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Abstract

Modeling  accurately  electro-thermal transients occurring in a
superconducting magnet is challenging. The behavior of the magnet
is the result of complex phenomena occurring in distinct physical domains
(electrical, magnetic and thermal) at very different spatial and time scales.
Combined multi-domain effects significantly affect the dynamic behavior of
the system and are to be taken into account in a coherent and consistent
model.

A new methodology for developing a Lumped-Element Dynamic
Electro-Thermal (LEDET) model of a superconducting magnet is presented.
This model includes non-linear dynamic effects such as the dependence of
the magnet’s differential self-inductance on the presence of inter-filament and
inter-strand coupling currents in the conductor. These effects are usually not
taken into account because superconducting magnets are primarily operated
in stationary conditions. However, they often have significant impact on
magnet performance, particularly when the magnet is subject to high ramp
rates.

Following the LEDET method, the complex interdependence between
the electro-magnetic and thermal domains can be modeled with three
sub-networks of lumped-elements, reproducing the electrical transient in the
main magnet circuit, the thermal transient in the coil cross-section, and
the electro-magnetic transient of the inter-filament and inter-strand coupling
currents in the coil’s superconductor. The same simulation environment can
simultaneously model macroscopic electrical transients and phenomena at
the level of superconducting strands.
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The model developed is a very useful tool for reproducing and predicting
the performance of conventional quench protection systems based on energy
extraction and quench heaters, and of the innovative CLIQ protection system
as well.

Keywords: Circuit modeling, Coupling losses, Quench protection,
Simulation, Superconducting coil

1. Introduction

The presence of interdependent, non-linear, multi-domain and multi-scale
phenomena make the modeling of superconducting circuits particularly
challenging.

The interest in software capable to reproduce and predict the
electro-magnetic and thermal transients occurring in superconducting coils
subject to high current changes has been growing. The influence of
transitory loss on the magnet protection after a transition to the normal
state needs to be analyzed more carefully when designing new-generation,
high magnetic-field, high energy-density magnets. Furthermore, the recent
invention of CLIQ (Coupling-Loss Induced Quench) protection system [1]
made mandatory the development of a reliable tool for modeling transitory
loss and non-linear effects.

An new Lumped-Element Dynamic Electro-Thermal (LEDET) model of a
superconducting magnet is presented here. This technique allows simulating
non-linear dynamic effects such as the dependence of the magnet’s differential
self-inductance on the presence of local inter-filament and inter-strand
coupling currents in the conductor. These effects often have significant
impact on magnet performance and protection, particularly when the magnet
is subject to high ramp rates.

2. Dynamic electro-thermal model

The proposed LEDET method is used to model the behavior of a
superconducting magnet by means of a network of lumped-elements. It
includes purely electrical components, a 2D thermal model of the coil
cross-section, and a model of the coupling currents in the coil and their
influence on the electrical components.



2.1. Lumped-element modeling

Finite-element modeling (FEM) is an advanced and powerful
computational method of solving boundary-value problems on the basis of
domain discretization into a finite number of elements. Non-linear behavior
in superconducting cables can be successfully reproduced by means of such
software [2, 3]. However, the computational effort required to obtain accurate
results is usually high, which makes FEM application inefficient due to the
long simulation time.

An alternative approach consists in modeling the dynamic behavior
of a superconducting magnet by means of a network of non-linear
lumped-elements, which is then solved with an in-house or commercial
network solver, such as Simulink, PSpice, SPICE, or Simplorer. In fact,
in many practical cases the electro-magnetic and thermal dynamics of
a superconducting magnet can be effectively reproduced with a limited
number of differential-algebraic equations.  This technique requires a
deep understanding of the phenomena occurring in the coil strands and
cables, which significantly influence the system dynamics. Once properly
implemented it renders a significant reduction in CPU time for solving the
model with respect to FEM.

The same simulation environment can simultaneously model macroscopic
electrical transients and phenomena occurring at the level of superconducting
strands. Thus, the flexibility of the model is greatly improved.

2.2. LEDET in a nutshell

Figure 1 shows a schematic representation of a purely electrical model
and the interaction between its components, subdivided into energy sources,
sinks, or storage elements. The energy provided by the power source (PS)
is stored in capacitive (C) and inductive (L) elements, and dissipated in
resistive components (R), such as resistors, diodes, or switches. The model
is a closed system with only two energy-exchange interfaces with the exterior:
energy exchanges with an infinite source, representing the main electric
network (EN), and energy output to an infinite sink, representing the
room-temperature environment (RT).

An electro-thermal model includes an electrical sub-system similar to
the previous example interacting with a thermal sub-system [4, 5, 6]. For
instance, the thermal network used by the LEDET model is described
in section 4. Since the transient occurring in one domain influences the
other, and vice versa, the two subsystems can be solved simultaneously by
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Figure 1: Representation of the energy exchanges occurring in a purely electrical model.

the simulation software. A typical example of electro-thermal transient is
the generation of ohmic loss, whose occurrence builds a voltage across the
conductor, which affects the electrical domain, and enhances its temperature,
which affects the thermal domain.

The energy exchanges in a model composed of an electrical and a thermal
sub-system are represented in figure 2. Within the thermal domain, energy
is stored in heat-capacitance elements (Cyy, ), which can exchange energy with
each others (Pe). Energy transferred to infinite heat sinks is dissipated and
lost to the system. This is the case, for instance, of the heat delivered to a
helium bath (HE) surrounding a superconducting coil (Pye).

