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Assessing heavymetal pollution in river sediments and identifying the key factors contributing tometal pollution
are critical components for devising river environmental protection and remediation strategies to protect human
and ecological health. This is especially important in urban areas wheremetals from awide range of sources con-
tribute to sediment pollution. In this study, themetal enrichment factor (EF)was used tomeasure thewatershed
distribution of Cu, Zn, Pb and Cd in sediments in the Wen-Rui Tang urban river system in Wenzhou, Eastern
China. The Geographical Detector Method (GDM)was specifically evaluated for its ability to analyze spatial rela-
tionships between metal EFs and their anthropogenic and natural control factors, including densities of industry
(DI), livestock (DL), service industries (DS), population (DP), and roads (DR), along with agricultural area (AG),
sediment total organic carbon (TOC), and soil types (ST). Results showed that the watershedwas highly contam-
inated by all metals with an EF trend of Cd≫ Zn N Cu N Pb. The spatial distribution of EFs demonstrated high con-
tamination of all metals in the southwestern region of the watershed where industrial activities were
concentrated, and higher Cu and Zn concentrations in the northeastern region having a high density of livestock
production. GDM results identified DI as the dominant determinant for all metals, while TOC and ST were deter-
mined tohave amoderate secondary influence for Zn, Pb and Cd. Additionally, GDMrevealed several additive and
nonlinear interactions between anthropogenic and natural factors influencing metal concentrations. Compared
to other correlation, multiple linear regression and geographically weighted regression, GDM demonstrated dis-
tinct advantages of being able to assess both categorical and continuous variables and determine both single and
multiple factor interactions. These attributes provide a more comprehensive understanding of metal spatial
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distributions while avoiding multicollinearity issues when identifying significant contributing factors at the wa-
tershed scale.

© 2018 Published by Elsevier B.V.
1. Introduction

River sediments are an essential component of the aquatic environ-
ment having a strong control in buffering metals concentrations in the
aqueous phase and regulating metal bioavailability to benthic organ-
isms (Stead-Dexter andWard, 2004). Metal pollution in aquatic ecosys-
tems has captured global attention due to their ability to bioaccumulate/
biomagnify in the foodweb (Ke et al., 2017; Li et al., 2016). This may re-
sult in serious toxicity, including to humans using aquatic organisms as
a food source or using the contaminated waters as a source of drinking
water or irrigation for food crops (Stankovic et al., 2014; Baby et al.,
2010). Both anthropogenic activities, such as industrial and domestic
wastewater inputs, and natural weathering of rocks contribute to
metal contamination of sediments (Akcay et al., 2003). Anthropogenic
activities are generally the cause of most metal pollutants and these
metal sources often have a higher bioaccessibility resulting in more se-
vere toxicity impacts on aquatic ecosystems (Sekabira et al., 2011).
However, given the background level of metals coming from natural
processes, it is very important to develop techniques to help separate
anthropogenic versus natural (i.e., background) contributions for effec-
tive mitigation and management.

In recent years, considerable research has examined anthropogenic
influences to metal pollution in river sediments by integrating multiple
indicators (e.g., ecological risk assessment, enrichment factor, and
geoaccumulation index) (Zhang et al., 2017; Islam et al., 2015;
Sekabira et al., 2010). Statistical methods examining the sources of
metal pollution include Pearson correlation coefficient analysis
(Bastami et al., 2015), stepwise multiple regression analysis (Wu et al.,
2017), principle component analysis (Bai et al., 2016) and geographi-
cally weighted regression (GWR) (Xia et al., 2018). Although these
methods can often measure and estimate metal enrichment in sedi-
mentswith various influencing factors, they neglect the spatial relation-
ship between the driving factors and metal concentrations or are
hindered by multicollinearities among the influencing factors (Comber
et al., 2018; Wheeler and Tiefelsdorf, 2005). To overcome these limita-
tions, the Geographical Detector Method (GDM) was applied in this
study to use the spatial variance to test and investigate the relative con-
tribution of a single factor and the interactions between independent
variables, thus providing an objectivemeasure of spatially stratified het-
erogeneity (Wang et al., 2016). GDM was first applied to study neural
tube defects in the Heshun Region, China (Wang et al., 2010). Subse-
quently, GDMwas used to examine the influence of environmental fac-
tors on vegetation in temperate, arid regions (Ren et al., 2014), to
examine the relevant factors influencing rural settlement distribution
at the county level (Yang et al., 2016), and to analyze the factors
influencing soil metal transport and deposition in rainfall from
Huanjiang County, South China (Qiao et al., 2017). From these studies,
it was recognized that GDM could be effectively used to study the rela-
tionships between environmental factors and metal pollution. There-
fore, we applied the GDM to examine the relationships between
metals and anthropogenic/natural factors in riverine sediments in a
complex watershed ranging from rural to highly urbanized/industrial-
ized regions. The GDM approach was compared to other analysis
methods to provide validation for the analysis and to assess the advan-
tages/disadvantages of the GDM to other approaches.

