n)
J , g

(n)
H , g

(n)
q , `` can be inferred from Eq. (2.78). The Hankel function of the first

kind Hn(kor) is simply a summation of Bessel functions of the first and second kind,

Hn(kor) = Jn(kor) + iYn(kor). (G.3)

We note that Yn(kor) ∈ R for any n ∈ Z and r > 0. We first focus on the integrals that
include terms where the integration is over an infinite domain and the integrand does not
exponentially decay, that is when ` = p = q = 0. The substitution of the Gq and L` terms
found in Eq. (G.2) into Eq. (G.1) and ignoring constants, we find that there will be multiple
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types of integrals that will naturally occur, such as

JJn =

∫ ∞
a

Jn+1(kor)Jn(kor)dr (G.4a)

JYn =

∫ ∞
a

Jn+1(kor)Yn(kor)dr (G.4b)

Y Jn =

∫ ∞
a

Yn+1(kor)Jn(kor)dr (G.4c)

Y Yn =

∫ ∞
a

Yn+1(kor)Yn(kor)dr (G.4d)

(G.4e)

These integrals are well-studied since they occur in other scientific fields such as elasticity,
electrodynamics, biophysics, and geophysics. The author of [131] developed an algorithm to
use the Integration, Summation and Extrapolation (ISE) technique on products of Bessel
functions of arbitrary order. The trick is to recast the product of the Bessel functions as
the sum of two oscillating functions, one fast and one slow and then use the ISE technique
twice. To get an actual error of less than 10−6 for an integral similar to JJ0 only 200-250
function evaluations are necessary (see Fig. 4 in [131]). This type of algorithm was updated
and implemented in MATLAB by the authors of [132] in the function IIPBF.m to compute
the integrals of products of Bessel functions and an arbitrary well-behaved function on the
interval [0,∞). With few small tweaks to their algorithm, the integrals can be computed on
the interval [a,∞). In this way the integration over the entire free-surface can be computed
in an efficient, complete and robust manner.

If we restrict our attention to the case when l > 0 or p > 0 or q > 0, then a modified
Bessel function of the second kind appears in the integrand. Thus, we shall see terms such
as

KZZn =

∫ ∞
a

K1(kor)Zn+1(kor)Zn(kor)rdr (G.5a)

KZn =

∫ ∞
a

Kn+1(kor)Zn(kor)dr (G.5b)

ZKn =

∫ ∞
a

Zn+1(kor)Kn(kor)dr. (G.5c)

where Zn represents a Bessel function such as Jn, Yn orKn. These integals can be solved using
standard integration techniques (such as Gaussian quadrature) due to the convergence of the
integrand. The exponential decay of the modified Bessel function of the second kind Kn(kor),
which represent the evanescent modes of the solution, drives the integrand to zero as r →∞.
In fact, the standard MATLAB library includes the adaptive Gauss-Kronrod quadrature
function quadgk, which can carry out integration over an infinite interval. For arbitrary n,
the integral can be computed in approximately 0.5 sec on a standard workstation.
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