The electrical and thermal sub-systems exchange energy through
components simulating ohmic loss internal to the conductor (Rc—Popm)-
To satisfy the overall energy balance in the entire electro-thermal system,
the energy dissipated in the electrical components R¢ must equal the input
energy to the thermal sub-system through the components Pgp,.

Additional energy input can be included in the thermal sub-system to
account for other loss sources. These contributions are often added as
heat inputs from sources external to the electro-thermal system. This
approach is satisfactory only in the case the physical phenomena causing
the loss are not related to the magnet system considered, as in the case of
radiation or beam loss. Instead, coupling-loss effects cannot be treated as an
external, independent heat source since by definition it is generated by an
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Figure 2: Representation of the energy exchanges occurring in a conventional
electro-thermal model. The two main shortcomings of this approach are indicated by
question marks.

electro-magnetic interaction between the magnet’s field and its conductor.

In fact, a variation in the magnet transport current determines a change
of the magnetic field applied to its conductor, dB,/dt [Ts™!], which in turn
results in the generation of an induced magnetic field By [T] opposing
the applied magnetic-field change [7, 8]. Thus, during electro-magnetic
transients part of the magnetic energy stored in the superconducting coil
does not contribute to the generation of the main coil’s magnetic field, but
to the development of local induced magnetic fields, that cause currents
flowing between superconducting filaments. In a cable with multiple strands,
similar currents are also generated between strands. These coupling currents,
developed with a characteristic time constant, flow through the strand matrix
and through strand-to-strand contact resistances and both result in local
ohmic losses, which are called inter-filament and inter-strand coupling loss,
respectively [9, 10, 8]. The resulting total magnetic field is the sum of the
applied and induced magnetic fields,

By = Ba + Bi. [T] (1)

Many existing electro-thermal models are inadequate to correctly simulate



the effect of local coupling currents and consequently coupling loss in the
magnet system. Their shortcomings, schematically illustrated in figure 2,
are twofold. Firstly, they do not correctly reproduce the energy flows in
the magnet system. In fact, in reality the energy developed as coupling loss
P.. [J] and appearing as a heat source in the thermal sub-system does not
come from an external system, but is subtracted from the magnet stored
energy. Ultimately, this loss is provided by the main power source. This
is also the physical background allowing the measurement of coupling loss
by calculating the time integral of the energy provided by the power source
during a current cycle, § UpsIydt [J], with Uy [V] the voltage across the power
source and I [A] the magnet transport current. Secondly, the dependence
of the magnet differential self-inductance on the coupling currents developed
in the coil is disregarded. Since local coupling currents change the local
magnetic flux in the conductor ® [Tm?|, they obviously have an influence on
the effective differential self-inductance of the magnet, Lq=d®/dIy; [H].

With the proposed LEDET approach, represented in figure 3, a third
coupling-current sub-system is included in the magnet model to describe
the energy exchange between the electrical and thermal sub-systems through
local coupling currents. The amount of energy subtracted from the magnet
and determining a change of its differential self-inductance is the input to the
coupling sub-system (M.<>Mc.). This is the stored magnetic energy which
maintains the coupling currents flowing (L..). Part of this energy is returned
to the electrical sub-system, and another part is lost and constitutes the heat
generated in the conductor due to coupling loss (Ree—Pee).

Following the LEDET method, the complex interdependence between
the electro-magnetic and thermal domains can be represented with three
sub-networks of lumped-elements, reproducing the electrical transient in the
main magnet circuit, the thermal transient in the coil cross-section, and
the electro-magnetic transient of the inter-filament and inter-strand coupling
currents in the coil’s superconductor, respectively. The software solves the
three sub-networks simultaneously treating them as coupled networks.

A simulation software called TALES (Transient Analysis with
Lumped-Elements of Superconductors), was recently developed in order to
automatize the process of developing, editing, and running LEDET models
in a fast and convenient way [1, 11, 12]. The simulation results have been
routinely validated against experimental results [1, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22].



ELECTRICAL

sources  storage sinks sources storage  sinks

e N
e

PS

sources  storage  sinks

@

Figure 3: Representation of the energy exchanges occurring in a LEDET model. Elements
pertaining to one sub-network are represented in yellow (electrical), red (thermal), and
blue (coupling). Elements pertaining to two different sub-networks are represented in
orange (electrical-thermal), green (electrical-coupling), and purple (coupling-thermal).



3. Electrical sub-network

The LEDET electrical sub-network contains conventional electrical
lumped-elements such as voltage and current sources, self- and mutual
inductances, resistors, capacitors, diodes, thyristors, switches, and ground
connections.

The parameters of the electrical elements can vary with temperature,
magnetic field, transport current, or other relevant physical properties, such
as electrical resistivity, heat capacity, and thermal conductance.

A superconducting magnet is represented as a series connection of Ng
electrical elements. Each element e is composed of a self-inductance L. [H],
mutually coupled to the other magnet self-inductances, and a resistor R, [€2],
which is non-zero only in the case of a transition to the normal state. If the
magnet is surrounded by an iron yoke, L, decreases with transport current
due to iron yoke saturation.

A reasonable choice for the number of electrical elements Ny can be the
number of poles in a multi-pole magnet, or the number of layers in a solenoid
magnet. In conventional applications the same transport current I, [A] flows
in the coil of each electrical element. However, after a CLIQ discharge
different current changes are introduced in the various coil sections [1].

4. Thermal sub-network

The method for describing a thermal problem with analogous electrical
equations and then solving it in the electrical domain is well known in the
literature [4, 5, 6]. A thermal system can be represented as an electrical
network where any current flowing in a branch of the circuit is equivalent to
a heat flow and the potential of any node is equivalent to a temperature.