Wenzhou, a city of 9.2 million population, was the birthplace of en-
trepreneur activities in China that led to the establishment of many
small- and medium-sized commercial enterprises. Leather products,
machinery and hardware manufacturing, electroplating, printing and
dyeing, and chemical products are some of the dominant enterprises
contributing metal emissions to the environment. Much of the munici-
pal and industrial waste waters were historically discharged directly to
receiving waters with no treatment (WEPB, 2014). While much of the
wastewater in Wenzhou is currently collected, there are still large in-
puts of metals to city waterways as the treatment methods are ineffec-
tive at metal removal (Gobeil et al., 2005). Previous research in the
Wen-Rui Tang River watershed focused on identifying the spatial distri-
bution and sources of water pollutants (Yang et al., 2013), the spatial
distribution and seasonal variation of methylmercury (Pan et al.,
2017), and risk assessment of heavy metal pollution on human health
(Qu et al., 2018). However, these studies did not analyze the contribu-
tions of various influencing factors to metal concentrations in riverine
sediments. Investigating source apportionment is important for effec-
tive identification ofmetals pollution sources (Singh and Kuman, 2017).

Therefore, the primary objective of this study was to integrate en-
richment factor characterization of metal contamination with GDM to
(1) assess the pollution level of metals in riverine surface sediments
and identify the spatial distribution of metals pollution in the water-
shed; (2) analyze the contribution of anthropogenic activities and natu-
ral factors affectingmetal concentrations; (3) explore synergistic and/or
antagonistic interactions among anthropogenic activity factors and nat-
ural factors; and (4) compare the advantages/disadvantages of GDM to
other statistical methods. Development of the GDM for spatial assess-
ment of environmental pollutants at the watershed scale provides an
important tool for environmental and water resource agencies to de-
velop sustainable environmental management and remediation
strategies.

2. Material and methods

2.1. Study area

The Wen-Rui Tang River watershed (740 km2) is located in Wen-
zhou, Zhejiang Province, in the Eastern China (Fig. 1). Land use ranges
from rural to urban and the watershed has experienced rapid urbaniza-
tion in the past decades. According to the 2015 Wenzhou Environmen-
tal Status Bulletin, there are a total of 1151 companies comprising six
major industrial categories of electroplating, printing and dyeing, pa-
permaking, leather processing, chemical production, and synthetic
leather. Annual sewage discharge in the watershed is ~20 million tons
with ~40% of the sewage load being discharged directly to the river sys-
tem without treatment in the 2000s. Industry density is highest in the
southwestern region (an old industrial zone) followedby the southeast-
ern region (a new industrial zone). The highest density of roads occurs
in the northwestern region (Fig. 1).

2.2. Sample collection and physicochemical analysis

A total of 30 surface sediments (0–10 cm) were collected from the
middle of the river channel inMarch to April 2017 (Fig. 1). The sampling
was designed to provide a relatively uniform sample distribution across
the study area (Fig. 1). We used a GPS to record coordinate information
(World Geodetic System-1984) for each site. Samples were collected
using a clamshell bucket sampler and a composite sample frommultiple
grabs at each location was stored in a clean polyethylene bag and trans-
ferred immediately to the laboratory. Samples were stored in a cryo-
genic freezer. Large debris was removed (e.g., stones, wood), and the
samples were crushed and passed through a 150-mesh (106 μm)



Fig. 1. Sampling sites and major land-use units in the Wen-Rui Tang River watershed.
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nylon sieve. All samples were quartered to provide representative sub-
samples for further physicochemical analysis.

Total metal concentrations for Mn, Cu, Pb, Zn and Cd were deter-
mined on a 0.5 g sediment sample digested with mixed acids (HNO3-
HCl-HF-HClO4) (USEPA, 1996). Metal concentrations in the digests
were quantified using an atomic absorption spectrophotometer with a
graphite furnace (Cd, Pb) (Agilent 8800 ICP-MS, Agilent Technologies;
detection limit: Pb = 0.005, Cd = 0.01 mg L−1) or by flame (Cu, Zn,
Mn) (PinAAcle 900, Perkin Elmer; detection limit: Cu = 0.01, Zn =
0.01, Mn = 0.016 mg L−1). Based on Pourreza and Ghanemi (2009),
the detection limit was calculated as 3 times the standard deviation of
blank samples. Sediment samples were analyzed in duplicate and the
relative standard deviation (RSD) of all duplicates was±5%. In addition,
we used the GBW-07312 reference sediment from Chinese Academy of
Geological Sciences for quality control and determined recoveries of
total metal concentrations, which ranged from 89 to 107%. Total organic
carbon (TOC) in sediment samples was determined by the potassium
dichromate oxidationmethod (Lu, 2000). Sediment pH values were de-
termined with deionized water (m:v = 1:5).

2.3. Data sources and statistical analysis

This study examined eight factors known to influencemetal concen-
trations in riverine sediments (Table 1). Anthropogenic activity factors
included densities of industry (DI), livestock (DL), service industries
(DS), population (DP) and roads (DR), along with agricultural area
(AG). Natural factors included sediment total organic carbon (TOC) con-
centration and soil type (ST). Soil data were derived from the 2005 soil
map of Zhejiang Province. Land-use data came from the Land Use
Table 1
Classification of impact factors.

Impact factors Classification category (L)

1 2 3

DI 0–3.97 3.98–7.95 7.96–11.9
TOC 7.76–13.8 13.9–27.0 27.1–41.0
DS 0–14.8 14.9–29.6 29.7–44.4
AG 0–0.58 0.59–2.2 2.3–4.8
DL 0–0.56 0.57–1.12 1.13–1.68
DP 3126–5205 5206–10,467 10,468–12,644
DR 1.26–4.03 4.04–7.03 7.04–9.59
ST Coating mud Yellow soil Cyanosis clay paddy
Survey Project of Wenzhou (2005) having a spatial resolution of
0.5 m. Industrial, livestock and service industry pollution data were ac-
quired from the first national pollution source survey of China. DP was
calculated based on population data from theWenzhou Statistical Year-
book published byWenzhouMunicipal Bureau of Statistics (WSB, 2010;
Chen et al., 2016). DR was obtained using ArcGIS 10.0 to calculate the
total length of roads within each administrative division/area. DI, DL
and DS were calculated using the kernel density function in ArcGIS
10.0. AG was calculated within a 1-km straight-line buffer of the sam-
pling sites. Continuous data were converted to categorical data using
the Natural Breaks classification method in ArcGIS 10.0 to meet the
data format requirements of GDM (Feng et al., 2013). The classification
categories for all eight impact factors are listed in Table 1 and their spa-
tial distributions are depicted in Fig. S1. To evaluate the efficacy of the
GDM, results were compared with those determined by Spearman cor-
relation analysis (SCA) and stepwise multiple linear regression per-
formed with SPSS 21.0. All graphical images were produced with
Origin8.0.

2.4. Enrichment factor

The enrichment factor (EF) is considered an effective tool to differ-
entiate the metal source between anthropogenic and naturally occur-
ring sources (Adamo et al., 2005; Chen et al., 2007; Franco-Uría et al.,
2009). As Mn is widely selected for use as a reference element, we
chose it as the normalizing element for determining EF-values (Awagu
and Uduma, 2013; Loska et al., 1997). Other widely used reference
metal elements include Fe and Al (Loska et al., 2003; Nyangababo
et al., 2005). Following Taylor (1964), we defined the EF as the metal
Units

4 5 6

12.0–15.9 16.0–19.9 Per km2

41.1–53.0 53.1–90.4 ppm
44.5–59.2 59.3–74.0 74.1–88.8 Per km2

4.9–8.4 km2

1.69–2.24 2.25–2.80 Per km2

12,645–18,896 18,897–32,868 Per km2

9.60–13.6 km/km2

None
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(CM) to manganese (CMn) ratio divided by the background metal to
manganese (CM/CMn)background ratio:

EF ¼ CM=CMnð Þsample

CM=CMnð Þbackground
ð1Þ

EF values are interpreted as: EF ≤ 1.5 (no modification); 1.5 b EF ≤ 3
(minor modification); 3 b EF ≤ 5 (moderate modification); 5 b EF ≤ 10
(severe modification); and EF N 10 (very severe modification) (Birch
and Olmos, 2008). The metal background values were determined
from the average values of hundreds soil samples collected from the
Wen-Rui plain of Zhejiang Province (Wang et al., 2007).