The thermal sub-network is composed of Ny thermal blocks. Each block
corresponds to a certain volume of conductor, usually comprising one or a few
coil turns. The physical and magnetic properties in each block are assumed
homogeneous and are averaged over the block volume. The thermal balance
in each block b reads

d[(Ty, — The)]

Psp 4+ Pisp + Pormb + Pexp + Praep = Co(Th) i

, (W (2)

where Pgp, Psp, and Poymp, [W] are the heat sources corresponding to
the inter-filament and inter-strand coupling loss and ohmic loss in block b,



respectively, Pecp [W] is the heat exchanged with other blocks, Pygep [W]
is the heat flow to the helium bath, Cj, [JK™!] is the thermal capacity of
b, Ty, [K] is its average temperature, and Ty, [K] is the temperature of the
helium bath surrounding the magnet, assumed constant. The calculation of
Py, and Py, will be treated in sections 5.1 and 5.2, respectively.

In a conductor composed of a superconductor and a stabilizer, the ohmic
loss can be calculated as

pv(Th, Bep) Neply o
IS0 ab,
Sbfst,b o(b)

Pohm,b == Rb]eQ(b) = [W] <3>
where Ry, [ is the electrical resistance of block b, Iy [A] is the current
flowing in the electrical element e where b is located, py, [2m] is the average
resistivity of the stabilizer in the block strands, B, [T] is the average
absolute value of the total magnetic field in block b, defined in equation 1, N},
is the number of conductors (coil turns) in block b, [, [m] is the conductor
length, S, [m?] is the conductor cross-section, including its insulation and
impregnation, fg 1 is the volumetric fraction of stabilizer, and g, is either 0
or 1 if block b is in the superconducting or in the normal state, respectively.

The parameter ¢, in equation 3 is set to 1 any time the Tj, is larger than
the current-sharing temperature in the strand with the highest magnetic
field located in block b. In fact, due to the transposition of the cable strands,
each strand occupies the highest magnetic-field position within the cable
cross-section twice every strand twist-pitch length. The transition from the
superconducting to the normal state is considered to be instantaneous.

The approach followed for the calculation of the heat diffusion between
adjacent blocks is schematized in figure 4a. By assuming that the
temperature is uniform in the conductor and in its insulation layer, and
that heat diffusion occurs only in the direction perpendicular to the
insulation layers, the heat exchanged by block b with other blocks can be
approximated as

Npn

Pyp = — hz:; 5 kfg);z;b?fzg;z)(ﬂ) Apn(Th, — Th), (W] (4)

where Ny, is the number of blocks that exchange heat with b, Ay) [m?] is
the contact area between blocks b and h, s, and s, [m] are the insulation
thicknesses of the conductor in blocks b and h, k;, and k, [Wm'K™!] are
the thermal conductivities of the insulation material in blocks b and h, and

9



Ty Ty
Jr-‘
I
Pex,b,h Pex,b,h
Ty, T,
P 1 Sp S i1 SpiSpi

Figure 4: Model adopted to calculate the heat diffusion between blocks b and h.
Temperature profile along the direction perpendicular to the insulation layer. a. Simplified
one-layer approach. b. Multi-layer approach.

Ty [K] is the average temperature in block h. Note that the thermal barrier
due to the conductor material is neglected because it is much smaller than
that due to the insulation layer.

This simplified one-layer approach is usually satisfactory when simulating
electro-thermal transients in superconducting coils since the contribution of
thermal diffusion is less than about 10% of the ohmic power generated in
the conductor during the magnet discharge. However, if required the model
can be improved by considering that the conductor insulation is composed of
multiple regions, each with different temperature and hence different thermal
conductivity, as shown in figure 4b.

The heat dissipated into the helium bath can be calculated as

PHe,b - _hHe,b (Tb, THe)Ab,He(Tb - THe)a [W] (5>

where A p [Wm—2K~!] is the heat transfer coefficient between block b and
the helium bath surrounding the magnet and Ay, g. [m?] is the contact area
between b and the helium bath.

The total thermal capacity of block b is the sum of the thermal capacities
of the Ny, materials composing its volume, including superconductor,
stabilizer, insulation, and impregnation:

Nm b Numb
Co =Y Cap(Th) =Vo Y [eap(Ti) fupl,  [JKT'] (6)
m=1 m=1

where Vi, = Spli, [m?] is the volume of block b, Cy, 1, [JK™!] the heat capacity

10
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Figure 5: Equivalent LEDET sub-network modeling the thermal behavior of block b.

of material m, ¢y p [JK 'm™?] the specific heat of material m, and fy, 1, is
the volumetric fraction of material m in block b.

The thermal system described by equations 2-5 can be represented by the
analogous electrical circuit shown in figure 5. The characteristic equations of
this electrical circuit correctly reproduce the behavior of the thermal system
if the equivalent parameters are defined as shown in table 1.

The interaction between the thermal and electrical sub-networks is
twofold. Firstly, the ohmic loss Fopm 1, in block b depends on the current
Iy flowing in the electrical element e where block b is located. Secondly,
the resistance R, of each electrical element e is the sum of the resistances in
the Np . blocks contained in e,

pv(Th, Bip)!
= = . Q
R, = bEEE Ry = g Sofou Qb [ ] (7>

5. Coupling-current sub-networks

The innovative approach proposed here aims at reproducing with a
limited number of equations the overall effect on the magnet behavior of
local inter-filament and inter-strand coupling currents. The analysis of
the electro-magnetic transient follows the equivalent magnetization model
described in [7] and refers to the equivalent network model presented in [8].