2.5. The Geographical Detector Method (GDM)

GDM was used to analyze correlations among the four metals (Pb,
Cd, Cu and Zn) and the eight anthropogenic and natural influencing fac-
tors recorded for each sediment sampling site, including interactions
among the influencing factors. Themethod principle examineswhether
the spatial distribution of the dependent variable Y (metal concentra-
tion) and the independent variable X (anthropogenic/natural influenc-
ing factors) tends to be the same, as expressed by the following
equation (Wang et al., 2010):

q ¼ 1−
1

Nσ2 ∑
L
i¼1Niσ2

i ð2Þ

where q is the power determinant of each influencing factor for the
metal concentration, N is the number of samples, Ni is the number of
samples in each category, and L is the number of classification catego-
ries. The σ2 is the variance of Y and σi

2 is the variance for each classifica-
tion category Y. Expressions q∈[0,1] and q = 1 indicate that Y is
completely determined by X while q = 0 indicates there is no associa-
tion between Y and X. The value of the q-statistic indicates that X ex-
plains 100q% of Y and the q-statistic measures the association
between X and Y, both linearly and nonlinearly (Wang et al., 2010).

The interaction detector for GDM can also be applied to investigate
the interaction between any two factors (symbolized by ∩). If q(X1
∩ X2) = q(X1) + q(X2), the factors are independent of each other; if
Max (q(X1), q(X2)) b q(X1 ∩ X2) b q(X1) + q(X2), the factors bi-
enhance each other, which means that the X1 and X2 joint risk (q(X1
∩ X2)) enhances the single risk (X1 or X2) but is smaller than the two
individual risks added together. Similarly, q(X1 ∩ X2) N q(X1) + q
(X2) indicates that the factors nonlinearly enhance each other. If q(X1
∩ X2) b Min (q(X1), q(X2)), the two factors nonlinearly weaken each
other; whileMin (q(X1), q(X2)) b q(X1∩X2) bMax (q(X1), q(X2)), in-
dicates the factors uni-weaken each other (Wang et al., 2010). More de-
tails on GDM can be found at http://www.geodetector.org/.
Table 2
Statistical summary of total element concentrations (mg kg−1) and enrichment fa
Rui Tang River watershed.

Wen-Rui Tang River
watershed (n = 30)

Cu Zn

Descriptive statistics Mean 194
Median 180
SD 125
Minimum 29.5
Maximum 434
BGVa 32.7

EF Range 0.65–13.4 1.8
Mean ± SD 6.01 ± 3.9 12

a Background value (BGV) compiled from Wang et al. (2007).
3. Results

3.1. Descriptive statistics and assessment of metal pollution in sediments

The average pH of sediments was 7.15 (range: 6.63–7.91) and aver-
age sediment TOC was 25.8 g kg−1 (range: 7.8–90.4). The descriptive
statistics and EF values of the metal concentrations in sediments of the
Wen-Rui Tang River watershed are summarized in Table 2. Median
values for elemental concentrations in sediments followed a decreasing
order of Zn N Cu N Pb N Cd. Mean levels of all the analyzedmetals in sed-
iments were much higher than the corresponding background values.
The EF values based on total metal concentrations followed (mean
and range): Cd (115.6 [2.24–1477]) N Zn (12.84 [1.89–55.2]) N Cu
(6.01 [0.65–13.4]) N Pb (3.16 [0.74–13.3]). According to EF classification
criteria, all of the metals demonstrate contamination by anthropogenic
sources (EF N 1.5). Pb displayedmoderate modification, Cu severe mod-
ification, and Zn and Cd very severe modification.

3.2. Spatial distribution of EFs

EF values for the 30 sampling points are displayed in Fig. 2 to show
the spatial distribution of metals in sediments of the Wen-Rui Tang
River watershed. In general, the EF values for Cu, Zn, Pb and Cd had sim-
ilar distribution trends across the watershed. The highest EF values for
all metals appeared in the southwestern regions having the highest
density of industrial activities (e.g., electroplating, printing and dyeing,
tanning, etc.). The EF values for Cu and Znwere also somewhat elevated
in the northeastern region, an area with a high density of livestock and
poultry farms. EF values for Cdwere generally very high throughout the
entire study areawithmost EF values indicating serious pollution levels.
While sediment sampling sites with Pb exceeding a moderate pollution
level were rare, these higher Pb concentrations were located in the
northwestern and southwestern regions.

Overall, metals in sediments of the Wen-Rui Tang River watershed
showed a distribution consistent with contamination from high density
industrial areas, indicating that surface runoff and sewage discharge
from factories caused high contamination levels of metals in the sedi-
ment. Areas of elevated Cu and Zn also appeared to be related to districts
with a higher density of livestock and poultry farms, reflecting that Cu
and Zn contamination levels were highest around livestock and poultry
farms. Contamination by Cdwas very serious throughout thewatershed
while Pb was relatively low, whichmeans thewaste residue andwaste-
water from industry contains higher Cd and lower Pb concentrations,
while emissions from traffic mainly contained Pb.

3.3. Effect of single factors on metal concentration

3.3.1. Contribution of anthropogenic and natural factors to metal
concentrations

Using the GDM, we assessed the impact of individual anthropogenic
andnatural factors that could possibly influencemetal concentrations in
ctors (EF) for heavymetal risk assessment in sediments (n=30) fromWen-

Pb Cd Mn

1589 138 30.5 779
759 89.4 1.84 146
1581 118 60.0 745
2623 35.9 0.34 450
7616 644 314 1071
109 38.4 0.17 759
9–55.2 0.74–13.3 2.24–1477
.8 ± 12.7 3.16 ± 2.55 115.6 ± 288.7

http://www.geodetector.org/


Fig. 2. Spatial distribution of EF for Cd, Cu, Zn and Pb in sediments of Wen-Rui Tang River watershed.
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sediments of theWen-Rui Tang River watershed (Fig. 3). The highest q-
values (Zn=0.676, Cd=0.883, Cu=0.35 and Pb=0.781)were found
for DI, which suggests that industry was the dominant factor causing
metal pollution in the study area. Concentrations of Zn, Pb and Cd also
showed amoderately strong influence from ST (q-value=0.346). Com-
pared to the othermetals, Cu and Pb showed a somewhat stronger influ-
ence from DR (q-value of 0.309, and 0.356). All the other influencing
factors showed a low level of potential contribution (b0.3) with TOC
having a weak, but consistent contribution for all metals.

In summary, DI was identified as the primary factor contributing to
metal concentrations in the riverine sediments. ST also showed a
moderate secondary influence on Zn, Pb and Cd, but not for Cu. The
contribution of DL to Zn and Cu was appreciably different from Cd and
Pb, suggesting that Zn and Cu in livestock feed/manure maybe an im-
portant source of these metals. Compared to the other metals, Cu
showed a stronger influence from AG, suggesting that farm chemicals
Fig. 3. Contribution of anthropogenic and natural fa
(e.g., pesticides/fertilizers) or livestock feeds/manure maybe potential
Cu sources. Further, the contribution of DR to Cu and Pbwas appreciably
higher than for Cd and Zn, which suggests that traffic sources may have
an influence on these metals. These GDM results further verify the spa-
tial distribution of EF values presented in Section 3.2.

3.3.2. Comparison between GDM and SCA
We used Spearman correlation analysis (SCA) to validate the reli-

ability of the GDM results (Table 3) and used Cu as a specific example
to compare the differences between the GDM and SCA approaches
(Fig. 4). DI (r = 0.475–0.528) showed significant correlations with all
metals (Table 3). TOC (with Zn and Pb) and DL (with Cu) also showed
significant correlations, but the correlations were weaker (r b 0.400)
than those for DI. AG showed the lowest correlation with all metals,
which was similar to the GDM result. However, the relatively high con-
tribution of AG to Cu was not identified as for GDM (Fig. 3). The SCA
ctors influencing heavy metal concentrations.



Table 3
Spearman correlation analysis of eight anthropogenic and natural metal influencing fac-
tors with Cu, Zn, Pb and Cd concentrations.

Impact factors Cu Zn Pb Cd

DI 0.475⁎⁎ 0.513⁎⁎ 0.528⁎⁎ 0.517⁎⁎

TOC 0.360 0.398⁎ 0.378⁎ 0.138
DS −0.198 −0.279 −0.242 −0.226
DL 0.365⁎ 0.294 0.170 0.154
AG 0.072 0.048 −0.009 0.046
DP −0.225 −0.302 −0.186 −0.198
DR −0.310 −0.178 −0.043 −0.037
ST 0.340 0.329 0.244 0.199

⁎⁎ Significance at p ≤ 0.01 level (bilateral).
⁎ Significance at p ≤ 0.05 level (bilateral).

Table 4
Multiple regression equations for heavy metals with significant influencing factors.