The LEDET coupling model is composed of three sub-networks
simulating the effect of inter-filament coupling currents in the two directions

11



Table 1: Electro-thermal analogy implemented in the LEDET model, for a generic block b.
Symbols pertaining to the electrical domain refer to figure 5.

Thermal domain Electrical domain
Ty K] Uy Vi
Ty K] Un V]
Tite K] Uste V]
Py (W] Lt [A]
Py (W] Lis [A]
Ponm,p [W] Lot [A]
. O;(Tb) o [TK™] Ctnb [F]

1 s S

S B
[KW—] Rye b Q]

h'He,b (Tba THe)Ab He

perpendicular to the magnet transport current and of inter-strand coupling
currents in the direction perpendicular to the cable broad face, respectively.

Each coupling sub-network is further subdivided into N¢p, blocks, each
modeling effects occurring in a certain volume of conductor. For the sake of
simplicity, it is here assumed that each block ¢l of the coupling sub-network
corresponds to one block b of the thermal sub-network presented in the
previous section (cI=b).

5.1. Equivalent IFCC loops

Consider the case of a strand, or wire, of circular cross-section and
of radius rs [m], whose superconducting filaments are homogeneously
distributed along its diameter dg [m]. This assumption is chosen for the sake
of simplicity, but the results of this section can be easily extended to less
general cases by modifying the value of the effective transverse resistivity of
the strand stabilizer matrix, peg [(2m], as explained in section 5.1.1 [1, 23, 24].

When the strand is subject to a magnetic-field change in a direction
e perpendicular to the direction ¢, of the transport current, a surface
current-density arises along the circumference r=ry. Following [7, 9, 8, 4],

12



this surface current-density can be expressed as

Kfz—(l—f)Q LBy o) @ [AmY (8)

2T

where ¢ [m] is the filament twist-pitch, dB;/dt [Ts™!] is the absolute
value of the total magnetic field change, defined in equation 1, and
¢=m/2—-27z/l; [rad].
The magnetlc moment of a current distribution 7 is computed as

—2 f"// 7 V' [Am]. For extruded loops of surface currents K on
the boundary 07 of ¥ we define

':mn—/?x7Mf

—so00 20

Z—)oo 20

:/ r X ?if ds,
dot

where the surface &7 is the cross-section of ¥ in the extruded part and the
factor two between the second and third lines is due to the omission of the
path closure at +¢. Hence, by combining equations 8 and 9, one obtains

2T
;:/ T x Kygredd

0

= lim —/ X ?If da [Am] (9)

w/2
= ?y// rs cos(¢) Kigrsdo
0
"2 \* 1 dB
- f b2 .2
= /) === d
€y /0 (27r> o i - cos”(p)d¢
\° 1 dB
= — —f —tﬂ'TSQE}y/.
2w Peft dt
%
The equivalent magnetization can be derived from 7l = Memr?:

— zf21dBt_>
My =—|-— Am~! (11
f (27r) pen di €y [Am~]  (11)

[Am] (10)

_>
Note that Mj is homogeneous in the strand within the layer
of superconducting filaments (r<rs=ds/2), which in the present case
corresponds to the entire strand volume.

13



By integrating ?if along the circumference where the filaments are
situated, the total current [y [A] flowing at either side of the strand can

be calculated:
/2 L\* 1 dB,
Ly =2 Kirsdd = | — —d. A 12
f /0 irsdg (2%) Pet dt [ ] ( )

By combining equations 11 and 12, one obtains

My = Am~ (13)

where the vectorial ?if is introduced as the pair of currents (fifx, fify) in
the z- and y- directed dipoles such that the above equation is fulfilled. Note
the distinction between the directions (?x/; ?y/) parallel and perpendicular
to the applied magnetic-field change, respectively; and the directions (z; y)
defined in an external orthogonal frame, arbitrarily chosen and common to
all strands in the magnet.

The magnetic field induced in the strand by the magnetic-field change
can be computed following [4], as

27 Ki
BH:A PO cos(g)rdo
2m \° 1 dB
:_/0 5_7? <§) p—ﬁd—ttcosZ(gzﬁ)dgb

N T] (14)
_ o (L)L dB
2 \21) peg dt

_ Ho dB
- 9 ﬁlf dt ’
where Bif:(é—;)QpLﬁ is introduced. By combining equations 11-14, one
obtains
§ Ho 77 Ho ?
if — _Mi = if - T 15
(= M= L0 T T (15)
Furthermore, with the IFCL time-constant often proposed in the
literature [7, 8],
2
po [l 1 Ho
n= () ==l 5 (16
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and defining a tensorial time constant 7,

2
S A
if x 9 Dot x o 9 if ,)x

2
Tify = Fo ! —lf — o Bit
Y2 pegy \ 27 9 MY

it follows that the total magnetic-field change is

d? — — 7
dtt = _Tif_lﬁif = —%TQIMif = B¢ My = - d:'

The tensorial effective transverse resistivity peg=(pefrx, peffy) OCcurring
in By depends on the absolute magnetic field in the copper matrix due to
magneto-resistivity effects, as shown in section 5.1.1. Note that in the most
general case the effective resistivities in the x and y directions may differ
(peff,x%peff,y) .

Let 7 be the reference strand surface delimited by the outer layer of
superconducting filaments; and let |.%%|=a,=n7,? be its metric measure. The
loss per unit length of conductor generated by the inter-filament coupling
currents are computed using

i,f:_/ Mif‘d tda
o dt

__]\—4> d?t

R (W] (19)

dB\ >
:ﬁif (d_tt> Ag.