Heavy metals Regression equation R2 p

Cu 17.7DI + 1.9TOC 0.57 b0.01
Zn 459.7DI + 26.9TOC 0.72 b0.001
Pb 38.1DI + 1.8TOC 0.75 b0.001
Cd 20.5DI 0.71 b0.001

719L. Luo et al. / Science of the Total Environment 653 (2019) 714–722
results were similar to those of the GDM analysis in identifying DI as an
important contributor to metal pollution in the Wen-Rui Tang River
sediments.

Fig. 4 comparing the GDM and SCA results revealed that both
methods were consistent in identifying DI as a strong primary factor,
and TOC and DL as secondary factors influencing sediment Cu concen-
trations. However, SCA and GDM deviated in their assessment of the
other factors, with SCA indicating three negative q-values (DS, DP, DR)
versus positive q-values from GDM. Overall, SCA verified the primary
drivers of Cu concentrations in riverine sediments identified by GDM,
but the influence of theweaker drivers showed some rather large differ-
ences. The differences between GDM and SCA results were virtually the
same for Zn, Pb and Cd (Fig. S2).
3.4. Multi-factor analysis of metal concentrations

3.4.1. Multiple linear regression
Table 4 shows the results of multiple linear regression analysis for

exploring anthropogenic and natural factors affecting sediment metal
concentrations. This analysis found DI and TOC as significant variables
(p b 0.01) for predicting metal concentrations. DI was a significant var-
iable for all metals, while TOCwas a significant variable associated with
Zn and Pb concentrations. Collectively, these results indicate that Cd
was primarily influenced by industry, while Cu, Zn and Pb were derived
from industry with an influence from the TOC content of the sediment.
Fig. 4. Comparison of Geographical Detector Method and Spe
3.4.2. Interactions among anthropogenic and natural factors
Table 5 shows the interactions between anthropogenic (DI, DR) and

natural factors (ST, TOC) that were previously identified as having a sig-
nificant impact on sedimentmetal concentrations. All paired factors had
higher predictive ability than any individual factor alone. This indicates
that anthropogenic and natural factors enhanced each other in control-
ling metal concentrations in sediments. The relationship between ST
and TOC was characterized as a non-linear enhancement, which
meant that the summed contributions of TOC and ST were less than
that of the interaction contribution between them. Similarly, non-
linear enhancements were found for DR interactions with ST and TOC,
and DR and DI interactions with Pb. However, most interaction contri-
butions were less than the summed contributions of the individual fac-
tors. For example, DI interactions with ST and TOC were found to bi-
enhance each variable's contribution for all metals, which indicates
they were higher than for each individual factor alone.
4. Discussion

4.1. Source of metal pollutants

Previous studies demonstrated that elevated metal concentrations
in river sediments originated mainly from anthropogenic activities
rather than natural sources (Song et al., 2012; Bednarova et al., 2013).
Based on the EF and GDM results of this study, the metals (Pb, Cd, Zn
and Cu) in sediments of the Wen-Rui Tang River watershed were also
attributed primarily to anthropogenic sources. The spatial distribution
of EF for all metals showed that metals were seriously influenced by an-
thropogenic activities in the old industrial zone (southwestern region)
but not in the new industrial zone (southeastern region), which was
similar to the findings of Song et al. (2012), andmight be due to stricter
arman correlation results for Cu with its impact factors.



Table 5
Interaction between anthropogenic and natural factors for Cu, Zn, Pb and Cd.

Cu/Zn/Pb/Cd DI DR ST

DR 0.67(↑)/0.76(↑)/0.87(↑↑)/0.91(↑)
ST 0.44/0.82/0.70/0.89(↑) 0.48/0.65/0.74/0.87(↑↑)
TOC 0.61/0.82/0.92/0.92(↑) 0.65/0.49/0.43/0.48(↑↑) 0.62/0.75/0.78/0.90(↑↑)

Note: “↑” represents the two factors enhance each other. “↑↑” represents a non-linear enhancement of two factors.
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management and environmental protection systems in the new indus-
trial zone.