Note that dividing this equation by the strand surface as yields an
expression of the inter-filament coupling loss identical to the classical
formulation [7, 8]. Furthermore, by rearranging the equation it is possible to
obtain an explicit relation between IFCL and IFCC,

Il /
it = Ly T

] (17)

[Ts™!]  (18)

if,y
Cas (L. IEy

S d2 (ﬂif,x 5if,y) [(Wm™'] (20)
= Rif,x[?f,x + R;f,yIiQf,y

= ff gfl_i'ﬁ

15



where a tensorial resistance per unit length Rl is defined following

, as 1 w1
if x 2 7
' ds if ,x 4 if ,x —
R R | om ] (21)

if,y = d52 ﬁif,y B 4 6if,y.

These defined parameters can be regarded as the resistances of equivalent
inter-filament dissipative loops. The self-inductance per unit length of

conductor_> of such equivalent loops can be computed with the ”winding
density” kjif:?if/lif [m~!], from
1 —
Ly =L, = Lig, = I ks - Xifds
if J oot [Hmfl] (22)
_ HoT _ fios
8  2d.%’

where Zif:%Bif cos(qb)?’z. Consistently, the resulting RL constant of the
introduced equivalent IFCC loops equals the IFCL time-constant introduced
in equation 16,

Ly o
= — = —[. 23

R, 2 Bit [s] (23)

Moreover, the local IFCC influence the behavior of the elements
composing the electrical sub-network presented in section 3. A relation
describing this interaction can be derived from the equation of local

magnetic-field change. The total magnetic-field change is the result of the

Tif

applied magnetic-field change d?a/dt generated by a change in the local
currents, and the already defined d?if /dt which opposes to the change [8]:

dB, dB, ) B

dt — dt dt -

The applied magnetic-field change can be expressed as the superposition

of the field change generated by the change in the local currents of the Ng
elements in the electrical sub-network,

[Ts™1] (24)

dB,x dl,
dt Zl fex gy B
B Ne o [Ts™] (25)
a,y _ e
dt ; Jex dt’



where the parameters 762( fexs fey) [TA7!] can be calculated by means
of dedicated software, such as ROXIE [25] or SOLENO [26]. In first
approximation, they are purely geometric.

By substituting equations 18, 25, and 15 into 24; and multiplying by as/dj,
an equation for induced voltages, i.e. time-derivatives of linked magnetic
fluxes, per unit length is derived:

aq 1? 7 dl, . Hofs d?lf

2/81f d s2 dt ’

where the parameters R}, and L{; introduced with equations 21 and 22 can be
identified, together with tensorial mutual inductances per unit length

[Vm~1]  (26)

1f e’
S ds
i/f,e,x = a_fe,x = 7T—fe,x fore=1...Ng
, “ ol [Hm™] (27)
Mif,e,y = d_sfe,y - Tf@y for e = 1NE
Thus, equation 24 can be rewritten as
Lf X
le fo X Z lf e, th 1f x dt
[Vm~1] (28)

L
/ 1L,y
1fnyy Z lfeydt 1f,y dt

This set of equations describes the complex interaction between local
IFCC and changes in the currents flowing in the main electrical circuit.

Finally, the overall effect on the system dynamics of the local IFCC
in a volume of conductor can be calculated by superposition of effects.
Let us consider the case of a model block b, composed of N, conductors
with length 1, [m], as defined in equation 3; each conductor being
composed of Ngj, superconducting strands. The volume of its strands is
Vs,b:NC,bNS,bﬂdng‘ﬁlb [m3]. By multiplying the equations of system 28 by
N b Nsplp, one obtains

Z I, Lig b x
_Rif,bx if,b,x — lebex +L1fbx

dt dt
L , [Vl (29)
—Ritpylithy = Zlebe’ydt + Lit by li;;’y,

e=1
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Figure 6: Equivalent LEDET sub-network modeling the inter-filament coupling currents
in block b (mutual inductances Mit b 1.y, Mif,bey, and Misp Ng,y are not shown).

where the tensorial equivalent resistance Rjy, self-inductance Lisy, and
mutual inductances My of the IFCC loop representing the dynamic
behavior of block b are defined as:

( V. b 1 ™ 1
Rifpx = — = —N.p Ny pl 9]
Lh dov? Bitpx 4 b bﬁif,b,x [
1 s 1
Ritpy = —22 = = NepNoply—— Q
by ds,b2 Bitpy 4 ’bV P bﬁif,b,y [
s T
q Litp = Litpx = Litpy = Fo LI 'LLLNC,bN&blb [H]
2 ds,b 8
Vsb T
Migpex = d—fb,e,x = ZNc,sz,bds,blbfb,e,x fore=1..Ng [H]
V. n
Mitpey = 7 ooy = 7 NewNepdeplo foey for e = 1..Ng. [H]
\ s,b
(30)

The behavior of the set of equations 29 can be modeled with an equivalent
lumped-element circuit composed of two closed loops of a resistor and a
self-inductance mutually coupled to the Ny self-inductances L. present in
the electrical sub-network. Figure 6 shows a schematic representation of
such a circuit. In order to model the IFCC effects in the x and y direction
in the Ng blocks of the coupling sub-network, 2Ng similar equivalent loops
are implemented.

In addition to the coupling between local IFCC and system currents, the
introduced model provides a calculation of the inter-filament coupling loss in
each block. In fact, the ohmic loss dissipated in each equivalent resistor Rjy,
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corresponds to the IFCL in the matrix of the strands of block b:

Py = Pivpx + Pipy

- (W] (31)
= _EbR{f,inf,b = Rif,b,xfisz,x + Rif,b,yli2f’b7y~

The loss calculated with this equation is used to solve the thermal balance
in block b presented in equation 2.