GDM analysis ascribed the primary anthropogenic factors contribut-
ing to metal pollution as DI and DL. In particular, DI was identified as
having the strongest contribution to riverine metal concentrations.
These results are consistent with the findings of Pan and Wang (2012)
and Xiao et al. (2015) who found that industrial production in coastal
cities of China often leads to increased metal contamination. In urban
areas, metals associated with industrial wastes and automobile exhaust
emissions are often attach to sediment/dust particles that are
transported to waterways by atmosphere deposition and/or surface
runoff/erosion due to the impervious nature of urban landscapes (Li
et al., 2001; Bai et al., 2017). Thus, contaminants containing metals are
transported to nearby streamswhere they can become part of the river-
ine sediment column (Lindström, 2001). In theWen-Rui Tang Riverwa-
tershed, many factories currently and historically discharged industrial
wastewater directly into the river system without any treatment
(WEPB, 2014). Common industries within the watershed, such as
electroplating (Cd, Zn) (Shomar, 2009) and printing/dyeing (Pb, Cd)
(Federation, 2008), are known dischargers of metals. Therefore, the re-
sults obtained by the GDMwere consistent with expectations for metal
sources based on industrial use and deemed reliable for identifying the
major watershed sources.

Chen et al. (2016) found that water quality in the Wen-Rui Tang
River watershed was affected by agricultural land. According to GDM
analysis, agricultural land use had a significant influence on Cu in sedi-
ments of the study area. Fertilizers, metal-containing pesticides/fungi-
cides, and livestock feeds/manure are the primary sources of metal
pollution (Cu) from agricultural lands (Marrugo-Negrete et al., 2017;
Sun et al., 2013; Lu et al., 2012).Metals in agricultural lands are predom-
inantly transported to surfacewaters through runoff/erosion processes;
however, groundwater may also contribute metals in some cases (Qiao
et al., 2017).

The GDM results further showed that the contribution of DL to Cu
and Zn enrichment of riverine sediments was greater than for Pb and
Cd. Previous studies reported that animal wastes generated by livestock
and poultry breeding often have elevated Cu and Zn concentrations due
tometal supplements added to livestock feeds (Meng et al., 2018). Usu-
ally, erosion of sediments associated with roadways and nearby soils is
also a known source of metals (Hjortenkrans et al., 2006). In particular,
Cu originating fromvehicle brakes andPb originating from fuel combus-
tion are major metal sources associated with roads (Hjortenkrans et al.,
2006; Arditsoglou and Samara, 2005). However, most industrial areas
are in the suburbs where roads are usually less dense, to some extent
concealing the effects of road density to themetal pollutions. Therefore,
DR had a positive reinforcement influencing the interactions with other
factors (such asDI, ST and TOC) onmetal contamination in the river sed-
iments in this study.

The GDM interaction detector indicated thatmetal concentrations in
riverine sedimentswere affected bymultiple anthropogenic and natural
factors that produced a nonlinear enhancement interaction. Non-linear
enhancement of ST and TOC was identified for all metals highlighting
the important of the metal binding capacity of soil materials as influ-
enced by organic matter and other soil properties, such as pH, texture,
and mineralogy. Low pH can increase the solubility of metals
(Waterlot et al., 2011), which may enhance metal mobilization from
terrestrial sources (Chen et al., 2011) and their subsequent retention
in the riverine sediments. TOC content is closely related to the behavior
of metals in the aquatic environment, and previous studies have shown
a significant positive correlation betweenmetal pollution in urban estu-
ary sediments and the TOC content of the sediments (Seidemann, 1991;
Ünlü and Alpar, 2015). Organic matter has an especially strong affinity
for Cu, whichwas demonstrated by the GDMresults (Fig. 3). In contrast,
the interaction of DI with DR, ST and TOC produced an additive rather
than nonlinear enhancement in influencing metal concentrations of
river sediments. Overall, the spatial distribution of metals in sediments
was assessed by GDM to result from a combination of anthropogenic
and natural factors (namely DI, DR, ST, TOC) thatwere interactive rather
than mutually independent.
4.2. Comparison between GDM and other statistical methods

While Qiao et al. (2017) used Spearman correlation analysis (SCA) to
verify the reliability of the key factors identified by the GDM, they did
not compare the advantages and disadvantages of the two approaches.
The results of comparative analysis between GDM with Spearman cor-
relation and multiple regression methods in this study indicated that
GDM was an effective method for identifying the contribution of an-
thropogenic and natural factors to metal concentrations in sediments.
The Spearman analysis examined linear relationships between metal
concentrations and potential impact factors. The positive and negative
Spearman correlation coefficients indicated that there were both posi-
tive and negative correlations between metal concentrations and vari-
ous influencing factors. A distinct advantage of the GDM analysis was
that the method not only assessed linear relationships, but also nonlin-
ear relationships. That is, the relevance between the metals and impact
factors was examined and there was no positive or negative distinction,
because the results were reported as values between 0 and 1 (Wang
et al., 2010). If Spearman's correlation coefficients were not significant,
it can only be concluded that no linear relationship existed between
sediment metal concentrations and the influencing factors. However,
Spearman's correlation was not able to detect potential nonlinear rela-
tionships. Therefore, the GDM has an important advantage compared
to SCA in being able to detect both linear and nonlinear relationships
among metal concentrations and potential influencing factors.