Most of the parameters present in the definitions 30 are geometrical or
physical quantities. However, the introduced model includes an unknown
parameter, namely the effective transverse resistivity of the strand matrix,
which is inversely proportional to Bit . The value of the effective transverse
resistivity for a certain strand, or wire, can be deduced by measuring the
transitory loss occurring in a single wire of the same type. Alternatively, its
value can be estimated with the procedure explained in the next section.

5.1.1. Effective transverse resistivity
The effective resistivity in a direction x perpendicular to the transport
current is calculated as

Peff x = pmfeff,x - (CO + ClBt) feff,xa [Qm] (32)

where p, [Qm] is the electrical resistivity of the matrix material, ¢y [Q2m] and
c1 [QmT™!] are parameters depending on the residual resistivity ratio (RRR)
and magneto-resistivity of the material used as matrix, and usually known
from the literature [27], and feg« is a parameter depending on the fraction
of superconductor in the matrix, on the interface resistance between the
filaments and the matrix, and on the position of the filaments over the strand
cross-section [28, 29, 30]. In the most general case the effective resistivities
in the x and y directions perpendicular to the transport current may differ
(peft xFPefr,y); hence, the time constants of the coupling currents in the two
directions can be different as well (73 x#Tiry)-

In the case of a round strand with a fraction of superconductor f;,
whose superconducting filaments are uniformly distributed in a matrix
of a single material, it is found that the wvalue of the -effective

parameter fog= for = /fefry 15

_1_fsc
L+ fio

I+ e
1_fsc7

feff

Jett (33)
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Figure 7: Cross-section of the strand used in the cable of the outer layer of the LHC main
dipole magnets [31]. a. Photography. b. Schematic representation.

in the case the superconducting filaments do or do not contribute to the
transverse conduction, respectively [28, 29, 30, 8]. The former case occurs for
small interface resistance between the filaments and the matrix; whereas the
latter occurs if the interface resistance is large. Any value in between these
two extremes may be reached if the interface resistance has an intermediate
value.

Strands used in nowadays superconducting magnets often include a
bundle of superconducting filaments embedded in a matrix, plus an inner
core and/or an outer shell of stabilizer. As an example, consider the strand
shown in figure 7a, used in the cable of the outer layer of the LHC main
dipole magnets [31]. When such a strand is exposed to a magnetic-field
change, different inter-filament coupling loss is generated in the volume of the
inner stabilizer core (0<r<ry,, see figure 7b), in the annular ring where the
superconducting filaments are located (ry,<r<rg), and in the outer stabilizer
shell (rg<r<rs). Following the treatise presented in [23, 24|, these three loss
contributions, per unit volume of strand, are

N> 172 (dB)\?
pr— L _~ in -3 4
v (o) =2 () Wans] (34)

N> 1 [r2—12 dB;\*
P//l — o mn W -3 35
i () (B () el )
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l¢ 2 [r2 g2 dB, 2
pro—= (2 - s fil -3
out (27_‘_) Pm (TSQ 4 T%] dt ) [Wm ] (36>

where peg a1 [(2m] is the effective transverse resistivity in the region occupied
by the bundle of filaments. Its value is comprised in the range between the
two extremes defined in equation 33.

Thus, equation 19 can still be used for the calculation of the power per
unit volume of strand generated by inter-filament coupling loss, if the effective
transverse resistivity is calculated with equation 32 and the value of fog is
corrected as follows:

2 2 2 2 2 -1
F T 1 TE — T ri—rT
P TS Pefffil TS TS+ T

5.2. Equivalent ISCC' loops

As mentioned in section 2.2, if a conductor is composed of multiple
superconducting strands, inter-strand coupling currents develop. The
following treatise only considers ISCC through cross-contact resistance and
due to a magnetic-field change perpendicular to the cable broad face. These
currents typically generate the largest fraction of the ISCL in the cable [8].

The model adopts an approach analogous to that applied in section 5.1
for the inter-filament coupling currents. The mutual coupling between local
ISCC in a cable and the change of the currents in the main electrical circuit
is described with a limited set of equations and modeled with an equivalent
sub-network composed of equivalent ISCC loops.

Consider the case of a flat Rutherford cable, with large aspect ratio
a.=w/h, with w [m] and h [m] the broad and narrow cable dimension,
respectively.  Its surface ./ has metric measure ||=a.=wh [m?].
A magnetic-field change in the direction 4 perpendicular to the cable
broad face induces ISCC through the contact resistance between two crossing

%
strands, R. [Q2]. The equivalent magnetization M, [Am~'] generated by these
ISCC can be represented as the effect of an equivalent surface current flowing
at the surface of the two sides of the cable,

Ri=Myx ) =MPy, [Am~"] (38)

where ?H and @, are the directions parallel to the cable broad face and
to the transport current, respectively. Thus, the equivalent ISCC flowing at
either side of the cable is

7is = ?ish = Mish?z’- [A] (39)
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The inter-strand coupling loss per unit length of conductor can be
calculated as

iB
P =- /Qy ﬁis . d—;’Lda, [Wm™]  (40)

analogous to equation 19, where dB; | / dt [Ts™!'] is the total magnetic field
change in the dlrectlon G 1. Note that M s and ?t .1 are not homogeneous
along the direction ¢ |- However, for various applications the assumption

of homogeneous equivalent magnetization in the cable cross-section is
acceptable. For example, in [7] it is proposed

_>/ _ 1 lS w dBt J_ —

= —onm Ns (N — 1) — €1
ﬂls tJ_E)J_a

with [ [m] the strand twist-pitch and N, the number of strands in the cable.
Under this assumption, equations 39-41 can be combined leading to

dB1\’
P, = is = c
=0 ( dt ) ¢
w1 [(Wm™1]  (42)

where the equivalent resistance per unit length of the equivalent ISCC loop

is identified:
,  wl Q.

ST BT By
Note the analogy with the definition of Ri in equation 21. The

self-inductance of the ISCC loop can be evaluated by considering the effect
of a surface current flowing at the two sides of the cable and generating

[Qm~1]  (43)

a magnetic field Bi [T], not homogeneous along the direction ?H' The
self-inductance per unit length of this system can be approximated as

L. = ]2/ is Elsda
Ho w 3

2 [n ) 3]

T {n h +2}
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where the approximated formula for the self-inductance per unit length of a
pair of infinitely thin strip conductors presented in [32] is used. Thus, the
resulting time-constant of the equivalent ISCC loop is

L{s c 3 h 3 is
el (1)+ 3] Lo @+ 3] 2 1 w9

Tis,c =
Rgs h Q¢

The values of 74, calculated with this model prove to be a good
approximation of the more precise ISCC time-constant obtained with a more
detailed equivalent-network model [8]. As an example, the model proposed
in [8] predicts an ISCC time-constant of

N2 — 4N,

T 5 (1)

Tis,c,net — Csls
valid for Rutherford cables with 8<<N,<40, where ¢ is a constant with a value
between 1.6 and 1.7 107 Qsm~! [8]. The comparison between the ISCC
time-constant calculated with equation 45 and the time constant resulting
from equation 46, for ;=100 mm, R.=100 uf2, and Ny in the range 8 to 40,
is shown in figure 8.

If N, cables are stacked, the total height of the stack N.h is comparable or
larger than w and the approximation of infinitely thin strips is not acceptable.
Hence, equation 44 does not hold and the resulting ISCC time-constant is not
correct. When a sufficient number of cables are stacked the approximation
of induced magnetic field homogeneous in the surface <7, and parallel to the
magnetization lines is satisfactory:

7

_>
Bio~ oMy = o= ) (47)

Thus, the equivalent self-inductance of an ISCC loop modeling a cable
which is part of a stack can be approximated as

L/ ! / ]\7i5 . gis da

is,st I_2
is

e

Nw(ﬁﬂlc Hm]  (48)

w

= MOE = Mol
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Figure 8: Comparison between the ISCC time-constant calculated using equation 45; or
following the homogeneous-magnetization model presented in [7], see 49; or using the
formulae derived in [8] with a complete network model for a single cable and for a stack
of cables, see 46 and 50, respectively.

equivalent to the self-inductance of two parallel sheets carrying current
when they are very close [33]. Note the similarity with L{; introduced in
equation 22. Thus, the resulting time constant of the equivalent ISCC loop
for a cable in a stack is

/

is,st

Tis,st = R:S = MOBiS; [S] (49>

analogous to 7y in equation 23. The more detailed equivalent-network model
proposed in [8] predicts an overall ISCC time-constant for a stack of cables of

o N,
(&% + Cst (Nc

Tis,st,net — — 1) Tis,c,net [S] (5())
valid for 8<N <40, where ¢y is a constant which depends slightly on the
number of strands in the cable, increasing from about 1.00 for N;=8 to 1.15
for Ny=40. An example calculation of the ISCC time-constant for a stack
of cables calculated with equation 49, as compared to the time constant
resulting from the detailed model [8], see equation 50, for N.=15, a.=N/4,
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c¢t=1, and Ny in the range 8 to 40, is shown in figure 8. The two calculations
show very little difference across the entire range of Nj.

In conclusion, the time constant of an equivalent ISCC loop resulting from
the proposed model with Li . is a good approximation of the time constant
for a single cable; and Li,  is a good approximation of the time constant for
a cable which is part of a stack.

Furthermore, it is of high interest to model the mutual coupling between
the local ISCC loops and the current-changes in the Ng self-inductances L,
present in the electrical sub-network defined in section 3. The local balance
equation of the magnetic field change reads

dB;, dB., dBi

_ ) —1
& @ @ [Ts™] (51)

where the applied magnetic-field change dB, | /dt [Ts™!] can be expressed as
the superposition of the magnetic-field change in the direction A generated
by variations in the transport currents flowing in the electrical sub-network,

dBai Z fej_ dt [Ts—l] (52)

where the parameters f. | [TA™!] can be calculated by means of dedicated
software, such as ROXIE [25] or SOLENO [26]. In first approximation, they
are purely geometric. The assumption of homogeneous magnetic-field change
in the cable cross-section, substituting equations 39, 41, 47, and 52 into 51
and multiplying by w, yields:

w d?ls

hodt

71s w Z 76 J_ d[ ,UO

h G [Vm~!] (53)

where the parameters Rj, and L introduced with equations 43 and 48 can
be identified, together with Ng mutual inductances per unit length:

5ol =wfe1, fore=1.Ng, [Hm™!'] (54)

analogous to M;s. defined in equation 27. Thus, equation 51 can be
rewritten as

dI
. S -1
Z is,e, L 7, dt 1s ,st dt . [Vm ] (55>
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Figure 9: Equivalent LEDET sub-network modeling the inter-strand coupling currents in
block b.