BothGDMand stepwisemultiple linear regression can be used to es-
timate the contributions of various source factors to metal concentra-
tions in riverine sediments (Atgin et al., 2000; Qiao et al., 2017).
Stepwise multiple linear regression was mainly used to explore factors
that had significant effects on metal concentrations in sediments and
to exclude factors that had no apparent significant effect. If a significant
model is generated, it can then be used to predict metal concentrations
in sediments (Liao et al., 2017). The GDM has advantages compared to
multiple linear regression in being able to measure spatially stratified
heterogeneity. This refers to the phenomena that are more similar
within strata than between strata, such as land-use types and climate
zones, which are ubiquitous across spatial data (Wang et al., 2016;
Zou et al., 2011). Additionally, GDM can assess all the interactions
(e.g., linear and nonlinear, synergist vs antagonistic) between potential
impact factors. In summary, GDM provides several unique data query
abilities that makes it a valuable tool to be used in combination with
other statistical approaches for rigorously characterizing factors con-
tributing to metal pollution at the watershed scale.
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Our previouswork utilized the GWRmethod to determine the influ-
ence of land-use type onmetal pollution in riverine sediments in this re-
gion and identified industrial land use as an important factor affecting
metal distribution in the region (Xia et al., 2018). These findings are
fully consistent with the results of this study. However, our previous
work only analyzed three kinds of variables (industrial land, agricultural
land and ecological land), while this study included eight categorical
and continuous variables providing a more rigorous investigation and
interpretation of metal sources and watershed distribution. By using
these twomethods,we found that GWR is commonly used to determine
the effects of spatial heterogeneity on the explanatory variables
(Wheeler and Tiefelsdorf, 2005). In contrast, GDM is a new spatial anal-
ysis method that can be used to measure the effects of an explanatory
variable's spatially stratified heterogeneity (Wang et al., 2016). In addi-
tion, GWR has limitations associated with multicollinearity and kernel
bandwidth selection, and only works with continuous data (Comber
et al., 2018). In contrast, GDMworkswith both categorical and continu-
ous data and is not limited by multicollinearity.

However, GDM also has some limitations. For example, GDM can-
not directly show a negative correlation between metal concentra-
tions and various influencing factors, but we can integrate SCA or
multiple regression methods to identify the negative value. And
GDM has a potential drawback of producing different results when
the interval defining the impact factors change, such as in defining
different geographical areas (Shrestha and Luo, 2017). For determin-
ing the optimal classification method, Feng et al. (2013) suggested
use of q and interactive q values as indicators of the effectiveness
of discretization methods.

5. Conclusions

Average EF values for Cu, Pb, Zn and Cd in Wen-Rui Tang River sed-
iments indicated high levels of metal contamination that followed Cd
≫ Zn N Cu N Pb. The spatial distribution of EFs demonstrated high con-
tamination for all metals in the southwestern region of the watershed
where historic industrial activities were concentrated. Due to stricter
management and environmental protection regulations in the new in-
dustrial zone (southeastern region), metal concentrations are consider-
ably lower than those found in the older industrial areas (southwestern
region). Sediment concentrations of Cu and Znwere also elevated in the
northeastern region, an area with higher levels of livestock and poultry
production. Source apportionment based on GDM confirmed the spatial
analysis attributing Cd enrichment primarily to industrial activities; Cu
and Zn contamination to industrial activities and livestock and poultry
production; and Pb and Cu pollution to industrial activities and traffic
sources. Additionally, the GDM interaction detector revealed additive
and nonlinear enhancement interactions between soil properties (TOC
and ST) and anthropogenic activities with respect to metal enrichment.
In comparison with other analysis of correlation, multiple linear regres-
sion analysis andGWR, GDMdemonstrated distinct advantages of being
able to determine both single factor and interactions among multiple
factors (e.g., linear vs nonlinear, synergist vs antagonistic) without
multicollinearities. These results from the GDM analysis provide a
more comprehensive understanding of metal spatial distributions and
the significant contributing factors at the watershed scale, which pro-
vides an important tool for environmental and water resource agencies
to develop sustainable environmental management and remediation
strategies.
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