Finally, the total effect of local ISCC in a volume of conductor can be
calculated. Consider a model block b composed of N conductors with
length [, [m]. Tts total volume is V., = N, wh I, [m*]. By multiplying
equation 55 by N.y, I, a relation describing the coupling between the ISCC
in block b and the currents in the electrical sub-network is obtained,

d]is,b

T [Vl (56)

al dI
_Ris,blis,b = Z Mis,b,e,J_d_te + Lis,st,b
e=1

where the equivalent resistance Risy, self-inductance Lisp, and mutual
inductances Mispe 1 of the ISCC loop representing the dynamic behavior
of block b are defined as:

(
V;b 1 w 1

is,b — : - _Nc ly— Q

Risy, ® ‘ﬁ/i&b 7 Veb bﬁis,b (2]
" w
Lisst 1, = ,uo‘ﬁ—éb = NOENc,b b, [H]
Mispe1 = Zb foer = WNcplyfoe 1 for e =1...Ng. [H]
(57)

Note the analogy between equations 56-57 and 29-30, derived for IFCC
loops. The behavior of this simple system can be modeled by the equivalent
lumped-element circuit shown in figure 9, composed of a closed loop of a
resistor and a self-inductance coupled to the Ng self-inductances L. present
in the electrical sub-network.

In the case of a model block composed of a single non-stacked cable the
equivalent inductance Lisg 1, in equation 56 is to be replaced by a more
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appropriate

T h 2

obtained multiplying equation 44 by N, lp.
In addition, the inter-strand coupling loss generated in the cable volume
of a block b corresponds to the ohmic loss in the equivalent resistor Risy,

Lis,c,b = @ |:1I1 <E> + §:| Nc,b lba [H] (58)

Rs,b = Ris,b]i2s,b7 [W] (59>

analogous to equation 31. This ISCL is used to solve the thermal balance in
block b presented in equation 2.

The only unknown parameter in the model of equivalent ISCC loops is the
contact resistance between two crossing strands R., inversely proportional
to the ISCC time-constant and to the ISCL during transients at constant
current-change.

The LEDET model of inter-filament and inter-strand coupling currents
neglects the magnetic coupling between individual coupling loops, which
could be included in the model with a radically different mathematical
approach, based on FEM methods. However, this approximation greatly
simplifies the problem and has significantly less influence on the system
dynamics than other assumptions, such as uniformity of the physical
properties along the direction of the conductor, and unknowns, such as
material properties and magneto-resistivity.

5.3. Extension to other coupling-current mechanisms

More generally, also other coupling-current mechanisms can be simulated
following a methodology analogous to that introduced in sections 5.1
and 5.2. The total generated loss and the effect of local currents on the
magnet’s differential self-inductance can be reproduced with a sub-network
of lumped-elements.

In fact, a generic coupling-current mechanism characterized by a loss
P.. [W] and an equivalent coupling-current I.. [A] is described by the
following two relations:

dBc\”
Pcc - ﬂcc‘/cc (7) [W}
dB.

dt ’

(60)

I cc = " Vee [A]
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plus a characteristic time constant, 7. [s], where V. [m?] is the volume
where the loss takes place, dB../dt [Ts™!] is the resulting total magnetic-field
change, and B, [mQ7!] and 7. [M?Q~!] are characteristic parameters
depending on the loss mechanism. The coupling between the local coupling
currents and the currents in the main electrical circuit is described by the
following equation:

Ng
dl, dl,.
RCCICC = MCC e 7, Lcc_, Vv 61

where the equivalent resistance R.., self-inductance L., and mutual
inductances M, of the generic coupling-current loop are defined as:

( PCC /BCC CcC

Rcc = = Q
2 2]
Lcc - TCCRCC - M [H} (62>
%c
MCCG - /BCC Ccfcce fOI' 6 = 1NE’ I:H}
\ Yee

where fe.. [TA7'] are Ny magnetic parameters characterizing the applied
magnetic field B, [T] generated by a current I, [A] flowing through
electrical element e. The definition of the above-mentioned parameters
M. is derived from the consideration that during a transient at constant
ramp-rate the induced coupling currents do not vary (dl../dt=0) and the
local magnetic field-change coincides with the applied magnetic-field change
(dB./dt=dB,/dt); hence, equation 61 is reduced to

- dl, dBcc ﬁcc cc
Mcc e, — _RCC[CC - Rcc cc 7, cce 7, s V 63
; o Y Z f (63)
when the definition of M, is found.

6. Conclusion

A new technique for modeling the behavior of a superconducting
magnet called LEDET (Lumped-Element Dynamic Electro-Thermal) is
developed, based on various coupled networks of lumped-elements. The
energy-exchanges between different physical domains are correctly accounted
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for, as well as the influence of local inter-filament and inter-strand coupling
currents on the overall magnet differential self-inductance. The same
simulation environment can simultaneously model macroscopic electrical
transients and phenomena at the level of superconducting strands.

TALES (Transient Analysis with Lumped-Elements of Superconductors),
a software based on this new technique, has been extensively validated
against experimental results. Coupled electrical, magnetic, and thermal
transients are successfully reproduced during and after magnet discharges
obtained by triggering CLIQ, quench heaters, energy-extraction systems, or
a combination of these. After its validation, the software allows deepening
the understanding of the phenomena occurring in a superconducting magnet
and of the influence of dynamic effects on the magnet’s behavior.

The LEDET modeling technique proved a key ingredient for an effective
implementation of the CLIQ technology, where very high current and
magnetic-field changes are introduced in the various coil sections, and
the effects of inter-filament coupling currents on the magnet’s differential
inductance is very significant. New CLIQ configurations can be analyzed
to investigate their effectiveness on existing and future magnets of different
geometries, sizes, types of superconductor, and strand and cable parameters.
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